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Outline
Quantum channels are fundamental tools for modeling the evolution of quantum states, especially in the presence of noise or decoherence. A central representation of such channels
is the Kraus decomposition, where the set of Kraus operators may often be structured by underlying symmetries. In particular, when the Kraus operators are taken to be the
generators of a Lie algebra, the resulting channels—called Lie algebra channels—exhibit deep connections to representation theory. For certain representations of SU(2) and SU(N),
Lieb and Solovej proved that coherent states minimize the output entropy. In this project, we investigate whether this minimal entropy property still holds for channels associated
with more general Lie algebras and their representations.
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A quantum channel is a mathematical model de-
scribing the evolution of quantum states under
noise or interaction with an environment. For-
mally, a quantum channel is a completely posi-
tive and trace-preserving (CPTP) linear map be-
tween spaces of operators. Let Hd be a finite-
dimensional Hilbert space with dimension d, and
let End(Hd) denote the space of linear maps on
Hd.

Definition 1. A quantum channel is a linear
map

E : End(Hd1) → End(Hd2)

such that:
(1) Complete positivity (CP): For every other Hilbert space Hj , the map

E ⊗ idj : End(Hd1
⊗Hj) → End(Hd2

⊗Hj)

is positive, i.e., it maps positive semidefinite operators to positive semidefinite operators.
(2) Trace-preserving (TP): For all density matrices ρ ∈ End(Hd), Tr(E(ρ)) = Tr(ρ).

Von Neumann Entropy
To quantify the amount of information (or uncertainty) in a quantum state, we use the
von Neumann entropy.

Definition 2. For a density matrix ρ, the von Neumann entropy is defined as S(ρ) :=
−Tr(ρ log ρ), where ρ is a density matrix on Hd.

This is the quantum analog of the classical Shannon entropy and is zero if and only
if ρ is a pure state. However, von Neumann entropy is not the only way to define an
entropy of a quantum state. In settings where one studies phase-space representations
and semiclassical limits, another notion—Wehrl entropy—becomes relevant and will be
introduced later.

Lie Algebra Channels and Representation Theory
Kraus Representation
Theorem 3 (Kraus’s Theorem). Any CPTP map E admits a representation of the
form:

E(ρ) =
k∑

i=1

MiρM
†
i ,

where Mi ∈ End(Hd) are called Kraus operators, and they satisfy the normalization
condition:

∑k
i=1M

†
iMi = I. This decomposition is not unique, but it always exists.

The number k can be taken to satisfy k ≤ d2.

Quantum Channels and Representation Theory (W. G. Ritter)

Figure 2: Lie Algebra

The Kraus operators in a quantum channel need not
be arbitrary—when chosen to reflect the symmetries
of a physical system, they naturally give rise to Lie
algebra channels. This leads to a deep connection be-
tween quantum information theory and representation
theory of Lie algebras.

Let g be a real or complex Lie algebra, and let
π : g → gl(V ) be a finite-dimensional representation
on a Hilbert space V . For a basis Xi of g, con-
sider the operators π(Xi) as a set of Kraus opera-
tors. This leads to a Lie algebra channel of the form:
E(ρ) =

∑k
i=1 π(Xi)ρ π(Xi)

†.

Ritter shows that the resulting channels often commute with the action of the Lie group
G whose Lie algebra is g. This symmetry implies that:

• The channel E preserves G-invariant subspaces of V .

• Irreducible representations of G decompose the Hilbert space into sectors that
evolve independently under E .

Hence, representation theory becomes a tool to analyze the spectral and entropy prop-
erties of such channels.

Minimal Output Entropy Conjecture
Wehrl Entropy
Let H carry an irreducible representation of a compact Lie group G, and fix a highest
weight vector |ψ0⟩ ∈ H.

Definition 4. The coherent states associated with this representation are the orbit of
|ψ0⟩ under the group action: |Ω⟩ := g · |ψ0⟩, for g ∈ G.

These states are labeled by points Ω ∈ G/H, where H ⊂ G is the stabilizer subgroup
of |ψ0⟩. For example, when G = SU(2) and H is the spin-j representation, the space of
coherent states is the Bloch sphere S2 ∼= SU(2)/U(1).

Definition 5. Given a density matrix ρ on H, one defines the Husimi function as:
Qρ(Ω) := ⟨Ω|ρ|Ω⟩, a smooth, non-negative function on G/H that integrates to one:∫
G/H

Qρ(Ω) dµ(Ω) = 1, where dµ is the normalized invariant measure on G/H.

Definition 6. The Wehrl entropy of ρ is then defined as the classical entropy of this
distribution: SW (ρ) := −

∫
G/H

Qρ(Ω) logQρ(Ω) dµ(Ω), where dµ is the normalized in-
variant measure on G/H.

Minimal Output Entropy Conjecture
Conjecture 7. The minimal output entropy conjecture posits that for certain quantum
channels, particularly those arising from group symmetries, the minimal output Wehrl-
type entropy is achieved when the input is a coherent state.
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E. H. Lieb and J. P. Solovej investigated
the behavior of quantum channels aris-
ing from representations of SU(2) and
symmetric representations of SU(N), and
proved that coherent states minimize the
output entropy for a large class of such
channels. They used a general strategy for
establishing the minimal output entropy
conjecture: For both SU(2) representations and symmetric SU(N) representations, co-
herent input states produce output states whose eigenvalue sequences, arranged in de-
creasing order, majorize those produced by any other input state. This fundamen-
tal majorization result implies, via Karamata’s theorem, that any concave function of
the output is minimized by coherent states. In the semiclassical limit, this leads to a
minimization of the Wehrl entropy. This confirms the conjecture that coherent states
uniquely minimize the Wehrl entropy in both settings.

These results provide rigorous evidence for the minimal output entropy conjecture in
the case of symmetric Lie group representations and motivate the exploration of this
property in broader settings.

Relation to Big Algebras
Let φ : End(V µ) → End(V λ) be a quantum channel that is G-invariant under
the action of a compact Lie group G. Then the space of such channels is φ ∈(
End((V µ)∗)⊗ End(V λ)

)G ∼=
(
End(V µ)⊗ End(V λ)

)G.

To study this space, one considers the Lie algebra g = Lie(G) and its two classical
algebras:

• The symmetric algebra S(g),

• The universal enveloping algebra U(g).

For a fixed highest weight representation V λ of g, Hausel then considers:

• The Kirillov algebra (classical version): Cλ(g) :=
(
S∗(g)⊗ End(V λ)

)G
,

• The Kostant algebra (quantum version): Rλ(g) :=
(
U(g)⊗ End(V λ)

)G
.

Figure 4: Triplet Crystal

The big algebra Bλ(g) is a maximal commutative subal-
gebra of Cλ(g), while its quantum analog Gλ(g) is also a
maximal commutative subalgebra of Rλ(g). Thus we have
Bλ(g) ⊂ Cλ(g) →

(
End(V µ)⊗ End(V λ)

)G and Gλ(g) ⊂
Rλ(g) →

(
End(V µ)⊗ End(V λ)

)G, this suggests a struc-
tural bridge between quantum channels and big algebras.

Although this connection is still speculative, it raises the
possibility that studying the symmetries and entropy prop-
erties of G-invariant quantum channels may yield new in-
sight into the structure of big algebras, both classical and

quantum, which still await further exploration.


