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Preface

The present dissertation is my own work, except where attributed to others. It is not the outcome of work
done in collaboration, except Chapters 6 and 7.

Chapters 6 and 7 describe joint work with Michael Thaddeus. We started a correspondence in early 1997
about [Tha1] and related problems. The results appearing in these chapters were mostly achieved when
we participated in the Research in Pairs program in the Mathematisches Forschungsinstitut Oberwolfach
for three weeks in June, 1998.

I was advised by my supervisor that Chapters 1-5 are sufficient for a Ph.D. thesis. I added Chapters 6
and 7 to the thesis because I believe that they make the presented work more compact.
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Introduction

0.1 Motivation: Interaction with Physics

Traditional Mathematical Physics, the subject of mathematically rigorous results in Theoretical Physics,
has always been a bridge between Mathematics and Physics. Since the late 70’s we have been witnessing
a profoundly new interaction between Geometry and Particle Physics, implying an intrinsic connection
between them. Let us mention a few examples: Donaldson’s theory of 4-manifolds and Seiberg-Witten
theory, enumerative geometry and sigma models, the Jones polynomial and Chern-Simons theory, the
Verlinde formula and Conformal Field Theory. A common feature in these pairs is that the theories are
motivated by both Geometry and Particle Physics.

In the late 70’s physicists started to use sophisticated geometrical and topological methods for the de-
scription of the non-perturbative aspects of Quantum Field Theories. It turned out that the independently
developed geometrical methods could provide new insights into Physics. Indeed, these were used for testing
physical theories in the absence of the available technology for experiments.

Geometers welcomed the renewed interest in their work – and tried to solve the new problems suggested
by physicists. It resulted in an exchange of ideas – physicists revealed new directions in Geometry, and
geometers delivered solutions in Physics.

By now links of this new kind are so numerous that one is tempted to hope that a new subject is
emerging with mixed mathematical and physical motivations, that may be called Quantum Geometry.

While the present thesis is concerned only with Mathematics, the motivation of the original question
comes from Physics. In the next section, by explaining the motivation for the problem of this thesis, we
show a few examples of the different types of interaction between Geometry and Particle Physics.

iii



iv INTRODUCTION

0.2 Statement of the problem

Analyzing the conjectured S-duality in N=2 supersymmetric Yang-Mills theory, which is a proposed
SL(2,Z) symmetry of the theory, Sen in [Sen] could predict the dimension of the space of L2 harmonic
forms Hk on the universal cover of the moduli space of SU(2) magnetic monopoles of charge k, by specu-
lating that there must be an SL(2,Z)-action on the space

⊕Hk, which represents bound electron states
of the theory.

The moduli space of monopoles Mk of charge k is the parameter space of finite energy and charge
k solutions to Bogomolny equations, which can be interpreted as the one dimensional reduction of the
self-dual SU(2) Yang-Mills equations on R4.

The parameter or moduli space Mk of magnetic monopoles of charge k is a non-compact manifold, with
π1(Mk) = Zk, and has a natural hyperkähler and complete metric on it, which comes from an abstract
construction (the so-called hyperkähler quotient construction1) and known explicitly only in the case k = 2,
when M2 is called the Atiyah-Hitchin manifold2.

When k = 2 Sen’s conjecture says that dim(H2) = 1. By knowing the metric of M2 explicitly, Sen
was able to find a non-trivial L2 harmonic form on the universal cover M̃2, giving some support for his
conjecture and in turn for S-duality.

For higher k however Sen’s conjecture says something about a metric which is not known explicitly.
Nevertheless the statement is quite interesting from a mathematical point of view as the space of L2

harmonic forms on a non-compact complete Riemannian manifold is not well understood.
Hodge theory tells us that in the compact case the space of L2 harmonic forms is naturally isomorphic

to the De-Rham cohomology of the manifold. However in the non-compact case there is no such theory,
and indeed the harmonic space depends crucially on the metric.

Nevertheless some part of Hodge theory survives for complete Riemannian manifolds3, such as the
Hodge decomposition theorem which states that for a complete Riemannian manifold M the space Ω∗L2 of
L2 forms on M has an orthogonal decomposition

Ω∗L2 = d(Ω∗cpt)⊕H∗ ⊕ δ(Ω∗cpt),

also that H∗ = ker(d) ∩ ker(d∗). An easy corollary4 of these results says that the composition

H∗cpt(M)→ H∗ → H∗(M)

is the forgetful map.
By calculating the image of H∗cpt(M̃k) in H∗(M̃k) Segal and Selby could give a lower bound for the

harmonic forms on the moduli space of magnetic monopoles which coincides with the dimension given
by Sen’s conjecture (see [Se,Se]). This purely mathematical result is thus a supporting evidence for the
conjectured S-duality in N = 2 SYM of theoretical Physics.

In this thesis we will investigate the analogue of Sen’s conjecture for Hitchin’s moduli spaceM of Higgs
bundles of fixed determinant of degree 1 over a Riemann surface Σ of genus g > 1. Hitchin introducedM
in [Hit1] by considering the 2-dimensional reduction of the 4-dimensional self-dual Yang-Mills equation5.
The moduli spaceM is a simply connected non-compact manifold of dimension 12g− 12 with a complete
hyperkähler metric on it. Led by the similarities between the spaces Mk and M and their origin, we
address the following problem:

Problem 1 What are the L2 harmonic forms on M?

In Chapter 5 we solve the topological part of this problem by considering the so-called virtual Dirac
bundle6 D. By examining the degeneration locus of D we prove:

Theorem 0.2.1 The forgetful map
jM : H∗cpt(M)→ H∗(M)

is 0.
1cf. [HKLR]
2For further details see Subsection 1.1.3.
3cf. [DeRh] Sect. 32 Theorem 24 and Sect. 35 Theorem 26
4Cf. [Se,Se]
5For details see Subsection 1.1.4.
6For its gauge theoretical construction see Section 1.1.5.



0.2. STATEMENT OF THE PROBLEM v

This says that unlike the case of M̃k the topology of M does not give the existence of L2 harmonic
forms. We can state this fact informally as: “There are no topological L2 harmonic forms on Hitchin’s
moduli space of Higgs bundles”.

Segal and Selby’s result together with Sen’s conjecture suggest that for M̃k the topology gives all the
harmonic space. Led by this and supported by the discussion in Subsection 3.5 we can formulate the
following conjecture:

Conjecture 1 There are no non-trivial L2 harmonic forms on Hitchin’s moduli space of Higgs bundles.

It would be interesting to see whether a physical argument could back this conjecture7. We know of
one serious appearance of Hitchin’s moduli space of Higgs bundles in the Physics literature. In [BJSV]
a topological σ-model with target space M arises as certain limit of N = 4 supersymmetric Yang-Mills
theory. However it is not clear whether L2 harmonic forms on M have any physical interpretation in this
theory.

The mathematical counterpart of a topological sigma model with target space M is the enumerative
geometry of curves in M. In order to consider enumerative problems in M one first has to understand
H∗(M), the ordinary cohomology ring of M. The purpose of Chapter 6 is to describe the cohomology
ring ofM, establishing the mathematical background of calculating the physical theory of [BJSV]. This is
intended in a future work. Chapter 7 places the understanding of the cohomology ring of M into a more
general framework, and finds intimate relations with the work of Atiyah-Bott, and Kirwan.

All in all the purpose of this thesis is to give a comprehensive description of the cohomology of Hitchin’s
moduli space of Higgs bundles with the aim of using it later for calculating physically interesting theories.

7Note that the conjecture does not hold for parabolic Higgs bundles, as the toy example after Theorem 4.6.13 shows. Note
also that Dodziuk’s vanishing theorem [Dod] shows that there are no non-trivial L2 holomorphic forms on M, since the Ricci
tensor of a hyperkähler metric is zero.



vi INTRODUCTION

0.3 Structure and Results

The thesis has two parts. The first part is a collection of results mainly from the literature which are
needed in the second part. The second part has four chapters. The first two cover more or less the papers
[Hau1] and [Hau2], respectively, while the last two are made up from [Ha,Th].

In Chapter 4 the emphasis is on the C∗-action, and the approach is from Symplectic Geometry. In
Chapter 5 we focus on the hypercohomology of Higgs bundles and the point of view is in Algebraic
Geometry. In Chapter 6 the central feature is equivariant cohomology and the extra tool is Equivariant
Topology. Finally in Chapter 7 the main object is the resolution tower and the new methods are from
Mathematical Gauge theory and Homotopy theory.

In Chapter 4, using Lerman’s construction of symplectic cutting, we consider a canonical compactifica-
tion ofM, producing a projective varietyM =M∪Z, with orbifold singularities. For this we thoroughly
examine the C∗-action onM, given by scalar multiplication of the Higgs field. We find that the downward
flows correspond to the components of the nilpotent cone while the upward flows correspond to the Shatz
stratification. The former result will be exploited in Chapter 5, while the latter in Chapter 6 and in Chap-
ter 7. Moreover we give a detailed study of the spaces Z and M. In doing so we reprove some assertions
of Laumon and Thaddeus on the nilpotent cone.

In Chapter 5 we prove the physically motivated Theorem 0.2.1. For this we consider the virtual Dirac
bundle onM which is the analogue of the virtual Mumford bundle on N , the moduli space of rank 2 stable
bundles of fixed determinant of odd degree over a projective curve Σ. Using results from Chapter 4 about
the nilpotent cone we apply Porteous’ theorem to the downward flows to obtain a proof of Theorem 0.2.1
that all intersection numbers in the compactly supported cohomology of M vanish, i.e. “there are no
topological L2 harmonic forms onM”. Our result generalizes two facts. One is the well known vanishing of
the Euler characteristic of N , which gives the vanishing of one intersection number onM. The other is the
vanishing of the ordinary cohomology class of the Prym variety, the generic fibre of the Hitchin map, which
gives the vanishing of g intersection numbers on M. We prove here that the rest of the g2 intersection
numbers also vanish. Our proof shows that the vanishing of all intersection numbers of H∗cpt(M) is given
by relations analogous to the Mumford relations in the cohomology ring of N .

In Chapter 6 we give a conjectured complete description of the cohomology ring of M. We use an
approach motivated by Kirwan’s work on the proof of the Mumford conjecture, to prove that the equivariant
cohomology ring of M̃ is generated by universal classes. However our proof is completely geometric in
nature and rests on the degeneracy locus description of the upward flows. We conclude the chapter by
explaining a – computer supported – conjectured complete description of H∗I (M), the subring of H∗(M)
generated by the universal classes α, β and γ. We support this conjecture by proving that the conjectured
ring and H∗I (M) have the same Poincaré polynomial. Also we find the first two relations. The second of
which turns out to be βg = 0, showing that Newstead’s conjecture is still true overM.

In Chapter 7 we construct a resolution tower of smooth S1-manifolds:

M̃ ∼= M̃0 ⊂ M̃1 ⊂ ... ⊂ M̃k ⊂ ...,

from the moduli spaces M̃k of stable Higgs bundle with a pole of order at most k at a fixed point, and of
degree 1, and consider the direct limit

M̃∞ = lim
k→∞

M̃k.

We prove that its cohomology is a free graded algebra on the universal classes and that

i∗0 : H∗(M̃∞)→ H∗(M̃)

is surjective, therefore a resolution of the cohomology ring of M̃. We show how M̃∞ can be used to
provide a ’finite dimensional’ and purely geometric proof of the Mumford conjecture. To shed light on
many striking features of M̃∞ we show that M̃∞ is homotopy equivalent to BG, the classifying space of
the gauge group modulo constant scalars, and that they are also homotopy equivalent as stratified spaces.
We finish the chapter by proving that even the homotopy of the resolution tower stabilizes in the spirit of
the Atiyah-Jones conjecture.

We conclude the thesis by summarizing the work in the previous chapters from the point of view of the
compactificationM.
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Chapter 1

Moduli spaces

The subject of the thesis is the investigation of a particular moduli space, the moduli space of Higgs
bundles. In this chapter we give an introduction to moduli spaces in general and collect results from the
literature which will be needed in the second part. The chapter has two sections. In the first one we deal
with gauge theory in the second with algebraic moduli spaces.

1.1 Mathematical gauge theory

The interests of mathematicians in gauge theory started in the late 70’s with the appearance of a few
pioneer papers, such as [ADHM] and [A,H,S]. The papers were concerned with the Yang-Mills equations
in gauge theory, which for mathematicians meant a branch of differential geometry, namely connections on
fibre bundles.

Yang and Mills introduced the Yang-Mills equations on Minkowski 4-space in 1954 as a non-Abelian
generalization of Maxwell’s equations. Later the same equations over Euclidean 4-space were also considered
and these equations are our concern in the next subsection1.

1.1.1 Yang-Mills equations in 4 dimensions

Let G be a Lie group (usually U(2), SU(2) or SO(3)) and P be a principal G-bundle over R4. If A is
a connection on P , then its curvature F (A) ∈ Ω2(R4; ad(P )) is a two-form with values in ad(P ), where
ad(P ) = P ×G g is the vector bundle associated to the adjoint representation.

In principle a physical theory is given by its Lagrangian. The Yang-Mills Lagrangian (or functional or
energy function or action) is:

S(A) = −
∫

R4

tr(F (A) ∧ ∗F (A)), (1.1)

where
∗ : Ω2(R4; ad(P ))→ Ω2(R4; ad(P ))

is the Euclidean Hodge star operator.
The corresponding Euler-Lagrange equations, which describe the critical points of the functional S, are

called the Yang-Mills equations:

dA ∗ F (A) = 0, (1.2)

Recall that the Bianchi identity says that

dAF (A) = 0, (1.3)

which is formally similar2 to (1.2).

1For a more detailed introduction see [Ati1].
2As a matter of fact a possible duality between the two equations is the source of the conjectured S-duality, which was

mentioned in the Introduction. In Maxwell’s theory, which is a Yang-Mills theory on Minkowski 4 space with G = U(1), this
is the well known duality between electricity and magnetism.

3



4 CHAPTER 1. MODULI SPACES

The absolute minima of the Yang-Mills Lagrangian are given by the self-dual

F (A) = ∗F (A)

and anti self-dual

F (A) = − ∗F (A)

Yang-Mills equations. Physically a solution of finite energy to these equations represents a multi-instanton.
Note that because of the Bianchi identity (1.3) it is immediate that solutions to the last two equations
satisfy the original Yang-Mills equations (1.2). Mathematically the last two equations are equivalent by
reversing the orientation of the underlying R4. We will only consider the self-dual equations here.

We will need later the form of the equations above in terms of a trivialization of P over R4. If the basic
coordinates of R4 are (x1, x2, x3, x4) , then the connection A is described by a Lie algebra-valued 1-form:

A = A1dx1 +A2dx2 +A3dx3 +A4dx4. (1.4)

and then its curvature is

F (A) = dA+A ∧ A.
Alternatively

F (A) =
∑

i<j

Fijdxi ∧ dxj ,

where

Fij =

[
∂

∂xi
+Ai,

∂

∂xj
+Aj

]
,

or if we write

∇i =
∂

∂xi
+Ai,

then

Fij = [∇i,∇j ].

In this trivialization the self-dual Yang-Mills equations then take the form

F12 = F34,
F13 = F42,
F23 = F14.

}
(1.5)

An important aspect of the Yang-Mills equations is that they are gauge invariant. To explain this con-
sider a C∞ section g of the bundle of groups P ×AdG. It is an automorphism of the principal bundle which
leaves each fibre invariant. It is called a gauge transformation, and the group of all gauge transformations
is called the gauge group. A gauge transformation transforms any connection A on P in a natural way
to another connection g(A). Moreover if A is a solution to the self-dual Yang-Mills equations then g(A)
is also a solution. Thus G acts naturally on the finite energy solution space of the self-dual Yang-Mills
equations. Because we do not consider two gauge equivalent solutions different we define the moduli space
(or parameter space) to be the quotient.

It can be shown that in nice cases the moduli space will inherit a natural structure of a finite dimensional
smooth manifold. The study of these moduli spaces is the central problem of the mathematical gauge theory.
The significance of the subject became more apparent in the early 80’s with the seminal work of Donaldson
and Atiyah-Bott.

Donaldson, analyzing the moduli space of solutions to the anti-self dual Yang-Mills equations over a
closed oriented Riemannian 4-manifold M , could prove many fundamental theorems about the topology of
the underlying differentiable manifold3.

Atiyah and Bott, in [At,Bo], extensively studied the 2-dimensional Yang-Mills equations, relating the
subject to stable vector bundles on algebraic curves and Morse theory. In the next subsection we explain
how they related Yang-Mills theory to the algebraic geometry of vector bundles on curves.

3For more details consult [Do,Kr].
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1.1.2 Yang-Mills equations in 2 dimensions

For the sake of simplicity we restrict our attention to G = U(n), and let P be a principal U(n)-bundle
over a Riemann surface Σ. We also fix a metric on Σ compatible with the complex structure. Now if A is
a connection on P its curvature is:

F (A) ∈ Ω2(R4; ad(P )).

The space A of all connections on P is naturally an affine space modelled on the infinite dimensional vector
space Ω0,1(Σ, ad(P ) ⊗ C). As we explained above, the infinite dimensional gauge group G = Γ(Σ, P ×Ad

U(n)) acts naturally on the infinite dimensional affine space A.
The strategy of [At,Bo] is to calculate H∗G(A), the G-equivariant cohomology4 of A, in two different

ways. First is a direct way by noting that A, being homeomorphic5 to a topological vector space, is
contractible, thus

H∗G(A) ∼= H∗(BG),
and H∗(BG) can be calculated directly6.

The other approach for calculating H∗G(A) is Morse theory. Morse theory gives information about the
cohomology of the whole space in terms of the cohomology of the non-degenerate critical submanifolds of
the Morse function. Recall that we have the Yang-Mills functional S : A → R, defined by (1.1), which
gives a function on A.

The key idea of [At,Bo] is to think of S as a G-equivariant Morse function on the infinite dimensional
Banach manifold A, and calculate H∗G(A) from Morse theory. As in the previous subsection, critical points
of S are given by solutions to the 2-dimensional Yang-Mills equations (the Euler-Lagrange equations of the
Yang-Mills functional) of the form (1.2) with

∗ : Ω2(Σ; ad(P ))→ Ω0(Σ; ad(P ))

now being the Hodge star operator corresponding to the fixed metric on Σ.
The solution space has infinitely many components: one component, corresponding to the absolute

minimum of the Yang-Mills functional, contains irreducible connections, whereas the others contain only
reducible ones. A famous result of Narasimhan and Seshadri identifies the moduli space of irreducible
solutions to the Yang-Mills equations with the moduli space of stable vector bundles on Σ, a space, which
had been investigated by algebraic geometers for decades.

Thus, provided that the Morse function is perfect, the Morse theory approach gives a method to
calculate the cohomology of the moduli space of stable bundles, by knowing the cohomology of the moduli
space of reducible connections, which can be inductively calculated via this process. Though they couldn’t
proceed with the analysis7, they found an alternative way. Namely there is a one-to-one correspondence
between unitary connections on P and holomorphic structures on the associated C∞ complex vector bundle
V = P ×ad g. Thus one can identify A with the complex affine space C of holomorphic structures on V .
Moreover the latter space has the advantage of being independent of the metric on Σ, transferring the
problem from differential geometry to holomorphic, and indeed algebraic geometry.

In Section 3.4 we will explain how Atiyah and Bott applied Morse theory to C, motivated by the above
heuristic argument of Morse theory over A.

1.1.3 Bogomolny equations in 3 dimensions

In the 80’s, further parts of gauge theory became the subject of study by mathematicians. A good example
is the problem of magnetic monopoles. To explain the mathematical background, consider a connection A
on a principal G-bundle P over R4 of the form (1.4). If we make the assumption that the Lie algebra-valued
functions Ai are independent of x4, then A1,A2 and A3 define a connection:

A1dx1 +A2dx2 +A3dx3

over R3, while A4 becomes a function on R3 traditionally denoted by φ and called the Higgs field.

4For the definition of equivariant cohomology see Subsection 2.2.1.
5To get the correct topology on A as a Banach manifold, one has to consider Sobolev connections. Because we want to

give only an intuitive picture we do not spell out the details here, but refer to §14 of [At,Bo]. For related remarks see the
footnotes at the end of Subsection 1.2.3.

6For the result see Section 3.4.
7Later this was done by Daskalopoulos in [Das].
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Under this procedure the self-dual Yang-Mills equation reduces to the so-called Bogomolny equation:

F (A) = ∗dAφ.

Moreover the reduced energy function takes the form

S(A) = −
∫

R3

tr(F (A) ∧ ∗F (A)) + tr(dAφ ∧ ∗dAφ).

This procedure is called dimensional reduction. Thus the Bogomolny equation is the 1-dimensional
reduction of the self-dual Yang-Mills equation.

Physically a solution of finite energy to the Bogomolny equation represents a magnetic monopole. It
can be shown that any solution to the Bogomolny equation with finite energy has energy 8πk, where k is
a positive integer, which is called the charge of the monopole.

As in the Introduction we denote by Mk the moduli space of charge k and SU(2) magnetic monopoles,
which is the charge k solution space to the SU(2) Bogomolny equation modulo gauge transformations. This
is a non-compact smooth manifold of dimension 4k − 4, with an inherited complete hyperkähler metric.

Atiyah and Hitchin could find the metric explicitly on the 4-dimensional manifold M2 and by examining
its geodesics they could provide8 a description of the low energy scattering of SU(2) magnetic monopoles
of charge 2.

1.1.4 Hitchin’s self-duality equations in 2 dimensions

In 1987 Hitchin in [Hit1] considered the 2 dimensional reduction of the self-dual Yang-Mills equations,
whose moduli space is the central object of the present thesis. We now describe this construction.

If we assume (further) that the Lie algebra valued functions Ai in (1.4) are independent of both x3 and
x4, then A1 and A2 define a connection

A = A1dx1 +A2dx2

on R2, while A3 and A4 become Lie algebra-valued functions on R2, which we relabel as φ1 and φ2.
Furthermore we introduce φ = φ1 − iφ2, called the complex Higgs field.

From a coordinate independent point of view, we have a connection A on a principal G-bundle P over
R2 together with an auxiliary field

φ ∈ Ω0(R2; ad(P )⊗ C).

If we moreover write z = x1 + ix2 and introduce

Φ =
1

2
φdz ∈ Ω1,0(R2; ad(P )⊗ C)

and

Φ∗ =
1

2
φ∗dz̄ ∈ Ω0,1(R2; ad(P)⊗ C)

then the 2-dimensional reduced self-dual Yang-Mills equation becomes

F (A) = −[Φ,Φ∗],
d′′AΦ = 0.

}
(1.6)

These equations are called Hitchin’s self-duality equations.
Unfortunately there are no finite energy solutions to Hitchin’s self-duality equations on R2. However

by exploiting the conformal invariance of (1.6) we can write down Hitchin’s self-duality equations over a
compact Riemann surface Σ by demanding A to be a connection on a principal G-bundle P over Σ and
the Higgs field to be

Φ ∈ Ω1,0(Σ; ad(P )⊗ C).

Fortunately solutions to Hitchin’s self-duality equations over a Riemann surface do exist and Hitchin
made an extensive study of their parameter or moduli space M in [Hit1] for the case of G = SU(2) and
G = SO(3). We list some of his results in Subsection 1.2.2.

8For further details see [At,Hi].
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1.1.5 Dirac equations in 2 dimensions

To explain the gauge theoretic origin of the virtual Dirac bundle D of Chapter 5, following Hitchin [Hit4],
we first consider the Dirac equation in R4.

Let ψ1 and ψ2 be scalar functions. The ordinary Dirac equation is of the form:

(
∂

∂x1
+

(
i 0
0 −i

)
∂

∂x2
+

(
0 1
−1 0

)
∂

∂x3
+

(
0 i
i 0

)
∂

∂x4

)(
ψ1

ψ2

)
= 0.

If A is a self-dual Yang-Mills connection on P , and V is the vector bundle associated to P in a vector
representation, then the Dirac equation coupled to A is:

D/A(ψ) = 0,

where ψ is a twisted spinor and the Dirac operator coupled to A

D/A : Γ(S+ ⊗ V)→ Γ(S− ⊗ V)

is given by

D/A = ∇1 +

(
i 0
0 −i

)
∇2 +

(
0 1
−1 0

)
∇3 +

(
0 i
i 0

)
∇4,

where

∇i =
∂

∂xi
+Ai.

After the dimensional reduction we consider a connection on a principal G-bundle P over a Riemann
surface Σ, the rank 2 vector bundle V is associated to P in a suitable vector representation and φ a complex
Higgs field. Then the above coupled Dirac equation takes the following shape:

∂̄Aψ1 + φψ2 = 0
∂Aψ2 + φ∗ψ1 = 0,

}
(1.7)

now with
ψ1 ∈ Ω1,0(Σ,V)

and
ψ2 ∈ Ω0,1(Σ,V).

Suppose that (A, φ) is a solution to Hitchin’s self-duality equations (1.6) and consider the vector space
of solutions to the equation (1.7). Using Hodge theory of elliptic complexes it can be shown that this
vector space is canonically isomorphic to the Dolbeault definition of the hypercohomology9 vector space

H1(Σ, EA
Φ→ EA⊗K), where EA is the holomorphic vector bundle corresponding to the connection A on V ,

and Φ ∈ H0(Σ,End(E)⊗K) is the corresponding Higgs field. Thus we can assign to any point (A,Φ) ∈M
the complex vector space H1(Σ, EA

Φ→ EA ⊗K). This will not be a vector bundle in general but only a
coherent sheaf D, which we call the virtual Dirac bundle. We will define D rigorously in Chapter 5 and
use it to prove Theorem 0.2.1.

9For the Čech definition see Subsection 2.2.3
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1.2 Algebraic Geometry of vector bundles on curves

As we already mentioned [At,Bo] established a link between Yang-Mills theory on Riemann surfaces and
the algebraic geometry of vector bundles over projective algebraic curves via the theorem of Narasimhan
and Seshadri. Recall that, in a suitable form, this theorem asserts that there is a one-to-one correspondence
between rank n semi-stable vector bundles and those connections on a principal U(n)-bundle, which give
absolute minima of the Yang-Mills functional (1.2).

In this section we recall some definitions and results from the theory of vector bundles over projective
algebraic curves, which we will need later.

1.2.1 Moduli spaces of stable bundles

Algebraically a Riemann surface Σ is the same as a non-singular complex projective algebraic curve.
Moreover holomorphic vector bundles over Σ correspond to complex algebraic vector bundles. We will not
distinguish between them.

The main problem of the subject is to classify all vector bundles10 over the curve Σ. This was done for
genus 0 curves by Grothendieck in [Gro], and for genus 1 curves by Atiyah in [Ati2], both in 1957. However
the genus at least 2 case has proved to be much more difficult. From now on we restrict our attention to
the genus at least 2 case.

First recall that C∞ vector bundles over Σ are classified by their ranks and degrees. Thus we will
concentrate on C, the complex affine space of holomorphic structures on a fixed C∞ complex vector bundle
V over Σ of rank n and degree d. Certainly we do not want to distinguish between isomorphic vector
bundles, therefore we consider the complexified gauge group Gc = Aut(V) of complex automorphisms of
V , which acts naturally on C. Since an orbit of this action is clearly the set of vector bundles isomorphic
to a given one, the main problem reduces to understand the orbits of this action. However the space C/Gc,
though clearly parametrizes all vector bundles with underlying C∞ bundle V , is not even Hausdorff11,
hence its description is rather hopeless. One attempt of getting around this problem was provided by
Mumford’s Geometric Invariant Theory12 in the 60’s. The idea is to take a Gc-invariant open subset Cs of
C in order to get a Hausdorff space Cs/Gc, and indeed, as we will see later, a smooth algebraic variety, and
in good cases a projective one.

Definition 1.2.1 The slope of a vector bundle E on Σ is defined by:

µ(E) = deg(E)/ rank(E).

Moreover E is semi-stable (resp. stable) if it has at least as large (resp. strictly larger) slope than any of
its proper subbundles. Finally Css ⊂ C denotes the open set of semi-stable, Cs ⊂ C the open set of stable
bundles.

In some sense semi-stable bundles are the analogues of simple finite groups in the classification of finite
groups. For example one has the analogue of the Jordan-Hölder theorem:

Theorem 1.2.2 (Harder, Narasimhan) Every holomorphic bundle E has a canonical filtration:

0 = E0 ⊂ E1 ⊂ E2 ⊂ . . . ⊂ Er = E, (1.8)

with Di = Ei/Ei−1 semi-stable and

µ(D1) > µ(D2) > . . . > µ(Dr).

Thus as in the classification of finite groups, one first starts with the classification of semi-stable vector
bundles. As we mentioned above, Geometric Invariant Theory constructs a projective algebraic variety for
the parameter space of semi-stable vector bundles:

Theorem 1.2.3 When (n, d) = 1 then Cs = Css and the moduli space N(n, d) = Cs/Gc of rank n and
degree d stable bundles over Σ is a smooth projective algebraic variety of dimension n2(g − 1) + 1.

10A vector bundle always means an algebraic vector bundle, unless otherwise stated.
11This is because of the so-called jumping phenomenon.
12Cf. [M,F,K]
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Example. 1. Clearly every line bundle is stable thus N(1, d) contains all line bundles of degree d. This
space is the well-known Jacobian, which we relabel as Jd = N(1, d), and use J for J1. This is an Abelian
variety of dimension g. In this case the classification problem is clearly settled.

2. The next moduli spaces in the list are the rank 2 moduli spaces N(2, d), with d odd. These are all

isomorphic, thus we restrict our attention to N(2, 1), which we rename as Ñ . It is a smooth projective

variety of dimension 4g−3. The determinant gives a map detN : Ñ → J . For any Λ ∈ J the fibre det−1
N (Λ)

will be denoted by NΛ, which is a smooth projective variety of dimension 3g− 3. The map f : NΛ1
→ NΛ2

given by f(E) = E⊗ (Λ2⊗Λ∗1)
1/2, where (Λ2⊗Λ∗1)

1/2 is a fixed square root of Λ2⊗Λ∗1, is an isomorphism
between NΛ1

and NΛ2
. Hence we will write N for NΛ, when we do not want to emphasize the fixed line

bundle Λ. In words N is the moduli space of stable rank 2 bundles of fixed determinant of degree 1 over
the Riemann surface Σ.

The moduli spaces N and Ñ will appear all along in this thesis. They have been much studied over
the years. In particular their cohomology rings have been described completely. We explain some of the
results in this direction in Section 3.4.

1.2.2 Moduli spaces of Higgs bundles

Hitchin in Theorem 4.3 of [Hit1] proved a generalization of the above mentioned theorem of Narasimhan
and Seshadri, which linked the solutions of his self-duality equations (1.6) to algebro-geometric objects,
so-called stable Higgs bundles13:

Definition 1.2.4 The complex E
Φ→ E ⊗K with E a vector bundle on Σ, K the canonical bundle of Σ,

and Φ ∈ H0(Σ,Hom(E,E ⊗K)), is called a Higgs bundle14, while Φ is called the Higgs field.

The slope µ(E) of a Higgs bundle E = E
Φ→ E ⊗K is defined as the slope15 µ(E) of its vector bundle

E. A Higgs bundle is called semi-stable (resp. stable) if it has at least as large (resp. strictly larger) slope
than any of its proper Φ-invariant subbundles.

Thus Hitchin’s gauge theoretic construction ofM, the moduli space of solutions to Hitchin’s self-duality
equations, with fixed determinant connection as explained in [Hit1], in turn is isomorphic to the moduli
space of rank 2 stable Higgs bundles with trace-free Higgs field and fixed determinant of odd degree. This
space is the central moduli space of the present thesis: We fix a degree 1 line bundle Λ over Σ, and denote
byM the moduli space of rank 2 stable Higgs bundles with trace free Higgs field and determinant Λ.

The moduli space M has many features which show its importance. Probably the most important is
that the cotangent bundle of N , (defined above) sits insideM as an open dense subset. Namely, (T ∗N )E is
canonically isomorphic to H0(Σ,End0(E)⊗KΣ) thus the points of T ∗N are stable Higgs bundles.

After introducing the spaceM, Hitchin gave its extensive description in [Hit1], [Hit2]. Here we restate
those results, which we use later.

• M is a noncompact, smooth complex manifold of complex dimension 6g−6 containing T ∗N as a dense
open set.

• Furthermore M is canonically a Riemannian manifold with a complete hyperkähler metric. Thus
M has complex structures parameterized by S2. One of the complex structures, for which T ∗N is a
complex submanifold, is distinguished, call it I . We will only be concerned with this complex structure
here. The others (apart from −I) are biholomorphic to each other and give M the structure of a
Stein manifold. From the corresponding Kähler forms one can build a holomorphic symplectic form
ωh on (M, I).

• There is a map, called the Hitchin map

χ :M→ H0(Σ,K2) = C3g−3

defined by

(E,Φ) 7→ det Φ.

13For a more thorough treatment see Subsection 5.1.
14The term Higgs bundle was first used by Simpson in [Sim1].
15Cf. Definition 1.2.1
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The Hitchin map is proper and an algebraically completely integrable Hamiltonian system with
respect to the holomorphic symplectic form ωh, with generic fibre a Prym variety corresponding to
the spectral cover of Σ at the image point.

• Let ω denote the Kähler form corresponding to the complex structure I . There is a holomorphic
C∗-action on M defined by (E,Φ) 7→ (E, z · Φ). The restricted action of U(1) defined by (E,Φ) →
(E, eiθΦ) is isometric and indeed Hamiltonian with proper moment map µ. The function µ is a
perfect Morse function, moreover:

µ has g critical values: an absolute minimum c0 = 0 and cd = (d− 1
2 )π, where d = 1, ..., g − 1.

µ−1(c0) = µ−1(0) = F0 = N is a non-degenerate critical manifold of index 0.

µ−1(cd) = Fd is a non-degenerate critical manifold of index 2(g + 2d − 2) and is diffeomorphic to a
22g-fold cover of the symmetric product Σd̄, where we used the notation d̄ = 2g − 2d− 1.

• The fixed point set S of the involution σ(E,Φ) = (E,−Φ) is the union of g complex submanifolds of
M namely,

S = N ∪
g−1⋃

d=1

E2
d ,

where E2
d is the total space of a vector bundle E2

d over Zd. Moreover, E2
d is a complex submanifold

of dimension 3g − 3.

1.2.3 The moduli space of Higgs k-bundles

Using Geometric Invariant Theory, Nitsure in [Nit] gave an algebraic construction of M and many other
related spaces. As we will use some of them in Chapter 6, we define them here:

Definition 1.2.5 Let k ≥ 0 and M̃k denote the moduli space of stable rank 2 Higgs bundles of degree 1,

with poles of order at most k at a fixed point p ∈ Σ. A Higgs bundle with pole is a complex E
Φ→ E⊗K⊗Lk

p

where E is a rank 2 vector bundle over Σ, the line bundle Lp corresponds to the divisor p ∈ Σ and the
Higgs field with poles: Φ ∈ H0(Σ,End(E) ⊗ K ⊗ Lk

p). For convenience we call such a complex a Higgs

k-bundle and Φ a Higgs k-field. Moreover we call E
Φ→ E ⊗K ⊗ Lk

p stable if the slope of any Φ-invariant
line subbundle of E is strictly smaller than µ(E).

Proposition 7.4 of [Nit] then tells us:

Theorem 1.2.6 (Nitsure) The space M̃k is a smooth quasi-projective variety of dimension

8(g − 1) + 1 + 4k + dim(H1(Σ,K ⊗ Lk
p)).

As in the case of Ñ , the determinant map gives a map

detMk
: M̃k → J ×H0(Σ,K ⊗ Lk

p),

defined by detMk
(E,Φ) = (Λ2E, tr(Φ)). For any L ∈ J × H0(Σ,K ⊗ Lk

p) the fibre det−1
Mk

(L) will be

denoted byMk
L. Just as in the stable vector bundle case any two fibres of detMk

are isomorphic. Usually
we will writeMk forMk

L, when the Abelian Higgs bundle, with order k pole, L has zero Higgs field. The
dimension ofMk is clearly

8(g − 1) + 1 + 4k + dim(H1(Σ,K ⊗ Lk
p))− (g + dim(H0(Σ,K ⊗ Lk

p))) = 6(g − 1) + 3k.

By definition M0 = M, hence dim(M) = 6(g − 1), which checks up with the dimension calculated by

Hitchin. We will also use M̃ for M̃0.
A consequence of the Geometric Invariant Theory construction of Nitsure is the following16:

Corollary 1.2.7 The spaces M̃k and consequently Mk are quasi-projective varieties.

In particular Hitchin’s moduli spaceM is also a quasi projective variety. We will examine in a certain
sense the canonical compactification of M in Chapter 4.

Before we proceed to the next section we insert here a gauge theoretic construction of Nitsure’s spaces
M̃k, which is more in the spirit of [At,Bo] and [Hit1] and shall be used throughout the thesis.

16Cf. Remark 5.12 in [Nit].
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Gauge theoretic construction of M̃k

We denote by C the complex affine space of holomorphic structures17 on a fixed rank 2 smooth, complex
vector bundle V of degree 1. For any integer k consider the infinite dimensional vector spaces18

Ωq,r
k = Ωq,r

(
Σ,End(V)⊗Lk

p

)
,

where by Lk
p we denoted the smooth line bundle underlying the line bundle Lk

p, which is the line bundle of
the divisor kp. Now fix k ≥ 0 and define a map

∂k : C × Ω1,0
k → Ω1,1

k (1.9)

by sending the pair (E, φ) to ∂
E

k φ, where

∂
E

k : Ωq,r
k → Ωq,r+1

k

is the ∂ operator associated to the holomorphic structure End(E)⊗Lk
p on End(V)⊗Lk

p . It is characterized

by the property that for a local section φ the equation ∂
E

k φ = 0 holds if and only if φ is holomorphic with
respect to the holomorphic structure End(E)⊗ Lp

k on End(V)⊗Lk
p .

Now we define
Bk = ∂

−1

k (0) ⊂ C × Ωk

to be the subspace of pairs (E, φ) ∈ C × Ωk with φ being holomorphic. We denote by prk : Bk → C the
projection. Occasionally B will stand for B0 and pr for pr0.

Now we have the complexified gauge group Gc = Γ(Aut(V)), the group19 of complex automorphisms
of V , acting on C and on Ω1,0

k , which induces an action on Bk. Let us denote by (Bk)s ⊂ Bk the subspace
of Higgs k-bundles which are stable. The subset (Bk)s ⊂ Bk is clearly invariant under the complex gauge
group Gc. Then we can form the quotient (Bk)0/Gc, which is exactly the moduli space of stable Higgs

k-bundles M̃k, we are after.

17To make later heuristic arguments about infinite dimensional manifolds precise we need to choose holomorphic structures
of Sobolev class L2

1
.

18To be precise for (q, r) = (0, 1) and (1, 0) we consider sections of Sobolev class L2

1
for (1, 1) of class L2.

19To make later arguments precise we have to consider gauge transformations of Sobolev class L2

2





Chapter 2

Geometry of manifolds

This chapter deals with the symplectic geometry and topology of manifolds in general. The results appear-
ing here will be used in the second part for the moduli space of Higgs bundles.

2.1 C∗-actions on Kähler manifolds

In this section we collect the results from the literature concerning C∗-actions on Kähler manifolds. At the
same time we sketch the structure of Chapter 4.

2.1.1 Stratifications

Suppose that we are given a Kähler manifold (M, I, ω) with complex structure I and Kähler form ω.
Suppose also that C∗ acts on M biholomorphically with respect to I and such that the Kähler form is
invariant under the induced action of U(1) ⊂ C∗. Suppose furthermore that this latter action is Hamiltonian
with proper moment map µ : M → R, with finitely many critical points and 0 being the absolute minimum
of µ. Let {Fλ}λ∈A be the set of the components of the fixed point set of the C∗-action.

We list some results of [Kir1] extended to our case. Namely, Kirwan’s results are stated for compact
Kähler manifolds, but one can usually modify the proofs for non-compact manifolds, with proper moment
maps as above1.

There exist two stratifications in such a situation. The first one is called the Morse stratification and
can be defined as follows. The stratum UM

λ , the so-called upward Morse flow from Fλ, is the set of points
of M whose path of steepest descent for the Morse function µ and the Kähler metric have limit points in
Fλ. One can also define the sets DM

λ , the so-called downward Morse flow of Fλ, as the points of M whose
path of steepest descent for the Morse function −µ and the Kähler metric have limit points in Fλ. UM

λ

gives a stratification even in the non-compact case, however the set
⋃

λ D
M
λ is not the whole space but a

deformation retract of it. The set
⋃

λD
M
λ is called the downward Morse flow.

The other stratification is the Bialynicki-Birula stratification, where the stratum UB
λ is the set of points

p ∈ M for which limt→0 tp ∈ Fλ. Similarly, as above, we can define DB
λ as the points p ∈ M for which

limt→∞ tp ∈ Fλ.
One of Kirwan’s important results in [Kir1] Theorem 6.16 asserts that the stratifications UM

λ and
UB

λ coincide, and similarly DM
λ = DB

λ = Dλ. This result is important because it shows that the strata
Uλ = UM

λ = UB
λ of the stratifications are total spaces of affine bundles (so-called β-fibrations) on Fλ (this

follows from the Bialynicki-Birula picture) and moreover this stratification is responsible for the topology
of the space M (this follows from the Morse picture). Thus we have the following theorem2:

Theorem 2.1.1 Uλ and Dλ are complex submanifolds of M . They are isomorphic to total spaces of some
β-fibrations over Fλ, such that the normal bundles of Fλ in these β-fibrations are E+

λ and E−λ , respectively,
where E+

λ is the positive and E−λ is the negative subbundle of DM |Fλ
with respect to the U(1)-action.

Moreover, the downward Morse flow
⋃

λDλ is a deformation retract of M .

1cf. Chapter 9 in [Kir1].
2Cf. Theorem 4.1 of [Bia] and also Theorem 1.12 of [Tha3], for the statement about the downward Morse flow cf. § 3 of

[Sim4].
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Recall that a β-fibration in our case is a fibration E → Bn with a C∗-action on the total space which is
locally like Cn×V , where V is the C∗-module β : C∗ → GL(V ). Note that such a fibration is not a vector
bundle in general, but it is if β is the sum of isomorphic, one-dimensional non-trivial C∗-modules.

2.1.2 Kähler quotients

Whenever we are given a Hamiltonian U(1)-action on a Kähler manifold with a proper moment map, we
can form the Kähler quotients Qt = µ−1(t)/U(1), which are compact Kähler orbifolds at a regular value t
of µ.

If this U(1)-action is induced from an action of C∗ on M as above, then we can relate the Kähler
quotients to the quotients M/C∗ as follows. First we define Mmin

t ⊂M as the set of points in M whose C∗

orbit intersects µ−1(t). Now Theorem 7.4 of [Kir1] states that it is possible to define a complex structure
on the orbit space Mmin

t /C∗, and she also proves that this space is homeomorphic to Qt, defining the
complex structure for the Kähler quotient Qt. (Here again we used the results of Kirwan for non-compact
manifolds, but as above, these results can be easily modified for our situation.) It now simply follows
that Mmin

t only depends on that connected component of the regular values of µ in which t lies, and as a
consequence of this we can see that the complex structure on Qt is the same as on Qt′ if the interval [t, t′]
does not contain any critical value of µ. We have as a conclusion the following theorem:

Theorem 2.1.2 At a regular level t ∈ R of the moment map µ, we have the Kähler quotient Qt =
µ−1(t)/U(1) which is a compact Kähler orbifold with Mmin

t as a holomorphic C∗-principal orbibundle on
it. Moreover Mmin

t and the complex structure on Qt only depend on that connected component of the
regular values of µ where t lies.

It follows from the above theorem that there is a discrete family of complex orbifolds which arise from
the above construction. Moreover, at each level we get a Kähler form on the corresponding complex
orbifold. The evolution of the different Kähler quotients has been well investigated3. We can summarize
these results in the following theorem:

Theorem 2.1.3 The Kähler quotients Qt and Qt′ are biholomorphic if the interval [t, t′] does not contain
a critical value of the moment map. They are related by a blowup followed by a blow-down if the interval
[t, t′] contains exactly one critical point c different from the endpoints. To be more precise, Qt blown up
along the union of submanifolds

⋃
µ(Fλ)=c Pw(E−λ ) is isomorphic to Qt′ blown up along

⋃
µ(Fλ)=c Pw(E+

λ )

and in both cases the exceptional divisor is
⋃

µ(Fλ)=c Pw(E+
λ ) ×Fλ

Pw(E−λ ) the fibre product of weighted
projective bundles over Fλ.

Moreover, in a connected component of the regular values of µ the cohomology classes of the Kähler
forms ωt(Qt) depend linearly on t according to the formula:

[ωt(Qt)]− [ωt′(Qt′)] = (t− t′)c1(Mmin
t ) = (t− t′)c1(Mmin

t′ ),

where c1 is the first Chern class of the C∗-principal bundle.

2.1.3 Symplectic cuts

Now let us recall the construction of Lerman’s symplectic cut4, first in the symplectic and then in the
Kähler category.

If (M,ω) is a symplectic manifold with a Hamiltonian U(1)-action and proper moment map µ with
absolute minimum 0, then we can define the symplectic cut of M at the regular level t by a symplectic
quotient construction as follows.

We let U(1) act on the symplectic manifold M × C (where the symplectic structure is the product of
the symplectic structure on M and the standard symplectic structure on C) by acting on the first factor
according to the above U(1)-action and on the second factor by the standard multiplication. This action
is clearly Hamiltonian with proper moment map µ + µC, where µC is the standard moment map on C:
µC(z) = |z|2.

3E.g. in the papers [Du,He], [Gu,St], cf. also [Tha3] and [Br,Pr].
4Cf. [Ler] and also [EdGr1] for the algebraic case.
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Now if t is a regular value of the moment map µ + µC, such that U(1) acts with finite stabilizers on
Mt = µ−1(t) (i.e. Mt/U(1) gives a symplectic orbifold), then the symplectic quotient Mµ<t defined by

Mµ<t = {(m,w) ∈M × C : µ(m) + |w|2 = t}

will be a symplectic compactification of the symplectic manifold Mµ<t in the sense that

Mµ<t = Mµ<t ∪Qt,

and the inherited symplectic structure on Mµ<t restricted to Mµ<t coincides with its original symplectic
structure. Moreover, if we restrict this structure onto Qt, it coincides with its quotient symplectic structure.

Now suppose that we are given a Kähler manifold (M, I, ω) and a holomorphic C∗-action on it, such
that the induced U(1) ⊂ C∗-action preserves the Kähler form and is Hamiltonian with proper moment
map. With these extra structures the symplectic cut construction will give us Mµ<t a compact Kähler
orbifold with a C∗-action, such that Mµ<t \ Qt is symplectomorphic to Mµ<t as above and furthermore
is biholomorphic to C∗(Mµ<t), the union of C∗-orbits intersecting Mµ<t. This is actually an important
point5, as it shows that Mµ<t is not Kähler isomorphic to Mµ<t \Qt. We can collect all these results into
the next theorem:

Theorem 2.1.4 The symplectic cut Mµ<t = Mµ<t∪Qt as a symplectic manifold compactifies the symplec-
tic manifold Mµ<t, such that the restricted symplectic structure on Qt coincides with the quotient symplectic
structure.

Furthermore, if M is a Kähler manifold with a C∗-action as above, then Mµ<t will be a Kähler orbifold
with a C∗-action, such that Qt with its quotient complex structure is a codimension 1 complex suborbifold
of Mµ<t whose complement is equivariantly biholomorphic to C∗(Mµ<t) with its canonical C∗-action.

Remark. Note that if t is higher than the highest critical value (this assumes that we have finitely many
of them), then C∗(Mµ<t) = M is the whole space, therefore the symplectic cutting in this case gives a
holomorphic compactification of M itself. The compactification is Mµ<t, which is equal to the quotient of
(M ×C−N ×{0}) by the action of C∗, where N is the downward Morse flow. This is the compactification
we shall examine in Chapter 4 for the case of M, the moduli space of stable Higgs bundles with fixed
determinant of degree 1.

5Cf. [Ler].
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2.2 Cohomologies

In this section we explain two –not so well known– cohomology theories, which will appear in the thesis:
Equivariant cohomology of stratified spaces and at the end hypercohomology of complexes. We have also
inserted some generalities about the Porteous’ theorem, which will enable us to geometrically present
equivariant cohomology classes.

2.2.1 Equivariant cohomology of stratified spaces

Let G be a topological group. Let its universal fibration be EG → BG. For any G-space X we define
XG := (X × EG)/G, where G acts on X × EG with the diagonal action. The G-equivariant cohomology
of X is then defined as H∗G(X) = H∗(XG). Since G acts freely on EG we have the fibration

X → XG → BG. (2.1)

An immediate consequence of this is that if X is contractible, then the fibration (2.1) has contractible fibres,
thus for a contractible space H∗G(X) = H∗(BG). In particular H∗G(pt) = H∗(BG) is not trivial. Since H∗G
is a contravariant functor the map X → pt gives rise to a ring homomorphism H∗(BG) → H∗G(X). Thus
we see that H∗G(X) is a module over H∗(BG). Because of this we see that for a nontrivial G, equivariant
cohomology is richer than ordinary cohomology.

In case G acts freely on X we have another fibration

EG→ XG → X/G, (2.2)

which shows that for a free action:
H∗G(X) ∼= H∗(X/G).

Equivariant cohomology can be calculated particularly well for G stratified spaces. Following §1 of
[At,Bo], we now explain this.

Let M be a manifold. A disjoint set {Mλ}λ∈I of locally closed G-invariant submanifolds of M indexed
by a partially ordered set I , with minimal element 0, defines a stratification of M if

M =
⋃

λ∈I

Mλ

and

Mλ ⊂
⋃

µ≥λ

Mµ, (2.3)

moreover we assume that M0 6= ∅, consequently it is the unique open stratum. Because we will encounter
stratifications of Banach manifolds with strata of finite codimension, such that I is countable infinite, we
make two extra finiteness conditions on such stratifications:

Condition 1 For every finite subset A ⊂ I there are a positive, finite number of minimal elements in the
complement I \A.

This will ensure that our inductive arguments still apply. Although the inductions never terminate for our
purposes the following condition will do:

Condition 2 For each integer q there are only finitely many indices λ ∈ I such that codim(Mλ) < q.

Given a G-equivariant stratification on M , as defined above, one can use Morse theory type arguments
to get information about the G-equivariant cohomology of M . To explain this define a subset J ⊂ I of the
indices to be open if λ ∈ J and µ ≤ λ yields µ ∈ J . It follows from (2.3) that if J is open then

MJ =
⋃

λ∈J

Mλ

is open in M . Now if J is open and λ ∈ I \J is minimal then J ′ = J ∪λ will be open. From (2.3) it follows
that Mλ = MJ′ \MJ is a closed submanifold of MJ′ of index, say, kλ. Using the Thom isomorphism we
get the long exact sequence of the pair (MJ′ ,MJ) in the form:

→ Hq−kλ

G (Mλ)
(iλ)∗→ Hq

G(MJ′)
i∗J→ Hq

G(MJ )→, (2.4)
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Now we say that the stratification is G-perfect if

i∗J : H∗G(MJ′)→ H∗G(MJ) (2.5)

is a surjection for all open J and λ minimal in I \J . In this case it follows that the G-equivariant Poincaré
polynomial of M

GPt(M) =
∑

λ∈I

tkλGPt(Mλ) (2.6)

can be calculated in terms of the G-equivariant Poincaré polynomials of the strata.

Thus a G-perfect stratification provides a good understanding of the equivariant cohomology of the
space. Consequently useful sufficient conditions for G-perfectness are important. One such criterion is due
to [At,Bo]. To explain this consider the long exact sequence (2.4) and let a ∈ H∗G(Mλ). Observe that if
a 6= 0 implies i∗λ((iλ)∗(a)) 6= 0 then clearly (iλ)∗ is an injection. But i∗λ((iλ)∗(a)) = aeλ, where eλ denotes
the equivariant Euler class of the normal bundle of Mλ in MJ∪λ. Therefore if eλ is not a zero divisor in
H∗G(Mλ) then (iλ)∗ is an injection. Thus a sufficient condition for perfectness is to demand eλ ∈ H∗G(Mλ)
to be a non zero divisor for each λ ∈ I . We call such a stratification a strongly G-perfect stratification.

In the case of a stronglyG-perfect stratification we have an even better understanding of the cohomology
of M . Following the paper [Kir2] of Kirwan6, we now explain this.

Let J ⊂ I be an open subset, iJ : MJ →M be the embedding, let λ ∈ I \J be minimal and J ′ = J ∪λ.
In the case of a strongly G-perfect stratification (2.4) gives that the restriction map

H∗G(MJ′)→ H∗G(Mλ)⊕H∗G(MJ)

is injective. An inductive argument then shows that the restriction map

H∗G(MJ′)→
⊕

µ∈J′

H∗G(Mµ) (2.7)

is injective.

Now define for any subset A ⊂ I :

KA = ker (i∗A : H∗G(M)→ H∗G(MA)) ,

where

MA =
⋃

λ∈A

Mλ

and we set K∅ = H∗G(M). Then KA is an ideal of H∗G(M). Moreover for an open J ⊂ I we have

KJ =
⋂

λ∈J

Kλ

from (2.7). If now J and λ are as above then the long exact sequence (2.4) gives that

iλ(KJ ) ⊂ 〈eλ〉 ⊂ H∗G(Mλ),

where 〈eλ〉 is the ideal of H∗G(Mλ) generated by eλ. Since the stratification is G-perfect the map i∗J′ :
H∗G(M)→ H∗G(MJ′) is surjective consequently

i∗λ(KJ) = 〈eλ〉 ⊂ H∗G(Mλ). (2.8)

The following proposition shows that, in the case of a strongly G-perfect stratification, in some sense KJ

is unique with respect to this property.

6Though [Kir2] only works with the Shatz stratification, its methods are general enough to extend them to our general
setting.
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Proposition 2.2.1 (Kirwan) Let M =
⋃

λ∈I Mλ be a strongly G-perfect stratification of M . Suppose we
are given a subset Rλ ⊂ H∗G(M) for each λ ∈ I, with the following property:

i∗µ(Rλ) = 0 if µ 6≥ λ, and i∗λ(Rλ) = 〈eλ〉 ⊂ H∗G(Mλ), (2.9)

where 〈eλ〉 is the ideal of H∗G(Mλ) generated by the equivariant Euler class of the normal bundle7 of Mλ

in M . Then for any open subset J ⊂ I we have

〈RJ̄ 〉Q = KJ = ker (i∗J : H∗G(M)→ H∗G(MJ)) ,

where 〈RJ̄ 〉Q denotes the Q vector subspace of H∗G(M), generated additively by RJ̄ =
⋃

µ 6∈J Rµ.

Proof. Though the proof is essentially the same as the proof8 of Proposition 1 of [Kir1], we give it here
for the sake of completeness.

Let us suppose that a ∈ H∗G(M) such that i∗J(a) = 0, i.e. a ∈ KJ . Let λ be a smallest element of I \ J
and set J ′ = J ∪ λ. By the assumption (2.9) we have aλ ∈ Rλ such that i∗λ(aλ) = i∗λ(a). It follows that
i∗µ(a − aλ) = 0 for every µ ∈ J ′, hence i∗J′(a − aλ) = 0 from (2.7). An inductive argument9 now gives
aµ ∈ Rµ for each µ 6∈ J such that a =

∑
µ6∈J aµ.

The result follows. �

Remarks. 1. If J = {0} then the above result gives that
〈
⋃

µ6=0

Rµ

〉

Q

= K{0} = ker (i∗0 : H∗G(M)→ H∗G(M0)) ,

thus if one can choose R in a simple form, satisfying the condition (2.9), then one has information about
the relations in H∗G(M0). This form was actually stated and used by Kirwan in [Kir2] in the proof of the
Mumford conjecture10. In Section 7.3 we provide a purely geometric proof of the Mumford conjecture
using this special case.

2. We will also use another special case of the above proposition in Chapter 6. Namely if J = ∅, then
the proposition says that 〈

⋃

µ∈I

Rµ

〉

Q

= K∅ = H∗G(M).

Thus if one can find the setsRµ being generated by a subset of H∗G(M), then the wholeH∗G(M) is generated
by this subset. We now give another, closely related, application of this special case of Proposition 2.2.1:

Corollary 2.2.2 Let M =
⋃

λ∈I Mλ and M ′ =
⋃

λ∈I M
′
λ be two strongly G-perfect stratified spaces. Sup-

pose further that a map f : M ′ →M is such that f−1(Mλ) = M ′λ and

f∗λ : H∗G(Mλ)→ H∗G(M ′λ)

is surjective for each λ ∈ I. Then
f∗ : H∗G(M)→ H∗G(M ′)

is surjective.

Proof. For each λ ∈ I set R′λ = f∗(Kλ) ⊂ H∗G(M ′), which is an additively closed subspace of H∗(M ′).
From f∗λ(eλ) = e′λ and (2.8) it follows that the sets {R′λ}λ∈I satisfy the conditions of Proposition 2.2.1. In
particular

f∗(H∗G(M)) = 〈R′I〉Q = K′∅ = H∗G(M ′).

The result follows. �

Many examples of G-perfect stratifications arise in symplectic geometry. We explain one special case
in detail:

7We set e0 = 1.
8Cf. also Proposition 11 of [Earl].
9That this works even in the infinite dimensional case is ensured by Condition 1 and 2 above.

10Cf. Section 3.4.



2.2. COHOMOLOGIES 19

The special case G = U(1).

First note that BU(1) ∼ CP∞ thus H∗(BU(1)) ∼= Q[u] is a free polynomial algebra on a degree 2 generator
u. For convenience we will write H∗◦ instead of H∗U(1).

Assume that M is a symplectic manifold and U(1) acts on M in a Hamiltonian way with proper
moment map as in Subsection 2.1.1. Recall from Subsection 2.1.1 that in this case we get a stratification
M =

⋃
λ∈I Uλ, which is a stratification in the sense we defined above, as Kirwan proves in [Kir1]. Moreover

an important result of Kirwan in [Kir1] shows that this stratification is always strongly U(1)-perfect. Thus
we can calculate the U(1)-equivariant cohomology of M from (2.6), and even say something about the ring
H∗◦ (M) from Proposition 2.2.1. However in the present case we have an even better understanding of the
ring H∗◦ (M) through the so called Localization Theorem:

Theorem 2.2.3 (Localization Theorem) For any ψ ∈ H∗◦ (M) one gets the following equation11 in the
localized ring H∗◦ (M)⊗Q[u] Q(u):

ψ =
∑

λ∈I

(iFλ
)∗i∗Fλ

ψ

E◦(νFλ
)
,

where E◦(νFλ
) ∈ H∗◦ (Fλ) ∼= H∗(Fλ)⊗Q[u] is the equivariant Euler class of the normal bundle of Fλ in M .

An easy consequence of this theorem is the following12

Corollary 2.2.4 (Kirwan) The restriction map

H∗◦ (M)→
⊕

λ∈I

H∗◦ (Fλ) (2.10)

is an injection.

Thus in order to understand H∗◦ (M) it is enough to understand the restriction maps H∗◦ (M)→ H∗◦ (Fλ)
and the ring structures13 of H∗(Fλ). This will be our method of describing the cohomology ring of the
moduli space of Higgs bundles in Chapter 6.

2.2.2 Porteous’ theorem

First we introduce some notation concerning cohomology classes of subvarieties, which will be used through-
out this thesis:

Notation 2.2.5 If X is an irreducible locally closed subvariety of a smooth algebraic variety Y of codi-
mension d, then ηY

X ∈ H2d(Y ) denotes the cohomology class of X in Y . Moreover if G acts on Y and X

is G-invariant, then ηG,Y
X ∈ H2d

G (Y ) denotes the G-equivariant cohomology class of X.
If X is an irreducible locally closed and relatively complete14 subvariety of Y then ηY

X ∈ H2d
cpt(Y ) denotes

the compactly supported cohomology class of X in Y .

A frequently used technique of the present thesis will be to find some geometric way to calculate the
cohomology class ηY

X . The prototype of such a presentation is when a closed subvariety X is the zero
locus of a section s of a vector bundle W of rank d = codimX . In differential topology if the section s is
transversal, then we have the geometric formula

cd(W ) = ηX
Y . (2.11)

In algebraic geometry the transversality assumption is replaced by demanding X to have codimension
d = rank(W ) in order the geometric formula (2.11) to be true. In this thesis we will need some ramification
of this idea.

11Recall from Subsection 2.1.1 that {Fλ}λ∈I denotes the fixed point set of the circle action.
12Note that it follows also from (2.7).
13Since U(1) acts trivially on Fλ, we have H∗

◦ (Fλ) ∼= H∗(Fλ) ⊗ H∗(BU(1)).
14It means that X is complete i.e. compact.
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To explain it let us reformulate the above construction, in a manner more suitable for this thesis, as
follows: Let V be the trivial line bundle on Y . Then s is equivalent to a map s : V → W . Let us denote
by F the virtual bundle W − V ∈ K(Y ). Then we get that F outside X is an honest vector bundle.

More generally suppose that we are given a virtual bundle F in K(Y ) of rank15 d−1 > 0. Suppose also
that F |Y \X is an honest vector bundle outside a closed smooth subvariety X ⊂ Y of complex codimension
d. Then consider the following bit of the cohomology long exact sequence of the pair (Y, Y \X):

H0(X)
τ→ H2d(Y )→ H2d(Y \X), (2.12)

where τ is the Thom map. Since F |Y \X is an honest vector bundle of rank d−1, we have that cd(F) |Y \X= 0
vanishes. From the exactness of (2.12), we have that cd(F) = τ(q) = q · ηY

X for some q ∈ H0(X) ∼= Q. If q
was non-zero, or especially 1, we would find a nice geometric way expressing ηY

X as cd(F). The following
special case of Porteous’ theorem16 states that if F = W − V is a difference of two vector bundles then
q = 1, choosing X to be the degeneration locus of a homomorphism f : V →W .

Theorem 2.2.6 (Porteous) Let f : V → W be a homomorphism of vector bundles over a smooth alge-
braic variety Y . Let X be the degeneration locus of f , i.e. the subvariety of Y consisting of points, where
f fails to be an injection17 Then we have

ηY
X = cd(W − V ),

if the codimension of X coincides with d = rank(W )− rank(V ) + 1.

Since (2.12) exists in the equivariant cohomology too, the next corollary is an easy consequence of this
Theorem 2.2.6.

Corollary 2.2.7 Let G act on Y , and V and W be G-equivariant vector bundles, with f a G-equivariant
homomorphism. We have

ηG,Y
X = cGd (W − V ),

if X, as in the above Theorem 2.2.6, has the expected codimension d = rank(W )− rank(V ) + 1.

15I.e. 0th Chern class.
16Cf. (4.2) of [ACGH].
17For a rigorous construction of degeneracy loci cf. [ACGH] p.83. Our degeneracy locus is the k-th degeneracy locus of

[ACGH], where k = rank(V ) − 1.
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2.2.3 Hypercohomology of complexes

In this subsection we recall the notion of hypercohomology of a complex from [Gr,Ha], and list some
properties of it, which we will use in Chapter 5 to describe rigorously the virtual Dirac bundle, already
mentioned in Subsection 1.7.

Definition 2.2.8 Let
A = (A0

d−→ A1
d−→ A2 −→ ...)

be a complex of coherent sheaves Ai over an algebraic variety X. For a covering U = {Uλ} of X and each
Ai we get the Čech cochain complex with boundary operator δ:

(C0(U,Ai)
δ−→ C1(U,Ai)

δ−→ ...).

Clearly d induces operators

(Cj(U,Ai)
d−→ Cj(U,Aj)),

satisfying δ2 = d2 = dδ + δd = 0: and hence gives rise to a double complex

{Cp,q = Cp(U,Aq); δ, d}.

The hypercohomology of the complex A is given by the cohomology of the total complex of the double complex
Cp,q:

H∗(X,A) = lim
U
H∗(C∗(U), D).

Moreover if A is a complex over X and f : X → Y is a projective morphism then for every non-negative
integer i define the sheaf Rif∗(A) over Y by

Rif∗(A)(U) = Hi(f−1(U),A).

Finally, define the pushforward of a complex to be:

f!(A) = R0f∗(A)− R1f∗(A) + R2f∗(A) − . . . ∈ K(Y ).

Remark. In the present thesis we will work only with two-term complexes.
There is one important property of hypercohomology which we will make constant use of. If

0→ A→ B → C → 0

is a short exact sequence of complexes then there is a long exact sequence of hypercohomology vector
spaces:

0→ H0(X,A)→ H0(X,B)→ H0(X, C)→ H1(X,A)→ . . . (2.13)

As an example consider the short exact sequence of two-term complexes:

0 −→ 0
↑ ↑
0

0−→ A2

↑ ↑ ∼=
A1

d−→ A2

∼= ↑ ↑
A1

0−→ 0
↑ ↑
0 −→ 0

The long exact sequence in this case is:

0→ H0(X,A)→ H0(X,A1)→ H0(X,A2)→ H1(X,A)→ . . . (2.14)
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which we will call the hypercohomology long exact sequence of the two-term complex A = A1
d→ A2.

Consequently if A = A1
d→ A2 is a two-term complex over X and f : X → Y is a projective morphism

then we have:

0→ R0f∗(X,A)→ R0f∗(X,A1)→ R0f∗(X,A2)→ R1f∗(X,A)→ . . . ,

a long exact sequence of sheaves over Y .



Chapter 3

Cohomology of moduli spaces

In general the cohomology of moduli spaces obviously plays an important role in the algebraic geometric
understanding of the moduli problem. As was recently discovered by physicists1 the cohomology of the
moduli spaces of some physical theories contain physically relevant information about the global aspects of
the theory. For an example intersection numbers on these moduli spaces sometimes can be identified with
correlation functions, which are the experimentally measurable quantities of the theory.

The main subject of this thesis is the determination of the rational cohomology ofM, the moduli space
of Higgs bundles. Since we will use the cohomological properties of other moduli spaces, and we would
like to convey a general view of the cohomology of moduli spaces of objects on an algebraic curve Σ, we
describe in detail the cohomology of some such moduli spaces here.

First we summarize the general picture which is emerging from the rest of the section. Let M be a
smooth manifold (not necessarily compact), the moduli space of a moduli problem. In each of the following
cases we will find an infinite tower of spaces Mk, (which usually will be the moduli spaces of some deformed
moduli problem):

M = M0 ⊂M1 ⊂ . . . ⊂Mk ⊂ . . . ,
with inclusions ik : Mk → Mk+1, such that i∗k : H∗(Mk+1) → H∗(Mk) is surjective. From this data we
have the direct limit:

M∞ = lim
−→

Mk,

and the inverse limit:
H∗(M∞) = lim

←−
H∗(Mk),

since H∗ is a contravariant functor. It will turn out that H∗(M∞) will be a free graded commutative2

algebra on a finite set of universal generators. Furthermore, it follows that the map

i∗M : H∗(M∞)→ H∗(M)

is surjective. Putting everything together, the cohomology ring H∗(M) is generated by the images of the
universal generators and the kernel of i∗M provides the relations, in other words i∗M is a resolution of the
cohomology ring of M . Because of this we call a tower having the above properties a resolution tower of
M .

In Chapter 7 we will show that the cohomology ring of M, the moduli space of Higgs bundles, can be
understood in this general framework too.

1Cf. Section 0.1
2It means that even degree classes commute with any other class, while odd degree classes anticommute among each other.

Note that the cohomology ring of any space is automatically graded commutative.

23
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3.1 The curve Σ

The basic object of this thesis is a fixed, smooth and complex projective curve Σ of genus g ≥ 2. We also
fix a point p ∈ Σ.

An additive basis of H∗(Σ): 1 ∈ H0(Σ), ξΣi ∈ H1(Σ), i = 1, .., 2g and the fundamental cohomology
class σΣ ∈ H2(Σ) with the properties that ξΣi · ξΣi+g = −ξΣi+g · ξΣi = σΣ for i = 1, .., g and otherwise

ξΣi · ξΣj = 0, will be fixed throughout the thesis.
As a matter of fact the curve Σ is itself a moduli space, the moduli space of its points, or in a more

sophisticated way: the moduli space of degree one divisors on Σ, or in other words Σ1 the first symmetric
product.
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3.2 The Jacobian J
The moduli space of line bundles of degree k over Σ is the Jacobian Jk. This is an Abelian variety of
dimension g. Tensoring by a fixed line bundle of degree k − l gives an isomorphism between Jl and Jk.
We will write J for J1.

Being a torus H∗(Jk) is a free exterior algebra –in particular a free graded commutative algebra– on
2g classes τi ∈ H1(Jk) defined by the formula

c1(Pk) = k ⊗ σΣ +

g∑

i=1

(τi ⊗ ξΣi+g − τi+g ⊗ ξΣi ) ∈ H2(Jk × Σ) ∼=
2∑

r=0

Hr(Jk)⊗H2−r(Σ).

Here Pk is the normalized Poincaré bundle, or universal line bundle over Jk ×Σ. Universal means that for
any L ∈ Jk:

Pk |{L}×Σ
∼= L

and normalized means that Pk |Jk×{p} is trivial3.
Being a free exterior algebra, the Poincaré polynomial of H∗(J ) is given by

Pt(Jk) = (1 + t)2g .

3Cf. p.166 [ACGH].
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3.3 The symmetric product Σn

The n-th symmetric product Σn is the moduli space of degree n effective divisors. It is a smooth projective
variety of dimension n. Clearly Σ1 = Σ.

The cohomology ring H∗(Σn) is multiplicatively generated by ξi ∈ H1(Σn), for i = 1 . . . 2g and η ∈
H2(Σn) defined by the formula:

c1(∆k) = k ⊗ σΣ +

g∑

i=1

(ξi ⊗ ξΣi+g − ξi+g ⊗ ξΣi ) + η ⊗ 1 (3.1)

in the decomposition

H2(Σn × Σ) ∼=
2∑

r=0

Hr(Σn)⊗H2−r(Σ).

Here ∆n ∈ Div(Σn × Σ) is the universal divisor4, i.e. ∆n |{D}×Σ= D for every divisor D ∈ Σn. The
relation set of the ring H∗(Σn) and thus a complete description of it is given in [Macd]. We let σi = ξiξi+g

and σ =
∑g

i=1 σi ∈ H2(Σn).

The Poincaré polynomial of H∗(Σn) was calculated in [Macd] in the form:

Pt(Σn) = Coeff
xn

(
(1 + xt)2g

(1− x)(1− xt2)

)
. (3.2)

For the case n > 2g − 2 we have the Abel-Jacobi map Σn → Jn being a locally trivial fibration with fibre
Pn−g, which for the Poincaré polynomial gives

Pt(Σn) =
(1 + t)2g(1− t2(n−g+1))

(1− t2) .

3.3.1 The resolution tower of Σ

There are embeddings in : Σn → Σn+1 given by in(D) = D + p, yielding the tower

Σ1 ⊂ Σ2 ⊂ . . . ⊂ Σn ⊂ . . . . (3.3)

We consider the direct limit of them:

Σ∞ = lim
n→∞

Σn.

It is a P∞ bundle over J , thus its Poincaré polynomial is

Pt(Σ
∞) =

(1 + t)2g

(1− t2) . (3.4)

The pullback map

i∗n : H∗(Σn+1)→ H∗(Σn) (3.5)

is surjective because these rings are generated by universal classes. Since the cohomology ring of Σ∞ is
the inverse limit of the cohomology rings of the Σn’s, i.e.

H∗(Σ∞) = lim
∞←n

H∗(Σn),

it is also generated by the tautological classes ξi and η. In fact it is a free graded commutative algebra on
these generators, as (3.4) shows.

4Cf. [ACGH].
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3.3.2 Some results about H
∗(Σn)

It is convenient to insert the following lemmata here, which will be needed in Section 6.5. They are taken
from [Ha,Th].

Lemma 3.3.1 Let us denote by H∗I (Σn) the subring of H∗(Σ) generated by η and σ. For n ≤ 2g − 2 its
Poincaré polynomial P I

T (Σn) can be written in the form:

P I
T (Σn) =

∑

q,s≥0
q+2s≤n

T q+s (3.6)

Proof. It follows from B-1 and B-2 on p. 328-329 of [ACGH] that the classes ηq · σs for q, s ≥ 0 and
q + 2s ≤ n form an additive basis for H∗I (Σn). The result follows. �

Lemma 3.3.2 Let n, k,m and l be non-negative integers. If n− g +m ≤ l and g + k −m < l then

(
exp(σ)ηk

(1 + η)m

)

l

= 0

over Σn. Here (· · ·)l denotes the part of total degree 2l.

Proof. First we show that Poincaré duality still holds in the subring generated by η and σ. By Poincaré
duality in H∗(Σn), the vanishing of a polynomial in η and σ of total degree 2d is equivalent to the vanishing
of its product with every monomial in η ∈ H2 and ξi ∈ H1(Σn) of total degree 2(n − d). If the power of
ξi is greater than 1, this certainly vanishes; if the power of ξi is 1 but the power of ξi±g is 0, this again
vanishes since H∗(Σn) ∼= H∗(Σn)Sn ⊂ H∗(Σn) and the corresponding expression in H∗(Σn) is certainly
zero. So it suffices to consider monomials in η and σi with degree 1 in the latter; then by symmetry it
suffices to consider monomials in η and σ only.

As pointed out by Zagier in (7.2) of [Tha2], for any power series A(x) and B(x),

A(η) exp(B(η)σ)[Σn] = Res
η=0

(
A(η)(1 + ηB(η))g

ηn+1

)
.

We multiply our expression by the generating function exp(sσ)/(1+ tη) for the monomials in η and σ, and
ask the coefficient of sitj to be 0 whenever i+ j = n− l:

Coeff
sitj

(
exp((s+ 1)σ)ηk

(1 + η)m(1 + tη)
[Σn]

)
= Coeff

sitj
Res
η=0

(
ηk((η + 1) + sη)g

(1 + η)m(1 + tη)ηn+1

)

= const.Res
η=0

(
ηk(1 + η)g−iηiηj

(1 + η)mηn+1

)

= const.Res
η=0

(
ηk+i+j−n−1(1 + η)g−i−m

)
.

But this is 0 because
g − i−m ≥ g −m− (n− l) ≥ 0,

from the first condition, thus (1+η)g−i−m is a polynomial of degree g− i−m, therefore the highest degree
term of ηk+i+j−n−1(1 + η)g−i−m has degree

(k + i+ j − n− 1) + (g − i−m) ≤ k + (n− l)− n− 1 + g −m = k − l − 1 + g −m < −1

from the second condition.
The result follows. �
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3.4 The moduli space of rank 2 stable bundles N
Collecting results from the literature, in this section we describe H∗(N ). First we explain how Atiyah
and Bott calculated the Poincaré polynomial of N and how they found generators for the ring. Then
we describe the method of Kirwan for proving Mumford’s conjecture and thus providing in principle a
complete description of the cohomology ring H∗(N ). Then we state a calculationally useful description of
the ring structure of H∗(N ) and cite some formulae of Zagier.

3.4.1 The Poincaré polynomial and generators

Here we explain how the idea of Subsection 1.1.2 was made rigorous in [At,Bo] in the rank 2 case.

The Shatz stratification

Let V be a fixed rank 2 smooth complex vector bundle of degree 1. Let C denote the infinite dimensional
complex affine space of holomorphic structures on V . Fixing a hermitian structure on V , we have the
gauge group G of smooth unitary automorphisms of V acting naturally on C. Its complexification Gc =
Γ(Σ,Aut(V)), the group of complex automorphisms of V , also acts on C. Moreover Gc/G is the contractible
space of Hermitian structures on V , thus BG ∼ BGc and so for the purpose of equivariant cohomology
they are equivalent: H∗Gc = H∗G . For convenience we will always use G-equivariant cohomology, even where
Gc-equivariant cohomology is understood.

We also let Cs ⊂ C (and frequently C0) denote the open subspace of stable bundles. By Theorem 1.2.2
of Harder and Narasimhan, if E ∈ C is not stable it has a unique destabilizing subbundle of degree d > 0.
For d > 0 we let Cd ⊂ C denote the subspace of unstable vector bundles with destabilizing bundle of degree
d. Since the Harder-Narashiman filtration is canonical, Cd is invariant under Gc, thus each Cd is a union of
orbits. Atiyah and Bott prove that for d > 0, the space Cd is locally a Banach submanifold of C of finite
codimension 2g + 4d− 4 and that

C =

∞⋃

d=0

Cd (3.7)

is a Gc-equivariant stratification in the sense of Subsection 2.2.1. It is called the Shatz stratification.
The paper [At,Bo] uses Morse theory, in a manner as we explained in Subsection 2.2.1, for the Shatz

stratification in order to calculate the Poincaré polynomial of Ñ = C0/Gc. They prove that the stratification
is strongly Gc-perfect5. It follows from (2.6) that for the G-equivariant Poincaré polynomials we have:

GPt(C) = GPt(C0) +
∞∑

i=1

t2g+4i−4GPt(Ci),

or in a more suitable form

GPt(C0) = GPt(C)−
∞∑

i=1

t2g+4i−4GPt(Ci). (3.8)

Now C is contractible and so H∗G(C) ∼= H∗(BG). The cohomology ring of BG is described in §2 of
[At,Bo]:

The cohomology of BG
The ring H∗(BG) is freely generated as a graded commutative algebra by classes

ar ∈ H2r(BG), bjr ∈ H2r−1(BG), f2 ∈ H2(BG),
for 1 ≤ r ≤ 2 and 1 ≤ j ≤ 2g. These classes appear as the Künneth components of a certain (universal)
rank 2 vector bundle U on BG × Σ. Namely

c1(U) = a1 ⊗ 1 +

2g∑

j=1

bj1 ⊗ ξΣj ,

5Cf. Subsection 2.2.1.
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and

c2(U) = a2 ⊗ 1 +

2g∑

j=1

bj2 ⊗ ξΣj + f2 ⊗ σ.

Since H∗(BG) is a freely generated graded commutative algebra on the above mentioned classes, its
Poincaré polynomial is

Pt(BG) =

{
(1 + t)(1 + t3)

}2g

(1− t2)2(1− t4) . (3.9)

Consider the constant central U(1) ⊂ G subgroup of G. Let G = G/U(1) denote the quotient group.
Then we have the fibration

BU(1)→ BG → BG. (3.10)

It is shown in §9 of [At,Bo] that this fibration is actually a product:

BG ∼ BU(1)×BG, (3.11)

and so the generators of H∗(BG) give generators for H∗(BG), with a1 being redundant, they are: degree
1 generators bj1, a degree 2 generator f2, degree 3 generators bj3 and a degree 4 generator a2. Now BG is
a free graded commutative algebra on these generators and consequently (or equivalently from (3.11)) we
have:

Pt(BG) = (1− t2)Pt(BG) =

{
(1 + t)(1 + t3)

}2g

(1− t2)(1− t4) . (3.12)

The G-equivariant cohomology of Cd
For d > 0 the ring H∗G(Cd) can be described explicitly6 as a freely generated graded commutative algebra

by degree 1 elements bj1 and bj2 for 1 ≤ j ≤ 2g and degree 2 elements a1
1 and a2

1. Thus the G-equivariant
Poincaré polynomial of Cd is

GPt(Cd) =

(
(1 + t)2g

(1− t2)

)2

. (3.13)

The G-equivariant cohomology of Cs
Since the constant central gauge transformations act trivially on C the factor group Gc

= Gc/C∗ acts on C
and moreover it acts freely on Cs. Now since (3.11) is a product we have that as rings:

H∗G(Cs) ∼= H∗(BU(1))⊗H∗G(Cs)
∼= H∗(BU(1))⊗H∗(Cs/G)
∼= H∗(BU(1))⊗H∗(Ñ ),

which for the Poincaré polynomials gives:

Pt(Ñ ) = (1− t2)GPt(Cs). (3.14)

Now putting (3.8), (3.9), (3.13) and (3.14) together yields the desired formula for the Poincaré polyno-

mial of Ñ :

Pt(Ñ ) = Pt(BG)−
∞∑

d=1

t2(g+2d−2) (1 + t)4g

(1− t2)

=

{
(1 + t)(1 + t3)

}2g

(1− t2)(1− t4) − t2g(1 + t)4g

(1− t2)(1− t4)

= (1 + t)2g

(
(1 + t3)2g − t2g(1 + t)2g

(1− t2)(1− t4)

)
(3.15)

6For more details see [At,Bo]. For the homotopy type of (Cd)G see Corollary 7.5.5.
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Finally, since the Shatz stratification is G-perfect, the map

H∗(BG) ∼= H∗G(C)→ H∗G(C)

is surjective, thus the images of the generators of H∗(BG) give generators in H∗G(Cs). As we saw above

H∗G(Cs) ∼= H∗(BU(1))⊗H∗(Ñ ),

thus the images of the generators of H∗(BG) give generators in H∗(Ñ ). Since one of them a1 is redundant,

we have the following list of generators for the cohomology of Ñ : degree 1 generators bj1, a degree 2

generator f2, degree 3 generators bj3 and a degree 4 generator a2.
In the next paragraph we explain the consequences of these result for the cohomology of N .

The cohomology of N
Let Γ := H1(Σ,Z2) ∼= Z

2g
2
∼= ker(σ2), where σ2 : J0 → J0 is given by σ2(L) = L2. Now Γ acts on N and

J by tensoring with the corresponding line bundle in ker(σ2) and also on N × J by the diagonal action.
Then we have

Ñ = (N ×J )/Γ. (3.16)

Because Γ acts trivially on H∗(J ) and on H∗(N ) (the latter was first proved in [Ha,Na]) we see that as
rings

H∗(Ñ ) ∼= (H∗(N )⊗H∗(J ))Γ ∼= H∗(N ) ⊗H∗(J ). (3.17)

Thus for understanding the cohomology ring H∗(Ñ ) it is enough to know the cohomology ring H∗(N ).

Since we know a generator set for the ring H∗(Ñ ), it gives one for H∗(N ). However the classes bj1 will go
to 0. Thus a generator set is provided by: a degree 2 generator f2, degree 3 generators bs2 and a degree 4
generator a2.

The generators we have just described differ from the original generator set defined by Newstead in
[New2]. He defined cohomology classes: α ∈ H2(N ), ψi ∈ H3(N ) and β ∈ H4(N ), which appear in the
Künneth decomposition of c2(End(EN )):

c2(End(EN )) = 2α⊗ σΣ +

2g∑

i=1

4ψi ⊗ ξΣi − β ⊗ 1 (3.18)

in H4(N × Σ) ∼=
∑4

r=0H
r(N ) ⊗ H4−r(Σ). Here EN is the normalized rank 2 universal bundle over

N × Σ, i.e. c1(EN ) = α and EN |{E}×Σ
∼= E for every E ∈ N . We will later use the following notations:

γ = −2
∑g

i=1 ψiψi+g ∈ H6(N ), γ∗ = 2γ + αβ ∈ H6(N ).
The relation between the Newstead and Atiyah-Bott generators can be traced back by using the fact7

that the universal bundle U over BG restricts to EN . The correspondence is given8 by the formulae:

α = 2f2 − a1, β = (a1)
2 − 4a2, ψi = bi2.

Finally, another consequence of (3.17) and (3.15) is the so-called Harder-Narasimhan formula for the
Poincaré polynomial of N :

Pt(N ) =
(1 + t3)2g − t2g(1 + t)2g

(1− t2)(1− t4) (3.19)

3.4.2 The resolution tower of Ñ
We promised the existence of a resolution tower for Ñ at the beginning of the present section. It exists up to
homotopy equivalence. Namely Ñ ∼ (C0)G and let us choose Ñk ∼ (C≤k)G for k > 0. Thus homotopically
we have the tower:

Ñ = Ñ0 ⊂ Ñ1 ⊂ . . . ⊂ Ñk ⊂ . . . ,
7Cf. [At,Bo] p. 579-580
8Cf. [Earl].



3.4. THE MODULI SPACE OF RANK 2 STABLE BUNDLES N 31

which has the property that
i∗k : H∗(Ñk+1)→ H∗(Ñk)

is surjective9. Thus if we consider

Ñ∞ = lim
−→
Ñk ∼ lim

−→
(C≤k)G ∼ (C)G ∼ BG,

then we have that
H∗(Ñ∞)→ H∗(Ñ )

is surjective, and moreover H∗(Ñ∞) ∼= H∗(BG) is a free commutative graded algebra on universal classes,
providing the picture we described at the beginning of the present chapter.

In the next section we explain how Kirwan used this resolution tower, or more generally Proposi-
tion 2.2.1, in order to settle the Mumford conjecture, providing a complete set of relations for Ñ .

3.4.3 Complete set of relations

The ring structure of H∗(N ) is described in terms of the so-called Mumford relations of the generators α, β

and the ψi’s. To explain this consider the virtual Mumford bundle over Ñ :

M = −prÑ !
(EÑ ⊗ pr∗Σ(L−1

p ))

= −R0prÑ ∗(EÑ ⊗ pr∗Σ(L−1
p )) +R1prÑ ∗(EÑ ⊗ pr∗Σ(L−1

p )) ∈ K(Ñ ).

Using standard properties of stable bundles it can be shown that R0 vanishes. Thus M is a vector
bundle of rank 2g − 1. Its total Chern class is a complicated10 polynomial of the universal classes. Since
rank(M) = 2g − 1, the Chern class c2g+r(M) ∈ H4g+2r(Ñ ) vanishes for r ≥ 0. According to (3.17),

the cohomology of Ñ is the tensor product of H∗(J ) and H∗(N ). Thus if we write τS =
∏

i∈S τi for
S ⊂ {1 . . . 2g} and

c2g+r(M) =
∑

S⊂{1...2g}
ζr
S ⊗ τS

in the Künneth decomposition of (3.17) then we get the vanishing of each ζr
S . Thus for every r ≥ 0 and

S ⊂ {1 . . . 2g} we get a relation

ζr
S ∈ Q[α, β, ψi] (3.20)

of degree d = 4g + 2r − deg(τS). The classes ζr
S are called the Mumford relations.

Mumford conjectured11 that the Mumford relations constitute a complete set of relations of the coho-
mology ring of N . Mumford’s conjecture was first settled by Kirwan in [Kir2], by using the method of
Remark 1 after Proposition 2.2.1 for the Shatz stratification. The proof of [Kir2] goes by building Rd from
the classes ζr

S for d > 0, and for d = 0 setting R0 = H∗G(C). The heart of the proof is to show that Rd

satisfies the conditions of Proposition 2.2.1, which takes some pages of calculation. Now Proposition 2.2.1
proves the Mumford conjecture as explained in Remark 1 after it. We will give a purely geometric proof
of the Mumford conjecture in Section 7.3.

Now we explain an explicit description of the cohomology ring.

3.4.4 Explicit description

Recently, the following very explicit characterization of the ring H∗(N ) has been obtained by several
authors [Bar],[Ki,Ne],[Si,Ti] and [Zag]. To explain it first note that there is a natural action of Sp(2g,Z)
on H∗(N ) induced by the obvious action on H3(N ). The above mentioned sources prove that as an
Sp(2g,Z)-algebra

H∗(N ) ∼=
g⊕

k=0

Λk
0H

3(N ) ⊗Q[α, β, γ]/Ig−k,

9It is a consequence of the G-perfectness of the Shatz stratification.
10It was calculated by Zagier in [Zag].
11Cf. [At,Bo] p. 582.
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where
Λk

0 = ker
(
γg−k+1 : ΛkH3(N )→ Λ2g−k+2H3(N )

)

and Ig is the relation ideal of the Sp(2g,Z)-invariant part H∗I (N ), i.e.

H∗I (N ) ∼= Q[α, β, γ]/Ig .

The ideal Ig−k is moreover described as being generated by polynomials

ζg−k , ζg−k+1, ζg−k+2 ∈ Q[α, β, γ],

which are given recursively by the following rule:

(r + 1)ζr+1 = αζr + rβζr−1 + 2γζr−2, (3.21)

with initial conditions ζ0 = 1, ζr = 0 for r < 0.
Moreover an additive basis for Ig is given by Zagier in [Zag] of the form

ζr,s,t for all r, s, t ≥ 0 and r + s+ t ≤ g − 1, (3.22)

where ζr,s,t = ζr,s(2γ)
t/t!, and the polynomials ζr,s are given by a generating function:

∑

r,s≥0

ζr,sx
rys =

e−2γx/β√
(1− βy)2 − βx2

(
1 + x

√
β − βy

1− x√β − βy

)γ∗/2β
√

β

. (3.23)

It follows from (3.22) that the Poincaré polynomial of H∗I (N ) equals:

P I
t (N ) =

∑

r,s,t≥0
r+s+t≤g−1

T r+2s+3t. (3.24)
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3.5 The moduli space of Abelian Higgs bundles T
∗
J

As an instructive example for the discussions in Section 0.2, we consider here the moduli space of Abelian
Higgs bundles.

The tangent bundle of J is canonically isomorphic to J × H1(Σ,OΣ). Thus by Serre duality T ∗J ∼=
J × H0(Σ,K) canonically. An element Φ ∈ (T ∗J )L

∼= H0(Σ,K), can be thought of as a rank 1 Higgs

bundle12: L = L
Φ→ LK. Thus we can think of T ∗J as the moduli space of rank 1 Higgs bundles.

The cohomology of T ∗J is isomorphic to that of J . However there is an extra piece of cohomological
information, namely the intersection numbers in the compactly supported cohomology or in other words
the map:

jJ : H∗cpt(T
∗
J )→ H∗(T ∗J ).

Clearly this map is interesting only in the middle dimension, where both H2g
cpt(T

∗
J ) and H2g(T ∗J ) are one-

dimensional. However the Euler characteristic of J is clearly 0, thus the self-intersection number of the
zero section of T ∗J is 0, which shows that jJ vanishes.

We can also determine the L2-cohomology of T ∗J for the Riemann metric on T ∗J ∼= J ×H0(Σ,K) which
is the product of the flat metrics on the two terms (this is the metric which we get if we perform Hitchin’s
work in [Hit1] for the Abelian case). From the Weitzenböck decomposition of the Hodge Laplacian and
the L2-vanishing theorem of Dodziuk [Dod], since the metric is flat there are no non-trivial L2 harmonic
forms on T ∗J . Thus in the Abelian Higgs case the topology gives the harmonic space, as conjectured for
the rank 2 Higgs moduli space in Conjecture 1 and the moduli space of magnetic monopoles in [Sen].

12Cf. Definition 5.1.1.
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3.6 Moduli space of rank 2 stable Higgs bundles M
Recall from Section 1.2.2 that M̃ denotes the moduli space of rank 2 stable Higgs bundles of degree 1. The
determinant gives a map detM : M̃ → T ∗J , defined by detM(E,Φ) = (Λ2E, tr(Φ)). For any L ∈ T ∗J the

fibre det−1
M (L) will be denoted by ML. Just as in the case of Ñ any two fibres of detM are isomorphic.

Usually we will write M forML, when the Abelian Higgs bundle L has zero Higgs field.
Our main concern in the present thesis is M. Recall from Subsection 1.2.2 that it is a non-projective,

smooth quasi-projective variety of dimension 6g − 6.

Similarly to (3.16) we have a Γ-action on M̃ and on T ∗J such that:

M̃ = (M× T ∗J )/Γ.

This on the level of cohomology gives

H∗(M̃) ∼= (H∗(M)⊗H∗(T ∗J ))Γ ∼= (H∗(M))Γ ⊗H∗(J ). (3.25)

In the case ofM however we do not have the triviality of the action of Γ on H∗(M), but nevertheless the

cohomology ring of M̃ is determined by the ring (H∗(M))Γ.

There is quite little known about the ring H∗(M). The Poincaré polynomial of it is calculated in [Hit1]
using Morse theory. We now explain this:

3.6.1 The Poincaré polynomial of M
We can outline Hitchin’s Morse theory calculation in the language of stratifications of Subsection 2.2.1
as follows. As we explained in Subsection 2.1.1 the Morse function µ defines an upward stratification of
M =

⋃g−1
d=0 Ud, where Ud = {x ∈M : limz→0 z · x ∈ Fd}, with Fd denoting a component of the fixed point

set of the U(1)-action. We call this the Hitchin stratification, because Hitchin used the perfectness of this
stratification to calculate the Poincaré polynomial ofM in Theorem 7.6 of [Hit1]. In particular he proved
in Proposition 7.1 of [Hit1] that for d > 0 the index of Fd in M is 2(g + 2d− 2). On the other hand the
index of Fd in M is the same as the real codimension of Ud in M. The perfectness of the stratification
follows from [Kir1]. Now [Hit1] calculates the Poincaré polynomial of M using the short exact sequences
(2.4):

0→ H∗(Ud)
(id)∗→ H∗(M≤d)

i∗<d→ H∗(M<d)→ 0, (3.26)

and in turn the formula (2.6) giving:

Pt(M) = Pt(N ) +

g−1∑

d=1

t2(g+2d−2)Pt(Ud) = Pt(N ) +

g−1∑

d=1

t2(g+2d−2)Pt(Fd), (3.27)

as Fd is a deformation retract of Ud. For the Γ-invariant part we have:

(Pt(M))Γ = (Pt(N ))Γ +

g−1∑

d=1

t2(g+2d−2)(Pt(Ud))
Γ

= (Pt(N ))Γ +

g−1∑

d=1

t2(g+2d−2)(Pt(Fd))
Γ (3.28)

from the short exact sequences

0→ H∗(Ud)
Γ (id)∗→ H∗(M≤d)

Γ i∗<d→ H∗(M<d)
Γ → 0, (3.29)

which can be obtained by noticing that the Hitchin stratification is Γ-invariant and in turn that the short
exact sequence (3.26) is in fact a sequence of Γ-modules. The next step is thus to understand H∗(Fd) and
the action of Γ on it:
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3.6.2 The cohomology of Fd

We can construct Fd as the moduli space of rank 2 degree 1 Higgs bundles of the form : E
Φ→ E ⊗K,

where
E = L⊕ L−1Λ,

and

Φ =

(
0 0
φ 0

)
, (3.30)

with deg(L) = d and 0 6= φ ∈ H0(Σ;L−2ΛK). Note that deg(L−2ΛK) = 2g−2d−1, thus modulo non-zero
scalars φ is a point in Σd̄, where we used the notation d̄ = 2g − 2d− 1.

Now we determine H∗(Fd). From the description (3.30) it follows that Fd is isomorphic to the moduli

space of complexes: L
φ→ L−1ΛK, with deg(L) = d and φ ∈ H0(Σ;L−2ΛK). Thus if we define maps

Jd → Jd̄ by sending L 7→ L−2ΛK and the Abel-Jacobi map Σd̄ → Jd̄ by sending D 7→ L(D), then the
fibred product of the these maps is:

Fd = Σd̄ ×Jd̄
Jd, (3.31)

We have the two projections prJd
: Fd → Jd and prΣd̄

: Fd → Σd̄. This last one is a 22g-fold cover, and it

is induced by the action of Γ ∼= Z
2g
2 on Fd ⊂M. Now Hitchin calculates the Poincaré polynomial of Fd by

understanding the action Γ on H∗(Fd). He finds in (7.13) of [Hit1] that this action is not trivial and finds
the cohomology of Fd in the form:

H∗(Fd) = (H∗(Fd))Γ ⊕ V d̄ = H∗(Σd̄)⊕ V d̄,

where V d̄ is a faithful representation of Γ in the middle d̄ degree. Moreover its dimension is (22g−1)
(2g−2

d̄

)
.

Thus for the Poincaré polynomial he finds

Pt(Fd) = (Pt(Fd))Γ + (22g − 1)
(2g−2

d̄

)

= Pt(Σd̄) + (22g − 1)
(2g−2

d̄

)
. (3.32)

Now Hitchin calculates13 the Poincaré polynomial of M from (3.27), (3.32) and (3.2). By subtracting
the contributions of the non Γ-invariant parts it follows14 from the formula of Hitchin that:

(Pt(M))Γ =
(1 + t3)2g − t4g−2(P (t))

(1− t2)(1− t4) ,

where P (t) is some complicated polynomial of t. Consequently from (3.25) we have

Pt(M̃) =
(1 + t)2g(1 + t3)2g − t4g−2P̃ (t)

(1− t2)(1− t4) = Pt(BG)− t4g−2 P̃ (t)

(1− t2)(1− t4) , (3.33)

where P̃ (t) = (1 + t)2gP (t) is some polynomial. Comparing this result to (3.15) we see that the Poincaré

polynomial of M̃ approximates the Poincaré polynomial of the classifying space of G roughly twice better
than the Poincaré polynomial of Ñ ! An explanation of this phenomenon will be provided in Chapter 7.

3.6.3 Contribution of the present thesis

In Chapter 4 we make a detailed study of the C∗-action, compactify M, and calculate the Poincaré poly-
nomial of the compactification. By doing so we establish the geometric background for the cohomological
calculations of the following chapters, where we deal with two aspects of the cohomology of M: the
intersection numbers and the cohomology ring structure ofM.

13There is, however, a small calculational mistake in (7.16) and (7.17) of [Hit1], namely they should be multiplied by t2 in
order to get the correct residue.

14Keeping in mind the above Footnote 13.
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In the non-compact case the intersection numbers are in the compactly supported cohomology. We will
calculate all intersection numbers of H∗cpt(M) in Chapter 5, by proving Theorem 0.2.1.

As we already mentioned in Section 0.2, for the calculation of the sigma model of [BJSV] one needs
to have a good understanding of the ring structure of (H∗(M))Γ. There is, however, no result about the

cohomology ring H∗(M̃) in the literature. We will attempt to fill this gap in Chapters 6 and 7: We find

generators for H∗(M̃), and conjecture a complete set of relations for H∗I (M) in Chapter 6. In Chapter 7,

we approach H∗(M̃) in the general framework, described at the beginning of the present chapter. Namely
we show that the tower of U(1)-manifolds

M̃ = M̃0 ⊂ M̃1 ⊂ . . . ⊂ M̃k ⊂ . . .

of moduli spaces15 of Higgs k-bundles with poles is the right candidate for resolving the cohomology ring
H∗(M̃).

As byproducts of our considerations in Chapter 7, we give a simple geometric proof of Mumford’s
conjecture, following ideas of Kirwan, and show that the homotopy type of the above tower of Higgs
k-bundle moduli spaces shares the Atiyah-Jones property appearing in the theory of instantons.

15Cf. Definition 1.2.5
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Chapter 4

Compactification

The main aim of this chapter is to investigate a canonical compactification of M: among other things
we show that the compactification is projective, calculate its Picard group, and calculate the Poincaré
polynomial for the cohomology.

We use a simple method to compactify non-compact Kähler manifolds with a nice proper Hamiltonian
U(1)-action via Lerman’s construction of symplectic cutting [Ler]. We use this method to compactifyM.
Our approach is symplectic in nature and eventually produces some fundamental results about the spaces
occurring, using existing techniques from the theory of symplectic quotients.

We show that the compactification described here is a good example of Yau’s problem of finding a
complete Ricci flat metric on the complement of a nef anticanonical divisor in a projective variety.

Many of the results of this chapter can be easily generalized to other Higgs bundle moduli spaces,
which have been extensively investigated (see e.g. [Nit] and [Sim1]). As a matter of fact Simpson gave a
definition of a similar compactificitation for these more general Higgs bundle moduli spaces in Theorems
11.2 and 11.1 of [Sim2] and in Proposition 17 of [Sim3], without investigating it in detail. For example,
the projectiveness of the compactification is not clear from these definitions. One novelty of this chapter
is the proof of the projectiveness of the compactification in our case.

Since the compactification method used here is fairly general it is possible to apply it to other Kähler
manifolds with the above properties. It could be interesting for instance to see how this method works for
the toric hyperkähler manifolds of Goto [Goto] and Bielawski and Dancer [Bi,Da].

Finally we note that the compactification described in the subsequent sections solves one half of the
problem of compactifying the moduli spaceM, namely the ‘outer’ half, i.e. shows what the resulting spaces
look like. The other half of the problem the ‘inner’ part, i.e. how this fits into the moduli space description
ofM, is treated in the recent paper of Schmitt [Schm]. Schmitt’s approach is algebro-geometric in nature,
and concerns mainly the construction of the right notion of moduli to produceM, thus complements our
results.

39
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4.1 Statement of results

In this section we describe the structure of the chapter and list the results.
In Section 4.2 we describeMtoy the moduli space of parabolic Higgs bundle on P1

4, which will serve as
a toy example throughout this chapter.

In Section 4.3 we start to apply the ideas of Section 2.1. Here we show that the Hitchin stratification,
constructed from the upward flows of Subsection 2.1.1 coincides with the Shatz stratification coming from
the stratification (3.7) on C.

In Section 4.4 (following ideas of Subsection 2.1.1) we describe the nilpotent cone after Thaddeus [Tha1]
and show that it coincides with the downward Morse flow (Theorem 4.4.2). We reprove Laumon’s theorem
in our case, that the nilpotent cone is Lagrangian (Corollary 4.4.3).

In Section 4.5 we describe Z, the highest level Kähler quotient ofM, while in 4.6 we analyseM =M∪Z.
Here we follow the approaches of Subsection 2.1.2 and Subsection 2.1.3, respectively. Among others, we
prove the following statements:

• M is a compactification ofM, the moduli space of stable Higgs bundles with fixed determinant and
degree 1 (Theorem 4.6.2).

• Z is a symplectic quotient ofM by the circle action (E,Φ) 7→ (E, eiθ ·Φ). M is a symplectic quotient
ofM×C with respect to the circle action, which is the usual one on M and multiplication on C.

• WhileM is a smooth manifold, Z is an orbifold, with only Z2 singularities corresponding to the fixed
point set of the map (E,Φ) 7→ (E,−Φ) onM (Theorem 4.5.2), while similarlyM is an orbifold with
only Z2 singularities, and the singular locus ofM coincides with that of Z (Theorem 4.6.3).

• The Hitchin map
χ :M→ C3g−3

extends to a map
χ :M→ P3g−3

which when restricted to Z gives a map

χ : Z → P3g−4

whose generic fibre is a Kummer variety corresponding to the Prym variety of the generic fibre of the
Hitchin map (Theorem 4.5.10, Theorem 4.6.8).

• M is a projective variety (Theorem 4.6.11), with divisor Z such that

(3g − 2)Z = −KM,
the anticanonical divisor of M (Corollary 4.6.7).

• Moreover, Z itself is a projective variety (Theorem 4.5.16) with an inherited holomorphic contact
structure with contact line bundle LZ (Theorem 4.5.9) and a one-parameter family of Kähler forms
ωt(Z) (Theorem 4.5.15). The Picard group of Z is described in Corollary 4.5.7. Moreover, the normal
bundle of Z inM is LZ which is nef by Corollary 4.5.14.

• Furthermore,M has a one-parameter family of Kähler forms ωt(M), which when restricted Z gives
the above ωt(Z).

• Z is birationally equivalent to P (T ∗N ) the projectivized cotangent bundle of the moduli space of rank 2
stable bundles with fixed determinant and odd degree (Corollary 4.5.4). M is birationally equivalent
to P (T ∗N ⊕ON ), the canonical compactification of T ∗N (Corollary 4.6.4).

• We calculate certain sheaf cohomology groups in Corollaries 4.5.12 and 4.5.13 and interpret some of
these results as the equality of certain infinitesimal deformation spaces.

• The Poincaré polynomial of Z is described in Corollary 4.5.5, the Poincaré polynomial of M is
described in Theorem 4.6.12.

• We end Section 4.6 by showing an interesting isomorphism between two vector spaces: one contains
information about the intersection of the components of the nilpotent cone, the other says something
about the contact line bundle LZ on Z.
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4.2 A toy model Mtoy

Unfortunately, even when g = 2 the moduli space M is already 6 dimensional, too big to serve as an
instructive example. We rather choose Mtoy, the moduli space1 of stable parabolic Higgs bundles on P1,
with four marked points, in order to show how our later constructions work. We choose this example
because it is a complex surface, and can be constructed explicitly.

We fix four distinct points on P1 and denote by P1
4 the corresponding complex orbifold. Let P be

the elliptic curve corresponding to P1
4. Let σP be the involution σP (x) = −x on P . Thus, P/σP is just

the complex orbifold P1
4. The four fixed points of the involution x1, x2, x3, x4 ∈ P correspond to the four

marked points on P1
4. Furthermore, let τ be the involution τ(z) = −z on C.

Consider now the quotient space (P × C)/(σP × τ). This is a complex orbifold of dimension 2 with
four isolated Z2 quotient singularities at the points xi × 0. Blowing up these singularities we get a smooth
complex surfaceMtoy with four exceptional divisorsD1, D2, D3 andD4. Moreover the map χ : (P×C)→ C

sending (x, z) 7→ z2, descends to the quotient (P × C)/(σP × τ) and sending the exceptional divisors to
zero one obtains a map χtoy :Mtoy → C, with generic fibre P . The map χtoy will serve as our toy Hitchin
map.

There is a C∗-action onMtoy, coming from the standard action on C. The fixed point set of U(1) ⊂ C∗

has five components: one is Ntoy ⊂ Mtoy (the moduli space of stable parabolic bundles on P1
4) which is

the proper transform of (P × 0)/(τ × σP ) = P 1
4 ⊂ (P ×C)/(σP × τ) inMtoy. The other four components

consist of single points x̃i ∈ Di, i = 1, 2, 3, 4.
The fixed point set of the involution σ :Mtoy →Mtoy has five components, one of which is Ntoy, the

others E2
i are the proper transforms of the sets (xi × C)/(σP × τ) ⊂ (P × C)/(σP × τ).

1These moduli spaces were considered by Yokogawa [Yoko].
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4.3 The Shatz stratification on M
The results in Section 1.2.2 show that the Kähler manifold (M, I, ω) is equipped with a C∗-action which
restricts to an U(1) ⊂ C∗-action which is Hamiltonian with proper moment map µ. Moreover, 0 is an
absolute minimum for µ. Therefore we are in the situation described in Section 2.1. In the following
sections we will apply the ideas developed there to our situation and deduce important properties of the
spacesM, Z and M.

In the present and the following section we apply the general results of Section 2.1.1 toM. Moreover we
identify the downward and upward flows with important objects in the algebraic geometric understanding of
the Higgs moduli problem. We show that the Hitchin stratification coincides with the Shatz stratification
and that the downward Morse flow coincides with the nilpotent cone. First we deal with the Hitchin
stratification given by the upward flows:

Recall from Subsection 2.1.1 that the upward flows give a stratification on M:

M =

g−1⋃

d=0

Ud,

we call this the Hitchin stratification because Hitchin calculated2 the Poincaré polynomial ofM using the
perfectness of this stratification.

We show in this section that the Hitchin stratification coincides with the Shatz stratification on M.
First we define the latter:

Definition 4.3.1 Let U ′0 ⊂M be the locus of points (E,Φ) ∈ M such that E is stable, and moreover for
d > 0 let U ′d ⊂M be the locus of points (E,Φ) ∈M such that the destabilizing line bundle of E is of degree
d.

Remark. 1. This stratification can be easily constructed in the gauge theory setting of Subsection 1.2.3.
Namely one can pullback the Shatz stratification

C =
∞⋃

d=0

Cd,

by pr0 : B0 → C from C to B0, restrict it to the open subset (B0)
s, which, being a Gc

-invariant stratification

induces a stratification on the quotient M̃ and in turn on M. This is exactly the same what we defined
above.

2. From (2) of Proposition 3.2 of [Nit] it follows that if d > g − 1 the locus U ′d is empty.

3. The gauge theoretic construction in Remark 1 above implies that M =
⋃g−1

d=0 U
′
d is a (perfect)

stratification in the sense of Subsection 2.2.1 and the stratum U ′d has real codimension 2g + 4d − 4 for
d > 0. Moreover from the description (3.30) it easily follows that Fd ⊂ U ′d.

It follows that Ud has the same codimension as U ′d. Moreover if (E,Φ) ∈ U ′d then clearly its entire
C∗-orbit is contained in U ′d thus it follows from (2.3) that

lim
z→0

(E, z · Φ) ∈ F ∩ U ′d ⊂ F ∩
⋃

i≥d

U ′i =
⋃

i≥d

Fd,

and in turn that

U ′d ⊂
⋃

i≥d

Ud.

It follows that U ′g−1 ⊂ Ug−1 and hence U ′g−1 = Ug−1 because they are closed submanifolds of M with the
same codimension and Ug−1 is connected. An inductive argument proves the following

Proposition 4.3.2 The Shatz stratification coincides with the Hitchin stratification i.e. U ′d = Ud.

2Cf. Subsection 3.6.
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Remark. Thus the perfectness of the Shatz stratification implies the perfectness of the Hitchin stratifica-
tion. Putting it in other words: Hitchin’s calculation3 of the Poincaré polynomial of M is analogous to
the Atiyah-Bott’s calculation4 of the Poincaré polynomial of N ! In Section 7.5 we will show why the two
calculations are profoundly related.

3Cf. Section 3.6.
4Cf. Section 3.4.
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4.4 The nilpotent cone N

We saw in Theorem 2.1.1 that the downward Morse flow is a deformation retract ofM, so it is responsible
for the topology, and as such it is an important object. On the other hand we will prove that the downward
Morse flow coincides with the nilpotent cone.

Definition 4.4.1 The nilpotent cone is the preimage of zero of the Hitchin map N = χ−1(0).

The name ‘nilpotent cone’ was given by Laumon, to emphasize the analogy with the nilpotent cone in
a Lie algebra. In our context this is the most important fibre of the Hitchin map, and the most singular
one at the same time. We will show below that the nilpotent cone is a central notion in our considerations.

Laumon in [Lau] investigated the nilpotent cone in a much more general context and showed its im-
portance in the Geometric Langlands Correspondence. Thaddeus in [Tha1] concentrated on our case, and
gave the exact description of the nilpotent cone. In what follows we will reprove some of their results.

The following assertion was already stated in [Tha1] which will turn out to be crucial in some of our
considerations.

Theorem 4.4.2 The downward Morse flow coincides with the nilpotent cone.

Proof. As we saw in Theorem 2.1.1 the downward Morse flow can be identified with the set of points in
M whose C∗-orbit is relatively compact in M.

Since the nilpotent cone is invariant under the C∗-action and compact (χ is proper) we immediately
get that the nilpotent cone is a subset of the downward Morse flow.

On the other hand if a point in M is not in the nilpotent cone then the image of its C∗-orbit by the
Hitchin map is a line in C3g−3, therefore cannot be relatively compact. �

Laumon’s main result is the following assertion5, which we prove in our case:

Corollary 4.4.3 (Laumon) The nilpotent cone is a Lagrangian subvariety ofM with respect to the holo-
morphic symplectic form ωh.

Proof. The Hitchin map is a completely integrable Hamiltonian system, and the nilpotent cone is a fibre
of this map, so it is coisotropic. Therefore it is Lagrangian if and only if its dimension is 3g − 3.

On the other hand the nilpotent cone is exactly the downward Morse flow and we can use Hitchin’s
description of the critical submanifolds in [Hit1], giving that the sum of the index and the real dimension
of any critical submanifold is 6g − 6. We therefore conclude that the complex dimension of the downward
Morse flow (i.e. the nilpotent cone) is 3g − 3. �

Remark. Nakajima’s Proposition 7.1 in [Nak] states that if X is a Kähler manifold with a C∗-action and
a holomorphic symplectic form ωh of homogeneity 1 then the downward Morse flow of X is Lagrangian
with respect to ωh. Thus Nakajima’s result and Theorem 4.4.2 together give an alternative proof of the
theorem. We preferred the one above for it concentrates on the specific properties of M.

From the above proof we can see that for higher rank Higgs bundles Laumon’s theorem is equivalent to
the assertion that every critical submanifold contributes to the middle dimensional cohomology, i.e the sum
of the index and the real dimension of any critical submanifold should always be half of the real dimension
of the corresponding moduli space.

Using the results of [Goth1] one easily shows that the above statement also holds for the rank 3 case.
Gothen could show directly the above statement for any rank and therefore gave an alternative proof of
Laumon’s theorem in these cases [Goth2].

Corollary 4.4.4 The middle dimensional homology H6g−6(M) of M is freely generated by the homology
classes of irreducible components of the nilpotent cone and therefore has dimension g.

5Cf. Theorem 3.1 in [Lau].
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Proof. We know that each component of N is a projective variety of dimension 3g−3. N is a deformation
retract of M, therefore the middle dimensional homology of M is generated by the homology classes
of the components of N . Furthermore, from the Morse picture, components of N are in a one to one
correspondence with the critical manifolds of M, so there are g of them. The result follows. �

We finish this section with Thaddeus’s description6 of the nilpotent cone.

Theorem 4.4.5 The nilpotent cone is the union of D0 = N and the downward flows Dd, which are total
spaces of vector bundles E−d over Fd, where E−d is the negative subbundle of TM |Fd

.
Moreover, the restricted action of C∗ on N is just the inverse multiplication on the fibres.

Proof. This follows directly from Theorem 2.1.1 and Theorem 4.4.2, noting that by Hitchin’s description
of the weights of the circle action on TM | Fd in the proof of Proposition 7.1 of [Hit1], we have that there is
only one negative weight. Therefore the β-fibration of Theorem 2.1.1 is a vector bundle in this case. The
result follows. �

Remark. From the description of E−d in [Tha1] and that of E2
d , a component of the fixed point set of

the involution σ(E,Φ) = (E,−Φ), in [Hit1], one obtains the remarkable fact that the vector bundle E−d is
actually dual to E2

d . This is not so surprising if we observe that E−d is the weight −1 and E2
d is the weight 2

component of the C∗-equivariant bundle TM |Fd
and these are naturally dual, because of the homogeneity

1 holomorphic symplectic structure on M!

Example. In our toy example we have the elliptic fibration χtoy :Mtoy → C, with the only singular fibre
Ntoy = χ−1

toy(0), the toy nilpotent cone. We have now the decomposition

Ntoy = Ntoy ∪
4⋃

i=1

Di,

where we think of Di as the closure of Ei, the total space of the trivial line bundle on x̃i.
The possible singular fibres of elliptic fibrations have been classified by Kodaira7. According to this

classification Ntoy is of type I∗0 (D̃4).

6See [Tha1] and Proposition 5.4.2, cf. also [Lau].
7Cf. [B,P,V], p. 150.
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4.5 The highest level Kähler quotient Z

In this section we apply the ideas of Subsection 2.1.2 to our situation.

Definition 4.5.1 Define for every non negative t the Kähler quotient

Qt = µ−1(t)/U(1).

As the complex structure of the Kähler quotient depends only on the connected component of the regular
values of µ, we can define Zd = Qt for cd < t < cd+1 as a complex orbifold8. Similarly, we define XZd

to
be Mmin

t for cd < t < cd+1.
For simplicity let the highest level quotient Zg−1 be denoted by Z and the corresponding principal C∗-

bundle XZg−1
by XZ .

In the spirit of Theorem 2.1.3 we have the following

Theorem 4.5.2 Zd is a complex orbifold with only Z2-singularities, the singular locus is diffeomorphic to
some union of projectivized vector bundles P (E2

i ):

Sing(Zd) =
⋃

0<i≤d

P (E2
i ),

where E2
i ⊂ M is the total space of a vector bundle over Fi and is a component of the fixed point set of

the involution σ(E,Φ) = (E,−Φ).

Proof. The induced action of U(1) on C3g−3 by the Hitchin map is multiplication by e2iθ so an orbit of
U(1) onM\N is a non trivial double cover of the image orbit on C3g−3. On the other hand by Thaddeus’
description of N (Theorem 4.4.5) it is clear that if a point of N is not a fixed point of the circle action,
then the stabilizer is trivial at that point.

Summarizing these two observations we obtain that if a point of M is not fixed by U(1), then its
stabilizer is either trivial or Z2 . The latter case occurs exactly at the fixed point set of the involution σ.
The statement now follows from Theorem 2.1.3. �

Proposition 4.5.3 Zd and Zd+1 are related by a blowup followed by a blowdown. Namely, Zd blown up
along P (E−d ) is the same as the singular quotient Qcd

blown up along Fd (its singular locus), which in
turn gives Zd+1 blown up at P (E+

d ). Moreover, this birational equivalence is an isomorphism outside an
analytic set of codimension at least 3.

Proof. The first bit is just the restatement of Theorem 2.1.3 in our setting.
The second part follows because

dim(P (E−d )) = 3g − 3− 1 < 6g − 6− 2

and
dim(P (E+

d )) = 3g − 3 + 2g − 2d− 1− 1 < 6g − 6− 2

for g > 1. �

Corollary 4.5.4 Z = Zg−1 is birationally equivalent to P (T ∗N ) = Z0. Moreover this gives an isomorphism
in codimension > 2.

Proof. Obviously XZ0
is T ∗N , and therefore by Theorem 2.1.2 Z0 is isomorphic to the projectivized cotan-

gent bundle P (T ∗N ). The statement follows from the previous theorem. �

Corollary 4.5.5 Z has Poincaré polynomial

Pt(Z) =
t6g−6 − 1

t2 − 1
Pt(N ) +

g−1∑

d=1

t6g−6 − t2g−4+4d

t2 − 1
Pt(Fd),

where Fd is a 22g-fold cover of Σd̄.

8We set cg = ∞.
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Proof. One way to derive this formula is through Kirwan’s formula in [Kir1]. We use the above blowup,
blowdown picture instead. This approach9 is due to Thaddeus.

Applying the formula in [Gr,Ha],p.605 twice we get that

Pt(Zd+1)− Pt(Zd) = Pt(PE
+
d )− Pt(PE

−
d ).

On the other hand for a projective bundle on a manifold P →M with fibre Pn one has10

Pt(P ) =
t2n+2 − 1

t2 − 1
Pt(M).

Hence the formula follows. �

Remark. All the Poincaré polynomials on the right hand side of the above formula were calculated11 in
Chapter 3.

We will determine the Picard group of Z exactly. First we define some line bundles on several spaces.

Notation 4.5.6 Let

• LN denote the ample generator12 of the Picard group of N ,

• LPT∗
N

be its pullback to PT ∗N ,

• LZ denote the corresponding line bundle13 on Z,

• LPT∗
N

be the dual of the tautological line bundle on PT ∗N ,

• LZ = X∗Z ×C∗ C denote the corresponding line orbibundle on Z.

Corollary 4.5.7 Pic(Z), the Picard group of Z, is of rank 2 over Z and is freely generated by LZ and LZ .

Remark. The Picard group of Z is the group of invertible sheaves on Z. As the singular locus of Z
has codimension ≥ 2, this group can be thought of as the group of holomorphic line orbibundles on Z.
Namely, in this case the restriction of a holomorphic line orbibundle to Z \ Sing(Z) gives a one-to-one
correspondence between holomorphic line orbibundles on Z and holomorphic line bundles on Z \ Sing(Z),
by the appropriate version of Hartog’s theorem.

Proof. It is well known14 that Pic(N ) is freely generated by one ample line bundle LN therefore is of
rank 1. Thus Pic(P (T ∗N )) is of rank 2 and freely generated by LPT∗

N
the pullback of LN and the dual of

the tautological line bundle LPT∗
N

. From Corollary 4.5.4 Pic(Z) is isomorphic with Pic(P (T ∗N )) therefore
is of rank 2, and freely generated by LZ and LZ , where LZ is isomorphic to LPT∗

N
and LZ is isomorphic

to LPT∗
N

outside the codimension 2 subset of Corollary 4.5.4. �

Definition 4.5.8 A contact structure on a compact complex orbifold Z of complex dimension 2n − 1 is
given by the following data:

1. a contact line orbibundle LZ such that Ln
Z = K−1

Z , where KZ is the line orbibundle of the canonical
divisor of Z,

2. a complex contact form θ ∈ H0(Z,Ω1(Z)⊗ LZ) a holomorphic LZ valued 1-form, such that

0 6= θ ∧ (dθ)n−1 ∈ H0(Z,Ω2n−1(Z)⊗K−1
Z ) = H0(Z,OZ) = C (4.1)

is a nonzero constant.

Theorem 4.5.9 There is a canonical holomorphic contact structure on Z with contact line orbibundle LZ .

9Cf. [Tha2].
10Cf. [Gr,Ha] p.606.
11For Pt(N ) see (3.19), for Pt(Fd) see (3.32).
12Cf. [Dr,Na].
13Cf. Corollary 4.5.4.
14Cf. [Dr,Na].
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Proof. This contact structure can be defined by the construction of Lebrun as in [Leb] Remark 2.2. We
only have to note that the holomorphic symplectic form ωh onM is of homogeneity 1.

The construction goes as follows. If prZ : X∗Z → Z denotes the canonical projection of the principal
C∗-orbibundle X∗Z the dual of XZ , then pr∗Z(LZ) is canonically trivial with the canonical section having
homogeneity 1. Thus in order to give a complex contact form θ ∈ H0(Z,Ω1(Z)⊗LZ) it is sufficient to give
a 1-form pr∗Z θ on X∗ of homogeneity 1. This can be defined by pr∗Z θ = i(ξ)ωh, where ξ ∈ H0(M, TM)
is the holomorphic vector field generated by the C∗-action. The non-degeneracy condition (4.1) is exactly
equivalent to requiring that the closed holomorphic 2 form ωh satisfy ωn

h 6= 0. This is the case as ωh is a
holomorphic symplectic form.

The result follows. �

We will be able to determine the line orbibundle LZ explicitly. For this, consider the Hitchin map
χ :M→ C3g−3. As it is equivariant with respect to the C∗-action, χ induces a map

χ : Z → P3g−4

on Z. The generic fibre of this map is easily seen to be the Kummer variety corresponding to the Prym
variety (the Kummer variety of an Abelian variety is the quotient of the Abelian variety by the involution
x→ −x), the generic fibre of the Hitchin map. Thus we have proved

Lemma 4.5.10 There exists a map χ : Z → P3g−4 the reduction of the Hitchin map onto Z, for which
the generic fibre is a Kummer variety.

Remark. This observation was already implicit in Oxbury’s thesis15.

The following theorem determines the line bundle LZ in terms of the Hitchin map.

Theorem 4.5.11 L2
Z = χ∗H3g−4 where H3g−4 is the hyperplane bundle on P3g−4.

Proof. We know from Corollary 4.5.7 that χ∗H3g−4 = Lk
Z ⊗ Ll

Z for some integers k and l.
We show that k = 0. For this consider the pullback of LZ ontoM\N the total space of the principal

C∗-orbibundle X∗Z . This line orbibundle extends toM as LM and restricts to T ∗N as the pullback of LPT∗
N

by construction. c1(LM) is not trivial when restricted to N (namely it is c1(LN ), since this bundle is
ample) therefore is not trivial when restricted to a generic fibre of the Hitchin map. We can deduce that
c1(LZ) is not trivial on the generic fibre of χ.

On the other hand LZ restricted to a generic fibre of χ can be described as follows. Let this Kummer
variety be denoted byK, the corresponding Prym variety by P . Form the space P×C∗, the trivial principal
C∗-bundle on P and quotient it out by the involution τ(p, z) = (−p,−z). The resulting space is easily seen
to be the C∗-orbit of the Prym P inM, therefore the total space of the principal C∗-orbibundle L∗Z \ (L∗Z)0
on K. Hence L2

Z is the trivial line orbibundle on K. Thus c1(LZ |K) = 0.
Now χ∗H3g−4 is trivial on the Kummer variety. Hence the assertion k = 0.
The rest of the proof will follow the lines of Hitchin’s proof of Theorem 6.2 in [Hit2]. We show that

l = 2.
The sections of LZ can be identified with holomorphic functions homogeneous of degree 2 on the

principal C∗-orbibundle XZ = L∗Z \ (L∗Z)0. As N is of codimension ≥ 2 such functions extend to M.
Since the Hitchin map is proper, these functions are constant on the fibres of the Hitchin map, therefore
are the pullbacks of holomorphic functions on C3g−3 of homogeneity 1 which can be identified with the
holomorphic sections of the hyperplane bundle H3g−4 on P (C3g−3) = P3g−4. �

Corollary 4.5.12 If n is odd, there are natural isomorphisms

H0(Z,Ln
Z) ∼= H0(N , SnTN ) ∼= 0,

whereas if n is even, then

H0(Z,Ln
Z) ∼= H0(N , SnTN ) ∼= H0(P3g−4,H

n
2

3g−4).

15Cf. 2.17a of [Oxb].
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Proof. We show that H0(Z,Ln
Z) ∼= H0(N , Sn(TN )) for every n, the rest of the theorem will follow from

Theorem 6.2 of [Hit2].

By Proposition 4.5.3 we get that H0(Z,Ln
Z) ∼= H0(PT ∗N , L

n
PT∗

N
). Let prN : PT ∗N → N denote the pro-

jection. It is well known that the Leray spectral sequence for prN degenerates at the E2 term. Moreover, we
have16 that Ri(prN )∗(Ln

PT∗
N

) = 0 if 0 < i < 3g − 4. Therefore H0(PT ∗N , L
n
PT∗

N
) ∼= H0(N , (prN )∗(Ln

PT∗
N

)).

Finally the sheaf (prN )∗(Ln
PT∗

N
) is Sn(TN ), which proves the statement. �

We can moreover determine the first cohomology group corresponding to the infinitesimal deformations
of the holomorphic contact structure on Z and can interpret it in a nice way.

Corollary 4.5.13 There are canonical isomorphisms

H1(Z,LZ) ∼= (H1(M,OM))1 ∼= H1(N , TN ) ∼= H1(Σ,K−1
Σ ),

where (H1(M,OM))1 ⊂ H1(M,OM) is the vector space of elements of H1(M,OM) homogeneous of
degree 1.

Proof. We may use the cohomological version17 of Hartog’s theorem to show that

H1(Z,LZ) ∼= H1(PT ∗N , LPT∗
N

),

as Z and PT ∗N are isomorphic on an analytic set of codimension ≥ 3 from Proposition 4.5.3.

The proof of the other isomorphisms can be found in [Hit3]. �

Remark. We can interpret this result as saying that the deformation of the complex structure on Σ
corresponds to the deformation of complex structure on N , to the deformation18 of holomorphic contact
structure on Z and to the deformation of the holomorphic symplectic structure of homogeneity 1 onM.

As an easy corollary of the above we note the following

Corollary 4.5.14 The line orbibundle LZ is nef but neither trivial nor ample.

Proof. The line bundle LZ is certainly not ample since c1(LZ) is trivial on the Kummer variety. On the
other hand L2

Z being the pullback of an ample bundle is not trivial and is nef itself, hence the result. �

The next theorem will describe the inherited Kähler structures of Z. Considering the one-parameter
family of Kähler quotients Qt, for t > cg−1 we get a one-parameter family of Kähler forms ωt on Z.
Theorem 1.1 from [Du,He] gives the following result for our case19.

Theorem 4.5.15 (Duistermaat, Heckman) The complex orbifold Z has a one-parameter family of
Kähler forms ωt, t > cg−1 such that

[ωt1(Z)]− [ωt2(Z)] = (t1 − t2)c1(LZ)

where t1, t2 > cg−1 and [ωt] ∈ H2(Z,R) is the cohomology class of ωt.

Many of the above results will help us to prove the following theorem.

Theorem 4.5.16 Z is a projective algebraic variety.

16Cf. [Har] Theorem 5.1b.
17Cf. [Sche].
18Cf. [Leb].
19Cf. Theorem 2.1.3.
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Proof. By the Kodaira embedding theorem for orbifolds20 we have only to show that Z with a suitable
Kähler form is a Hodge orbifold, i.e. the Kähler form is integer. For this to see we show that the Kähler
cone of Z contains a subcone, which is open in H2(Z,R). This is sufficient since such an open subcone
must contain an integer Kähler form i.e. a Hodge form.

Since Corollary 4.5.7 shows that Pic0(Z) is trivial, by Corollary 4.5.14 we see that c1(LZ) 6= 0. Therefore
the previous theorem exhibited a half line in the Kähler cone of Z. Thus to find an open subcone in the
2 dimensional vector space H2(Z,R) (Corollary 4.5.7) it is sufficient to show that this line does not go
through the origin or in other words c1(L) is not on the line. But this follows from Corollary 4.5.14, because
L being not ample c1(L) cannot contain a Kähler form. Hence the result. �

Remark. We see from this proof that c1(LZ) lies on the closure of the Kähler cone, thus LZ is nef. This
reproves a statement of Corollary 4.5.14.

Example. In the case of the toy example the lowest level Kähler quotient Z0 is the projectivized cotangent
bundle PT ∗Ntoy

of Ntoy, which is isomorphic to Ntoy = P1, and the blowups and blowdowns add the four

marked points to P1. Therefore Ztoy is isomorphic to the orbifold P1
4, where the marked points correspond

to the fixed point set of the involution σ, namely these are the projectivized bundles PE2
i , i.e. points.

Moreover the principal C∗-orbibundle XZtoy
on P1

4 has the form

XZtoy
= (P × C∗)/(σP × τ).

Thus in the toy example, unlike in the ordinary Higgs case, we have c1(LZtoy
) = 0. This latter assertion

can be seen using 4.5.11 and noting that the target of the reduced toy Hitchin map χtoy : Ztoy → P0 is a
point.

There is another difference, namely the Picard group of Ztoy is of rank 1, because L2
Ztoy

is the trivial
bundle on Ztoy.

In the next section we show how to compactifyM by sewing in Z at infinity.

20Cf. [Bai].
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4.6 The compactification M
In this section we compactify M by adding to each non-relatively compact C∗-orbit an extra point i.e.
sewing in Z at infinity. Another way of saying the same is to glue together M and E the total space of
LZ along the principal C∗-orbibundle X∗Z = E \E0 =M\N . To be more precise we use the construction
of Lerman, called the symplectic cut21.

Since the complex structure on the Kähler quotients depends only on the connected component of the
level, we can make the following definition.

Definition 4.6.1 LetMd denote the underlying compact complex orbifold of the Kähler quotient ofM×C

by the product U(1)-action
Mµ<t = (µ+ µC)−1(t)/U(1),

with cd < t < cd+1.
Let XMd

denote the corresponding principal C∗-bundle onMd. For simplicity we let M denote Mg−1

and XM denote XMg−1
.

As a consequence of the construction of symplectic cutting we have the following theorem22:

Theorem 4.6.2 The compact orbifold M =M∪ Z is a compactification of M such that M is an open
complex submanifold and Z is a codimension one suborbifold, i.e. a divisor.

Moreover, C∗ acts on M extending the action on M with the points of Z being fixed.

In addition to the above we see that we have another decompositionM = N∪E ofM into the nilpotent
cone and the total space E of the contact line bundle LZ on Z. Thus the compactification by symplectic
cutting produced the same orbifold as the two constructions we started this section with.

We start to list the properties of M. We will mention properties analogous to properties of Z (these
correspond to the fact that both spaces were constructed by a Kähler quotient procedure) and we will
clarify the relation between Z and M.

Theorem 2.1.4 and Theorem 2.1.3 give the following result in our case.

Theorem 4.6.3 Md is a compact orbifold. It has a decomposition Md =Md ∪ Zd into an open complex
suborbifoldMd (which is actually a complex manifold) and a codimension one suborbifold Zd, i.e. a divisor.
The singular locus of Md coincides with that of Zd:

Sing(Md) = Sing(Zd) =
⋃

0<i≤d

P (E2
i )

where E2
i is a component of the fixed points set of the involution σ(E,Φ) = (E,−Φ).

Furthermore, the C∗-action on Md extends to Md with an extra component Zd of the fixed point set.

We have the corresponding statement of Theorem 4.5.4.

Theorem 4.6.4 M = Mg−1 is birationally isomorphic to M0 = P (T ∗N ⊕ ON ). Moreover, they are
isomorphic outside an analytic subset of codimension at least 3.

Proof. In a similar manner to the proof of Corollary 4.5.4 we can argue by noting that XM0
is obviously

isomorphic to T ∗N ⊕ON with the standard action of C∗. Hence indeed M0 = P (T ∗N ⊕ON ).
By Theorem 2.1.3 it is clear that M and M0 are related by a sequence of blowups and blowdowns.

The codimensions of the submanifolds we apply the blowups are at least 3 by a calculation analogous to
the one in the proof of Proposition 4.5.3. �

Notation 4.6.5 Let

• LP (T∗
N⊕ON ) denote the pullback of LN to P (T ∗N ⊕ON ),

• LM be the corresponding line bundle on M,

21Cf. Subsection 2.1.3 and [Ler].
22Cf. Theorem 2.1.4.
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• LP (T∗
N⊕ON ) be the dual of the tautological line bundle on the projective bundle P (T ∗N ⊕ON ),

• LM = XM ×C∗ C be the corresponding line orbibundle on M.

Corollary 4.6.6 PicM is isomorphic to Pic(P (T ∗N ⊕ON )) and therefore is of rank 2 and freely generated
by LM and LM.

Proof. The previous theorem shows that M and P (T ∗N ⊕ON ) are isomorphic outside an analytic subset
of codimension at least 2, thus their Picard groups are naturally isomorphic.

However, Pic(P (T ∗N ⊕ON )) is freely generated by LP (T∗
N⊕ON ) and LP (T∗

N⊕ON ). The result follows. �

Corollary 4.6.7 The canonical line orbibundle KM of M coincides with L
−(3g−2)

M . Moreover, LM is the

line bundle of the divisor Z, therefore (3g-2)Z is the anticanonical divisor of M. Finally, LM restricts to
LZ to Z.

Proof. LM by its construction clearly restricts to LZ on Z and it is the line bundle of Z, as the corre-
sponding statement is obviously true for P (T ∗N ⊕ON ).

The restriction of KM toM has a non-zero section, namely the holomorphic Liouville form ω3g−3
h , thus

trivial. Hence KM = Lk
M for some k ∈ Z.

By the adjunction formula KZ = (KM⊗ [Z]) |Z . The right hand side equals L
−(3g−3)
Z as LZ is a contact

line bundle23. The left hand side can be written as (Lk
M ⊗ LM) |Z= Lk+1

Z , therefore k = −(3g − 2). �

Lemma 4.6.8 χ has an extension to M,

χ :M→ P3g−3

such that χ restricted to Z gives the map of Lemma 4.5.10.

Proof. We let C∗ act on C3g−3 ×C by λ(x, z) = (λ2x, λz). With respect to this action the map (χ, idC) :
M×C→ C3g−3×C is equivariant. Therefore making the symplectic cut it reduces to a map χ :M→ P3g−3

since the quotient space (C3g−3 \ 0)× C/C∗ is isomorphic to P3g−3.
The result follows. �

Remark. In the higher rank case, where C∗ acts on the target space of the Hitchin map with different
weights, the target space of the compactified Hitchin map is a weighted projective space.

Corollary 4.6.9 L2
M = χ∗H3g−3.

Proof. Obviously, χ∗H3g−3 |M is trivial, therefore χ∗H3g−3 is some power of LM. By 4.5.11 this power
is 2. �

Theorem 4.6.10 (Duistermaat, Heckman) M has a one-parameter family of Kähler forms ωt(M),
t > cg−1 such that

[ωt1(M)]− [ωt2(M)] = (t1 − t2)c1(LM).

Furthermore this one-parameter family of Kähler forms restricts to Z as the one-parameter family of
Kähler forms of Theorem 4.5.15.

Proof. This is just the application of Theorem 2.1.3 and Theorem 2.1.4 to our situation. �

Corollary 4.6.11 M is a projective algebraic variety.

23Cf. Theorem 4.5.9.
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Proof. The argument is the same as for Theorem 4.5.16, noting that by Corollary 4.6.6 H 2(M,R) is two
dimensional and LM is neither trivial nor ample since LM | Z = LZ (by Corollary 4.6.7) is neither trivial
nor ample (by Corollary 4.5.14). �

Remark. 1. The above proof yields that the cohomology class c1(LM) sits in the closure of the Kähler
cone of M, hence LM is nef.

2. From the previous remark and Corollary 4.6.9 we can deduce that there is a complete hyperkähler
(hence Ricci flat) metric on M = M \ Z, the complement of a nef anticanonical divisor of a compact
orbifold.

Therefore our compactification ofM is compatible with Yau’s problem, which addresses the question:
which non-compact complex manifolds possess a complete Ricci flat metric? Tian and Yau in [Ti,Ya] could
show that this is the case for the complement of an ample anticanonical divisor in a compact complex
manifold. (Such manifolds are called Fano manifolds.)

The similar statement with ample replaced by nef is an unsolved problem.

Theorem 4.6.12 M has Poincaré polynomial

Pt(M) = Pt(M) + t2Pt(Z).

Proof. We have three different ways of calculating the Poincaré polynomial of M. The first is through
Kirwan’s formula in [Kir1], the second is due to Thaddeus in [Tha3], which we used to calculate the
Poincaré polynomial of Z.

ForM there is a third method, namely direct Morse theory. All we have to note is that the U(1)-action
M is Hamiltonian with respect to any Kähler form of Theorem 4.6.10, and the critical submanifolds and
corresponding indices are the same as for M with one extra critical submanifold Z of index 2. Hence the
result. �

Example. We can describeMtoy =Mtoy ∪Ztoy as follows. As we saw aboveMtoy \Ntoy = XZtoy
. Thus

gluing togetherMtoy and Etoy, the total space of the line orbibundle LZtoy
, along XZtoy

yields

Mtoy =Mtoy ∪XZtoy
Etoy.

One can constructMtoy directly, as follows. Take P1 = C∪∞ extending the involution τ from C to P1.
Consider the quotient (P × P1)/(σP × τ). This is a compact orbifold with eight Z2-quotient singularities.
Blow up four of them corresponding to 0 ∈ C. The resulting space will be isomorphic to Mtoy. The
remaining four isolated Z2 quotient singularities will just be the four marked points of Ztoy ⊂ Mtoy, the
singular locus ofMtoy.

We finish this section with a result which gives an interesting relation between the intersections of
the component of the nilpotent cone N in M (equivalently the intersection form on the middle compact
cohomology H6g−6

cpt (M) from Corollary 4.4.4) and the contact structure of Z.

Theorem 4.6.13 There is a canonical isomorphism between the cokernel of jM and the cokernel of L,
where

jM : H6g−6
cpt (M)→ H6g−6(M)

is the canonical map and

L : H6g−8(Z)→ H6g−6(Z)

is multiplication with c1(LZ).
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Proof. We will read off the statement from the following diagram.

0
↓

H6g−8(Z)

↓ ↘L

0 → H6g−6
cpt (M) → H6g−6(M) → H6g−6(Z) → 0

↘j ↓
H6g−6(M)

↓
0

We show that both the vertical and horizontal sequences are exact and the two triangles commute.
From the Bialynicki-Birula decomposition ofM we get the short exact sequence of middle dimensional

cohomology groups24:
0→ H6g−6

cpt (E)→ H6g−6(M)→ H6g−6(M)→ 0.

Applying the Thom isomorphism25 we can identify H6g−6
cpt (E) with H6g−8(Z), this gives the vertical

short exact sequence of the diagram. The horizontal one is just its dual short exact sequence.
Finally, the left triangle clearly commutes as all the maps are natural, while the right triangle commutes

because the original triangle commuted as above and the canonical map jE : H6g−6
cpt (E) → H6g−6(E)

transforms to L : H6g−8(Z)→ H6g−6(Z) by the Thom isomorphism.
Now the theorem is the consequence of the Butterfly lemma26, or can be proved by an easy diagram

chasing.
Hence the result follows. �

Remark. 1. In the next Chapter we shall prove Theorem 0.2.1, that jM is 0. Combined with the above
theorem we have that the cokernel of L is g-dimensional! We will say more about this in Section 8.1.

2. If the line bundle LZ was ample, the map L would just be the Lefschetz isomorphism, and therefore
the cokernel would be trivial. In our case we have LZ being only nef and the map is certainly not an
isomorphism, the cohomology class of the Kummer variety lies in the kernel. Therefore the cokernel
measures how far LZ is from being ample.

3. Notice that the proof did not use any particular property of M, therefore the statement is true in
the general setting of Section 2.1.

Example. We can simply calculate the dimension of the cokernels in our toy example. Namely, the
dimension of coker(Ltoy) is clearly 1, as the map Ltoy : H0(Ztoy)→ H2(Ztoy) is the multiplication27 with
c1(LZtoy

) = 0.
Thus, by the above theorem, we have that coker(jMtoy

) is 1-dimensional. It can be seen directly, using
Zariski’s lemma28, that the kernel of the map jMtoy

is generated by the cohomology class of the elliptic
curve P , the generic fibre of the toy Hitchin map, hence it is 1-dimensional, indeed.

Thus jMtoy
is not 0 unlike jM. This indicates a profound difference between M and Mtoy.

24Recall that E ⊂ M denotes the total space of the contact line bundle LZ on Z.
25This also holds in the orbifold category with coefficients from Q.
26Cf. [Lan] IV.4 p.102.
27Cf. the example at the end of Section 4.5.
28Lemma 8.2 in [B,P,V] p. 90.



Chapter 5

Intersection numbers

The aim of the present chapter is to prove Theorem 0.2.1. We discussed in the Introduction the physical
motivation for Theorem 0.2.1.

From an algebraic geometric point of view Theorem 0.2.1 can be interpreted as follows. First of all
it is really about middle dimensional cohomology, because we know that M does not have cohomology
beyond the middle dimension, and equivalently by Poincaré dualityM does not have compactly supported
cohomology below the middle dimension. Thus the main content of Theorem 0.2.1 is the vanishing of the
canonical map jM : H6g−6

cpt (M) → H6g−6(M) between g-dimensional spaces1. This in turn is equivalent

to the vanishing of the intersection form on H6g−6
cpt (M).

There are g + 1 intersection numbers whose vanishing follows easily. One vanishing is obtained by
recalling that the moduli space N of stable bundles of real dimension 6g − 6 sits inside M with normal
bundle T ∗N , thus its self-intersection number is its Euler characteristic up to sign, which is known2 to
vanish.

The other g vanishings follow from the fact that the ordinary cohomology class of the Prym variety, the
generic fibre of the Hitchin map, is 0 i.e. jM(ηMP ) = 0. This can be seen by thinking of the Hitchin map
as a section of the trivial rank 3g − 3 vector bundle onM and considering the ordinary cohomology class
of the Prym variety as the Euler class of this trivial vector bundle, and as such, the ordinary cohomology
class of the Prym variety is trivial indeed. Note that for the case g = 2, the above vanishings are already
enough to have jM = 0.

The vanishing of the intersection form on M for any genus, proved in this chapter, can be considered
as a generalization of these facts. We should also mention that as we explained at the end of the previous
chapter, the intersection form is not trivial in the case of the toy exampleMtoy.

The structure of this section is as follows: In the next section we develop the theory of stable Higgs
bundles analogously to the stable case, and prove an important vanishing theorem. In Section 5.2 we prove
that M̃ is a fine moduli space, and define certain universal bundles. In Section 5.3 we construct the virtual
Dirac bundle3, as the analogue of the virtual Mumford bundle, and show that it can be considered as the
degeneracy sheaf of a homomorphism of vector bundles. In Section 5.4 we determine the degeneracy locus
of the above homomorphism in terms of the components of the nilpotent cone. Finally in Section 5.5 we
prove our main Theorem 0.2.1 using Porteous’ formula for the degeneracy locus of the virtual Dirac bundle.

1Cf. Corollary 4.4.4.
2Substitute t = −1 into (3.19)!
3For its gauge theoretic construction see Subsection 1.7.
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5.1 A vanishing theorem

Definition 5.1.1 The complex E
Φ→ E ⊗K with E a vector bundle on Σ, K the canonical bundle of Σ,

and Φ ∈ H0(Σ,Hom(E,E ⊗K)), is called a Higgs bundle, while Φ is called the Higgs field.

A morphism Ψ : E1 → E2 between two Higgs bundles E1 = E1
Φ1→ E1 ⊗K and E2 = E2

Φ2→ E2 ⊗K is
defined to be a homomorphism of vector bundles Ψ ∈ Hom(E1, E2) such that the following diagram com-
mutes:

E1
Φ1−→ E1 ⊗K

Ψ ↓ ↓ Ψ⊗ idK

E2
Φ2−→ E2 ⊗K

Moreover we say that E1 is a Higgs subbundle of E2 if Ψ ∈ Hom(E1, E2) is injective and a morphism of
Higgs bundles. We denote this by E1 ⊂ E2. In this case we can easily construct the quotient Higgs bundle
E2/E1 together with a surjective morphism of Higgs bundles π : E2 → E2/E1 whose kernel is exactly E1.

Remark. It is a tautology that morphisms of Higgs bundles form the hypercohomology4 vector space

H0(Σ, E∗1 ⊗E2
[Φ1,Φ2]−→ E∗1 ⊗E2 ⊗K),

where the homomorphism [Φ1,Φ2] is given by:

[Φ1,Φ2] (Ψ) := (Ψ⊗ idK)Φ1 − Φ2Ψ

for Ψ ∈ Hom(E1, E2).

Now recall Definition 1.2.4 where we defined the notion of stability of Higgs bundles. The main result5

of this section is the following theorem about morphisms between stable Higgs bundles.

Theorem 5.1.2 Let E = E
Φ→ E ⊗K and F = F

Ψ→ F ⊗K be stable Higgs bundles with µ(F) < µ(E).
Then the only morphism from E to F is the trivial one. In other words

H0(Σ, E∗ ⊗ F [Φ,Ψ]−→ E∗ ⊗ F ⊗K) = 0.

Moreover if µ(F) = µ(E), then there is a non-trivial morphism f : E → F if and only if E ∼= F in which
case every non-trivial morphism f : E → F is an isomorphism and

dim(H0(Σ, E∗ ⊗ F [Φ,Ψ]−→ E∗ ⊗ F ⊗K)) = 1. (5.1)

Proof. A characteristic property of the ring C[x1] is that it is the only principal ideal domain among the
rings C[x1, . . . , xn]. It follows that OΣ is a sheaf of principal ideal domains, and that every torsion free
sheaf6 over Σ, such as a subsheaf of a locally free sheaf, will be locally free. An easy consequence of this
is the lemma of Narasimhan and Seshadri7:

Lemma 5.1.3 Let E and F be two vector bundles over the Riemann surface Σ with a non-zero homomor-
phism f : E → F , then f has the following canonical factorisation:

0 −→ E1 −→ E
η−→ E2 −→ 0

↓ f ↓ g

0←− F2 ←− F i←− F1 ←− 0

where E1, E2, F1 and F2 are vector bundles, each row is exact, f = igη and g is of maximal rank, i.e.
rank(E2) = rank(F1) = n and Λn(g) : Λn(E2) → Λn(F1) is a non-zero homomorphism. In other words g
is an isomorphism on a Zariski open subset U of Σ. F1 is called the subbundle of F generated by the image
of f . �

4In connection with Higgs bundles the language of hypercohomology was first used in [Sim1]. In [Bi,Ra] it was used to
describe the tangent space to M.

5The second part of which is Proposition (3.15) in [Hit1].
6Every sheaf over Σ is assumed to be a sheaf of OΣ-modules.
7Cf. section 4 in [Na,Se].



5.1. A VANISHING THEOREM 57

Let f : E → F be a non-zero morphism of Higgs bundles. In particular f : E → F is a homomorphism
of vector bundles.

Construct the canonical factorisation of f of Lemma 5.1.3. Consider the Zariski open subset U of Σ
where g is an isomorphism. Here clearly ker(f |U ) = ker(η |U ) = E1 |U . Now ker(f |U ) being the kernel
of a morphism of Higgs bundles, is Φ-invariant, i.e. a Higgs subbundle of E |U . Thus E1 |U is a Higgs
subbundle of E |U . This means that Φ(E1) is contained in E1 ⊗K ⊂ E ⊗K on U . Because U is Zariski

open in Σ, it follows that E1 = E1
Φ→ E1 ⊗K is a Higgs subbundle of E . Let E2 = E2

Φ→ E2 ⊗K denote
the quotient Higgs bundle.

Similarly im(α) |U= F1 |U is Ψ-invariant, thus F1 = F1
Ψ→ F1 ⊗K is a Higgs subbundle of F .

By assumption µ(F) < µ(E), stability of E gives µ(E) ≤ µ(E2) (it may happen that E = E2) and
because g is of maximal rank we get µ(E2) = µ(E2) ≤ µ(F1) = µ(F1). Thus µ(F) < µ(F1) contradicting
the stability of F .

If µ(E) = µ(F) then the above argument leaves the only possibility that η, g and i are isomorphisms,
showing that f must be an isomorphism. Suppose that we have such an isomorphism f of Higgs bundles.
Then consider h : E → F another non-zero morphism of Higgs bundles. In particular h ∈ Hom(E,F ). Let
λ be an eigenvalue of the homomorphism f−1

p hp ∈ Hom(Ep, Ep). Then the homomorphism h − λf is not
an isomorphism, though clearly a morphism of Higgs bundles. From the above argument h− λf = 0.

The result follows. �

Corollary 5.1.4 For any stable Higgs bundle E with µ(E) < 0:

H0(Σ, E) = 0, (5.2)

for any stable Higgs bundle E with µ(E) > 0:

H2(Σ, E) = 0. (5.3)

If E is a stable Higgs bundle with µ(E) = 0 and E � E0 = OΣ
0→ OΣ ⊗K then both (5.2) and (5.3) hold.

Proof. For the first part consider the Higgs bundle E0 = OΣ
0→ OΣ ⊗K. Being of rank 1 it is obviously

stable, with µ(E0) = 0. Now the previous theorem yields that there are no nontrivial morphisms from E0
to E , which in the language of hypercohomology is exactly H0(Σ, E) = 0, which we had to prove.

For the second part Serre duality gives that H2(Σ, E) ∼= (H0(Σ, E∗⊗K))∗. Now clearly E∗⊗K is stable
and µ(E∗ ⊗K) = −µ(E) < 0. Thus the first part gives the second.

Likewise, the third statement follows by referring to the last part of Theorem 5.1.2. �

It is convenient to include here the analogue of the Harder-Narasimhan filtration for Higgs bundles,
which will be used in Chapter 6:

Corollary 5.1.5 Every Higgs bundle E has a canonical filtration:

0 = E0 ⊂ E1 ⊂ E2 ⊂ . . . ⊂ Er = E , (5.4)

with Di = Ei/Ei−1 semi-stable and

µ(D1) > µ(D2) > . . . > µ(Dr).

Proof. It follows from Theorem 5.1.2 just as in the case of vector bundles. �
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5.2 Universal bundles

Nitsure showed that M̃ is a coarse moduli space. Here we show that M̃ is in fact a fine moduli space. We
closely follow the proof of Theorem 5.12 in [New1] and (1.19) of [Tha3]. All the ingredients have already
appeared in the unpublished [Tha1].

Definition 5.2.1 Two families ET and E ′T of stable Higgs bundles over T × Σ are said to be equivalent,
(in symbols ET ∼ E ′T ) if there exists a line bundle L on T such that E ′T ∼= ET ⊗ pr∗T (L).

The next lemma, which is taken from [Tha1], shows that two families are equivalent iff they give rise

to the same map to the coarse moduli space M̃.

Lemma 5.2.2 If ET = ET
Φ→ ET ⊗KΣ and E ′T = E′T

Φ
′

→ E′T ⊗KΣ are families of stable Higgs bundles over
T × Σ such that

ET |{t}×Σ
∼= E ′T |{t}×Σ (5.5)

for each t ∈ T , then ET ∼ E ′T .

Proof. Let

F := E∗T ⊗ E′T
[ΦT ,Φ′

T ]−→ E∗T ⊗ E′T ⊗KΣ.

We define L = R0prT ∗(F). By (5.5) and (5.1) this is a line bundle over T . It follows from the projection
formula8 that the sheaf R0prT ∗(F ⊗ pr∗T (L∗)) is just OT , the structure sheaf. A non-zero section

Ψ ∈ H0(T,R0prT ∗(F ⊗ pr∗T (L∗)))

for every t ∈ T gives
Ψ |{t}×Σ: (ET ⊗ pr∗T (L)) |{t}×Σ→ E ′T |{t}×Σ

a non-zero morphism of Higgs bundles, which is by Theorem 5.1.2 an isomorphism.
The result follows. �

Now we prove the existence of universal Higgs bundles9:

Proposition 5.2.3 Universal Higgs bundles EM̃ = EM̃
Φ→ EM̃ ⊗KΣ over M̃ × Σ do exist.

Proof. We construct a holomorphic universal Higgs bundle over M̃ × Σ by using the gauge theoretic
construction of M̃ from Subsection 1.2.3. An analogous construction in the GIT framework of [Nit]
however gives an algebraic universal Higgs bundle. We preferred here the gauge theoretic proof, because it
fits better into this thesis.

To construct EM̃ we proceed similarly to p.579-580 of [At,Bo]. First we note that there is an obvious
tautological rank 2 holomorphic bundle EC over C × Σ with the constant scalars C∗ ⊂ Gc acting trivially
on the base and as scalars in the fibre of EC .

We also need a Gc-invariant holomorphic line bundle L over C<g such that C∗ ⊂ Gc acts via scalar
multiplication. To construct such a line bundle we choose k large enough such that H1(M,E ⊗ Lk

p) = 0

for each E ∈ C<g. Then (prC)∗(EC ⊗Lk
p) is a Gc-equivariant holomorphic vector bundle over C<g of degree

2k + 1 − 2(g − 1). Taking determinants gives a Gc-equivariant line bundle Ak on C<g , with the group
C∗ of scalar automorphisms of E acting on this with weight m = 2k + 1 − 2(g − 1). Now taking the
determinant of (prC)∗(EC ⊗Lk+1

p ) gives a line bundle Ak+1 over C<g such that the weight of the C∗-action

is 2k + 3 − 2(g − 1). It follows that we can find a and b such that L = Aa
k ⊗ Ab

k+1 is a holomorphic
Gc-equivariant line bundle over C<g, with C∗ ⊂ Gc acting on it with weight 1.

From Subsection 1.2.3 we have (B)s ⊂ B the subspace of stable Higgs bundles and a map pr : B → C.
The restricted map prs : (B)s → C has image in C<g. Thus we can pullback the bundle EC ⊗ L−1 from
C<g × Σ to (B)s × Σ gaining EB. This bundle is a priori a Gc-equivariant bundle. However the subgroup

8Cf. p.124 of [Har].
9Cf. [Tha1].
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of constant scalar automorphisms C∗ ⊂ Gc acts trivially on EB, therefore it reduces to a Gc
= Gc/C∗-

equivariant bundle. Since Gc
acts freely on (B)s it follows that EC ⊗ L−1 reduces to a rank 2 holomorphic

vector bundle EM̃ over M̃ ⊗ Σ, with the property that EM̃ |(E,Φ)
∼= E.

Now the fibre of pr : B → C over a point E, can be identified canonically with H0(Σ,End(E) ⊗K),
thus there is an obvious tautological section

ΦB ∈ H0(B; End(pr∗(EC))⊗K).

However End(pr∗(EC) ∼= End(EB) canonically. It follows that we have a tautological Higgs bundle EB
ΦB−→

EB ⊗K over (B)s×Σ, which is a priori a Gc-equivariant complex but reduces to a Gc
-equivariant complex

as proved above. It follows that it reduces to M̃×Σ to give a universal Higgs bundle EM̃
Φ

M̃−→ EM̃⊗K. �

As in Theorem 5.12 of [New1] and (1.19) of [Tha3] our Lemma 5.2.2 and Proposition 5.2.3 gives:

Corollary 5.2.4 The space M̃ is a fine moduli space for rank 2 stable Higgs bundles of degree 1 with
respect to the equivalence ∼ of families of stable Higgs bundles.

As another consequence of Proposition 5.2.3 and Lemma 5.2.2, we see that although EM̃ is not unique
End(EM̃) is. Moreover it is clear that by setting EM = EM̃ |M×Σ we have

c(End(EM̃)) = c(End(EM))⊗ 1 (5.6)

in the decomposition (3.25).
Thus from the Künneth decomposition of End(EM) we get universal classes

c2(End(EM)) = 2αM ⊗ σΣ +

2g∑

i=1

4ψi
M ⊗ ξΣi − βM ⊗ 1 (5.7)

in H4(M× Σ) ∼=
∑4

r=0H
r(M)⊗H4−r(Σ) for some αM ∈ H2(M), ψi

M ∈ H3(M) and βM ∈ H4(M).
Though EM is not unique we can still write its Chern classes in the Künneth decomposition10, getting11

c1(EM) = 1⊗ σΣ + β1 ⊗ 1,

where β1 ∈ H2(M) and

c2(EM) = α2 ⊗ σΣ +

2g∑

i=1

ai ⊗ ξΣi + β2 ⊗ 1,

where α2 ∈ H2(M), ai ∈ H3(M) and β2 ∈ H4(M). Since

4c2(EM)− c21(EM) = c2(End(EM)),

we get αM = 2α2 − β1 and β = β2
1 − 4β2. Because Pic(M) ∼= H2(M,Z) we can normalize EM uniquely

such that c1((EM)p) = αM, where
(EM)p := EM |M×{p} .

Definition 5.2.5 The universal Higgs bundle EM is normalized if c1((EM)p) = αM.

We also need to work out the Chern classes of EM̃. It is easy to see that c(EM̃) in the decomposition
(3.25) is the product of c(EM̃) |M×Σ and c(L1), where L1 is some universal line bundle over J × Σ.

Definition 5.2.6 We call the universal Higgs bundle EM̃ normalized if in the decomposition (3.25)

c1((EM̃)p) = αM, (5.8)

where (EM̃)p = EM̃ |M̃×{p} .
10Cf. proof of Newstead’s theorem in [Tha2]).
11Note that M being simply connected by [Hit1] H1(M) = 0.
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Remark. Since
4c2((EM̃)p)− c1((EM̃)p)

2 = c2
(
End((EM̃)p)

)
,

for a normalized universal Higgs bundle over M̃ × Σ (5.6) and (5.8) yield:

c2((EM̃)p) =
(α2
M − βM)

4
(5.9)

Finally, given a universal Higgs bundle EM̃ over M̃×Σ, we introduce a universal Higgs bundle of degree

2k− 1 by setting Ek
M̃ := EM̃ ⊗ pr∗Σ(Lk−1

p ), where Lp is the line bundle of the divisor of the point p ∈ Σ. It
is called normalized if EM̃ is normalized.
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5.3 The virtual Dirac bundle Dk

The strategy of the proof of Theorem 0.2.1 will be to examine the virtual Dirac bundle Dk which is defined
in the following:

Definition 5.3.1 The virtual Dirac bundle is12

Dk := −prM̃!
(Ek
M̃) ∈ K(M̃),

where Ek
M̃ is a normalized universal Higgs bundle of degree 2k−1 and prM̃ : M̃×Σ→ M̃ is the projection

to M̃.

The name is justified by Hitchin’s construction13 of Dk related to the space of solutions of an equation on
Σ, which is locally the dimensional reduction of the Dirac equation in R4 coupled to a self-dual Yang-Mills
field.

The virtual Dirac bundle is a priori

−prM!(Ek
M̃) = −R0prM̃∗(E

k
M̃) + R1prM̃∗(E

k
M̃)− R2prM̃∗(E

k
M̃) ∈ K(M̃)

a formal sum of three coherent sheaves. Corollary 5.1.4 shows that one of these sheaves always vanishes:
if k > 0, then R2 = 0, if k ≤ 0 then R0 = 0. From now on k is assumed to be positive.

We would like to use Porteous’ Theorem 2.2.6 for Dk. As we explained in Subsection 2.2.2 for this
we need to show that we can think of the virtual Dirac bundle as the virtual degeneracy sheaf of a
homomorphism of vector bundles. More precisely we prove:

Theorem 5.3.2 There exist two vector bundles V and W over M̃ together with a homomorphism f : V →
W of vector bundles, whose kernel and cokernel are respectively R0prM∗(Ek

M̃) and R1prM∗(Ek
M̃). In other

words there is an exact sequence of sheaves:

0→ R0prM̃∗(E
k
M̃)→ V

f→ W → R1prM̃∗(E
k
M̃)→ 0.

Proof14. First we need a lemma.

Lemma 5.3.3 Let X be a smooth quasi-projective variety and Σ a smooth projective curve. If E is a
locally free sheaf over X×Σ then there exists a vector bundle F over X×Σ with a surjective vector bundle
homomorphism gE : F → E such that R0prX∗(F ) = 0. We will call F a sectionless resolution of E.

Proof. The lemma is a special case of Proposition 2.1.10 of [Hu,Le]. We only have to note that prX∗ :
X × Σ→ X is a smooth projective morphism of relative dimension 1 and E being locally free is flat over
X . The proof is rather simple so we sketch it here.

Let us denote by Ex the vector bundle E |{x}×Σ over Σ. Fix an ample line bundle L on Σ. Then it is well

known that for big enough k the vector bundle Ex⊗Lk is generated by its sections and H1(Σ;Ex⊗Lk) = 0.
Let us denote byXk ⊂ X those points x for which Ex⊗Lk is generated by its sections andH1(Σ;Ex⊗Lk) =
0. It is standard that Xk is a Zariski open subset of X . Thus we have a covering X =

⋃
Xk of X by

Zariski open subsets. It is again standard that the Zariski topology of an algebraic variety is noetherian15,
which yields that we have some k such that Xk = X . It is now immediate that

F = pr∗Σ(L−k)⊗ pr∗X
(
(prX)∗(E ⊗ pr∗Σ(Lk))

)

has the required properties.
The result follows. �

12Recall the definition of the pushforward of a complex from Subsection 2.2.3.
13Cf. Subsection 1.1.5.
14The idea of the proof was suggested by Manfred Lehn.
15Cf. Example 3.2.1 on p. 84 of [Har].
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Proposition 5.3.4 Let Σ be a smooth projective curve and X be a smooth quasi-projective variety. Let

E = E
f→ F be a complex of vector bundles on X × Σ. Let gF : A → F be a sectionless resolution of F .

Let M be the fibred product of f and gF . This comes with projection maps pF : M → F and pA : M → A.
Let gM : A2 →M be a sectionless resolution of M , and denote j = gM ◦ pA2

. Finally, let A1 = ker gM and
i : A1 → A2 the embedding. The situation is shown in the following diagram:

E
f−→ F

↖
M ↑
↗ ↘

0 −→ A1
i−→ A2

j−→ A

In this case the cohomology of the complex

R1prX∗(A1)
i∗−→ R1prX∗(A2)

j∗−→ R1prX∗(A)

calculates the sheaves R0prX∗(E), R1prX∗(E) and R2prX∗(E) respectively. In other words

R0prX∗(E) ∼= ker(i∗) (5.10)

R1prX∗(E) ∼= ker(j∗)/ im(i∗) (5.11)

R2prX∗(E) ∼= coker(j∗). (5.12)

Proof. Let us recall the definition of the fibred product:

M = ker(f − gF : E ⊕A→ F ).

This comes equipped with two obvious projections pE : M → E and pA : M → A. Because gF is surjective,
f − gF is also surjective. Thus M is a vector bundle. By construction the kernel of pE is isomorphic to
the kernel of gF . Denote it by B. This says that the following diagram is commutative and has two exact
columns:

0 −→ 0
↑ ↑
E

f−→ F
pE ↑ ↑ gF

M
pA−→ A

↑ ↑
B
∼=−→ B

↑ ↑
0 −→ 0

If A denotes the complex A = M
pA→ A and B the complex B = B

∼=→ B, then the above diagram is just
a short exact sequence of complexes

0 −→ B −→ A −→ E −→ 0.

Clearly RiprX∗(B) vanishes for all i. (Any hypercohomology of an isomorphism is 0.) Thus the long
exact sequence of the above short exact sequence gives the isomorphisms

R0prX∗(E) ∼= R0prX∗(A) (5.13)

R1prX∗(E) ∼= R1prX∗(A) (5.14)

R2prX∗(E) ∼= R2prX∗(A) (5.15)

Because A is a sectionless resolution of M , we have R0prX∗(A) = 0 thus the long exact sequence of the
push forward of the complex A breaks up into two exact sequences:

0→ R0prX∗(A)→ R0prX∗(M)→ 0,
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and
0 −→ R1prX∗(A) −→ R1prW∗(M)

pA∗−→ R1prX∗(A) −→ R2prX∗(A) −→ 0.

Thus

R0prX∗(A) ∼= R0prX∗(M) (5.16)

R1prX∗(A) ∼= ker(pA∗) (5.17)

R2prX∗(A) ∼= coker(pA∗). (5.18)

Now consider the short exact sequence:

0 −→ A1
i−→ A2

gM−→M −→ 0. (5.19)

R0prX∗(A2) = 0 because A2 is a sectionless resolution of M and hence we get the exact sequence of sheaves:

0 −→ R0prX∗(M) −→ R1prX∗(A1)
i∗−→ R1prX∗(A2)

gM ∗−→ R1prW∗(M) −→ 0. (5.20)

Thus ker(i∗) ∼= R0prX∗(M) which by (5.16) and (5.13) proves (5.10). Since gM∗ is a surjection coker(j∗) ∼=
coker(pA∗). This together with (5.18) and (5.15) give (5.12).

Finally, consider the commutative diagram:

R1prW∗(M)
∼=−→ R1prX∗(M)

gM ∗ ↑ ↓ pA∗

R1prX∗(A2)
j∗−→ R1prX∗(A)

Since gM ∗ surjective by (5.20) we get that ker(j∗)/ ker(gM ∗) ∼= ker(pA∗). From (5.20) clearly ker(gM∗) ∼=
im(i∗), thus ker(j∗)/ im(i∗) ∼= ker(pA∗). This together with (5.17) and (5.14) prove (5.11). �

Corollary 5.3.5 If R2prX∗(E) = 0, in the situation of Proposition 5.3.4, then there exist two vector
bundles V and W over X together with a homomorphism f : V → W , whose kernel and cokernel are
R0prX∗(E) and R1prX∗(E) respectively. I.e. the following sequence is exact:

0→ R0prX∗(E)→ V
f→ W → R1prX∗(E)→ 0.

Proof. From the long exact sequence corresponding to (5.19), we have R0prX∗(A1) = 0. Let V be the
vector bundle R1prX∗(A1).

Moreover R1prX∗(A2) and R1prX∗(A) are also vector bundles because A2 and A are sectionless res-
olutions. Furthermore the assumption R2prX∗(E) = 0 shows that j∗ is surjective. Let W be the vector
bundle ker(j∗), and f be the map i∗ : V →W .

The result follows from Proposition 5.3.4. �

The proof of Theorem 5.3.2 is completed by Corollary 5.3.5 noting that by Corollary 5.1.4 we have
R2prM̃∗(Ek

M̃) = 0. �



64 CHAPTER 5. INTERSECTION NUMBERS

5.4 The downward degeneracy locus DDk

Definition 5.4.1 The downward degeneracy locus

DDk := {E ∈ M̃ : H0(Σ, Ek
M̃) 6= 0)}

is the locus where Dk fails to be a vector bundle, i.e. where f of Theorem 5.3.2 fails to be an injection.

The aim of this section is to give a description of the degeneracy locus DDk. For this we need a
refinement of Theorem 4.4.5, which still follows from the proof of Proposition (19) of [Tha1].

Proposition 5.4.2 The nilpotent cone is a compact union of 3g − 3 dimensional manifolds:

N = N ∪
g−1⋃

k=1

Dk,

where each Dk is biholomorphic to the total space of the negative vector bundle E−k over Fk, the k-th
component of the fixed point set of the C∗-action. The component Dk can also be characterised as the locus

of those stable Higgs bundles E = E
Φ→ E ⊗K which have a unique subbundle LE of degree (1 − k) killed

by the non-zero Higgs field Φ.

Proof. The first part is proved in Theorem 4.4.5.
For the second part consider a universal Higgs bundle EM over M× Σ restricted to Dk × Σ. Let us

denote it by Ek = Ek
Φk→ Ek ×KΣ. Consider the kernel of Φk. Because Dk parametrizes nilpotent stable

Higgs bundles with non-zero Higgs field ker(Φk) is a line bundle over Dk ×Σ. Recall from Proposition 7.1

of [Hit1] that for E
Φ→ E ⊗K ∈ Fk ⊂ Dk we have deg(ker(Φ)) = 1− k. Since Dk is smooth we have that

deg(ker(Φ)) = 1− k for every E
Φ→ E ⊗K ∈ Dk.

The result follows. �

Remark. A completely analogous result holds for Ñ with Ñ , D̃k and F̃k instead of N , Dk and Fk.

Theorem 5.4.3 Let k = 1, .., g − 1. The degeneracy locus DDk has the following decomposition:

DDk = Ñ k ∪
k⋃

i=1

D̃k
i ,

where Ñ k = DDk ∩ Ñ , and D̃k
i ⊂ D̃i are those nilpotent stable Higgs bundles whose unique line bundle LE

of Proposition 5.4.2 has the property that H0(Σ, LE ⊗ Lk−1
p ) 6= 0.

Furthermore
D̃k

k := {E ∈ D̃k : LE = L1−k
p }

and hence16

ηM̃
D̃k

k

r [J ] = ηMDk
∈ H6g−6(M), (5.21)

where ηM̃
D̃k

k

r [J ] means the coefficient of ηJpt in the decomposition of (3.25).

Proof. Let E = E
Φ→ E ⊗K be a stable Higgs bundle with Φ 6= 0 and H0(Σ, E ⊗ Lk−1

p ) 6= 0. It is easy to

see that this hypercohomology is the vector space of all morphisms from E0 ⊗ L1−k
p = L1−k

p
0→ L1−k

p ⊗K
to E . Consider a nonzero such morphism f . Consider L the line subbundle of E generated by the image
of f of Lemma 5.1.3. Clearly L is killed by the Higgs field Φ. This shows that E ∈ Ñ and L = LE . We
also see that H0(Σ, E ⊗ Lk−1

p ) ∼= H0(LE ⊗ Lk−1
p ). The first part of the statement follows.

By the above argument it follows that D̃k
k = {E ∈ D̃k : H0(Σ, LE ⊗Lk−1

p ) 6= 0}, however LE is of degree

1− k, thus D̃k
k = {E ∈ D̃k : LE = L1−k

p }, as claimed. This means that for every E ∈ Dk there is a unique

line bundle L = L1−k
p ⊗ L∗E such that E ⊗ L ∈ D̃k

k . This shows (5.21). �

16Recall the definition of ηY
X from Notation 2.2.5.
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Remark. By definition Ñ k = W 0
2,2k−1 are non-Abelian Brill-Noether loci as defined in [Sun]17.

17Cf. [Tei].
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5.5 Proof of Theorem 0.2.1

In this final section we prove Theorem 0.2.1.

Proof of Theorem 0.2.1. The proof proceeds by first showing that ch0(Dk) = 4g− 4, then c4g−3(Dk) = 0
and concludes using Porteous’ Theorem 2.2.6 for Dk.

First we make some calculations.

Lemma 5.5.1 The virtual bundle Dk has rank 4g − 4, i.e. ch0(Dk) = 4g − 4. Moreover

c(Dk) =

(
1 + αM +

α2
M − βM

4

)2g−2

(5.22)

in the decomposition (3.25).

Proof. It follows from the hypercohomology long exact sequence that

Dk = −prM̃!
(Ek
M̃) = prM̃!

(Ek
M̃ ⊗KΣ)− prM̃!

(Ek
M̃).

We can calculate the Chern character of the right hand side by the Grothendieck-Riemann-Roch theorem.
This gives

ch(Dk) = prM̃∗

(
ch(Ek

M̃)(ch(KΣ)− 1) td(Σ)
)
.

Now td(Σ) = 1 − (g − 1)σ and ch(KΣ) = 1 + (2g − 2)σ. Moreover prM̃∗ maps a cohomology class

a ∈ H∗(M̃)⊗H∗(Σ) of the form

a = a0 ⊗ 1 +

2g∑

i=1

ai
1 ⊗ ei + a2 ⊗ σ

to the class a2 ∈ H∗(M̃). We will use the notation ar σ = a2 and ar 1 = a0. From this it follows that

ch(Dk) =
(
ch(Ek

M̃)((2g − 2)σ)(1− (g − 1)σ)
)

r σ = (2g − 2)(ch(Ek
M̃) r 1).

Observe that
ch(Ek

M̃) r 1 = ch((Ek
M̃)p) ∈ H∗(M̃),

where (Ek
M̃)p = Ek

M̃ |M̃×{p}. It follows from (5.8) and (5.9) that c1((E
k
M̃)p) = αM and c2((E

k
M̃)p) =

(α2
M − βM)/4. Hence the formal Chern roots of (Ek

M̃)p are (αM +
√
βM)/2 and (αM −

√
βM)/2. Thus

ch((Ek
M̃)p) = exp

(
αM +

√
βM

2

)
+ exp

(
αM −

√
βM

2

)
= 2eαM/2 cosh

(√
βM/2

)
,

and hence
ch(Dk) = (4g − 4)eαM/2 cosh

(√
βM/2

)
.

This shows that rank(Dk) = ch0(Dk) = 4g − 4 and formal calculation gives (5.22). �

(5.22) has the following immediate corollary:

Corollary 5.5.2 c4g−3(Dk) = 0.�

To prove Theorem 0.2.1 we exhibit g linearly independent elements r0, r1, .., rg−1 ∈ H6g−6
cpt (M) for

which jM(ri) = 0.
To construct rk for 0 < k < g consider the Zariski open subvarieties

D̃≥k = M̃ \ (Ñ
k−1⋃

i=1

D̃i)
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and

D≥k =M\ (N
k−1⋃

i=1

Di)

of M̃ andM respectively. Restricting the sequence of Theorem 5.3.2 to D̃≥k yields:

0 −→ R0prM∗(Ek
M̃) |D̃≥k

−→ V |D̃≥k

f |
D̃≥k−→ W |D̃≥k

−→ R1prM∗(Ek
M̃) |D̃≥k

−→ 0. (5.23)

The degeneracy locus of f |D̃≥k
(where f |D̃≥k

fails to be an injection) is DDk ∩ D̃≥k which is D̃k
k from

Theorem 5.4.3. This has codimension 4g − 3. Furthermore

rank(W )− rank(V ) = rank
(
R1prM∗(Ek

M̃)
)
− rank

(
R0prM∗(Ek

M̃)
)

= rank(Dk) = 4g − 4

by Lemma 5.5.1. Thus the degeneracy locus has the expected codimension hence we are in the situation
of Porteous’ Theorem 2.2.6, which gives:

η
D̃≥k

D̃k
k

= c4g−3(W |D̃≥k
−V |D̃≥k

) ∈ H8g−6(D̃≥k).

The right hand side equals c4g−3(Dk |D̃≥k
) by (5.23), which vanishes by Corollary 5.5.2. Also

η
D̃≥k

D̃k
k

r [J ] = η
D≥k

Dk

by (5.21). It follows that

η
D≥k

Dk
= 0 ∈ H6g−6(D≥k). (5.24)

From now on we work overM. We show by induction on i that there is a formal linear combination

ri
k =

k∑

j=k−i

λj ·
[
η

D≥k−i

Dj

]

of cohomology classes in H6g−6(D≥k−i), such that λk = 1 and the corresponding cohomology class∑k
j=k−i λi · ηDk−i

Dj
is 0 in H6g−6(D≥k−i).

For i = 0 the statement is just (5.24). Suppose that there is such formal linear combination ri
k. Consider

the following bit of the long exact sequence of the pair D≥k−i ⊂ D≥k−i−1:

H6g−6(D≥k−i, D≥k−i−1) −→ H6g−6(D≥k−i−1) −→ H6g−6(D≥k−i).

Because D≥k−i−1 \D≥k−i = Dk−i−1 is of real codimension 6g− 6, the Thom isomorphism transforms this
sequence to:

H0(Dk−i−1)
τ−→ H6g−6(D≥k−i−1)

ρ−→ H6g−6(D≥k−i), (5.25)

where τ is the Thom map and ρ is restriction. Clearly ρ
(
η

D≥k−i−1

Dj

)
= η

D≥k−i

Dj
. Thus

ρ




k∑

j=k−i

λj · ηD≥k−i−1

Dj


 =

k∑

j=k−i

λj · ηD≥k−i

Dj
= 0.

The exactness of (5.25) yields that the cohomology class

k∑

j=k−i

λj · ηD≥k−i−1

Dj
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is in the image of τ . Because H0(Dk) ∼= Q there is a rational number −λk−i−1 ∈ Q such that

τ(−λk−i−1) =

k∑

j=k−i

λj · ηD≥k−i−1

Dj
∈ H6g−6(D≥k−i−1). (5.26)

However a well known property of the Thom map gives τ(1) = η
D≥k−i−1

Dk−i−1
, thus from (5.26) the formal linear

combination

ri+1
k =

k∑

j=k−i−1

λj ·
[
η

D≥k−i−1

Dj

]

is 0, when considered as a class inH6g−6(D≥k−i−1). This proves the existence of formal linear combinations
ri
k for all 0 ≤ i ≤ k − 1.

Using rk−1
k an identical argument gives the formal linear combination

r′k = λ ·
[
ηMN
]
+

k∑

j=1

λj ·
[
ηMDj

]

with the property that λk = 1 and r′k when considered as an element of H6g−6(M) is 0. Now the compactly
supported cohomology class

rk = λ · ηMN +

k∑

j=1

λj · ηMDj
∈ H6g−6

cpt (M)

has the property that jM(rk) = r′k = 0, where by abuse of notation r′k denotes the cohomology class in
H6g−6(M) corresponding to the formal linear combination r′k.

We have found g − 1 linearly independent compactly supported cohomology classes r1, .., rg−1 ∈
H6g−6

cpt (M). Clearly ηMN is not in the span of r1, .., rg−1. Moreover for each 0 < i < g we have
∫
M ηMN ∧ri = 0

since jM(ri) = 0. Furthermore ∫

M
ηMN ∧ ηMN =

∫

N
c3g−3(T

∗
N ) = 0.

Thus ηMN is perpendicular to r1, .., rg−1 and ηMN , which constitutes a basis forH6g−6
cpt (M), and so jM(ηMN ) =

0.
Putting all this together: we have g linearly independent middle dimensional compactly supported

classes r0 = ηMN and r1, .., rg−1 in the kernel of the forgetful map jM : H6g−6
cpt (M)→ H6g−6(M).

Theorem 0.2.1 is finally proved. �



Chapter 6

Cohomology

As we already noted in the Introduction, to understand the physical model of [BJSV] one needs to have

a good understanding of the cohomology ring of M̃. The present chapter1 attempts to fill the gap in the
literature by providing at least a half-proved complete description of H∗(M)Γ, and in turn of H∗(M̃),
which agrees with computer calculations of genus up to 7.

We start with constructing equivariant structures on the universal bundles of Section 5.2. Then we
construct the equivariant virtual Mumford bundle in Section 6.2, and investigate its degeneracy locus in
Section 6.3. Applying the equivariant Porteous’ theorem we are able to deduce a fundamental proposition,
which implies, through the general arguments in Subsection 2.2.1, that H∗◦ (M̃) and in turn H∗(M̃) are
generated by some universal classes.

We finish by providing a conjectured complete description of the subring H∗I (M) ⊂ H∗(M)Γ, generated
by the classes αM, βM and γM. We support it by a few results. We prove that H∗I (M) has the same
Poincaré polynomial as the conjectured ring. We also find the first two relations and prove here that the
second is Newstead’s relation βg = 0, which easily yields that the Chern classes of M are zero in degrees
at least 2g.

1This chapter describes a joint work with Michael Thaddeus.
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6.1 Equivariant universal bundles

We would like to incorporate into the universal bundle the C∗-action on M̃. Recall that C∗ acts on M̃
by scalar multiplication of the Higgs field. Moreover let C∗ act trivially on Σ so that we get the diagonal
C∗-action on M̃ × Σ. We will need equivariant universal bundles with respect to this action:

Proposition 6.1.1 Let EM̃ = EM̃
Φ→ EM̃ ⊗ pr∗Σ(K) be a universal Higgs bundle over M̃×Σ. Then there

is a C∗-equivariant structure on EM̃, i.e. an equivariant bundle structure on EM̃ and EM̃ ⊗KΣ such that
the universal Higgs field Φ : E◦M̃ → E◦M̃ ⊗K

◦
Σ is equivariant.

Proof. Recall the construction of the universal Higgs bundle over M̃ × Σ from Proposition 5.2.3. In the
gauge theory picture C∗ acts on B by scalar multiplication of the Higgs field2. If we let C∗ act trivially on
C, then we have that pr : B → C is C∗-equivariant. Also let EC ⊗ L−1 be a C∗-equivariant holomorphic
bundle over C × Σ with the trivial C∗-action. Thus the pullback of EC ⊗ L−1 by the C∗-equivariant map
pr gives a C∗-equivariant structure on EB, we denote the resulting C∗-equivariant bundle by E◦B. This
descends in the quotient to an equivariant universal bundle E◦M̃.

We need a C∗-equivariant structure on OM̃ with homogeneity 1, in other words a C∗-equivariant
line bundle with equivariant first Chern class u, where u is the integer generator of the C∗-equivariant
cohomology of a point. Such an equivariant line bundle exists by Theorem 1 of [EdGr2]. In our case we

can think of this line bundle as the invertible subsheaf of the sheaf Ω2(M̃) of holomorphic two-forms on

M̃ generated by the holomorphic symplectic form ωh on M̃, which is homogeneous of degree 1. In any
case let us denote it by O◦M̃. Moreover we denote by K◦Σ the equivariant line bundle

pr∗M̃(O◦M̃)⊗ pr∗Σ(K) (6.1)

on M̃ × Σ, where by abuse of notation K stands for the trivial equivariant structure on the canonical
bundle K on Σ.

Now it is easy to check that the universal Higgs field ΦM̃ : E◦M̃ → E◦M̃ ⊗K
◦
Σ is C∗-equivariant. �

Having proved the existence of the equivariant universal bundle E◦M̃, we can restrict it to EM to get a

universal bundle overM×Σ and consider, analogously to (5.7), the Künneth decomposition of End(E◦M)
to get equivariant universal classes:

c2(End(E◦M)) = 2α◦ ⊗ σΣ +

2g∑

i=1

4ψ◦i ⊗ ξΣi − β◦M ⊗ 1 (6.2)

in

H4
◦ (M× Σ) ∼=

4∑

r=0

Hr
◦(M)⊗Q[u] H

4−r
◦ (Σ) ∼=

4∑

r=0

Hr
◦(M)⊗H4−r(Σ)

for some equivariant universal classes α◦ ∈ H2
◦ (M), ψ◦i ∈ H3

◦ (M) and β◦ ∈ H4
◦ (M).

We will need to know the restriction of the equivariant universal classes to the fixed point set of the
C∗-action onM. First consider N = F0. The equivariant universal bundle E◦M as constructed in the proof
of Proposition 6.1 clearly restricts to N × Σ to EN with the trivial C∗-action on it. Consequently

α◦ |N= αN ∈ H2(N ) ⊂ H2
◦ (N ),

ψ◦i |N= ψi
N ∈ H3(N ) ⊂ H3

◦ (N )

and
β◦ |N= βN ∈ H4(N ) ⊂ H4

◦ (N ).

Consider now the restriction of the universal classes to Fd for d > 0. Because the C∗-action is trivial
on Fd we have H∗◦ (Fd) ∼= H∗(Fd) ⊗ H∗◦ (pt) ∼= H∗(Fd) ⊗ Q[u]. Note that since all the universal classes
are invariant under Γ, their restrictions to Fd live3 in (H∗(Fd))Γ ∼= H∗(Σd̄). Recall the ring H∗(Σd̄) from
Subsection 3.3.

2This C∗ does not have anything to do so far with the constant scalar gauge transformations C∗ ⊂ Gc. However see
Section 8.1, where we suggest that they are closely related.

3Recall that d̄ = 2g − 2d − 1.
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Lemma 6.1.2 The equivariant universal classes restrict to Fd as follows:

α◦ |Fd
= (2d− 1)(η − u) + σ;

ψ◦i |Fd
=

{
(η−u)

2 ξi+g if i ≤ g;
− (η−u)

2 ξi−g if i > g;

β◦ |Fd
= (η − u)2.

Proof. First we construct an equivariant universal Higgs bundle over Fd×Σ. Let Pd a normalized Poincaré
bundle over Jd × Σ as in Subsection 3.2. By abuse of notation we also denote by Pd the pullback4 of
pr∗Jd

(Pd) to Fd × Σ. We also denote by ∆d̄ the pullback pr∗Σd̄
(∆d̄) of the universal divisor5 on Σd̄ × Σ.

Then P2
dK
−1
Σ Λ−1

Σ (∆d̄) defines a line bundle over Fd × Σ which is trivial over x× Σ for all x ∈ Fd. By the
push-pull formula this is the pullback of some line bundle LFd

over Fd. So

O(∆d̄) ∼= LFd
KΣΛΣP−2

d ;

hence the latter has a section, which we denote by φd, vanishing on ∆d̄. Now we let

EFd
= Pd ⊕ P−1

d ΛΣLFd

and

Φd =

(
0 0
φd 0

)
,

so Φd ∈ H0(Fd ×Σ; Hom(EFd
,EFd

⊗KΣ)). By construction EFd

Φd→ EFd
⊗KΣ is a universal Higgs bundle

over Fd × Σ.
Then we let O◦ be the weight 1 equivariant structure on the trivial bundle OFd×Σ. Moreover we let

P◦d = O◦Pd, K
◦
Σ = O◦KΣ and Λ◦Σ = O◦ΛΣ. Then it follows that as equivariant bundles:

O(∆d̄)
∼= LFd

K◦ΣΛ◦Σ(P◦d)
−2. (6.3)

Now if we let E◦Fd
= P◦d⊕ (P◦d)

−1Λ◦ΣLFd
, then E◦Fd

Φd→ E◦Fd
⊗K◦Σ is an equivariant universal Higgs bundle

over Fd×Σ. It follows from Lemma 5.2.2 that the equivariant universal classes restricted to Fd will appear
as the Künneth components of c◦2(End(E◦Fd

)). We can calculate them as follows:

c◦2(End(E◦Fd
)) = −

(
c◦1((P

◦
d)

2(Λ◦Σ)−1L−1
Fd

)
)2

= − (c◦1 (O(−∆d̄)(K
◦
Σ)))

2

from (6.3). We can calculate this since from (3.1) we have

c1(∆d̄) = η ⊗ 1 +

g∑

i=1

(ξi ⊗ ξΣi+g − ξi+g ⊗ ξΣi ) + d̄⊗ σΣ ∈ H2(Fd × Σ) ∼=
2∑

r=0

Hr(Fd)⊗H2−r(Σ)

and from (6.1)

c◦1(K
◦
Σ) = u⊗ 1 + (2g − 2)⊗ σΣ ∈ H2(Fd × Σ) ∼=

2∑

r=0

Hr(Fd)⊗H2−r(Σ).

Thus we have

c◦2(End(E◦Fd
)) = − (c◦1 (O(−∆d̄)(K

◦
Σ)))2

= −
(

(d̄− (2g − 2))⊗ σΣ +

g∑

i=1

(ξi ⊗ ξΣi+g − ξi+g ⊗ ξΣi ) + (η − u)⊗ 1

)2

4Recall the projection prJd
from (3.31).

5Cf. Subsection 3.3.
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= −
(

g∑

i=1

(ξi ⊗ ξΣi+g − ξi+g ⊗ ξΣi )

)2

− 2(η − u)
g∑

i=1

(ξi ⊗ ξΣi+g − ξi+g ⊗ ξΣi )

−(η − u)2 − 2(η − u)(1− 2d)⊗ σΣ

= 2
(
(2d− 1)(η − u) + σΣ

)
⊗ σΣ

Σ − 2(η − u)
g∑

i=1

(ξi ⊗ ξΣi+g − ξi+g ⊗ ξΣi )

−(η − u)2 ⊗ 1.

Comparing this with (6.2) proves the result. �
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6.2 The equivariant virtual Mumford bundle M◦
d

In Section 6.4 we will prove the generation theorem by considering the degeneration locus of the equivariant
virtual Mumford bundle. To do this, first we define the equivariant virtual Mumford bundle as:

M◦
d = −prM̃!

(E◦−d

M̃ ) = −R0prM̃∗(E
◦−d

M̃ ) +R1prM̃∗(E
◦−d

M̃ ) ∈ K(Ñ ),

where E◦−d

M̃ denotes E◦M̃ ⊗ pr∗Σ(L−d
p ).

The next theorem says that the equivariant virtual Mumford bundle can be thought of as the equivariant
degeneracy sheaf of a homomorphism of equivariant vector bundles.

Theorem 6.2.1 There exist two equivariant vector bundles V ◦ and W ◦, together with an equivariant
homomorphism f◦ : V ◦ → W ◦ such that the following sequence of coherent sheaves is exact:

0→ R0prM̃∗(E
◦−d

M̃ )→ V ◦
f◦

→ W ◦ → R1prM̃∗(E
◦−d

M̃ )→ 0.

Proof. Choose an effective divisor D on Σ such that H1(Σ, E ⊗ O(D)) = 0 for all stable Higgs bundle

E
Φ→ E ⊗K ∈ M̃. Such D exists because the Harder-Narasimhan type of vector bundles occurring in

stable Higgs pairs is bounded6. Then tensoring

0→ OΣ → O(D)→ OD → 0

with E◦−d

M̃ and pushing down by prM̃ yields

0→ R0prM̃∗(E
◦−d

M̃ )→ R0prM̃∗(E
◦−d

M̃ ⊗O(D)) →
→ R0prM̃∗(E

◦−d

M̃ ⊗OD)→ R1prM̃∗(E
◦−d

M̃ )→ 0,

because of the condition on D. However our hypothesis on D also implies that the second and third terms
of the exact sequence are vector bundles, proving the desired result. �

6Cf. Corollary 3.3 of [Nit].
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6.3 The upward degeneration locus UDd

Here we consider the degeneracy locus UDd of f◦ of the above Theorem 6.2.1. It can be defined as

UDd =
{
(E,Φ) ∈ M̃ : H0(Σ;E ⊗ L−d

p ) 6= 0
}
,

and called the upward degeneracy locus, in contrast with the downward degeneracy locus of Subsection 5.4.
If E is stable then we see that H0(Σ;E ⊗ L−d

p ) = 0, thus T ∗Ñ ∩ UDd = ∅. Furthermore if the destabilizing

bundle of E is of degree less than d, then (E,Φ) 6∈ UDd. More specifically we have the following description
of the degeneration locus UDd:

Theorem 6.3.1 For 1 ≤ d ≤ g − 1 the degeneration locus UDd has the following decomposition:

UDd =

g−1⋃

k=d

UDk
d ,

where UDk
d ⊂ Ũk are those stable Higgs bundles (E, φ) for which L, the destabilizing line bundle of E, has

the property that H0(Σ, L⊗ L−d
p ) 6= 0.

Finally the real codimension of UDd
d in M̃ is 2(2g + 2d− 2).

Proof. By definition E
Φ→ E ⊗K ∈ UDd if and only if H0(Σ, E ⊗ L−d

p ) 6= 0. A non-zero section however

generates a line bundle of E ⊗L−d
p of non-negative degree, which in turn gives a line subbundle L of E of

degree d (which, by its uniqueness, should be the destabilizing line bundle of E), such thatH0(Σ;L⊗L−d
p ) 6=

0. The first statement follows.
Now consider the map fk : Uk → Jk−d sending E

Φ→ E ⊗K to L ⊗ L−d
p and consider also the Abel-

Jacobi map uk : Σk−d → Jk−d. We have (E,Φ) ∈ Uk
d if and only if fk(E,Φ) ∈ uk(Σk−d). The theorem

now easily follows. �
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6.4 Generation theorem

The aim of this section is to prove that H∗◦ (M̃) is generated by the equivariant universal classes. To prove
this we apply Corollary 2.2.7 to UDd

d. First we need some notation.
Consider the equivariant Chern class

c◦2g+2d−2(M
◦
d) ∈ H2(2g+2d−2)

◦ (M̃).

Write it down in the Künneth decomposition

H∗◦ (M̃) ∼= H∗◦ (M)⊗Q[u] H
∗
◦ (T

∗
J ) ∼= H∗◦ (M)⊗H∗(J ),

to get7

c◦2g+2d−2(M
◦
d) =

∑

S⊂{1...2g}
ζ◦d,S ⊗ τS . (6.4)

In this way, for any S ⊂ {1 . . . 2g} we get ζ◦d,S ∈ Q[α◦, β◦, ψ◦i ] of degree 2g+ 2d− 2− deg(τS). When d = 1
we also express

c◦2g+r(M
◦
1) =

∑

S⊂{1...2g}
ζ◦rS ⊗ τS ,

to get

ζ◦rS ∈ Q[α◦, β◦, ψ◦] (6.5)

for each S ⊂ {1 . . . 2g}, which we call the equivariant Mumford relations8.
Now we prove the following fundamental proposition.

Proposition 6.4.1 For any S ⊂ {1 . . . 2g} and its complement S ′ = {1 . . . 2g} \ S we have

ζ◦d,S′ |Ũd
= ẽ◦d · ξS , (6.6)

where ẽ◦d ∈ H∗◦ (Ũd) is the equivariant Euler class of the normal bundle of Ũd in M̃ and

ξS =
∏

i∈S

ξi ∈ H∗(Σd̄) ⊂ H∗◦ (F̃d) ∼= H∗◦ (Ũd).

Equivalently

(id)∗(ξS) = ζ◦d,S′ |Ũ≤d
, (6.7)

where id : Ũd → Ũ≤d is the embedding.

Proof. Recall the equivariant virtual Mumford bundle M◦
d from the previous section, and restrict it to

Ũ≤d. A simple calculation gives that ch0(M
◦
d) = 2g + 2d− 3 and in turn that

rank(W ◦)− rank(V ◦) + 1 = 2g + 2d− 2.

According to Theorem 6.3.1 the codimension of the degeneracy locus of f ◦ of Theorem 6.2.1 is 2g+2d− 2,
thus the degeneracy locus has the expected dimension. Corollary 2.2.7 then yields:

η◦M̃UDd
d

= c◦2g+2d−2(W
◦ − V ◦) = c◦2g+2d−2(M

◦
d).

Let us denote Grd = UDd
d ∩ F̃d. Then it is immediate that

c◦2g+2d−2(M
◦
d) |F̃d

= η◦M̃UDd
d

|F̃d
= ẽ◦d · η◦F̃d

Grd
∈ H∗◦ (F̃d) ∼= H∗◦ (Ũd). (6.8)

7Recall that τS =
∏

i∈S τi ∈ H∗(J ).
8The name is justified by noting that forgetting the U(1)-equivariant structure ζ◦r

S goes to the Mumford relation ζr
S ,

defined in (3.20).
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On the other hand recall that Fd×J is a 22g-fold cover of F̃d, where Fd is the moduli space of complexes
L

s→ LΛK with degL = d and fixed line bundle Λ with deg(Λ) = 1. We can define a map f : Fd → J by

sending f(L
s→ LΛK) = L⊗ L1−d.

Let us denote by abuse of notation Grd ⊂ Fd ×J the pullback of Grd to Fd ×J . Then Theorem 6.3.1
shows that Grd is nothing else than the graph of the map f .

Now let S ⊂ {1 . . . 2g}. Then clearly f ∗(τS) = ξS so denoting by e◦d ∈ H∗◦ (Fd) ∼= H∗◦ (Ud) the equivariant
Euler class of the normal bundle of Ud in M we get

e◦d · ξS = e◦d · f∗(τS)

= e◦d · (prFd
)∗
(
ηFd×J

Grd
· pr∗J (τS)

)
from (6.11)

= (prFd
)∗
(
ẽ◦d · ηFd×J

Grd
· pr∗J (τS)

)
since pr∗Fd

(e◦d) = ẽ◦d

= (prFd
)∗
(
c◦2g+2d−2(M

◦
d) · pr∗J (τS)

)
from (6.8)

= (prFd
)∗
(
(
∑

R⊂{1...2g} ζ
◦
d,R ⊗ τR) · pr∗J (τS)

)
from (6.4)

= ζ◦d,S′ |Fd

which proves (6.6). �

Remark. For S = ∅, (6.7) says that the cohomology class

η◦M̃
Ũd

= (id)∗(1) = (id)∗(ξ∅) = ζ◦d,{1...2g} (6.9)

in

H
2(g+2d−2)
◦ (Ũ≤d) ∼= H

2(g+2d−2)
◦ (M̃),

since for k > d the stratum Ũk has codimension at least 2(g + 2d). In particular for d = 1 and forgetting
the U(1)-equivariant structure, we have that

ηM̃
Ũ1

= ζ0
{1...2g} ∈ H2g(M̃),

i.e. that the cohomology class of the first stratum Ũ1 in M̃ agrees with the first Mumford relation of degree
2g ! This is not so surprising if we believe the generation theorem –to be proved at the end of the section–

i.e. that the ηM̃
Ũ1

cohomology class is expressed as a (complex) degree g polynomial of the universal classes,

since then this polynomial –Ñ and Ũ1 being disjoint in M̃ – should restrict to 0 on Ñ , which therefore
should be some multiple of the first Mumford relation. A similar argument shows that the cohomology
classes (6.9) of the higher strata are also generated by the Mumford relations. The next formula gives the
exact statement:

∞∑

i=0

ci(M
◦
d) =

(
1 + α◦ +

α◦ − β◦
4

)d−1 ∞∑

i=0

c◦i (M
◦
1), (6.10)

which can be obtained similarly to (5.22). From this it follows that the equivariant classes ζ◦d,S, and
in particular the equivariant cohomology classes of the higher strata, are in the ideal generated by the
equivariant Mumford relations of (6.5). This fact will be used in the proof of Theorem 7.3.2.

To complete the proof of Proposition 6.4.1 we need only to prove the following lemma:

Lemma 6.4.2 Let f : X → Y be a map of compact manifolds. Then if we denote by Gr ⊂ X × Y the
graph of f and let a ∈ H∗(Y ) then we have the formula:

f∗(a) = (prX)∗
(
ηX×Y

Gr · pr∗Y (a)
)
. (6.11)
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Proof. Let b ∈ H∗(X). Note that by definition of the graph Gr

prY ◦iGr = f ◦ prX ◦iGr : Gr → Gr. (6.12)

and

prX ◦iGr : Gr → X is a homeomorphism, (6.13)

where iGr : Gr → X × Y is the embedding. Since (prX)∗ is an H∗(X)-module homomorphism we have

(prX)∗(η
X×Y
Gr · pr∗Y (a)) · b = (prX)∗(η

X×Y
Gr · pr∗Y (a) · pr∗X(b)).

Therefore

∫

X

(prX)∗(η
X×Y
Gr · pr∗Y (a)) · b =

∫

X×Y

ηX×Y
Gr · pr∗Y (a) · pr∗X(b)

=

∫

Gr

i∗Gr(pr∗Y (a)) · i∗Gr(pr∗X(b))

=

∫

Gr

i∗Gr(pr∗X(f∗(a))) · i∗Gr(pr∗X(b))

=

∫

X

f∗(a) · b,

where we used (6.12) and (6.13). Now Poincaré duality yields the result. �

Now we have the following important corollary of Proposition 6.4.1: It will yield the generation theorem
at the end of the present section, and an obvious generalization of it will provide a purely geometric proof
for the Mumford conjecture in Section 7.3.

Corollary 6.4.3 Set R0 to be the Q[u]-submodule of H∗◦ (M̃) generated by the universal classes of Theo-
rem 6.4.4. Furthermore for d = 1 . . . g − 1 set

Rd = 〈
{
ζ◦d,S : S ⊂ {1 . . .2g}

}
〉Q[u,α◦,τi],

where 〈, 〉Q[u,α◦,τi] stands for the generated Q[u, α◦, τi]-module. Then

i∗d(Rd′) = 0 for d < d′ and i∗d(Rd) = 〈ẽ◦d〉 ⊂ H∗◦ (Ũd), (6.14)

where ẽ◦d is the equivariant normal bundle to the stratum Ũd.

Proof. When d = 0 the statement (6.14) is equivalent9 to the corresponding generation theorem for

Ñ = F̃0, which we already know.

For d > 0 recall that H∗◦ (F̃d) = H∗(F̃d) ⊗ Q[u] is generated by classes u ∈ H2
◦ (F̃d), η ∈ H2

◦ (F̃d) and

τi ∈ H1
◦ (F̃d), ξi ∈ H1

◦ (F̃d) for i = 1 . . . 2g. Since from Lemma 6.1.2 we have α◦ |F̃d
= (2d− 1)(η − u) + σ it

follows easily that

〈ξS : S ⊂ {1 . . .2g}〉Q[u,α◦,τi] = H∗◦ (F̃d) ∼= H∗◦ (Ũd).

Therefore the statement (6.14) follows from Proposition 6.4.1. �

The main result of this section is the following corollary:

Theorem 6.4.4 The equivariant cohomology ring H∗◦ (M̃) is generated as a Q[u]-module by the equivariant

universal classes α◦ ∈ H2
◦ (M̃), β◦ ∈ H4

◦ (M̃) and τi ∈ H1
◦ (M̃), ψ◦i ∈ H3(M̃) for i = 1 . . . 2g.

9Recall that we set ẽ◦
0

= 1.
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Proof. The proof rests on Proposition 2.2.1 as explained in Remark 2 after it. Namely we have a strongly
U(1)-perfect stratification M̃ =

⋃g−1
d=0 Ũd, and the sets Rd of Corollary 6.4.3, which contain elements

generated by the universal classes, satisfy the conditions of Proposition 2.2.1. The result follows. �

Since the forgetful map H∗◦ (M̃)→ H∗(M̃) is surjective, we have the following immediate corollary.

Corollary 6.4.5 The ordinary cohomology ring H∗(M̃) is generated by the ordinary universal classes

α ∈ H2(M̃), β ∈ H4(M̃) and τi ∈ H1(M̃), ψi ∈ H3(M̃) for i = 1 . . . 2g. Consequently the ring H∗(M)Γ

is generated by universal classes: α ∈ H2(M), β ∈ H4(M) and ψi ∈ H3(M) for i = 1 . . . 2g.
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6.5 A conjectured complete set of relations for H
∗
I (M)

In the previous chapter we showed that the ring H∗(M)Γ is generated by universal classes. To have a
complete description of the ring it is sufficient to give a complete set of relations in these universal classes.
The idea is to first determine the relations in H∗◦ (M)Γ based on the injectiveness of (2.7). Namely we
consider Rd the kernel of the composition of the projection Q[α◦, β◦, ψ◦i ] to H∗◦ (M)Γ with the restriction of

H∗◦ (M)Γ to H∗◦ (Fd)
Γ for 0 ≤ d ≤ g−1. Then (2.7) gives that

⋂g−1
d=0Rd is the ideal of relations of H∗◦ (M)Γ,

in other words the ring

H∗◦ (M)Γ ∼= Q[α◦, β◦, ψ◦i ]/

g−1⋂

d=0

Rd

is given by generators and relations.

Though we could not yet proceed this way, computer calculations with the software package10 Macaulay
2 gave us enough numerical evidence to be able to formulate a conjecture about a complete description of
the subring of H∗(M̃)Γ generated by αM,βM and γM.

To explain this conjecture we have to define certain polynomials:

Definition 6.5.1 Define polynomials in Q[α, β, γ] as follows

ρr,s,t =

min(r,s)∑

i=0

(
r
i

)(
g−t−i
g−t−s

)
αr−iβs−i(2γ)t+i,

for r, s, t ≥ 0.

Let R denote the graded ring given by generators α, β, γ of degree 2, 4 and 6 respectively, and relations:

ρr,s,t for r, s, t ≥ 0 a r + 3s+ 3t > 3g − 3.

Conjecture 2 The subring H∗I (M) ⊂ H∗(M)Γ, generated by αM, βM and γM is isomorphic to R.

Remark. 1. Computer calculations with Macaulay 2 show that the statement is true for 2 ≤ g ≤ 7.

2. We used the notation H∗I (M) for the subring generated by αM, βM and γM because it can be
thought of as the invariant subring of the action of Sp(2g,Z) on H∗(M)Γ, which is given abstractly by
letting Sp(2g,Z) act on H3(M)Γ in the usual symplectic manner, which induces an action11 on the whole
of H∗(M)Γ, because of Corollary 6.4.5.

We give some further evidence supporting Conjecture 2 in the rest of the section. First we show that
H∗I (M) and the conjectured ring have the same Poincaré polynomial.

Lemma 6.5.2 An additive basis for the ring R is given by αrβsγt for r, s, t ≥ 0 and r+ 3s+ 3t ≤ 3g− 3.
Consequently its Poincaré polynomial is of the form

∑

r,s,t≥0
r+3s+3t≤3g−3

T r+2s+3t. (6.15)

Proof. The result easily follows by noting that the highest order term of ρr,s,t in the lexicographical
ordering is clearly αrβsγt. �

Theorem 6.5.3 The Poincaré polynomial P I
T (M) of H∗I (M) equals (6.15).

10Cf. http://www.math.uiuc.edu/Macaulay2/.
11As a matter of fact this action is induced from the action of the mapping class group of Σ on the cohomology of the

representation space of π(Σ) to SL(2, C), but we do not need this fact, so we simply think of this action as given abstractly.
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Proof. First we define an Sp(2g,Z)-action on H∗(Σn) induced by the usual symplectic action on H1(Σn).
This gives H∗(Fd)Γ an Sp(2g,Z)-module structure. Observe that H∗(M≤d)

Γ being generated12 by tauto-
logical classes admits a natural Sp(2g,Z)-module structure such that the surjective map

i∗≤d : H∗(M)Γ → H∗(M≤d)
Γ

is an Sp(2g,Z)-module homomorphism. Moreover from (6.7) it easily follows that

(id)∗ : H∗(Ud)
Γ → H∗(M≤d)

Γ

is an Sp(2g,Z)-module homomorphism. It follows that the short exact sequence (3.29) is a sequence of
Sp(2g,Z)-modules yielding the short exact sequence:

0→ H∗I (Ud)→ H∗I (M≤d)→ H∗I (M<d)→ 0,

where H∗I denotes the Sp(2g,Z)-invariant part of H∗()Γ. Recall P I
T (Ud) = P I

T (Σd̄) from (3.6) and P I
T (N )

from (3.24). We have

P I
T (M) = P I

T (N ) +

g−1∑

d=1

T g+2d−2P I
T (Ud)

=
∑

r,s,t≥0
r+s+t≤g−1

T r+2s+3t +

g−1∑

d=1

T g+2d−2
∑

q,s≥0
q+2s≤d̄

T q+s

=
∑

r,s,t≥0
r+s+t≤g−1

T r+2s+3t +

g−2∑

t=0

T 3t
∑

q,s≥0
q+2s≤d̄

T g−t+q+s

=
∑

r,s,t≥0
r+s+t≤g−1

T r+2s+3t +

g−2∑

t=0

T 3t
∑

r,s≥0,r+s≥g−t
r+3s≤3g−3−3t

T r+2s

=
∑

r,s,t≥0
r+3s+3t≤3g−3

T r+2s+3t.

We first introduced t = d− 1 and then r = q − s+ g − t. The result follows. �

Theorem 6.5.4 The polynomial ρ0,g,0 = βg of complex degree 2g is zero in H∗(M)Γ.

Proof. In order to prove such a statement we want to extend it to an equivariant relation. Namely we
prove that

g∑

r=0

ζ◦r,g−ru
r = 0

onM. By (2.7) it is sufficient to check this relation on Fd for every 0 ≤ d ≤ g− 1. For d = 0 the vanishing
is automatic since Zagier’s relations (3.22) hold on N = F0. For d > 0 we use Lemma 6.1.2 and substitute
x = u and y = 1 in Zagier’s generating function (3.23) to get:

g∑

r=0

ζ◦r,g−ru
r |Fd

=

(
eσu (1− (η − u)(η − 2u))d−1

(1− η(η − u))d

)

2g

.

Recall from Subsection 3.3 that (. . .)m means the parts of degree 2m. To prove that it vanishes in
H∗(Fd)

Γ ∼= H∗(Σd̄), express it as

eσu (1− (η − u)(η − 2u))d−1

(1 + ηu)d
(
1− η2

1+ηu

)d

12Just like Corollary 6.4.5 it follows from Corollary 6.4.3.



6.5. A CONJECTURED COMPLETE SET OF RELATIONS FOR H∗I (M) 81

which equals

∞∑

i=1

(
d+i
i

) η2ieσu

(1 + ηu)d+i
(1− (η − u)(η − 2u))d−1. (6.16)

It immediately follows from Lemma 3.3.2 that

(
eσu(ηu)2k

(1 + (ηu))d+k

)

2(g−d+k+1)+n

= 0

for n ≥ 0 and hence that (
eσuη2k

(1 + (ηu))d+k

)

2g−2d+2+n

= 0

for n ≥ 0. Consequently in (6.16) each term vanishes at total degree 2g.
The result follows. �

Remark. 1. A similar argument shows the vanishing of the first relation

ρ1,g−1,0 = gα◦(β◦)g−1 + (g − 1)(β◦)g−2(2γ◦) = ζ◦1,g−1

of complex degree 2g − 1, by showing the vanishing of the equivariant class

g∑

r=1

rζ◦r,g−ru
r−1 = 0

onM. This goes similarly to the argument above, though the calculation is more tedious.
2. To settle Conjecture 2 ’all’ we have to do is to extend these polynomials to equivariant relations as

we did above in a special case. However it seems that our polynomials are simpler than the ones which
may occur naturally from equivariant relations. The reason for this may be that ρr,s,t can be defined in a
much simpler fashion, than Zagier’s polynomials ζr,s,t, which do have some geometric origin.

To picture this difference consider a conjectured relation ρr,s,t of Conjecture 2. Since it should also be a
relation onN it has to be written as a linear combination of Zagier’s relations (3.22). Computer calculations
show that this is indeed the case, though the linear combinations tend to be fairly complicated. We do not
even have a general formula for this linear combination!
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Chapter 7

Resolution tower

By considering the spaces M̃k as defined in Definition 1.2.5, we complete here1 the picture of the coho-
mology ring H∗(M̃) in the framework described at the beginning of Section 3. Namely we show that the
tower

M̃ ∼= M̃0 ⊂ M̃1 ⊂ . . . ⊂ M̃k ⊂ . . .
gives a resolution of the cohomology ring H∗(M̃), in the sense that

i∗0 : H∗(M̃∞)→ H∗(M̃)

is a free graded commutative resolution of H∗(M̃), where

M̃∞ = lim
→
M̃k

is defined as the direct limit of the above tower.
We also show that the space M̃∞ is important on its own right. To prove this, we use it to give a

simple geometric proof of the Mumford conjecture in Section 7.3. In the last section we explain why M̃∞
is so useful by showing that it is a model for the classifying space of G, the gauge group modulo constant
scalars. Also we prove that this homotopy equivalence is even preserved on the level of the strata. We
conclude by showing that the above tower has the property that its homotopy groups are stabilizing, thus
getting a picture similar to the Atiyah-Jones theorem for the moduli space of instantons on S4.

Finally we mention that M̃k and even M̃∞ appeared already in the work of Donagi and Markman
[Do,Ma], where they showed that M̃k is a complex Poisson manifold, and its Hitchin map is an algebraic
completely integrable Hamiltonian system.

1This chapter is based on a joint work with Michael Thaddeus.

83
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7.1 The moduli space of Higgs k-bundles M̃k

In this section we list some basic properties of the spaces M̃k. They are completely analogous to the
properties of M̃. As the proofs are also following the same lines we do not spell out the details here, but
hope, that in case of any doubt, the reader can complete the arguments.

The C∗-action on Mk

Recall from Subsection 1.2.2 that Mk is a smooth quasi-projective varieties of dimension 6g − 6 + 3k.
Moreover C∗ acts on Mk by multiplication of the Higgs k-field. Completely analogously2 to M, Mk

is a Kähler manifold, and U(1) ⊂ C∗ acts on it in a Hamiltonian way, with proper moment map µk of
absolute minimum 0. Thus as in Subsection 2.1.1 we have a stratification Mk =

⋃n
d=0 U

k
d with upward

flows, where n is the number of components of the fixed point set, to be determined later. We call this the
Hitchin stratification. Just as in Subsection 4.3 we have the Shatz stratification Mk =

⋃n
d=0 U

′k
d , defined

by U ′kd = {(E,Φk) : E ∈ Cd}, which coincides with the Hitchin stratification.

From Subsection 2.1.1 we know that Uk
d retracts to F k

d , the d-th component of the fixed point set of
the U(1)-action. A stable Higgs k-pair (E,Φk) is fixed by the circle action either if E is stable and Φk = 0
or if

E = L⊕ L−1Λ

and

Φk =

(
0 0
φk 0

)
,

where 0 6= φk ∈ H∗(Σ;L−2ΛKLk
p). From the stability of the pair we have that deg(L) > 0, and from the

assumption φk 6= 0 that deg(L) ≤ g− 1 + k. It follows that n = g− 1 + k and the components of the fixed
point set of the U(1)-action are F k

0
∼= N and F k

d for 0 < d ≤ g− 1 + k are 22g-fold covers of the symmetric
product Σd̄+k, with covering group Γ. Now the tangent space ofMk at a point (E,Φk) ∈ F k

d is naturally

H1(Σ; End0(E)
[Φk ,·]−→ End0(E)⊗K ⊗ Lk

p).

Tracing back the action of C∗ on it one gets that the only negative weight appearing is −1 and the
corresponding weight space is H1(Σ;L−2Λ → 0) ∼= H1(Σ;L−2Λ). By Riemann-Roch it has dimension
g + 2d − 2. Thus the real codimension of Uk

d in Mk which is the same as the index of the critical
submanifold F k

d is 2(g + 2d− 2).

Poincaré polynomial of M̃k

The fact that the indices are even implies that the stratification is perfect, thus we have the following
formula for the Γ-invariant Poincaré polynomial of Mk:

Pt(Mk)Γ = Pt(N ) +

g−1+k∑

d=1

t2(g+2d−2)Pt(Σd̄+k),

from which we get the following formula for the Poincaré polynomial of M̃k:

Pt(M̃k) = Pt(J )Pt(Mk)Γ = Pt(Ñ ) +

g−1+k∑

d=1

t2(g+2d−2)Pt(Σd̄+k)Pt(J ). (7.1)

Generators for H∗(M̃k)

We have an equivariant universal bundle E◦Mk
, which gives equivariant universal classes α◦, β◦ and ψ◦i in

H∗◦ (Mk)Γ. We have now the analogue of Corollary 6.4.3:

2This follows from the gauge theory construction of Mk of Section 1.2.3.
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Proposition 7.1.1 Set R0 to be the Q[u, τi]-submodule of H∗◦ (M̃k) generated by the above equivariant
universal classes. Furthermore for d = 1 . . . g − 1 + k set

Rd = 〈ζ◦d,S : S ⊂ {1 . . .2g}〉Q[u,α◦,τi],

where 〈, 〉Q[u,α◦,τi] stands for the generated Q[u, α◦, τi]-module. Then i∗d(Rd′) = 0 for d < d′ and

i∗d(Rd) = 〈ed〉 ⊂ H∗◦ (Ũk
d ). (7.2)

It follows from Proposition 2.2.1 that the equivariant cohomology ring of H∗(M̃k) is generated as an
algebra by u and universal classes α◦,β◦, ψ◦i and τi.
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7.2 The moduli space of Higgs ∞-bundles M̃∞

Let us fix sp, a non-zero section of Lp. This induces embeddings ik : M̃k → M̃k+1 given by ik(E,Φk) =

(E,Φk ⊗ sp). It clearly respects the C∗-action and ik(Ñk
d ) ⊂ Ñk+1

d which for d > 0 is induced from the
map Σd̄+k → Σd̄+k+1 given by D 7→ D + p. It follows from (3.5) and Corollary 2.2.2 that

i∗k : H∗(M̃k)→ H∗(M̃k+1) is a surjection. (7.3)

Now consider the direct limit of the embeddings ik, and denote it by

M̃∞ = lim
−→
M̃k.

Then we have the inverse limit
H∗(M̃∞) = lim

←−
H∗(M̃k),

since H∗ is a contravariant functor. Recall G and Pt(BG) from (3.9). From (7.3) we have that

Pt(M̃∞) = lim
k→∞

Pt(M̃k) = lim
k→∞

(
Pt(Ñ ) +

g−1+k∑

d=1

t2(g+2d−2)Pt(Σd̄+k)Pt(J )

)

= Pt(Ñ ) +

∞∑

d=1

t2(g+2d−2)Pt(J ) lim
k→∞

(
Pt(Σd̄+k)

)

= Pt(Ñ ) +

∞∑

d=1

t2(g+2d−2)Pt(J )Pt(Σ∞)

= (1 + t)2g

(
(1 + t3)2g − t2g(1 + t)2g

(1− t2)(1− t4)

)
+

∞∑

d=1

t2(g+2d−2)(1 + t)2g (1 + t)2g

(1− t2)

=

{
(1 + t)(1 + t3)

}2g

(1− t2)(1− t4) = Pt(BG) (7.4)

On the other hand H∗(M̃∞) is generated by universal classes, because the same is true for H∗(M̃k). It

follows that H∗(M̃∞) is a free graded commutative algebra, and thus

H∗(M̃∞)→ H∗(M̃)

is a resolution of the cohomology ring H∗(M̃). It shows that H∗(M̃) can be understood in the framework
described at the beginning of Section 3.

In the rest of the chapter we give some applications of M̃∞ to emphasize its significance.
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7.3 Geometric proof of the Mumford conjecture

As the embeddings ik : M̃k → M̃k+1 are respecting the U(1)-action, we have a U(1)-action on M̃∞.

Just like above H∗◦ (M̃∞) is also generated over Q[u] by the universal equivariant classes. Furthermore a
calculation, completely analogous to (7.4), shows that

P ◦t (M̃∞) =
Pt(BG)
1− t2

from which we see that H∗◦ (M̃∞) is a free graded commutative algebra on the equivariant universal classes
and u. Observe also that the stratification

M̃∞ =

∞⋃

d=0

Ũ∞d

is U(1)-perfect, so we are in a position to apply Proposition 2.2.1 as explained in Remark 1 after it. Namely
Proposition 7.1.1 in the direct limit yields:

Proposition 7.3.1 Set R0 to be the subring of H∗◦ (M̃∞) generated by the universal classes. Furthermore
for d ≥ 1 set

Rd = 〈
{
ζ◦d,S : S ⊂ {1 . . .2g}

}
〉Q[u,α◦,τi],

where 〈, 〉Q[u,α◦,τi] stands for the generated Q[u, α◦, τi]-module. Then i∗d(Rd′) = 0 for d < d′ and

i∗d(Rd) = 〈ed〉 ⊂ H∗◦ (Ũ∞d ) (7.5)

Now as explained in Remark 1 after Proposition 2.2.1, the above proposition yields that
⋃∞

d=1Rd

additively generates the kernel of
H∗◦ (M̃∞)→ H∗◦ (Ñ ).

However H∗(M̃∞) is a free graded commutative algebra, thus
⋃∞

d=1Rd is a complete set of relations for

Ñ . Moreover combining with (6.10), we have the following theorem:

Theorem 7.3.2 The Mumford relations ζr
S for each S ⊂ {1 . . .2g} and r ≥ 0 generate the relation ideal

of H∗(Ñ ).
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7.4 Gauge theoretic construction of M̃∞

To construct M̃∞ gauge theoretically, first recall the gauge theoretic construction of M̃k from Subsec-
tion 1.2.3. Recall also that sp ∈ H0(Σ;Lp) is a fixed holomorphic section of Lp. It follows that there

are embeddings Ω1,0
k ⊂ Ω1,0

k+1 and Ω1,1
k ⊂ Ω1,1

k+1, given by tensoring with sp. Since sp is holomorphic

∂k+1 |C×Ωk
= ∂k, consequently

Bk ⊂ Bk+1. (7.6)

Thus if we define the direct limit
Ω1,i
∞ = lim

k→∞
Ω1,i

k ,

then the direct limit of the maps ∂k will be

∂∞ : C × Ω1,0
∞ → Ω1,1

∞ ,

and the direct limit
B∞ = lim

k→∞
Bk

coincides with ∂
−1

∞ (0), which is the space of pairs (E,Φ) where Φ is a holomorphic Higgs ∞-field. We
denote by pr∞ : B∞ → C, the direct limit of prk. We also have ik((Bk)s) ⊂ (Bk+1)

s, and we let

(B∞)s = lim
−→

(Bk)s

denote the space of stable Higgs ∞-bundles.
It follows from the foregoing that we can think of M̃∞ as the quotient (B∞)s/Gc. In order to apply this

construction to obtain topological results about M̃∞, we make a detailed study of the spaces occurring:

A condition for ∂k to be a submersion. The map ∂k of (1.9) is a smooth map of Banach manifolds
and the following theorem gives a sufficient condition for the derivative T∂k

to be surjective:

Theorem 7.4.1 The derivative T∂k
is surjective at the point (E,Φ) ∈ C × Ω1,0

k if and only if

H0

(
Σ; End(E)⊗ L−k

p

[Φ,·]−→ End(E)⊗ L−k
p ⊗K

)
(7.7)

is trivial.

Proof. At the point (E,Φ) the derivative of ∂k

T∂k
: Ω0,1

k × Ω1,0
k → Ω1,1

k

is given by

T∂k
(α, β) = ∂

E

k β + [α,Φ],

where
α ∈ Ω0,1

k and β ∈ Ω1,0
k .

There is a natural non-degenerate pairing between Ω1,1
k and Ω0,0

−k given by integrating over Σ the trace of

the tensor product. Suppose now that ψ ∈ Ω0,0
−k is perpendicular to the image of T∂k

, i.e.

∫

Σ

tr
(
T∂k

(α, β) ⊗ ψ
)

= 0, (7.8)

for all α and β. Then for all β ∈ Ω1,0
k

∫

Σ

tr
(
β ⊗ ∂E

−kψ
)

=

∫

Σ

tr
(
∂

E

0 (β ⊗ ψ)− ∂E

k (β)⊗ ψ
)

=

∫

Σ

dE
0 tr(β ⊗ ψ)−

∫

Σ

tr
(
∂

E

k (β)⊗ ψ
)

= 0,
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the first term vanishes because of Stokes’ theorem, the second because of (7.8) for the choice of α = 0.

However the pairing between Ω1,0
k and Ω1,0

−k is non-degenerate, which gives that ∂
E

−k(ψ) = 0. On the other

hand we have for all α ∈ Ω1,0
k that ∫

Σ

[α,Φ]⊗ ψ = 0

from (7.8) for the choice of β = 0. It follows that [ψ,Φ] = 0.

Putting everything together we have that T∂k
is surjective at (E,Φ) if and only if ∂

E

−k(ψ) = 0 and
[ψ,Φ] = 0 imply ψ = 0. However this is exactly the Dolbeault description of the hypercohomology vector
space (7.7). The result follows. �

The following lemma will be useful later:

Lemma 7.4.2 If k > 0 and (E,Φ) is a stable Higgs k-bundle, then the hypercohomology (7.7) vanishes
and thus T∂k

is surjective.

If k > 0, 0 ≤ 2d ≤ k and E ∈ Cd, then H0
(
Σ; End(E)⊗ L−k

p

)
= 0. Consequently the hypercohomology

(7.7) vanishes, and thus T∂k
is surjective at (E,Φ) for any Φ.

Proof. The first statement follows since (E ⊗ L−k
p ,Φ) is also stable, thus a result analogous to Theo-

rem 5.1.2 for k-Higgs bundles for k > 0 gives the vanishing of the hypercohomology in question.
For the second part consider

0→ L→ E → V → 0

the Harder-Narasimhan filtration of E. Recall from p. 566 of [At,Bo] that End′(E) denotes the bundle of
those endomorphisms which preserve this filtration. Any filtration-preserving endomorphism of E gives an
element in Hom(L,L) ∼= OΣ, thus we have a bundle homomorphism End′(E) → Hom(L,L), whose kernel
consists of endomorphisms which kill L i.e. V ∗ ⊗ E ⊂ E∗ ⊗ E = End(E). Thus we have the short exact
sequence

0→ V ∗ ⊗E → End′(E)→ OΣ → 0. (7.9)

Therefore we have the following filtration of End(E):

0 ⊂ V ∗ ⊗ L ⊂ V ∗ ⊗E ⊂ End′(E) ⊂ End(E).

This is not yet the Harder-Narasimhan filtration of End(E) since

deg ((V ∗ ⊗E)/(V ∗ ⊗ L)) = deg
((

End′(E)
)
/(V ∗ ⊗E)

)
= 0.

However this means that
(
End′(E)

)
/(V ∗ ⊗ L) is semistable, thus the Harder-Narasimhan filtration of

End(E) is:
0 ⊂ V ∗ ⊗ L ⊂ End′(E) ⊂ End(E),

consequently the highest degree line subbundle of End(E) is V ∗⊗L of degree 2d−1. Therefore End(E)⊗L−k
p

has highest degree line subbundle V ∗ ⊗ L ⊗ L−k
p of degree 2d − 1 − k < 0. Such a bundle cannot have a

section. The result follows. �

Stratifications on Bk. We define two stratifications on the spaces Bk. The first is the preimage of the
Shatz stratification: (Bk)d = pr−1

k (Cd), i.e. (Bk)d contains pairs (E,Φ) with E ∈ Cd. The other is given
by the Harder-Narasimhan filtration of Corollary 5.1.5 for Higgs k-bundles, namely we define (Bk)0 ⊂ Bk

to be the subspace of stable pairs (E,Φ), and (Bk)d to be the subspace of pairs (E,Φ) with destabilizing
Higgs k-subbundle of degree d > 0.

We also let (Bk)d
l = (Bk)d ∩ (Bk)l. It is clear that (Bk)d ⊂ (Bk)d for d > 0, because the line bundle of

the destabilizing Higgs k-subbundle of a Higgs k-bundle (E,Φ) will be the destabilizing line bundle of E.
Thus for d > 0 we have

either (Bk)d
l = ∅ for d 6= l or (Bk)d

d = (Bk)d. (7.10)

Since these stratifications are compatible with the embeddings (7.6) we get stratifications (B∞)d and
(B∞)d in the direct limit.

Now we have, analogously to (7.8) of [At,Bo]:
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Theorem 7.4.3 The decomposition B∞ =
⋃∞

d=0(B∞)d has the property:

(B∞)d ⊂
∞⋃

i=d

(B∞)i.

Proof. First we show that (B∞)0 ⊂ B∞ is open. For k > 0 Lemma 7.4.2 shows that (Bk)0 is a Banach
submanifold of Bk, moreover the tangent space of (Bk)0 is naturally isomorphic to the tangent space of Bk,
which proves that (Bk)0 ⊂ Bk is open indeed.

Now if x ∈ (B∞)d for d > 0, then x 6∈ (B∞)0, since (B∞)0 is open. However

pr∞(x) ∈ Cd ⊂
⋃

i≥d

Ci

from (7.8) of [At,Bo], thus (7.10) proves the result. �

Theorem 7.4.4 For k > 0 and 0 ≤ 2l ≤ k the space (Bk)≤l is naturally a Banach manifold: it is the total
space of a rank 4g − 4 + 4k smooth, complex vector bundle over the Banach manifold C≤l.

Proof. For 2l ≤ k the derivative of ∂k : C≤l×Ω1,0
k → Ω1,1

k is surjective by Theorem 7.4.1 and Lemma 7.4.2.

Thus the inverse function theorem gives that (Bk)≤l = ∂
−1

k (0) is a Banach manifold indeed. Moreover the
fibre of the map

(prk)≤l : (Bk)≤l → C≤l

over the point E ∈ C≤l is

H0(Σ; End(E)⊗K ⊗ Lk
p) ⊂ Ω1,0

k

of dimension 4g − 4 + 4k since

H1(Σ; End(E)⊗K ⊗ Lk
p) ∼= (H0(Σ; End(E)⊗ L−k

p ))∗ = 0,

by Lemma 7.4.2. Consequently the map (prk)≤l is a locally trivial fibration with fibres C4g−4+4k . �

Corollary 7.4.5 The projection
pr∞ : B∞ → C

is a locally trivial fibration with fibres homeomorphic to C∞.

Proof. Since 4g − 4 + 4k →∞ as k →∞ Theorem 7.4.4 gives that

(pr∞)≤l : (B∞)≤l → (C)≤l

is a locally trivial fibration with fibres C∞. But clearly

lim
l→∞

(pr∞)≤l = pr∞,

which gives the desired result. �

Theorem 7.4.6 If k > 0, 0 ≤ 2l ≤ k and d ≤ l the stratum (Bk)d ⊂ (Bk)≤l is a Banach submanifold of
(Bk)≤l of complex codimension 2g − 2 + k.

Proof. We proceed similarly to the discussion on p. 566 of [At,Bo]. We have that the Gc-orbit of a Higgs

k-bundle E = E
Φ→ E ⊗K⊗Lk

p in (Bk)≤l is, locally, a manifold of finite codimension and its normal bundle
can be identified with the hypercohomology vector space H1(Σ; End(E)), where

End(E) = End(E)
[Φ,·]−→ End(E)⊗K ⊗ Lk

p

is the complex of Higgs k-endomorphisms of E.
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In the same way we can identify the normal bundle to (Bk)d. Let End′(E) denote the complex of Higgs
k-endomorphisms which respects the Harder-Narasimhan3 filtration of E and define the complex End′′(E)
by the exact sequence

0→ End′(E)→ End(E)→ End′′(E)→ 0. (7.11)

Alternatively, one defines End′(E) to be the complex

End′(E) = End′(E)
[Φ,·]−→ End′(E)⊗K ⊗ Lk

p

and

End′′(E) = End′′(E)
[Φ,·]−→ End′′(E)⊗K ⊗ Lk

p,

using the notation of p. 566 of [At,Bo]. From this definition and 7.4 of [At,Bo] it follows that

H0
(
Σ; End′′(E)

)
= 0.

Because of this vanishing, the hypercohomology long exact sequence of the short exact sequence (7.11)
gives the exact sequence:

0→ H1
(
Σ; End′(E)

)
→ H1 (Σ; End(E))→ H1

(
Σ; (End′′(E)

) δ→ H2
(
Σ; End′(E)

)
→ . . .

Clearly the conormal to (Bk)d is the factor of H1 (Σ; End(E)) by H1
(
Σ; End′(E)

)
, which by the above

exact sequence is isomorphic to ker(δ).

Now we need the following lemma:

Lemma 7.4.7 For k > 0 the vector space

H2
(
Σ; End′(E)

)
= 0

is trivial.

Proof. It is sufficient to show that H1
(
Σ; End′(E)⊗K ⊗ Lk

p

)
= 0. For this we need by Serre duality that

H0
(
Σ;
(
End′(E)

)∗ ⊗ L−k
p

)
= 0. Taking the dual of (7.9) and tensoring by L−k

p we get the short exact
sequence

0→ L−k
p →

(
End′(E)

)∗ ⊗ L−k
p → V ⊗E∗ ⊗ L−k

p → 0.

Since V ⊗E∗ ⊗ L−k
p has Harder-Narasimhan filtration:

0→ L−k
p → V ⊗E∗ ⊗ L−k

p → V ⊗ L∗ ⊗ L−k
p → 0,

it follows that H0
(
Σ;V ⊗E∗ ⊗ L−k

p

)
= 0, and in turn that H0

(
Σ;
(
End′(E)

)∗ ⊗ L−k
p

)
= 0. The result

follows. �

The above lemma yields that the conormal to (Bk)d is isomorphic to H1
(
Σ; End′′(E)

)
. Finally we need

the following result:

Lemma 7.4.8 For k > 0 the dimension of H1
(
Σ; End′′(E)

)
depends only on k; it is given by:

dim
(
H1(Σ; End′′(E)

)
= 2g − 2 + k.

3Cf. Corollary 5.1.5.
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Proof. First we show that H2
(
Σ; End′′(E)

)
= 0. This follows from

H1
(
Σ; End′′(E)⊗K ⊗ Lk

p

)
= 0.

Observe that End′′(E) ∼= L∗ ⊗ V thus deg
(
End′′(E)

)
= 1− 2d, consequently

H0
(
Σ;
(
End′′(E)

)∗ ⊗ L−k
p

)
= 0.

Now Riemann-Roch proves the lemma. �

Theorem 7.4.6 follows. �

Corollary 7.4.9 We have
Hq((Bk)≤d+1, (Bk)≤d; Z) = 0

for 2d+ 2 ≤ k and q < 2(2g − 2 + k).

Proof. This is a consequence of Theorem 7.4.3, Theorem 7.4.6 and the Thom isomorphism in homology:

Hq((Bk)≤d+1, (Bk)≤d; Z) ∼= Hq−2(2g−2+k)((Bk)d+1; Z).

�
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7.5 Homotopy types

We learned in Section 7.2 that the cohomology rings of M̃∞ and BG are isomorphic. We show in the next
subsection that this is because they are in fact homotopy equivalent.

7.5.1 Homotopy type of M̃∞

We start with a result in the gauge theory setting of the previous section.

Proposition 7.5.1 The space (B∞)0 is contractible.

Proof. First we prove that

πi

(
(B∞)0

)
=

{
0 for i > 0
Z for i = 0

(7.12)

For this we show that

Hi((B∞)0; Z) =

{
0 for i > 0
Z for i = 0

. (7.13)

To see that (B∞)0 is connected note that the map

(pr∞)0 : (B∞)0 → C

has connected image and fibres. Note also that B∞ is contractible from Corollary 7.4.5.
Thus (7.13) follows from

H∗(B∞, (B∞)0; Z) = 0.

Taking direct limits it follows from

H∗((B∞)≤d, (B∞)0; Z) = 0 for each d.

We prove this by induction on d. For d = 0 it is trivial. Suppose we proved it for d and consider the
homology long exact sequence of the triple (B∞)0 ⊂ (B∞)≤d ⊂ (B∞)≤d+1:

→ Hq

(
(B∞)≤d, (B∞)0; Z

)
→ Hq

(
(B∞)≤d+1, (B∞)0; Z

)
→ Hq

(
(B∞)≤d+1, (B∞)≤d; Z

)
→ .

By induction H∗((B∞)≤d, (B∞)0; Z) = 0 thus we need only to prove

H∗
(
(B∞)≤d+1, (B∞)≤d; Z

)
= 0.

Taking direct limits it follows from Corollary 7.4.9 since 2g − 2 + k →∞ as k →∞. Thus

H∗
(
B∞, (B∞)0; Z

)
= 0

indeed, proving (7.13).
We also show that

π1((B∞)0) is Abelian. (7.14)

Consider the homotopy long exact sequence of the fibration (B∞)0 →
(
(B∞)0

)
G → BG:

π2(BG)→ π1

(
(B∞)0

)
→ π1

((
(B∞)0

)
G

)
pr∗→ π1(BG),

Because the indices of the Bott-Morse function µk –the moment map of the U(1)-action on M̃k– are all
even it follows from Bott-Morse theory that

π1

((
(Bk)0

)
G

)
∼= π1(M̃k) ∼= π1(Ñ ).
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According to p. 581 of [At,Bo]

π1(Ñ ) ∼= π1(BG) ∼= π1(BG).
Thus pr∗ is an isomorphism. Thus π1

(
(B∞)0

)
is a factor group of the Abelian group π2(BG), proving

(7.14).
Now (7.13) together with the Hurewitz theorem4 imply that the abelianization of π1

(
(B∞)0

)
is 0 thus

from (7.14) it is 0, and in turn we get (7.12).
The next step is to show that (B∞)0 is a CW-space5. Consider the fibration

(B∞)0 → ((B∞)0)Gc → BG (7.15)

from (2.1). We show that its total space and base space are CW-spaces. It will then follow from Corollary
(13) of [Sta], that the fibre (B∞)0 is a CW-space.

Note that Gc
acts freely on (B∞)0 and the quotient is M̃∞. Thus we have the fibration

EGc → ((B∞)0)Gc → M̃∞.

In this fibration the base space, being the direct limit of finite dimensional manifolds, is a CW-complex,
and the fibre, being contractible, is a CW-space. Then Proposition (0) of [Sta] yields that the total space
((B∞)0)Gc is a CW-space.

Furthermore BG is a CW-space because according to Proposition 2.4 of [At,Bo] it is a component of
a mapping space from a compact Hausdorff space Σ to a CW-complex BU(2), and a theorem of Milnor6

says that such a space is a CW-space. Recall now (3.11), i.e. that BG ∼ BU(1) × BG. Thus we have a
fibration BG → BU(1) from a CW-space to a CW-complex, according to Corollary (13) of [Sta] it follows
that the fibre BG is itself a CW-space.

Putting everything together we have a connected CW-space (B∞)0 with trivial homotopy groups.
Whitehead’s theorem7 concludes the proof. �

Thus we have Gc
acting freely on the contractible space (B∞)0, with quotient M̃∞, which gives the

following immediate

Corollary 7.5.2 The space M̃∞ is homotopy equivalent to BG.

7.5.2 Homotopy type of the strata

In this subsection we prove that not only the whole spaces M̃∞ and BG are homotopy equivalent, but even
as stratified spaces. This explains why the calculation (7.4) was the same as the Atiyah-Bott calculation

(3.15) of Pt(Ñ ).

Proposition 7.5.3 The map
(pr∞)0d : (B∞)0d → Cd

is a homotopy equivalence.

Proof. First we note that (B∞)0d = (B∞)d \ (B∞)d. Now both are locally trivial fibrations with fibre C∞

over Cd and the codimension of (B∞)d in (B∞)d is infinite. It follows that (B∞)0d is a locally trivial fibration
over Cd with fibre retracting to S∞, which is contractible. Now Cd is paracompact (and consequently
numerable), since it is a metric subspace of the metric space C, and also locally contractible since it is a
Banach manifold. Thus Theorem 6.3 of [Dold]8 yields that (pr∞)0d is a homotopy equivalence. �

Corollary 7.5.4 We have the homotopy equivalence

Ũ∞d ∼ (Cd)Gc . (7.16)

Consequently (Cd)Gc is homotopy equivalent to Jd × Σ∞.

4As in Theorem 2.1.1 of Section 2 of Chapter 13 of [Jam].
5Which means that it has the homotopy type of a CW-complex
6Cf. [Miln]
7Cf. e.g. Theorem 2.1.3 of Section 2 of Chapter 13 of [Jam].
8This reference was suggested by Ioan James.
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Proof. The map (pr∞)0d induces a map of BG-spaces:

(B∞)0d → Cd
↓ ↓(

(B∞)0d
)
G → (Cd)G

↓ ↓
BG ∼= BG

.

As one can choose a CW-complex model for BG, e.g. from Corollary 7.5.2, the previous theorem and
Theorem 6.3 of [Dold] gives (7.16).

For the last statement note that Ũk
d is the moduli space of complexes L

φ→ V KLk
p, which is uniquely

determined by L and φ, thus Ũk
d
∼= Jd × Σd̄+k. It follows that

Ũ∞d ∼= Jd × Σ∞. (7.17)

The result follows. �

Corollary 7.5.5 We have
(Cd)G ∼ Σ∞ × Σ∞.

Proof. Since (3.11) is a product we get

(Cd)G ∼ BU(1)× (Cd)G ∼= BU(1)×Jd × Σ∞.

The result follows from (7.19). �

7.5.3 Stabilization of homotopy groups

Finally we have two results about homotopy groups stabilizing in the resolution tower. The second of
which is reminiscent of the the Atiyah-Jones conjecture about the stabilization of the homotopy groups of
the moduli space of instantons on S4.

Theorem 7.5.6 For k ≥ 0 we have

(prk
d)∗ : πi(Ũ

k
d )→ πi(Ũ

∞
d ) for 0 ≤ i ≤ d̄+ k − 1.

Proof. Because of (7.17), it is sufficient to show the stabilization of homotopy groups for the resolution
tower (3.3) of Σ. By (12.2) of [Macd] we have an isomorphism

(in)∗ : Hi(Σn; Z)→ Hi(Σ∞; Z) for 0 ≤ i ≤ n− 1. (7.18)

The isomorphism for the fundamental groups is clear. Thus π2(Σ∞,Σn), being the factor group of the
Abelian group π2(Σ∞), is also Abelian. Now the relative Hurewitz theorem gives the result. �

Remark. 1. By a theorem of Dold and Thom we have a complete description of the homotopy type of
Σ∞, namely πk(Σ∞) ∼= Hk(Σ), and

Σ∞ ∼
∏

i>0

K(Hi(Σ; Z), i), (7.19)

which combined with (7.17) gives an explicit description of the homotopy type of Ũ∞d .
2. It is also interesting to note that (7.19) together with Proposition 2.4 and (2.6) of [At,Bo] show that

BG1 ∼ Σ∞, where G1 is the group of gauge transformations on a principal U(1)-bundle on Σ.

Our final result is the following

Theorem 7.5.7 For k ≥ 0 we have

πi(M̃k)
i∗k∼= πi(M̃∞) ∼= πi(BG) for 0 ≤ i ≤ 4g − 8 + k.
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Proof. First we show that

Hi(M̃∞,M̃k; Z) = 0 for 0 ≤ i ≤ 4g − 7 + k.

This follows from

(iM̃k
)∗ : Hi(M̃k; Z)→ Hi(M̃∞; Z) is an isomorphism for 0 ≤ i ≤ 4g − 7 + k,

which is a consequence of the five lemma applied to the diagram

. . . → Hq(Ũ
∞
<d; Z) → Hq(Ũ

∞
≤d; Z) → Hq−2(g+2d−2)(Ũ

∞
d ; Z) → . . .

↑ ↑ ↑
. . . → Hq(Ũ

k
<d; Z) → Hq(Ũ

k
≤d; Z) → Hq−2(g+2d−2)(Ũ

k
d ; Z) → . . .

and (7.18). We also need that π1(M̃∞,M̃k) = 0, this follows from the fact that (i0)∗ : π1(Ñ )→ π1(M̃k) is
an isomorphism for each k from standard Bott-Morse theory, since each index is even. Finally we have that
π2(M̃∞,M̃k) is Abelian, because it is a factor of the Abelian group π2(M̃∞). Now the relative Hurewitz
theorem9 gives that

πi(M̃∞,M̃k; Z) = 0 for 0 ≤ i ≤ 4g − 7 + k,

which in turn proves the result. �

9E.g. Theorem 2.1.2 of Section 2 of Chapter 13 of [Jam].



Conclusion

In this thesis we have attempted to give a general picture of the geometrical and topological properties of
M, the moduli space of rank 2 Higgs bundles with fixed determinant of degree 1 over Σ. Examining the
symplectic geometry of M we found two Morse stratifications on it and a natural compactification of it.
The downward flows were found to be responsible for the intersection numbers, and the upward flows for
the cohomology ring. Investigating the latter we constructed a resolution tower for M̃ and found that its
direct limit was a model for the classifying space of the gauge group modulo constant scalars.

However we have not yet explained the relation between the compactification and the rest of the thesis.
In the next and final section we intend to fill this gap by providing a heuristic and at some places conjectural
summary of the thesis from the point of view of the compactification.

8.1 Compactification of the thesis

Let us go back to the end of Chapter 4 and recall Theorem 4.6.13, where we transformed the problem
of intersection numbers from M to a problem concerning the cohomology ring of Z. Without using this
correspondence we were able to calculate the intersection numbers in Chapter 5. Here however we are
focusing on Z and explain the cohomological calculations of the later chapters from this angle.

Since Z is a symplectic quotient of M we have the Kirwan map

r : H∗◦ (M)→ H∗(Z),

which has the fundamental property that it is surjective. Consequently generators for H∗◦ (M) give genera-
tors for H∗(Z). We denote by αZ , βZ and ψi

Z the images of the corresponding equivariant universal classes
by the Kirwan map. We have also that r(u) = c1(LZ) the first Chern class of the contact line bundle on
Z. Moreover these generators can be obtained from the universal bundle EZ , which is the restriction of
E◦M in the quotient.

In order to be able to go on we have to consider H∗◦cpt(M) the compactly supported equivariant co-
homology of M. It is trivial below the middle dimension and is g-dimensional at the middle dimension.
Indeed H3g−3

◦cpt (M) is generated by the equivariant compactly supported cohomology classes of the compo-
nents of the nilpotent cone. An analogue of Theorem 6.4.4 for compactly supported cohomology says that
H∗◦cpt(M)Γ is generated10 as a Q[u, α, β, ψi]-module from H3g−3

◦cpt (M).
Going back to Z we have, as the C∗-equivariant analogue of Theorem 4.6.13, the isomorphism11 of

rings:
H∗(Z) ∼= H∗◦ (M)/H∗◦cpt(M),

where on the right hand side we have the quotient ring of the ordinary equivariant cohomology by the
image of the compactly supported equivariant cohomology, which is an ideal. Considering the obvious
equivariant structure on the virtual Dirac bundle Dk, we can work out the equivariant cohomology classes
of the components of the nilpotent cone. The corresponding Dk over Z however, will be an honest vector
bundle, thus its Chern classes vanish in degrees beyond the rank, giving relations in H∗(Z)Γ. We know
that each component of the nilpotent cone has trivial cohomology class, which over Z says, that all the
above relations will be some multiple of c1(LZ).

The picture which emerges is that the relations for H∗(Z)Γ are of two types: those which are multiples
of c1(LZ), these correspond to the intersection numbers on H∗(M), and the rest, which correspond to

10Recall that H∗
cpt is an H∗-module.

11This statement seems to be true in the general setting of Subsection 2.1.2. As such, it may be interesting in its own right,
especially in relation with the recent paper [To,We].
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relations in H∗(M)Γ. Thus from this perspective Chapter 5 and Chapter 6 attempt to give a complete
description of the cohomology ring of the projective variety Z and in turn for the compactificationM!

We can also look at Chapter 7 from the point of view of the compactification. Namely we can form
Z̃k the highest level Kähler quotients of each M̃k, since their moment maps µk are proper, by taking the
quotient of M̃k \ Ñk by the C∗-action, where Ñk denotes the downward Morse flow, or equivalently the

nilpotent cone in M̃k. It can be seen that the inclusions of the spaces M̃k induces inclusions for Z̃k. Thus
we can form the direct limit Z̃∞. Similarly we haveMk the compactification of M̃k and their direct limit
M∞.

The rational cohomology of Z̃∞ is generated by the universal classes and an extra degree 2 class:
c1(LZ̃∞

), the first Chern class of the contact line bundle on Z̃∞. Its Poincaré polynomial can be shown to
be equal to the Poincaré polynomial of the free graded commutative algebra on these generators, showing
that H∗(Z̃∞) is a free graded commutative algebra. It follows that it is isomorphic to H∗(BG) the rational
cohomology of the classifying space of the whole gauge group. We suggest that this is because they are
both homotopy equivalent toM∞:

M∞ ∼ Z̃∞ ∼ BG. (8.20)

The main technical difficulty which arises in attempting to prove this is the fact that the spaces Z̃k and
Mk are not smooth, they have Z2-orbifold singularities, thus the calculation of their homology with integer
coefficients is a bit subtle.

To avoid this problem one may want to consider the highest level Kähler quotient and the compacti-
fication only homotopically. In other words let us take Z̃ ′k to be (M̃k \ Ñk)U(1), i.e. take the homotopy
quotient instead of the singular topological quotient. In an analogue way we form the homotopy-simplectic

cut M′k. Then it can be shown, without problems coming from torsion, that we have

Z̃ ′∞ ∼M
′
∞ ∼ (M̃∞)U(1).

Now (2.1) gives the fibration

M̃∞ → (M̃∞)U(1) → BU(1),

which we propose to be homotopy equivalent to the fibration (3.10), in particular, that it is a product.

Since the codimension of the singular locus in Z̃∞ is ∞, one hopes to conclude that Z̃∞ ∼ Z̃ ′∞ and

similarlyM∞ ∼M
′
∞ yielding (8.20).
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