TRANSILLUMINATION OF LATTICE PACKING OF BALLS

T. HAUSEL

The paper of J. Horváth [1, see Theorem 2] contains the following statement: If a lattice packing of balls is given in \mathbb{E}^n $(n \geq 3)$, then there exists an affine subspace of \mathbb{E}^n of dimension n-2 which is disjoint to the balls. In the proof of this statement (see [1], pp. 424-425) he uses the following (for simplicity we only take the special case $\ell=2$ and $b_3=a$ shortest non-zero lattice vector of a lattice). Let $a_1, a_2, b_3, b_4, \ldots, b_n$ be an arbitrary system of linearly independent vectors from a lattice in \mathbb{E}^n , that contains b_3 . Then he considers the orthogonal projection of \mathbb{E}^n to an orthogonal complement Σ_n^2 of $\lim\{b_3,\ldots,b_n\}$. This Σ_n^2 is a 2-plane in \mathbb{E}^n , and can be supposed to contain 0. However, for arbitrary a_1,a_2,b_4,\ldots,b_n (of length at least $\|b_3\|$) Σ_n^2 is in general no subspace of $\lim\{a_1,a_2,b_3\}$, hence this projection has no restriction to a projection of $\lim\{a_1,a_2,b_3\}$ into itself, which is however used in [1] further. Namely [1] applies to this restricted projection $\lim\{a_1,a_2,b_3\}$.

In fact, [1], Theorem 2 itself is invalid, and here we actually prove the following

THEOREM. There exists a lattice packing of balls in E^n intersecting every affine subspace of E^n of dimension $n - [c\sqrt{n}]$, where c is a positive absolute constant.

PROOF. Throughout the proof we use the terminology, notations and results of the paper of R. Kannan and L. Lovász [2], in particular $\lambda_1(\mathsf{L}_n)$ denotes the minimal length of a non-zero vector of a lattice L_n , and $\mu_j(K,\mathsf{L}_n)$ is the j-th covering minimum of a convex body K with respect to a lattice L_n .

According to the result of Conway and Thompson [3, Chapter II, Theorem 9.5] there exists a lattice L_n of rank n with $L_n = L_n^*$ in E^n for which

(1)
$$\lambda_1(\mathsf{L}_n)\lambda_1(\mathsf{L}_n^*) \ge c_1 n,$$

where c_1 is a positive absolute constant. Let us draw balls around all points of L_n with diameter $\lambda_1(L_n)$. We show that this lattice packing of balls possesses the property claimed in the Theorem. Let P be one of the points of L_n . Let us consider the ball B which is drawn around P. Since $1/\lambda_1(L_n^*)$ is the maximum of the distances of two parallel and neighbouring lattice

hyperplanes in L_n , (1) implies that the lattice width of **B** is not less than c_1n . Thus, $\mu_1(\mathbf{B}, \mathbf{L}_n) \leq 1/(c_1n)$. Using Theorem (2.7) from [2] we get that

(2)
$$\mu_j(\mathbf{B}, \mathbf{L}_n) < c'j^2\mu_1(\mathbf{B}, \mathbf{L}_n) \le \frac{c'j^2}{c_1n},$$

with a positive absolute constant c'. If we choose $j = [c\sqrt{n}]$ with $c^2 = c_1/c'$, then (2) proves our Theorem.

REMARK. If the conjecture $\mu_{j+1}(B) \le \mu_j(B) + \mu_1(B)$ (where B is ball) were true, see [2], then we could replace $n - [c\sqrt{n}]$ by n - [cn] in the Theorem.

REFERENCES

- [1] Horváth, J., Über die Durchsichtigkeit gitterförmiger Kugelpackungen, Studia Sci. Math. Hungar. 5 (1970), 421-426. MR 45 #7615
- [2] KANNAN, R. and Lovász, L., Covering minima and lattice-point-free convex bodies, Ann. of Math. 128 (1988), 577-602. MR 89i: 52020
- [3] MILNOR, J. and HUSEMOLLER, D., Symmetric bilinear forms, Ergebnisse der Mathematik un ihrer Grenzgebiete, Bd. 73, Springer-Verlag, New York-Heidelberg, 1973. MR 58 #22129

(Received April 27, 1992)

EÖTVÖS LORÁND TUDOMÁNYEGYETEM TERMÉSZETTUDOMÁNYI KAR GEOMETRIA TANSZÉK RÁKÓCZI ÚT 5 H–1088 BUDAPEST HUNGARY