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Heisenberg’s quantum matrix model

(Heisenberg 1925) quantum observables are matrices

measurement of an observable is an eigenvalue of the matrix
– typically discrete, or even finite, set of possible outcomes –
like the wavelength of the spectral line in the emmission
spectrum of hydrogen

(Heisenberg 1927) quantum observables can be measured at
the same time only if their matrices commute{
uncertainty principle for non-commuting observables
like position and momentum

matrix algebra is cumbersome because of non-commutativity

(Schrödinger 1928) ”I naturally knew about his theory, but was
discouraged, if not repelled, by what appeared to me as very
difficult methods of transcendental algebra, and by the want of
Anschaulichkeit.”
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Schrödinger’s quantum wave model

Anschaulichkeit = intelligibility + visualisability
(Schrödinger 1926) quantum particles can be modelled by
waves, solving Schrödinger equation Ĥ|Ψ⟩ = E |Ψ⟩:

(Heisenberg 1926) ”The more I think of the physical part of
Schrödinger’s theory, the more abominable I find it. What
Schrödinger writes about Anschaulichkeit makes scarcely any
sense, in other words I think it is crap (=Mist).”
(Schrödinger 1926, Dirac 1926, von Neumann 1929)
Heisenberg picture = Schrödinger picture

ℓ2(N) � L2(R) (Riesz-Fischer 1907)
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Hilbert’s spectrum

matrix:
grid of numbers

vector:
column of numbers

matrix-vector product

matrix transformation:
A : C3 → C3

b 7→ Ab
when Ab = λb, then b is an eigenvector of A of eigenvalue λ
spectrum of A is the set of all eigenvalues of A
Example: Schrödinger equation Ĥ|Ψ⟩ = E |Ψ⟩;
spectrum of Ĥ are the possible energy values E
matrix multiplication non-commutative:
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Hilbert’s spectrum

(Hilbert 1924) “I developed my
theory of infinitely many variables
from purely mathematical
interests, and even called it
‘spectral analysis’ without any
presentiment that it would later
find an application to the actual
spectrum of physics.”
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Grothendieck’s spectrum

(Descartes 1637){ coordinates solve geometry with algebra

circle of radius r is set of points (x, y)
on the plane solving x2 + y2 = r2

(Groethendieck 1960) encodes the circle by the commutative
algebra of functions on it: R[x, y]/(x2 + y2 − r2)

spectrum of a commutative algebra R is the space of
multiplicative functions f : R → R

Example: R = R[x, y] polynomial functions on (x, y)-plane;

the point (x0, y0) corresponds to
f : R → R

p 7→ p(x0, y0)
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Big algebra

a multiplicative ρ : G→ Mn×n(C) is a matrix representation of
a compact symmetry group G
Example: rotation group of sphere SO(3) ⊂ M3×3(C)
or special unitary group SU(3) ⊂ M3×3(C)
(Hausel 2024){ big algebra of ρ:
Bρ ⊂ Maps(g,Mn×n(C))

G

an algebra of G-equivariant maps
from g := Lie(G) to matrix algebra Mn×n(C) of representation

Example:
M1 : g → Mn×n(C)

A 7→ Lie(ρ)(A)
then M1 ∈ B

ρ

(Hausel 2024){ wonderful properties of Bρ:
1 maximal commutative subalgebra; free of rank n / C[g]G=C[h]W
2 Bρ � IH∗G∨(Grρ) equivariant intersection cohomology of affine

Schubert variety for Langlands dual G∨
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1 + c2))

by Cayley-Hamilton
its spectrum with principal spectrum at c2 = −4:
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Gell-Mann’s spectrum

(Gell-Mann 1962) ”If the
information I’ve heard is really
right, then our speculation might
have some value, and we should
look for the last particles, called,
say, Omega-minus”
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16I43 − 24I23Y − 16I23 + 3Y2 + 6Y = 0
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