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S-DUALITY IN HYPERKÄHLER HODGE THEORY

Tamás Hausel

To Nigel Hitchin for his 60th birthday

16.1 Introduction

In this chapter we survey the motivations, related results, and progress made
towards the following problem, raised by Hitchin in 1995:

Problem 16.1 What is the space of L2 harmonic forms on the moduli space
of Higgs bundles on a Riemann surface?

The moduli space Md
Dol(SLn) of stable rank n Higgs bundles with fixed

determinant of degree d on a Riemann surface was introduced and studied
in Hitchin (1987), Nitsure (1991), and Simpson (1991). The Betti numbers of
this space for n = 2 were determined in Hitchin (1987b) while for n = 3 in
Gothen (1994). The above problem raised two new directions to study. First
is the Riemannian geometry of Md

Dol(SLn), or more precisely the asymptotics
of the natural hyperkähler metric, and its connection with Hodge theory. The
second one, which can be considered the topological side of Problem 16.1,
is to determine the intersection form on the middle-dimensional compactly
supported cohomology of Md

Dol(SLn). While the first question seems still
out of reach, although we will report on some modest progress below, the
second is more approachable and we offer a conjecture at the end of this
survey.

Problem 16.1 was motivated by S-duality conjectures emerging from the string
theory literature about Hodge theory on certain hyperkähler moduli spaces,
which are close relatives of Md

Dol(SLn).
In the physics literature S-duality stands for a strong–weak duality between two

quantum field theories. The interest from the physics point of view is that it gives
a tool to study physical theories with a large coupling constant via a conjectured
equivalence with a theory with a small coupling constant where perturbative
methods give a good understanding. The S-duality conjecture relevant for us
is based on the Montonen–Olive electromagnetic duality proposal from 1977 in
four-dimensional Yang–Mills theory (Montonen and Olive 1977). It was noted in
(Witten and Olive 1978) that this duality proposal is more likely to hold in a
supersymmetric version of the theory, and in Osborn (1979) it was argued that
N = 4 supersymmetry is a good candidate. Hyperkähler Hodge theory is relevant
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in N = 4 supersymmetry as the space of differential forms on a hyperkähler
manifold possesses an action of the N = 4 supersymmetry algebra via the various
operators in hyperkähler Hodge theory.

In this chapter our interest lies in the mathematical predictions of such
S-duality conjectures in physics. Sen (1994), using S-duality arguments in
N = 4 supersymmetric Yang–Mills theory, predicted the dimension of the spaces
Hd
(
M̃0

k

)
of L2 harmonic d-forms on the universal cover M̃0

k of the hyperkähler
moduli space M0

k of certain SU(2) magnetic monopoles on R3. In the interpre-
tation of Sen (1994) the L2 harmonic forms on M̃0

k can be thought of as bound
states of the theory, and the conjectured S-duality implies an action of SL(2, Z)
on
⊕

k H∗
(
M̃0

k

)
. By further physical arguments Sen managed to predict this

representation of SL(2, Z) completely, implying the following:

Conjecture 16.1 The dimension of the space of L2 harmonic forms on M̃0
k is

dim
(
Hd
(
M̃0

k

))
=
{

0 d != mid
φ(k) d = mid,

where φ(k) =
∑k

i=1 δ1(i,k) is the Euler φ function, and mid = 2k − 2 is half of
the dimension of M̃0

k .

Similar S-duality arguments led Vafa and Witten (1994) to get a conjecture
on the space of L2 harmonic forms on a certain smooth completion Mk,c1

φ ,
constructed in Kronheimer (1990) and Nakajima (1998), of the moduli space
of U(n) Yang–Mills instantons of first Chern class c1, energy k, and framing
φ on one of Kronheimer’s ALE spaces, which are four-dimensional complete
hyperkähler manifolds, with an asymptotically locally Euclidean metric.

Conjecture 16.2 The dimension of the space of L2 harmonic forms on Mk,c1
φ

is

dim
(
Hd
(
Mk,c1

φ

))
=

{
0 d != mid

dim
(
im
(
Hmid

cpt

(
Mk,c1

φ

)
→ Hmid

(
Mk,c1

φ

)))
d = mid,

where mid now denotes half of the dimension of Mk,c1
φ .

Vafa and Witten (1994) further argue that Conjecture 16.2 implies, via the work
of Nakajima (1998) and Kac (1990), that

Zφ(q) =
∑

c1,k

qk−c/24 dim
(
Hmid

(
Mk,c1

φ

))
(16.1)

is a modular form, which, as was speculated in Vafa and Witten (1994), might
be a consequence of S-duality.

This chapter will introduce the reader to various mathematical aspects of these
three problems and offer mathematical techniques and results relating to them.
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16.2 Hyperkähler quotients

A Riemannian manifold (M, g) is hyperkähler if it is Kähler with respect
to three integrable complex structures I, J,K ∈ Γ(End(TM)), which satisfy
I2 = J2 = K2 = IJK = −1, with Kähler forms ωI , ωJ , and ωK . Known compact
examples are scarce (see e.g. Joyce 2000, section 7). Non-compact complete
examples however are much more abundant. This is mostly because there is a
widely applicable1 hyperkähler quotient construction, due to Hitchin et al. (1987).
The construction itself is an elegant quaternionization of the Marsden–Weinstein
symplectic (or more precisely Kähler) quotient construction (see Mumford et al.
1994, chapter 8 for an introduction for the latter).

Let M be a hyperkähler manifold, G a Lie group, with Lie algebra g, and assume
G acts on M preserving the hyperkähler structure (i.e. it acts by triholomorphic
isometries). Let us further assume that we have moment maps µI : M → g∗,
µJ : M → g∗, and µK : M → g∗ with respect to the symplectic forms ωI , ωJ ,
and ωK , respectively. We combine them into a single hyperkähler moment map:

µH = (µI , µJ , µK) : M → R3 ⊗ g∗.

One takes ξ ∈ R3 ⊗ (g∗)G and constructs the hyperkähler quotient at level ξ by

M////ξG := µ−1
H (ξ)/G.

The main result of Hitchin et al. (1987) is that the natural Riemannian metric
on the smooth points of this quotient is hyperkähler.

Now we list three important examples of this construction, where the original
hyperkähler manifold M and Lie group G are both infinite dimensional.

16.2.1 Moduli of Yang–Mills instantons on R4

Here we follow Hitchin (1987a, I example 3.6), compare also with Atiyah (1978).
Let G be a compact connected Lie group, which will be U(n) or SU(n) in this

chapter. Let P → R4 be a G-principal bundle over R4. Let M be the space of
G-connections A on P of class C∞, such that the energy

∣∣∣∣
∫

R4
Tr(FA ∧ ∗FA)

∣∣∣∣ < ∞

is finite. Write

A = A1dx1 + A2dx2 + A3dx3 + A4dx4

in a fixed gauge, where Ai ∈ Ω0(R4, ad(P )). Let G = Ω(R4, Ad(P )) be the gauge
group of P . An element g ∈ G acts on A ∈ M by the formula g(A) = g−1Ag +
g−1dg, preserving the hyperkähler structure. One finds that the hyperkähler

1 Some colleagues even suggest, due to the success of this construction, that HyperKähLeR
is in fact just a pronouncable version of the acronym HKLR.
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moment map equation

µH(A) = 0 ⇔ FA = ∗FA

is just the self-dual Yang–Mills equation. Define the hyperkähler quotient
M(R4, P ) = µ−1

H (0)/G, the moduli space of finite-energy self-dual Yang–Mills
instantons on P . By its construction it has a natural hyperkähler metric.

A similar construction (Kronheimer and Nakajima 1990) for G = U(n) yields
a hyperkähler metric on moduli spaces of U(n) Yang–Mills instantons on
certain four-dimensional complete hyperkähler manifolds, the ALE spaces of
Kronheimer (1989). These moduli spaces will have natural completions and
various components of them will be the spaces Mk,c1

φ which were mentioned
in the introduction. They will resurface later as examples for Nakajima quiver
varieties.

16.2.2 Moduli space of magnetic monopoles on R3

The following construction can be considered as a dimensional reduction of the
previous example. Here we follow Hitchin (1987a, I example 3.5) and Atiyah and
Hitchin (1988).

Assume that G = SU(2) and the matrices Ai are independent of x4. Then we
have

A=A1dx1+A2dx2+A3dx3

a connection on R3 and A4 = φ ∈ Ω0(R3, ad(P )) becomes the Higgs field. The
gauge group now is G = Ω(R3, Ad(P )) and M is the space of configurations (A,φ)
satisfying certain boundary conditions. (The boundary condition is chosen to
ensure finite energy.) The gauge group G acts on M by gauge transformations,
preserving the natural hyperkähler metric on M. The corresponding hyperkähler
moment map equation

µH(A,φ) = 0 ⇔ FA = ∗dAφ

is equivalent to the Bogomolny equation.
Now by construction M = µ−1

H (0)/G, the moduli space of magnetic monopoles
on R3 has a natural hyperkähler metric. It has infinitely many components M =
∪∞

k=1Mk labeled by the magnetic charge k of the monopole.
Mk is acted upon by R3 by translations and by U(1) by rotating the phase of

the monopole. The quotient M0
k is still a smooth complete hyperkähler manifold

of dimension 4k − 4, with fundamental group Zk. We will denote by M̃0
k its

universal cover. In Atiyah and Hitchin (1985) they find the hyperkähler metric
explicitly on the four-manifold M0

2 and subsequently describe the scattering of
two monopoles.
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16.2.3 Hitchin moduli space
This example can be considered as a two-dimensional reduction of Section 16.2.1.
We follow Hitchin (1987b, section 1; 1987a I example 3.3).

Now we assume that G = U(n) and the matrices Ai in Section 16.2.1 are inde-
pendent of x3, x4. We have now the connection A=A1dx1+A2dx2 on the U(n)
principal bundle P on R2. We introduce Φ = (A3 − A4i)dz ∈ Ω1,0(R2, ad(P )⊗C)
the complex Higgs field. The gauge group now is G = Ω(R2, Ad(P )), which acts
by gauge transformations on the space M of configurations (A,Φ) preserving the
natural hyperkähler metric on M. The moment map equations

µH(A,Φ) = 0 ⇔ F (A) = −[Φ,Φ∗],
d′′AΦ = 0

are then equivalent with Hitchin’s self-duality equations. There are no solutions
of finite energy on R2, but as the equations are conformally invariant, we can
replace R2 with a genus g compact Riemann surface C in the above definitions,
and define M(C,P ) = µ−1

H (0)/G, the Hitchin moduli space, which has a natural
hyperkähler metric by construction. There are different ways to think about
this space with the different complex structures, which will be explained in
Section 16.5.2.

16.3 Hodge theory

16.3.1 L2 harmonic forms on complete manifolds
Let M be a complete Riemannian manifold of dimension n. We say that a smooth
differential k-form α ∈ Ωk(M) is harmonic if and only if dα = d∗α = 0, where
∗ : Ωk(M) → Ωn−k(M) is the Hodge star operator. It is L2 if and only if

∫

M
α ∧ ∗α < ∞.

We denote by H∗(M) the space of L2 harmonic forms.
A fundamental theorem of Hodge theory is the Hodge (orthogonal) decom-

position theorem of de Rham (1984, section 32 theorem 24, Section 35 theorem
26):

Ω∗
L2 = d

(
Ω∗

cpt

)
⊕H∗ ⊕ δ

(
Ω∗

cpt

)
, (16.2)

where δ is the adjoint of d. When M is compact this implies the celebrated
Hodge theorem, which says that H∗(M) ∼= H∗(M), that is, that there is a
unique harmonic representative in every de Rham cohomology class. When M
is non-compact we only have a topological lower bound. Namely, the Hodge
decomposition theorem implies that the composite map

H∗
cpt(M) → H∗(M) → H∗(M)
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is just the forgetful map. (In the compact case these maps are isomorphisms,
which gives the Hodge theorem mentioned above.) Thus

im(H∗
cpt(M) → H∗(M)) (16.3)

is a “topological lower bound” for H∗(M). By Poincaré duality the map
H∗

cpt(M) → H∗(M) is equivalent with the intersection pairing on H∗
cpt(M).

In the cases most relevant for us M will be a hyperkähler manifold (some-
times orbifold) so dim(M) = 4k and we will additionally have Hi(M) = 0 for
i > 2k. Therefore the possible non-trivial image in im(H∗

cpt(M) → H∗(M)) will
be concentrated in the middle 2k dimension. (We will use the notation mid =
dim(M)/2 for the middle dimension of a manifold.) For such a hyperkähler
manifold we denote

χL2(M) = dim
(
im
(
Hmid

cpt (M) → Hmid(M)
))

= dim
(
im
(
H∗

cpt(M) → H∗(M)
))

(16.4)

the dimension of this image. χL2(M) can be thought of either as a “topological
lower bound” for dim(H∗(M)) or the Euler characteristic of topological L2

cohomology.

16.3.2 Results on L2 harmonic forms
There were few general theorems on describing H∗(M) for a non-compact com-
plete manifold M (see however Hausel et al. 2004, introduction for an overview).
It was thus a surprising development when Sen (1994), using arguments from
S-duality, managed to predict the dimension of L2 harmonic forms on M̃k

0 as
was explained in Conjecture 16.1 in the Introduction. In particular, according to
Sen’s Conjecture 16.1 the space H2(M̃0

2 ) should be one dimensional. Using the
explicit description of Atiyah and Hitchin (1985) of the metric on M0

2 in Sen
(1994) he was able to find an explicit L2 harmonic two-form, called the Sen two-
form, on M̃0

2 . This was perhaps the strongest mathematical support exhibited
for Conjecture 16.1 in Sen (1994).

More general mathematical support for Conjecture 16.1 came in 1996. Segal
and Selby (1996) showed that the intersection form on Hmid

cpt (M̃0
k ) is definite.

Moreover they obtained for the topological lower bound (16.3) for Hmid(M̃0
k )

χL2(M̃0
k ) = dim(Hmid(M̃0

k )) = φ(k).

This agrees with the predicted dimension of Hmid(M̃0
k ) in Sen’s Conjecture 16.1.

Motivated by Problem 16.1 and Segal–Selby’s topological lower bound for
Conjecture 16.1, the author calculated in Hausel (1998) that the intersection
pairing on the g-dimensional space Hmid

cpt (M1
Dol(SL2)) is trivial, in other words

χL2
(
M1

Dol(SL2)
)

= 0 (16.5)
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for g > 1. This thus gave the surprising result that there are no L2 harmonic
forms on M1

Dol(SL2) plainly by topological reasons. The technique used in the
proof of (16.5) was imitating Kirwan’s proof (1992) of Mumford’s conjecture on
the cohomology ring of the moduli space of stable rank 2 bundles of degree 1 on
the Riemann surface C. Therefore the extension of (16.5) to higher rank Higgs
bundle moduli spaces Md

Dol(SLn) was not straightforward.
The next advance towards Sen’s Conjecture 16.1 came in 2000. Hitchin (2000)

showed that Hd(M) = 0 unless d = dim(M)/2 for a complete hyperkähler mani-
fold M of linear growth. Examples include all our hyperkähler quotients discussed
in this chapter. The proofs in Hitchin (2000) use techniques inspired by Jost and
Zuo’s extension (2000) of ideas of Gromov (1991). It is interesting to note that
some of the proofs in Hitchin (2000) also exploit the operators in hyperkähler
Hodge theory, which are relevant in N = 4 supersymmetry. Using the symmetries
of the Atiyah–Hitchin metric (Hitchin 2000) proves Sen’s conjecture for k = 2,
that up to a scalar the only L2 harmonic form on M̃0

2 is Sen’s two-form.
A more topological approach was introduced in Hausel et al. (2004). Hausel

et al. (2004) proves for fibered boundary manifolds M

Hmid(M) ∼= im
(
IHmid

m (M)→IHmid
m̄ (M)

)
, (16.6)

where M is a certain compactification of M , dictated by the asymptotics of the
fibered boundary metric on M . Moreover IHmid

m (M) denotes the intersection
cohomology in dimension mid = dim(M)/2 with lower middle perversity m and
IHmid

m̄ (M) denotes the intersection cohomology in the middle dimension with
upper middle perversity m̄ of the possibly badly singular (i.e. not necessarily
a Witt space) compactification M . To illustrate (16.6) we take the compact-
ification of M̃0

2 , which happens to be the smooth space CP2 (with the non-
standard orientation), where the above cohomologies in (16.6) all coincide, giving
H2(M̃0

2 ) ∼= H2(CP2). This provides a topological explanation for the existence
and uniqueness of the Sen two-form.

The assumption that the metric is fibered boundary in Hausel et al. (2004) is
fairly restrictive. Among hyperkähler quotients only a few examples satisfy this
property (see the discussion in Hausel et al. 2004, section 7). Examples include
all ALE gravitational instantons of Kronheimer (1989) and all known ALF (see
Cherkis and Kapustin 1999) and some ALG gravitational instantons (see Cherkis
and Kapustin 2002). In general our hyperkähler quotients have some kind of
stratified asymptotic behaviour at infinity. For example, the metric on M0

k is
fibered boundary only when k = 2, for higher k it is known to behave differently
at different regions of infinity. The first result which could handle Hodge theory
on Riemannian manifolds with such a stratified behaviour at infinity appeared
recently in a work by Carron. It proves for a QALE space M that:

Hmid(M) ∼= im
(
Hmid

cpt (M)→Hmid(M)
)
.
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A QALE space (Joyce 2000, section 9) by definition is a certain Calabi–Yau
metric on a crepant resolution of Ck/Γ, where Γ ⊂ SU(k) is a finite subgroup.
The asymptotics of the metric on such a QALE space is reminiscent to the
asymptotics of the natural hyperkähler metric on Mk,c1

φ appearing in the Vafa–
Witten Conjecture 16.2. It is thus reasonable to hope that the Vafa–Witten
Conjecture 16.2 will be decided soon.

As there have been extensive studies starting with Gibbons and Manton
(1995) and more recently Bielawski (2008) on the asymptotics of the Riemannian
metric on M0

k , it is conceivable that we will have a precise understanding of the
asymptotic behaviour of this metric, and in turn the Hodge theory of L2 harmonic
forms on M̃0

k , perhaps extending techniques from Carron. Thus one may be
optimistic that Sen’s Conjecture 16.1 will be decided in the foreseeable future.

Finally, one must admit that the description of the asymptotics of the metric
at infinity on Md

Dol(SLn) is still lacking, thus calculation of H∗ (Md
Dol(SLn)

)

is presently hopeless. The topological side of Problem 16.1, that is, to determine
χL2

(
Md

Dol(SLn)
)
, when (d, n) = 1, is more reasonable. After introducing a

new arithmetic technique to study Hodge structures on the cohomology of our
hyperkähler manifolds, we will be able to offer a general conjecture on the
intersection form on Higgs moduli spaces, in particular that (16.5) holds for
any n.

16.4 Mixed Hodge theory

As explained above there have been some limited successes of calculating H∗(M)
for a hyperkähler quotient and understanding its relation to the cohomology
H∗(M) or more generally the cohomology of an appropriate compactification
H∗(M̄). Another extension of Hodge theory yields some different and in some
ways more detailed insight into the cohomology of our hyperkähler quotients.
This technique is Deligne’s mixed Hodge structure on the cohomology of any
complex algebraic variety. Instead of the global analysis on the Riemannian
geometry of the complex algebraic variety it will relate to the arithmetic of
the variety over finite fields.

16.4.1 Mixed Hodge structure of Deligne
Motivated by the (then still unproven) Weil conjectures and Grothendieck’s
“yoga of weights”, which drew cohomological conclusions about complex varieties
from the truth of those conjectures, Deligne (1971, 1974) proved the existence
of mixed Hodge structures on the cohomology H∗(M, Q) of a complex algebraic
variety M . Here we give a quick introduction, for more details see Hausel and
Rodriguez-Villegas (section 2.2) and the references therein. Deligne’s mixed
Hodge structure entails two filtrations on the rational cohomology of M . The
increasing weight filtration

0 = W−1 ⊆ W0 ⊆ · · · ⊆ W2j = Hj(X, Q)
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and a decreasing Hodge filtration

Hj(X, C) = F 0 ⊇ F 1 ⊇ · · · ⊇ Fm ⊇ Fm+1 = 0.

We can define mixed Hodge numbers obtained from these two filtrations by the
following formula:

hp,q;j(X) := dimC
(
GrF

p GrW
p+qH

j(X)C
)
. (16.7)

From these numbers we form

H(M ;x, y, t) =
∑

p,q,k

hp,q;k(M)xpyqtk,

the mixed Hodge polynomial. By virtue of its definition it has the property that
the specialization

P (M ; t) = H(M ; 1, 1, t)

gives the Poincaré polynomial of M . When M is smooth of dimension n we take
another specialization

E(M ;x, y) := xnynH(1/x, 1/y,−1), (16.8)

the so-called E-polynomial of a smooth variety M .
Deligne’s construction of mixed Hodge structure is complex geometrical: for

a smooth variety M it is defined by the log geometry of a compactification M
with normal crossing divisors. In particular a global analytical description, like
the Hodge theory of harmonic forms on a smooth complex projective manifold,
of the mixed Hodge structure on a smooth variety is missing, which causes some
difficulty in finding the meaning of mixed Hodge numbers in physical contexts
(see the remark after Conjecture 16.3).

16.4.2 Arithmetic and topological content of the E-polynomial
The connection of the E-polynomial to the arithmetic of the variety is provided
by the following theorem of Katz (Hausel and Rodriguez-Villegas, Appendix).
Here we give an informal version of Katz’s result for precise formulation (see
Hausel and Rodriguez-Villegas 2008, theorem 6.1.2(3), theorem 2.1.8):

Theorem 16.1 Let M be a smooth quasi-projective variety defined over Z (i.e.
given by equations with integer coefficients). Assume that the number of points
of M over a finite field Fq, that is,

E(q) := #{M(Fq)}

is a polynomial in q. Then the E-polynomial can be obtained from the count
polynomial as follows:

E(M ;x, y) = E(xy).
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This theorem is especially useful when we further have hp,q;k(M) = 0 unless
p + q = k. In this case we say that the mixed Hodge structure on H∗(M) is pure.
In this case

H(M ;x, y, t) = (xyt2)nE

(
−1
xt

,
−1
yt

)

and so the Poincaré polynomial can be recovered from the E-polynomial as
follows:

P (M ; t) = H(M ; 1, 1, t) = t2nE

(
−1
t

,
−1
t

)
.

Examples of varieties with pure MHS on their cohomology include smooth
projective varieties (in this case we get the traditional Hodge structure, which is
by definition pure), the moduli space of Higgs bundles MDol, the moduli space
of flat connections MDR on a Riemann surface, and Nakajima’s quiver varieties.

In general we can define the pure part of H(M ;x, y, t) as

PH(M ;x, y) = CoeffT 0
(
H(M ;xT, yT, tT−1)

)
.

More generally we can define the pure part of the cohomology of M as

PH∗(M) := WnHn(M) ⊂ H∗(M),

which is a subring PH∗(M) ⊂ H∗(M) of the cohomology of M . For a smooth
M , the pure part of H∗(M) is always the image of the cohomology of a smooth
compactification (see Deligne 1971, corollaire 3.2.17). It is in fact this result
which can be used to show that the spaces mentioned in the previous paragraph
have pure mixed Hodge structure. That is, one can prove that they admit
a smooth compactification which surjects on cohomology. Prototypes of such
compactifications were constructed in Simpson (1997) for MDR and in Hausel
(1998) for MDol.

16.5 Applications of mixed Hodge theory

Using the method sketched in the previous section the strongest results on
cohomology can be achieved when the variety has a pure MHS on its cohomology,
consequently the E-polynomial determines the mixed Hodge polynomial, and
additionally it has polynomial-count so that Theorem 16.1 gives an arithmetic
way to determine the E-polynomial. This is the case for Nakajima quiver
varieties, where our method gives complete results.

16.5.1 Nakajima quiver varieties
Nakajima quiver varieties are constructed (Nakajima 1998) by a finite-
dimensional hyperkähler quotient construction. Here we review the affine
algebraic-geometric version of this construction.
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Let Γ be a quiver (oriented graph) with vertex set I = {1, . . . , n} and edges
E ⊂ I × I. Let

v = (v1, . . . ,vn), w = (w1, . . . ,wn) ∈ NI

be two-dimensional vectors and Vi and Wi corresponding complex vector spaces,
that is, dim(Vi) = vi and dim(Wi) = wi. We define the vector spaces

Vv,w =
⊕

a∈E

Hom(Vt(a), Vh(a)) ⊕
⊕

i∈I

Hom(Vi,Wi)

of framed representations of the quiver Γ , and the action

ρ : GL(v) :=
∏

i∈I

GL(Vi) → GL(Vv),

with derivative

( : gl(v) :=
∏

i∈I

gl(Vi) → gl(Vv).

The complex moment map

µ : Vv,w × V∗
v,w → gl∗v

of ρ is given at X ∈ glv by

〈µ(v, w), X〉 = 〈((X)v, w〉. (16.9)

For ξ = 1v ∈ gl(v)GL(v) we define the (always smooth) Nakajima quiver vari-
ety by

M(v,w) = µ−1(ξ)//GL(v) = Spec
(
C[µ−1(ξ)]GL(v)

)

as an affine GIT quotient. Alternatively one can construct the manifold underly-
ing M(v,w) as a hyperkähler quotient of Vv,w × V∗

v,w by the maximal compact
subgroup U(v) ⊂ GL(v). This shows that M(v,w) possesses a hyperkähler
metric. The holomorphic symplectic quotient we presented above is the one where
the arithmetic technique of Section 16.4 is applicable. Before we explain that,
let us recall the following fundamental theorem of Nakajima (1998) about the
cohomology of these Nakajima quiver varieties:

Theorem 16.2 Assume that the quiver Γ has no edge-loops. Then there is an
irreducible representation of the Kac–Moody algebra g(Γ) of highest weight w
on ⊕vHmid(M(v,w)). In particular the Weyl–Kac character formula gives the
middle Betti numbers of Nakajima quiver varieties. Furthermore the intersection
form on Hmid

c (M(v,w)) is definite, thus χL2(M(v,w)) equals the middle Betti
number of M(v,w).

Remark 16.1 When Γ is an affine Dynkin diagram M(v,w) could be identi-
fied with one of the spaces Mk,c1

φ of certain Yang–Mills instantons on a ALE
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space XΓ. In Kac (1990) he explains that the Weyl–Kac character formula for
an affine Dynkin diagram has certain modular properties. This was the line of
argument in Vafa and Witten (1994) that (16.1) is a modular form provided
Conjecture 16.2 holds.

In Hausel (2006) a simple Fourier transform technique was found to enumerate
the rational points of M(v,w) over a finite field Fq. The corresponding count
function E(q) turned out to be polynomial, and as the mixed Hodge structure is
pure on H∗(M(v,w)) the technique of Section 16.4 applies in its full strength
to give a formula for the Betti numbers of the varieties M(v,w). The result is
the following formula from Hausel (2006):

Theorem 16.3 For any quiver Γ, the Betti numbers of the Nakajima quiver
varieties are given by the following generating function, with the notation as in
Hausel (2006, theorem 3):

∑

v∈NI

Pt(M(v,w))t−d(v,w)Tv=

∑

v∈NI

Tv
∑

λ∈P(v)

(∏
(i,j)∈E t−2〈λi,λj〉

)(∏
i∈I t−2〈λi,(1wi )〉

)

∏
i∈I

(
t−2〈λi,λi〉∏

k

∏mk(λi)
j=1 (1−t2j)

)

∑

v∈NI

Tv
∑

λ∈P(v)

∏
(i,j)∈E t−2〈λi,λj〉

∏
i∈I

(
t−2〈λi,λi〉 ∏

k

∏mk(λi)
j=1 (1−t2j)

)
,

(16.10)

Remark 16.2 When Γ has no edge-loops Nakajima’s Theorem 16.1 implies
that the right-hand side of (16.10) is a deformation of the Weyl–Kac character
formula. Simple reasoning gives the same result about the denominator of the
right-hand side of (16.10) and the Kac denominator. Moreover, Kac’s denomina-
tor formula and Hua’s formula (2000, theorem 4.9) expressing the denominator of
(16.10) as an infinite product imply a conjecture of Kac (cf. Hua 2000, corollary
4.10). Namely, if AΓ(v, q) denotes the number of absolutely indecomposable
representations of Γ of dimension vector v over the finite field Fq, then it turns
out to be a polynomial in q and Kac’s conjecture 1 (1983) says that the constant
coefficient

AΓ(v, 0) = mv (16.11)

equals with the multiplicity of the weight v in the Kac–Moody algebra g(Γ).
This can be proved, as sketched above and announced in Hausel (2006), to be a
consequence of (16.10) and the above-mentioned results of Nakajima and Hua.

Remark 16.3 When the quiver is affine ADE and the RHS becomes an infinite
product (indications that this can happen are the infinite product in Hausel
2006, section 3 and the infinite products in the recent Sasaki) we could get
an alternative proof of the modularity of (16.1) in the Vafa–Witten S-duality
conjecture.
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In the remaining part of this survey we will motivate and study another
application of the technique in Section 16.4, which will be less powerful as the
mixed Hodge structure will fail to be pure, but will also open new interesting
directions by the study of this more complicated mixed Hodge structure.

16.5.2 Spaces diffeomorphic to the Hitchin moduli space M(C,PU(n))
Among the spaces discussed in this chapter it is the Hitchin moduli space
M(C,PU(n)) as defined in Section 16.2.2 which exhibits perhaps the most
plentiful structures many of which are rooted in its hyperkähler quotient origin.
In particular there are three distinct complex algebraic variety structures on
M(C,PU(n)). These can be thought of (Simpson 1997) as the three types of
non-Abelian (first) cohomology: Dolbeault, De Rham, and Betti, of the Riemann
surface C. The survey paper Hausel (2005) gives a quick introduction to these
spaces and some of the cohomological implications to be discussed below.

In this chapter the ground field is always C unless otherwise indicated.
Following Hitchin (1987b) and Simpson (1997) we define a component of the
twisted GLn = GLn(C) Dolbeault cohomology of C as

Md
Dol(GLn) :=

{
Moduli space of semistable rank n

degree d Hitchin pairs on C

}

the GLn De Rham cohomology as

Md
DR(GLn) :=

{
Moduli space of flat GLn-connections

on C \ {p}, with holonomy e
2πid

n Id around p

}

and the GLn Betti cohomology

Md
B(GLn) :=

{
A1, B1, . . . , Ag, Bg ∈ GLn|

A−1
1 B−1

1 A1B1 · · ·A−1
g B−1

g AgBg = e
2πid

n Id
}

//GLn

as a twisted GLn character variety of C.
When d = 0 these three varieties are diffeomorphic to the Hitchin moduli

space M(C,PU(n)). However we prefer to consider the twisted versions, when
(d, n) = 1, because then all the varieties are smooth. In this case these
three varieties are all diffeomorphic to a twisted version Md(C,PU(n))
of Hitchin moduli space and so to each other. The mixed Hodge struc-
ture is pure on H∗ (Md

Dol(GLn)
)

and H∗ (Md
DR(GLn)

)
, while it is not

pure on H∗ (Md
B(GLn)

)
. As the mixed Hodge structures are different on

H∗ (Md
DR(GLn)

)
and H∗ (Md

B(GLn)
)
, the spaces Md

DR(GLn) and Md
B(GLn)

cannot be isomorphic as complex algebraic varieties. Nevertheless as complex
analytic manifolds the Riemann–Hilbert monodromy map

Md
DR(GLn) RH→ Md

B(GLn) (16.12)

sending a flat connection to its holonomy gives an isomorphism.
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We will also consider the varieties Md
Dol(SLn), Md

DR(SLn), and M0
B(SLn),

which can be defined by replacing GLn with SLn in the above definitions.
Moreover M0

Dol(GL1), M0
DR(GL1), and M0

B(GL1) turn out to be Abelian
groups. Then M0

Dol(GL1), M0
DR(GL1), and M0

B(GL1) will act on Md
Dol(GLn),

Md
DR(GLn), and Md

B(GLn), respectively, by an appropriate form of ten-
sorization. Finally we denote the corresponding (affine GIT) quotients by
Md

Dol(PGLn), Md
DR(PGLn) and Md

B(PGLn). In our case, when (d, n) = 1,
they will turn out to be orbifolds. For more details on the construction of these
varieties see Hausel (2005).

In the next section we explain the original motivation to consider the
E-polynomials of these three complex algebraic varieties. The motivation is
mirror symmetry, and most probably the same S-duality we discussed in the
Introduction in connection with the Hodge cohomology of the moduli spaces of
Yang–Mills instantons in four dimension and magnetic monopoles in three. S-
duality ideas relating to mirror symmetry for Hitchin spaces have appeared in
the physics literature (Bershadsky et al. 1995; Kapustin and Witten 2007).

16.5.3 Topological mirror test
For our mathematical considerations the relationship to mirror symmetry stems
from the following observation of Hausel and Thaddeus (2003). It uses the famous
Hitchin map (Hitchin 1987c), which makes the moduli space of Higgs bundles
MDol into a completely integrable Hamiltonian system, so that the generic fibers
are Abelian varieties.

Theorem 16.4 In the following diagram

Md
Dol(PGLn) Md

Dol(SLn)7χP GLn

7χSLn

HPGLn
∼= HSLn

the generic fibers of the Hitchin maps χPGLn and χSLn are dual Abelian
varieties.

Remark 16.4 If we change complex structures and consider Md
DR(PGLn)

and Md
DR(SLn), then the Hitchin map on them becomes special Lagrangian

fibrations, and consequently the pair of Md
DR(PGLn) and Md

DR(SLn) satisfies
the requirements of the SYZ construction (Strominger et al. 1996) for a pair of
mirror symmetric Calabi–Yau manifolds (see Hausel and Thaddeus 2001, 2003
for more details).

This motivates the calculation of Hodge numbers of Md
DR(PGLn) and

Md
DR(SLn) to see if there is any relationship between them, which one would

expect in mirror symmetry. Based on calculations in the n = 2, 3 cases Hausel
and Thaddeus (2003) proposed
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Conjecture 16.3 For all d, e ∈ Z, satisfying (d, n) = (e, n) = 1,

EBe

st

(
x, y;Md

DR(SLn)
)

= EB̂d

st (x, y;Me
DR(PGLn)) ,

where Be and B̂d are certain gerbes on the corresponding Hitchin spaces and
the E-polynomials above are stringy E-polynomials for orbifolds twisted by the
relevant gerbe as defined in Hausel and Thaddeus (2003).

Morally, this conjecture should be related to the S-duality considerations of
Kapustin and Witten (2007) and in turn to the geometric Langlands programme
of Beilinson and Drinfeld (1995). However the lack of global analytical inter-
pretation of the mixed Hodge numbers (16.7) appearing in Conjecture 16.3
prevents a straightforward physical interpretation. Nevertheless the agreement
of certain Hodge numbers for Hitchin spaces for Langlands dual groups is an
interesting direction from a purely mathematical point of view. In particular,
if we change our focus from MDR and MDol to MB we will uncover some
surprising connections to the representation theory of finite groups of Lie type.

16.5.4 Mirror symmetry for finite groups of Lie type
As MDR and MB are complex analytically identical via the Riemann–Hilbert
map (16.12), the complex analytical structure of dual special Lagrangian fibra-
tions of Theorem 16.4 are present on the pair Md

B(SLn) and Me
B(PGLn). We

might as well try to think of this pair as mirror symmetric in the SYZ picture.
The mixed Hodge numbers of MB are however different from the mixed Hodge
numbers of MDR so the corresponding topological mirror test (Hausel 2005) will
also be different from Conjecture 16.3:

Conjecture 16.4 For all d, e ∈ Z, satisfying (d, n) = (e, n) = 1,

EBe

st

(
x, y,Md

B(SLn)
)

= EB̂d

st (x, y,Me
B(PGLn)) .

For this conjecture however there is a powerful arithmetic method to calculate
these E-polynomials. Using this technique we have already managed to check this
conjecture (Hausel 2005) when n is a prime and n = 4. This arithmetic method
is based on the technique explained in Section 16.4 and the following character
formula from Hausel and Rodriguez-Villegas (2008):

Theorem 16.5 Let G = SLn or GLn, let G(Fq) be the corresponding finite
group of Lie type

E
(√

q,
√

q,Md
B(G)

)
= #

{
Md

B(G(Fq))
}

=
∑

χ∈Irr(G(Fq))
|G(Fq)|2g−2

χ(1)2g−1 χ
(
ξd
n

)
,

where the sum is over all irreducible characters of the finite group of Lie type
G(Fq).

This character formula combined with Conjecture 16.4 implies certain rela-
tionships between the character tables of PGLn(Fq) and SLn(Fq). An intriguing



Applications of mixed Hodge theory 339

way to formulate it is to say that certain differences between the character tables
of PGLn(Fq) and its Langlands dual SLn(Fq) are governed by mirror symmetry.
This kind of consideration could be interesting because the character tables of
PGLn(Fq) or more generally those of GLn(Fq) have been known for a long time
starting with the work of Green (1955), while the character tables of SLn(Fq)
have just recently been completed (Bonnafé 2006; Shoji 2006). It is especially
enjoyable to follow the effect of the mirror symmetry proposal of Conjecture 16.4
by comparing the character tables of GL2(Fq) and SL2(Fq) first calculated a
hundred years ago by Jordan 1907 and Schur 1907.

16.5.5 Conjectural answer
Finally, we can put all our observations and conjectures together to state a
conjectural answer to the topological side of Problem 16.1.

As we already noted the mixed Hodge structure on H∗(MB) is not pure.
Therefore we are losing information by considering only E(MB ;x, y). It turns out
that it is interesting to consider the full mixed Hodge polynomial H(MB ;x, y, t).
When n = 2 it can be calculated via the explicit description of H∗(MB) in Hausel
and Thaddeus (2003). We get Hausel and Rodriguez-Villegas (Theorem 1.1.3):

H(MB(PGL2);x, y, t)

=
(q2t3 + 1)2g

(q2t2 − 1)(q2t4 − 1)
+

q2g−2t4g−4(q2t + 1)2g

(q2 − 1)(q2t2 − 1)
− 1

2
q2g−2t4g−4(qt + 1)2g

(qt2 − 1)(q − 1)

−1
2

q2g−2t4g−4(qt − 1)2g

(q + 1)(qt2 + 1)
,

where q = xy and the four terms correspond to the four types of irreducible
characters of GL(2, Fq). When g = 3 this equals

t12q12 + t12q10 + 6 t11q10 + t12q8 + t10q10 + 6 t11q8 + 16 t10q8 + 6 t9q8 + t10q6

+ t8q8 + 26 t9q6 + 16 t8q6 + 6 t7q6 + t8q4 + t6q6 + 6 t7q4 + 16 t6q4

+ 6 t5q4 + t4q4 + t4q2 + 6 t3q2 + t2q2 + 1.

In particular we see that the pure part is 1 + q2t4 + q4t8. These terms correspond
to the cohomology classes 1, β, and β2, and the term q6t12 is not present because
by the Newstead relation βg = β3 = 0 holds (Hausel and Thaddeus 2003). In
particular there is no pure part in the middle = 12-dimensional cohomology.
The same argument holds for all g, which shows that there is no pure part in the
middle-dimensional cohomology of M1

B(PGL2). It is however easy to see that
the intersection form on middle cohomology can only be non-trivial on the pure
part and so this implies Hausel and Rodriguez-Villegas (2008, Corollary 5.4.1):

Corollary 16.1 The intersection form on H∗
cpt

(
M1

B(PGL2)
)

is trivial.
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This gives an alternative proof of (16.5) as the equation

χL2
(
M1

B(SL2)
)

= χL2
(
M1

B(PGL2)
)

is easy to prove. Moreover this approach is more promising to generalize for any n.
We will offer a conjecture about the pure part of the cohomology of Md

B(PGLn)
below and in turn that will yield a conjecture for the intersection form on the
middle-dimensional compactly supported cohomology, answering the topological
side of Problem 16.1.

To state our conjecture in its full generality we introduce character varieties
on Riemann surfaces with k punctures and parabolic type µ = (µ1, . . . , µk) at
the punctures, where µi is a partition of n. In other words we fix semisimple
conjugacy classes C1, . . . , Ck ⊂ GLn, which are generic and have type µ (in other
words µi

j is the multiplicity of the jth eigenvalue of a matrix in Ci). One can
prove as in Hausel et al. (2008, lemma 2.1.2) that there exists generic semisimple
conjugacy classes for every type µ = (µ1, . . . , µk). For a generic {C1, . . . , Ck} of
type µ we define

Mµ
B := {A1, B1, . . . , Ag, Bg ∈ GLn, C1 ∈ C1, . . . , Ck ∈ Ck|

[A1, B1] · · · [Ag, Bg]C1 · · ·Ck = In}//GLn

as an affine GIT quotient by the diagonal adjoint action of GLn. The generic
choice of the semisimple conjugacy classes implies that Mµ

B is smooth. The torus
GL2g

1 acts on Mµ
B by multiplying the matrices Ai and Bi by a scalar. We can

define the quotient

M̄µ
B := Mµ

B//GL2g
1

as the corresponding PGLn character variety. The variety M̄µ
B is an orbifold.

By studying the Riemann–Hilbert map on the level of cohomologies we are
led (Hausel, in preparation) to consider the comet-shaped quiver Γ associated to
g and µ. Namely, we can put g loops on a central vertex, and k legs of length
l(µj). We also equip Γ with a dimension vector v, which has dimension

∑l
i=1 µj

i
at the lth vertex on the ith leg. Consider now the number AΓ(q,v) of absolutely
indecomposable representations of Γ of dimension v over the finite field Fq. Kac
(1983, proposition 1.15) proved that AΓ(q,v) is a polynomial in q with integer
coefficients. We have the following conjecture from Hausel (in preparation):

Conjecture 16.5 The pure part of the cohomology of M̄µ
B is given by

PH
(
M̄µ

B, x, y
)

= (xy)dµ/2AΓ(v, 1/(xy)),

where (Γ,v) is the star-shaped quiver and dimension vector given by the parabolic
type µ, and dµ is the dimension of Mµ

B.

This conjecture gives a cohomological interpretation of AΓ(v, q) and in partic-
ular implies that it has non-negative coefficients confirming (Kac 1983, conjecture
2) in the case when Γ is comet-shaped. When µ is indivisible Conjecture 16.5 can
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be proved to follow from the master conjecture in Hausel et al. (in preparation),
which expresses the mixed Hodge polynomials of all the character varieties M̄µ

B
as a generating function generalizing the Cauchy formula for Macdonald poly-
nomials. It also has the following consequence on the topological L2 cohomology
χL2

(
M̄µ

B

)
of (16.4).

Conjecture 16.6 The topological L2 cohomology of the manifold M̄µ
B is

given by

χL2(M̄µ
B) = 0, when g > 1 (16.13)

χL2(M̄µ
B) = 1, when g = 1 (16.14)

χL2(M̄µ
B) = mv, when g = 0, (16.15)

where mv is the multiplicity of the weight v in the Kac–Moody algebra g(Γ),
which are encoded by the Kac denominator formula for the star-shaped quiver Γ.

When g > 1 and the parabolic type is µ = ((n)), that is, we have only one
puncture with central conjugacy class, then one can identify M̄µ

B = Md
B(PGLn),

with some d such that (d, n) = 1. In this case (16.13) says that

χL2
(
Md

B(PGLn)
)

= 0,

which appeared as (Hausel and Rodriguez-Villegas Conjecture 4.5.1). It follows
from the mirror symmetry Conjecture 16.3 that

Hmid
cpt

(
Md

B(SLn)
) ∼= Hmid

cpt

(
Md

B(PGLn)
)

and then the intersection forms also agree. This and (16.15) then imply that
(16.5) holds for any n, that is, that the intersection form on the compactly
supported cohomology of Md

B(SLn) is trivial. This gives a conjectural answer
to the topological side of Problem 16.1.

When g = 1 the conjectured (16.14) follows from Conjecture 16.5 and the
observation that the coefficient of q in the A-polynomial AΓ(q) for a g = 1 comet-
shaped quiver Γ is always 1.

When g = 0 the varieties Mµ
B = M̄µ

B coincide. Conjecture 16.5 then implies
that

χL2 (Mµ
B) = AΓ(v, 0).

Conjecture (16.15) is a combination of this and the equality AΓ(v, 0) = mv, that
is, Kac’s conjecture 1, in Kac (1983), which, as discussed in Remark 16.2, follows
from Theorem 16.3.

Finally one can define M̄µ
Dol the moduli space of stable parabolic PGLn-

Higgs bundles with quasi-parabolic type µj ∈ P(n) and generic weights at the
jth puncture on the Riemann surface (Boden and Yokogawa 1996, Garćıa-Prada
et al. 2007). Then one can prove that M̄µ

B is diffeomorphic to M̄µ
Dol. Thus

Conjecture 16.6 also calculates the intersection form on the compactly supported
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cohomology of the moduli space M̄µ
Dol of stable parabolic PGLn-Higgs bundles

of any rank.

Example 16.1 Consider the genus 0 Riemann surface P1 with four punctures.
Consider the moduli space Mtoy of stable rank 2 parabolic Higgs bundles on
P1, with generic parabolic weights on the full parabolic flag at the punctures
(see Boden and Yokogawa 1996). This is a complex surface and the intersection
form on H2

c (Mtoy) was discussed in Hausel (1998, example 2 for theorem 7.13).
H2

c (Mtoy) is five-dimensional but χL2(Mtoy) is only four. (The cohomology class
of the generic fiber of the Hitchin map is the one in the kernel.)
Mtoy is diffeomorphic to the character variety M̄µ

B where g = 0 and µ =
((1, 1), (1, 1), (1, 1), (1, 1)). Thus by Conjecture 16.6 we should be able to calculate
χL2

(
M̄µ

B

)
in terms of the representation theory of the corresponding quiver Γ.

The corresponding quiver Γ in this case will be the affine D̃4 Dynkin diagram,
with v = (2, 1, 1, 1, 1) the minimal positive imaginary root. Its multiplicity mv

in the affine Kac–Moody algebra associated to Γ is known to be 4. Alternatively
it is known (Kac 1983 example b to conjecture 2) that AΓ(v, q) = q + 4, which
by (16.11) gives mv = 4. Thus indeed χL2 (Mµ

B) = mv = 4 checking (16.15) in
this case via Hausel (1998, Example 2 for Theorem 7.13).
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