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RELATIONS IN THE COHOMOLOGY RING OF THE MODULI
SPACE OF RANK 2 HIGGS BUNDLES

TAMÁS HAUSEL AND MICHAEL THADDEUS

Let C be a smooth complex projective curve of genus g. By a Higgs bundle on
C we shall mean a pair (E, φ) consisting of a holomorphic vector bundle E on C
and a section φ ∈ H0 (C,EndE ⊗K(np)), where n ≥ 0 is fixed and p ∈ C is a
basepoint. With the appropriate notion of stability, there exists a quasi-projective
moduli space Hn of stable Higgs bundles of fixed rank and degree. The aim of this
paper is to characterize the rational cohomology ring of Hn when the rank is 2 and
the degree is odd.

In fact, we have given a complete set of generators for this ring in another paper
[14]. So it is now a question of finding the relations between these generators.
Even though this is a natural companion to the generation problem, the ideas and
methods with which it is studied have quite a different flavor. In particular, there
is much more explicit calculation.

What makes the rank 2 case tractable is that the number of generators is man-
ageable: just ε1, . . . , ε2g ∈ H1, α ∈ H2, ψ1, . . . , ψ2g ∈ H3, and β ∈ H4. In arbitrary
rank, the number of generators is quite large, and finding all the relations seems
out of reach at the moment. At any rate, it has not even been done for the compact
moduli space N of stable bundles which lies inside Hn.

Now in rank 2 the relations in the cohomology ring of N have been calculated
by several authors [4, 16, 25, 33], and of course our ideal of relations must contain
theirs. However, the answer to our problem is actually more explicit in that the
relations are given by a simple closed formula, rather than by a recursion in the
genus g.

Yet in another sense our answer is more complicated. Although our relations
are completely explicit, there are very many of them, and there is no escaping this.
The so-called “invariant part” of H∗(N ), for example, requires only 3 relations to
generate all the others multiplicatively, while the corresponding number for H∗(Hn)
grows quadratically in g.

Within this large crowd, some old friends stand out. For example, βg, conjec-
tured by Newstead [23] in 1972 to be a relation on N and shown to be one much
later [18, 29], remains a relation on H0, though not on all of the Hn.

Another familiar part of the story is a proposition proved in §10, stating that,
if ρ is a relation on H0 at genus g − 1, then ψjψj+gρ is a relation on H0 at genus
g. Results like this have appeared several times before in the subject [22, 29,

Received by the editors June 10, 2002.
2000 Mathematics Subject Classification. Primary 14H60; Secondary 14D20, 14H81, 32Q55,

58D27.
The first author was supported by NSF grant DMS–97–29992.
The second author was supported by NSF grant DMS–98–08529.

c©2002 American Mathematical Society

303

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
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31]. They rely strongly on the interpretation of the moduli space in terms of flat
connections (or more precisely, connections of constant central curvature). Indeed,
this marks the sole point where this interpretation, otherwise banished in favor of
Higgs bundles, is briefly recalled.

The contents of the paper may be summarized as follows. Section 1 recalls the
existing results we need, notably the generation theorem. Section 2 states the main
result of the paper, which gives an explicit basis ρcr,s,t for the ideal of relations
in rank 2. Section 3 then reviews some basic facts about equivariant cohomology,
which is the main technical tool. Section 4 classifies the components of the fixed-
point set of the C×-action on Hn in whose equivariant cohomology we will work.
These are closely related to the symmetric products of C, and so §5 reviews some
relevant facts about symmetric products of curves. Using these facts, §6 computes
the restrictions of the generators to each component of the fixed-point set. This is
crucial information if a polynomial in these classes is to be shown to be a relation,
since a theorem of Kirwan (3.1)(iii) implies that a polynomial in the generators
is an equivariant relation if and only if its restriction to every component of the
fixed-point set vanishes.

Section 7 defines some polynomials ξkr,s in α, β, γ, by a recursive process. Then
in §8 we finally compute our first equivariant relations, by showing that certain
combinations of the ξkr,s vanish when restricted to the fixed-point set. These rela-
tions are expressed in terms of the explicit polynomials ρcr,s,t by a purely algebraic
argument, given in §9. The proposition discussed before, about multiplication by
γ, is proved next, in §10; it provides many new relations which are divisible by γ.

Up to this point, all the relations we have considered are polynomials in α, β, γ,
and thus in particular invariant under the action of the symplectic group Γ =
Sp(2g,Z); §11 remedies this situation, showing how the invariant relations may be
used to deduce many more noninvariant relations. In fact, the relations on Hn
at genus g divisible by ψ1ψ2 · · ·ψk turn out to be exactly the invariant relations
on Hn+k at genus g − k. Thus, even if one is interested only in the space H0

parametrizing connections of constant central curvature, one needs to understand
the cohomology of Hn for n > 0.

Finally, §12 wraps up the proof of the main theorem, by showing that the number
of relations we already have in hand equals the total number.

The story of how these relations were conjectured and proved is worth telling
briefly. It was clear from the outset that Kirwan’s theorem would be an invaluable
tool; that it could be used, as in §8, to decide whether a polynomial in the equivari-
ant generators is a relation; and that this was, in principle, completely algorithmic.
The first author was able to implement this algorithm in the computer software
package Macaulay 2 [9] and crank out the equivariant relations for g ≤ 7. Their
restrictions to ordinary cohomology showed some discernible patterns, so after two
weeks in Oberwolfach, we were able to guess all of the ordinary relations for general
g, in roughly the form ρcr,s,t given in (2.3). It remained only to guess their equi-
variant extensions, that is, the relations in the equivariant cohomology, which has
one extra generator. Guessing these equivariant extensions took the better part of
two years.

More precisely, we were never able to guess a closed formula or generating func-
tion for the equivariant extensions of the ρcr,s,t themselves, even though we knew
them in genus ≤ 7. If we could have, this would have been a much shorter paper.
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We hope that someone will guess these extensions some day; what we actually did,
though, was to find rather different equivariant relations (8.5), and then show by
several artful maneuvers, including the proposition mentioned above, that these
imply the relations ρcr,s,t we originally found.

Some other papers of the authors have explored different aspects of the theory
of Higgs bundles: for example, the compactification of the moduli space [11], its
intersection numbers in the compactly supported cohomology [12], and the upward
and downward flows from the components of the fixed-point set [32]. Some rela-
tionships between these topics and the contents of this paper are sketched in the
last section, §13.

Notation and conventions. Throughout the paper, C denotes the smooth projective
curve of genus g over which we work. Its cohomology has the usual generators
e1, . . . , e2g ∈ H1, and σ = ejej+g ∈ H2. The mth symmetric product of C is
denoted Cm, and the Jacobian of degree d line bundles on C is denoted JacdC.
The letters N , Hn, and Mn denote moduli spaces over C, respectively, of stable
bundles E having Λ2E isomorphic to a fixed line bundle Ξ, of Higgs bundles with
values in K(n) = K⊗O(np), and Higgs bundles (E, φ) with values in K(n) having
Λ2E ∼= Ξ and trφ = 0. Groups are denoted T = C×, Γ = Sp(2g,Z), and Σ = Z2g

2 .
We use the term total degree to mean half the ordinary degree of a cohomology

class. The notation ( )d means the part of a cohomology class in total degree d. All
cohomology is with rational coefficients unless otherwise stated.

We do not assume g ≥ 2: the moduli spacesM0, H0 and N are trivial or empty
if g = 0 or 1, but Mn and Hn for n > 0 are not so trivial, and they play an
important role even for understanding g ≥ 2.

1. Preliminaries and review

Let C be a smooth complex projective curve of genus g, and let p ∈ C be
a distinguished point. For n ≥ 0, denote by K(n) the line bundle K ⊗ O(np),
where K is the canonical bundle. A Higgs bundle with values in K(n) is a pair
(E, φ) consisting of a holomorphic vector bundle E over C and a Higgs field φ ∈
H0(EndE ⊗ K(n)). It is stable if for all proper subbundles F ⊂ E such that
φ(F ) ⊂ F ⊗K(n), degF/ rkF < degE/ rkE.

The existing results we shall need to recall are few and, except for the authors’
result stated as (1.4) below, have been known for some time. They can be summa-
rized as follows.

First, there are some elementary facts about stable Higgs bundles [14, 4.2,4.3].

(1.1) If X parametrizes two families (E,Φ) and (E′,Φ′) of stable Higgs bundles,
and (Ex,Φx) ∼= (E′x,Φ′x) for all x ∈ X, then E′ = E⊗L for some line bundle L over
X, and Φ′ = Φ. Moreover, if an action of C× on X lifts to E and E′ preserving
the Higgs fields, then it lifts to L also so that E′ = E⊗ L equivariantly.

Next, there is a moduli space, constructed by Simpson [27] and Nitsure [24].

(1.2) There exists a moduli space Hn of stable Higgs bundles of rank 2 and
degree 1 with values in K(n), which is a smooth quasi-projective variety. It admits
a universal family (E,Φ), and the C×-action on Hn given by λ(Eφ) = (E, λφ) lifts
to this family.
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The following alternative interpretation of H0, due to Corlette [5], Donaldson
[6], Hitchin [15], and Simpson [27], will only be used in §10.

(1.3) For n = 0, the moduli space H0 is diffeomorphic to the moduli space
H of GL(2,C)-connections of constant central curvature iωI, where ω is a volume
form on C. That is, H0 ' µ−1(−I)/GL(2,C), where µ : GL(2,C)2g → GL(2,C)
is given by µ(Aj , Bj) =

∏g
j=1AjBjA

−1
j B−1

j , and GL(2,C) acts on µ−1(−I) by
simultaneous conjugation. The natural determinant maps and universal families
coincide under this diffeomorphism.

Let Ξ be a fixed holomorphic line bundle over C of degree 1, and let Mn ⊂ Hn
be the subspace consisting of those (E, φ) ∈ Hn such that Λ2E ∼= Ξ and trφ = 0.
In the case n = 0, this is the moduli space studied by Hitchin [15]. The discussion
so far, and the previous paper of the authors [14], refer to Hn, but the remainder
of this paper will actually work withMn. This gives equivalent information for the
following reason. The group Σ = Z2g

2 ⊂ JacC of line bundles with structure group
Z2 acts on Mn by tensor product, and indeed Hn = (Mn × T ∗ JacC) /Σ. As
seen in §1 of our previous paper [14], H∗(Hn) = H∗(Mn)Σ ⊗H∗(JacC) as rings.
To describe H∗(Hn), therefore, it suffices to describe H∗(Mn)Σ. This will be the
purpose of the paper. The part of H∗(Mn) not invariant under Σ is ignored here,
but it is completely described in a forthcoming work [32].

The main result of our paper on the generators [14] is the following.

(1.4) The rational cohomology ring H∗(Mn)Σ is generated by the universal
classes, that is, the Künneth components α2, β2, and ψ2,j of c̄2(PE) = 1

4 c2(End E).

This result has been extended to higher rank Higgs bundles by Markman [21].
Following the conventions established by Newstead [23], we will let α = 1

2 α2,
β = − 1

4 β2, and ψj = ψ2,j for j = 1, . . . , 2g, so that

(1.5) c2(End E) = 2ασ − β + 4
g∑
j=1

ψjej,

where e1, . . . e2g is the usual basis for H1(C), and σ ∈ H2(C) is the positive gener-
ator.

2. Statement of the main result

Our task, then, is to give a complete set of relations between the generators α,
β, and ψ1, . . . , ψ2g. To do so, we must first say a little about the action of the
symplectic group on H∗(Mn)Σ.

The group of orientation-preserving diffeomorphisms of C acts on H∗(C) by
automorphisms, so it has the automorphism group of H∗(C), namely Γ = Sp(2g,Z),
as a quotient [19, p. 178].

(2.1) There is a natural action of Γ on H∗(Mn)Σ which fixes α and β but acts
on the ψj as the standard representation.

Proof. In the case of M0, this follows immediately from (1.3), but to extend it to
Mn we describe another argument.

Let f : C → C be any orientation-preserving diffeomorphism. The complex
structure typically is not preserved by f , so pulling it back induces a new complex
structure C′ on the same underlying surface. Since Teichmüller space, or the moduli
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space of curves, is connected, there is a path connecting C to C′. The construction
of the moduli space Mn, and of the universal pair (E,Φ), can be carried out
simultaneously over all the Riemann surfaces in this path. Hence by homotopy
invariance there is a topological isomorphism E ∼= E′, where (E′,Φ′) is a universal
pair on C′. The homotopy class of the isomorphism depends only on the isotopy
class of f .

On the other hand, if f̂ : M′n → Mn is the map of moduli spaces induced by
f : C′ → C, then (f̂×f)∗(E,Φ) is a universal pair over C′, and so by the uniqueness
in (1.1),

(f̂ × f)∗ End E ∼= End E′ ∼= End E.

Hence (f̂×f)∗c2(End E) = c2(End E), so f̂∗α = α, f̂∗β = β, and (f̂×f)∗
∑

j ψjej =∑
j ψjej . The action of the diffeomorphism group on H3(Mn) = 〈ψj〉 is therefore

dual to its action on H1(C) = 〈ej〉; this factors through the standard representation
of Γ, which is self-dual. Moreover, by (1.4), the action of the diffeomorphism group
on all of H∗(Mn)Σ factors through Γ. �

The exterior square of the standard representation of γ has an invariant element,
the symplectic form. So γ = −2

∑g
j=1 ψjψj+g ∈ H6(Mn) is a Γ-invariant element.

Since the powers of the symplectic form are the only invariant elements of exterior
powers of the standard representation, we deduce the following from (1.4).

(2.2) The Γ-invariant part of H∗(Mn)Σ is generated by α ∈ H2, β ∈ H4, and
γ ∈ H6.

Like the exterior square discussed above, the higher exterior powers of the stan-
dard representation of Γ are reducible. Indeed, let Λk(ψ) be the kth exterior power
of the standard representation, with basis ψ1, . . . , ψ2g. Define the primitive part
Λk0(ψ) to be the kernel of the natural map Λk → Λ2g+2−k given by the wedge prod-
uct with γg+1−k. The primitive part is complementary to γΛk−2 ⊂ Λk and is an
irreducible representation of Γ: this is well known for Sp(2g,C) and so remains true
for the Zariski dense subgroup Γ. Being irreducible, it is generated by ψ1 · · ·ψk.

For any g, n ≥ 0, let Ign be the ideal within the polynomial ring Q[α, β, γ] gener-
ated by γg+1 and the polynomials

(2.3) ρcr,s,t =
min(c,r,s)∑

i=0

(c− i)! αr−i

(r − i)!
βs−i

(s− i)!
(2γ)t+i

i!
,

where c = r + 3s+ 2t− 2g + 2− n, for all r, s, t ≥ 0 such that

(2.4) r + 3s+ 3t > 3g − 3 + n and r + 2s+ 2t ≥ 2g − 2 + n.

The following is then the main result of the present paper.

(2.5) As a Γ-algebra,

H∗(Mn)Σ =
g⊕
k=0

Λk0(ψ)⊗Q[α, β, γ]/Ig−kn+k.

The theorem enunciated in (1.2) of our previous paper [14] is the above in
the case n = 0. In that case the relation of lowest degree is ρg1,g−1,0 = gαβg−1 +
(g−1)βg−2(2γ). When n = 1, there are two relations of lowest degree, one of which
is ρg+1

0,g,0 = (g + 1)βg. When n ≥ 2, the lowest degree in which a relation appears is
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2(2g − 2 + n). At least for s ≥ r, the relations in this degree have the particularly
simple form βs−r(αβ + 2γ)r.

3. Equivariant cohomology

Our main tool for studying the ring structure of H∗(Mn) is equivariant coho-
mology, which we briefly review. For a more leisurely exposition see Atiyah-Bott
[2, 3].

If a group — say a Lie group — acts on a topological space M , the homotopy
quotient MG is defined as the associated bundle over the classifying space BG with
fiber M :

MG =
M × EG

G
.

The equivariant cohomology of M is defined to be simply the ordinary cohomology
of MG:

H∗G(X) = H∗(XG).

This is a module over H∗(BG). Restricting to any fiber gives a natural map
H∗G(M) → H∗(M). Note also that if G acts trivially on M , then H∗G(M) =
H∗(M)⊗H∗(BG).

If the action ofG lifts to a linear action on a vector bundle E, then a vector bundle
EG over MG can be defined in the obvious way. Thus a vector bundle equipped
with such a lifting possesses well-defined equivariant characteristic classes lying in
H∗G(M).

In our case the group acting is T = C×, so that BT = CP∞, and H∗(BT ) = Q[u]
where u is a class of degree 2. Kirwan [17, 18] proved the following fundamental
results on C×-actions.

(3.1) When T = C× acts algebraically on a smooth quasi-projective M so that
limλ→0 λ · x exists for every x, then

(i) there is an additive isomorphism

Hi(M) ∼=
⊕
d

Hi+rd(Fd),

where F =
⋃
d Fd is the decomposition of the fixed-point set into components

and rd is the dimension of the subbundle of TM |Fd acted on with negative
weight by T ;

(ii) the Leray sequence of MT → BT degenerates, so that H∗T (M) ∼= H∗(M)
⊗ H∗(BT ) additively, and the ring homomorphism H∗T (M) → H∗(M) is
surjective;

(iii) the restriction to the fixed-point set

H∗T (M) −→ H∗T (F) = H∗(F)[u]

is an injective ring homomorphism.

Statement (i) is perhaps most familiar in a symplectic context as stating that
the moment map is a perfect Bott-Morse function. But statement (iii) is equally
crucial for us since it respects the ring structure. Together with (ii), it will tell us
that a polynomial in α, β, and ψj is a relation on Mn if and only if it is the value
at u = 0 of a polynomial in α, β, ψj , and u — the equivariant extension of the
relation — whose restriction to H∗G(Fd) = H∗(Fd)[u] is a relation for each d.
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4. Fixed points of the circle action

We will study the action of T = C× onMn given simply by λ · (E, φ) = (E, λφ).
By (1.2) this lifts to the universal bundle, and hence the universal classes extend
to equivariant classes, which by abuse of notation, we continue to denote α, β, and
ψj . They are canonical by the uniqueness in (1.1).

In light of (3.1), it is vital to determine the fixed-point set for this action. As
discussed in (10.5) of our previous paper [14], this would be somewhat tricky in
arbitrary rank. But now that we have restricted attention to rank 2 (and fixed
determinant), it is not so hard. The lemma below is proved by Hitchin [15, 7.1] for
M0, but his proof generalizes directly to Mn.

(4.1) The components of the fixed-point set F for the T -action on Mn are as
follows.

(i) A component F0 isomorphic to N , the moduli space of stable bundles E
with Λ2E ∼= Ξ. It parametrizes Higgs bundles of the form (E, 0).

(ii) Components F1, . . . , Fg+[n−1
2 ] which are fibered products

Fd = C2g+n−1−2d ×Jac2d C JacdC,

where the maps C2g+n−1−2d → Jac2dC and JacdC → Jac2dC are given
by D 7→ KΞ(n)(−D) and L 7→ L2, respectively. These parametrize Higgs

bundles (E, φ) of the form E = L ⊕ ΞL−1, φ =
( 0 0
s 0

)
, where s is the

section of KL−2Ξ(n) vanishing at D.

Hitchin went on to compute the cohomology of the fixed components of type (ii)
as follows. By the Leray sequence

(4.2) H∗(Fd) =
⊕
i∈Σ

H∗(C2g+n−1−2d,Li),

where the right-hand side consists of cohomology with local coefficients, and Li
runs over the flat line bundles with structure group Z2 pulled back from Jac2dC. If
Li is the trivial bundle, this is simply the ordinary cohomology H∗(C2g+n−1−2d).
Otherwise Hk(C2g+n−1−2d,Li) = ΛkH1(C,Li) if k = 2g + n − 1 − 2d, and 0 if
not. Here Li runs over the flat line bundles with structure group Z2 pulled back
from Jac1 C to C by the Abel-Jacobi map. Hitchin shows that for Li nontrivial,
H0(C,Li) = H2(C,Li) = 0, and H1(C,Li) has dimension 2g − 2.

The action of Σ onMn commutes with the T -action and induces the trivial action
on H∗(N ) since it is generated by universal classes [23]. It acts on the remaining Fd
as the Galois group of the unbranched cover Fd → C2g+n−1−2d, and the splitting
(4.2) is exactly the decomposition of the cohomology into weight spaces.

Consequently, the Σ-invariant part of H∗(F) is

H∗(N )⊕
g+[n−1

2 ]⊕
d=1

H∗(C2g+n−1−2d).

5. Symmetric products of a curve

The symmetric products of the curve C thus enter into our considerations. So
let us review some facts about the cohomology of such a symmetric product. Good
references are the paper of Macdonald [20] or the book of Arbarello et al. [1].
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In Cm × C, there is a universal divisor ∆ such that ∆ ∩ ({D} × C) = D. Write
its Poincaré dual in terms of Künneth components as

mσ + η +
2g∑
j=1

ξjej ,

where σ and e1, . . . , e2g are generators of H2(C) and H1(C), respectively, so that
η ∈ H2(Cm) and ξ1, . . . , ξ2g ∈ H1(Cm). A theorem of Macdonald [20] asserts that
the cohomology ring H∗(Cm) is generated by η and the ξj . It is convenient to
introduce θj = ξjξj+g and θ =

∑g
j=1 θj ∈ H2(C).

The group of orientation-preserving diffeomorphisms of C acts on Cm × C. It
preserves ∆ and hence the Künneth components of its Poincaré dual. Hence it
leaves η invariant. Moreover, its action on the linear span of the ξj , which is
H1(Cm), is dual to its action on H1(C) and hence factors through the quotient Γ =
Sp(2g,Z). There is therefore a surjective homomorphism of Γ-algebras Λ∗(ξ)[η]→
H∗(Cm). Here Λ∗(ξ) denotes the exterior algebra of the standard 2g-dimensional
representation of Γ, with basis vectors ξ1, . . . , ξ2g.

The class θ represents the symplectic form. So in terms of the primitive parts
Λk0 introduced in §2, the surjective homomorphism above is better expressed as

g⊕
k=0

Λk0(ξ) ⊗Q[η, θ] −→ H∗(Cm).

In particular, the Γ-invariant part of H∗(Cm) is generated by η and θ.
The following result on H∗(Cm) will be of key importance for us. Note that we

use the term total degree to mean half the ordinary degree of a cohomology class.

(5.1) Let l, m, p, and q be nonnegative integers. If m−g+q ≤ l and g+p−q < l,
then ( ηp exp θ

(1 + η)q
)
l

= 0

in H∗(Cm), where the subscript l denotes the part in total degree l.

Proof. Since the cup product is a homomorphism of Γ-modules, Poincaré duality
holds for the Γ-invariant part. It therefore suffices to check that the product of this
expression with any monomial in η and θ evaluates to 0 on the fundamental class
of Cm.

It follows from Macdonald’s results [20] that any monomial ηv
∏
j ξ

wj
j of total

degree m evaluates on the fundamental class of Cm to 1 if wj = wj+g ≤ 1 for each
j ≤ g, and 0 otherwise. As pointed out by Zagier [30], this implies that for any
formal power series A(x) and B(x),

A(η) exp(θB(η))[Cm ] = Res
η=0

A(η)(1 + ηB(η))g dη
ηm+1

.
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We multiply our expression by the generating function exp(sθ)/(1 + tη) for the
monomials in η and θ and ask the coefficient of sitj to vanish whenever i+j = m−l:

Coeff
sitj

ηp exp((s+ 1)θ)
(1 + η)q(1 + tη)

[Cm] = Coeff
sitj

Res
η=0

ηp(1 + η + sη)g dη
(1 + η)q(1 + tη)ηm+1

= const. Res
η=0

ηp(1 + η)g−iηiηj dη
(1 + η)qηm+1

= const. Res
η=0

ηi+j+p−m−1(1 + η)g−i−q dη.

Now since g − i − q ≥ g − q − (m − l) ≥ 0 by hypothesis, the second factor is a
polynomial of degree g − i− q. All terms therefore have degree at most

(i+ j + p−m− 1) + (g − i− q) ≤ p+ (m− l)−m− 1 + g − q = p− l− 1 + g − q,
which is less than −1 by hypothesis. �

6. Restriction of the universal classes to the fixed-point set

In order to apply 3.1(iii), we need to know how the equivariant universal classes
restrict to each component of the fixed-point set. The lowest component F0 = N
is easy. The universal pair overM×C restricts to a universal bundle over N ×C,
and the T -action restricts to a trivial action. So α, β and ψj restrict to classes on
N defined in a like manner and bearing the same names. The relations between
these classes on N have been studied by many authors, notably Zagier [33]; we will
have occasion to use his results later.

The components Fd for d > 0 are handled by the following lemma.

(6.1) For d > 0, the restrictions of the universal classes to Fd are pulled back
from the symmetric product C2g+n−1−2d; indeed,

(1) α|Fd = (2d− 1)(η − u) + θ;
(2) β|Fd = (η − u)2;
(3) ψj |Fd = 1

2 (η − u) ξj;
(4) γ|Fd = − 1

2 (η − u)2θ.

Proof. We first construct an equivariant universal family (E,Φ) of Higgs bundles
over Fd×C. Since End E is unique as an equivariant bundle by (1.1), the universal
classes must restrict to the Künneth components of its second Chern class.

Take the following three ingredients. First, take the line bundle KΞ(n) over C.
Second, take the universal divisor ∆ ⊂ C2g+n−1−2d×C, or rather its associated line
bundle O(∆). Third, take any Poincaré line bundle L over Jacd C×C. Now pull all
three back to Fd×C. By the definition of the fibered product, L2 and KΞ(n)(−∆)
are isomorphic when restricted to any fiber of the projection Fd × C → Fd. So
by the push-pull formula, L2K−1Ξ−1(−n)(∆) is the pull-back from Fd of a line
bundle, say M . There is then an element s ∈ H0(Fd × C,ML−2KΞ(n)) vanishing
precisely on the inverse image of ∆.

Let E = L⊕MΞL−1, and let Φ ∈ H0(End E⊗K(n)) be given by Φ =
( 0 0
s 0

)
with respect to the splitting. Then (E,Φ) parametrizes the pairs of the form
described in (4.1)(ii). It is hence a universal family. Moreover, if T acts on the two
factors with weights 1 and 0, respectively, then it acts on Φ by scalar multiplication.
By (1.1), then, End E is equivariantly isomorphic to the restriction of its counterpart
from Mn × C.
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Since E splits as a direct sum, c2(End E) = −(c1(MΞL−1) − c1(L))2 =
−c1(MΞL−2)2 = −c1(K−1(−n)(∆))2. For this to be correct equivariantly, we must
include the weights of the T -action, so the equivariant c1 is the nonequivariant c1
minus u. It is well known that

c1(O(∆)) = (2g + n− 1− 2d)σ + η +
2g∑
j=1

ξjej :

see for example Arbarello et al. [1]. Hence

c2(End E) = −
(

(2 − 2g − n)σ + (2g + n− 1− 2d)σ + η +
2g∑
j=1

ξjej − u
)2

.

Using the identity (
∑
ξjej)

2 = −2θσ and comparing coefficients with those of
(1.5) yields the result. �

All our weapons are now prepared, and we are ready to attack the main result.
It is not a frontal assault, however. Rather, we begin by computing some relations
quite different from the ρ-classes.

7. Some recursively defined polynomials in α, β, γ and u

The Γ-invariant subring is at the heart of the larger ring containing it; its struc-
ture is the key to that of the whole. Our strategy will therefore be to look first
for relations between α, β, and γ. The method is curiously roundabout. First,
certain complicated polynomials, defined recursively here in §7, are shown in §8 to
be relations, by writing down their equivariant extensions explicitly. Then they are
shown to be expressible in terms of the much simpler polynomials ρcr,s,t by a purely
algebraic argument, given in §9. Not until §12 does a dimension count show that
the ρ-classes must all be relations.

One relation which holds automatically in allMn is γg+1 = 0. This is simply be-
cause γ = −2

∑g
j=1 ψjψj+g and each ψ2

j = 0 by skew-commutativity. It is therefore
convenient to view our polynomials as belonging to the ring R = Q[α, β, γ]/(γg+1).

Define polynomials ξkr by ξkr = 0 for r < 0, ξk0 = 1, and

(7.1) (r + 1)ξkr+1 = αξkr + (r − 2k)βξkr−1 + 2γξkr−2

for r > 0. When k = 0, these are the polynomials ξr defined by Zagier [33], and his
generating function for the ξr extends readily.

(7.2) Define F k0 (x) =
∑∞

r=0 ξ
k
rx

r ∈ R[[x]]. Then

F k0 (x) = (1− βx2)(2k−1)/2 e−2γx/β

(
1 + x

√
β

1− x
√
β

)(αβ+2γ)/2β
√
β

.

Proof. From Proposition 4 of Zagier [33] we know that F 0
0 satisfies the differential

equation
(1 − βx2)(F 0

0 )′(x) = (α+ βx+ 2γx2)F 0
0 (x).

Now (7.1) is equivalent to

(r + 1)ξkr+1 − (r − 1)βξkr−1 = αξkr + (1− 2k)βξr−1 + 2γξr−2,

which shows that F k0 satisfies the differential equation

(1 − βx2)(F k0 )′(x) = (α+ (1− 2k)βx+ 2γx2)F k0 (x),
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with initial condition F k0 (0) = 1. But (1 − βx2)kF 0
0 satisfies the same differential

equation

(1 − βx2)
(
(1− βx2)kF 0

0

)′
= (1− βx2)k(1− βx2)(F 0

0 )′ − kβx(1 − βx2)kF 0
0

= (α+ βx + 2γx2)(1 − βx2)kF 0
0 − 2kβx(1− βx2)kF 0

0

= (α+ (1 − 2k)βx+ 2γx2)(1 − βx2)kF 0
0 ,

and certainly (1− β02)kF 0
0 (0) = 1, so we conclude that

F k0 (x) = (1 − βx2)kF 0
0 (x).

Now substitute Zagier’s generating function for F 0
0 . �

(7.3) The polynomial ξkr is a relation on N whenever r ≥ g + 2k.

Proof. An equivalent form of (7.2) is ξkr =
∑k

i=0 ξ
0
r−2i(−β)i, and Zagier shows that

ξ0
r is a relation on N for r ≥ g. �

Now define an expression with one more index:

(7.4) ξkr,s =
s∑
i=0

(
r−2k+s−i
r−2k

)
βs−i

(2γ)i

i!
ξkr−i.

Note that this is 0 if r < 2k. Moreover, the ith term in the sum vanishes when i > r
and also (as an element of R) when i > g. Hence in particular ξk2k,g+l = βlξk2k,g in
R for all l ≥ 0.

(7.5) Let F k(x, y) =
∑∞

r,s=0 ξ
k
r,sx

rys ∈ R[[x, y]]. Then

F k(x, y) =
(
(1− βy)2 − βx2

)(2k−1)/2
e−2γx/β

(
1 + x

√
β − βy

1− x
√
β − βy

)(αβ+2γ)/2β
√
β

.

Proof. For fixed r we have∑
s≥0

ξkr,sy
s =

r∑
i=0

(2γy)i

i!
ξkr−i

∞∑
s=i

(
r−2k+s−i
r−2k

)
(βy)s−i

=
1

(1− βy)r−2k+1

r∑
i=0

(2γy)i

i!
ξkr−i.

Multiplying by xr and summing over r ≥ 0 we obtain

F k(x, y) = (1 − βy)2k−1e2γxy/(1−βy)F k0

( x

1− βy
)
,

and the desired result follows by substituting the formula given in (7.2). �

(7.6) For r, s ≥ 0 we have

ξkr,s =
s∑
l=0

(−1)s−l
[(
r+l
r

)
+
(
r+l−1
r

)]
ξks−lξ

k
r+s+l,

where the binomial coefficient
(−1

0

)
is to be taken as 0.

Proof. Similar to Zagier’s Proof 1 of his Theorem 4. �
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8. Proof that the recursively defined polynomials are relations

After this algebraic preparation, we now find some relations between α, β, and
γ that can be expressed in terms of the classes ξkr,s introduced above. We make
fundamental use of Kirwan’s theorem (3.1)(iii), which tells us that any polynomial
in the generators that vanishes on the equivariant cohomology of each component
of the fixed-point set must be a relation.

(8.1) For n ≥ 0, let p ∈ R[u] be an equivariant relation on Mn+2, that is,
an element of the kernel of the natural map to H∗T (Mn+2). Then ∂p/∂u is an
equivariant relation on Mn.

Proof. By Kirwan’s theorem (3.1)(iii), it suffices to show that ∂p/∂u restricts to an
equivariant relation on each component of the fixed-point set ofMn.

For F0 = N , this is obvious, since p is also a relation on H∗T (N ) = H∗(N )[u].
As for Fd with d > 0, we may work in H∗(Cm), where m = 2g + n − 1 − 2d.

The relation p restricts to a relation in H∗(Cm+2)[u]; moreover, since by (6.1) the
restrictions of α, β, γ are polynomials in η−u and θ, the relation can be expressed
as a polynomial r(φ, θ, u)|φ=η−u such that ∂r/∂u(φ, θ, u)|φ=η−u is the restriction of
∂p/∂u, which we want to vanish.

The assignment u 7→ η−φ induces an isomorphismH∗(Cm+2)[u] ∼= H∗(Cm+2)[φ],
so r(φ, θ, η − φ) is a relation in H∗(Cm+2)[φ]. Observe now that the derivative
with respect to η of any relation in H∗(Cm+2) is a relation in H∗(Cm). This fol-
lows directly from the list of relations given by Macdonald [20, 6.21]. Therefore
∂/∂η(r(φ, θ, η − φ)) is a relation in H∗(Cm)[φ], and hence

∂

∂η
(r(φ, θ, η − φ))

∣∣∣∣
φ=η−u

=
∂r

∂u
(φ, θ, u)

∣∣∣∣
φ=η−u

is a relation in H∗(Cm), as desired. �

(8.2) For n ≥ 0, let p ∈ R[u] be an equivariant relation onMn. Then (u2−β) p
is an equivariant relation on Mn+1.

Proof. Let Fd be any component of the fixed-point set of Mn+1. We show that
restricting (u2 − β) p to Fd yields 0. It is clearly true on F0 = N since this is
contained in Mn. For d > 0, the restriction of u2 − β to Fd is η (2u− η) by (6.1).
On the other hand p restricted to Fd ∩Mn is supposed to be zero. But the image
of the inclusion Fd ∩Mn ⊂ Fd is Poincaré dual to η, since it is an étale cover of
the inclusion C2g+n−1−2d ⊂ C2g−2d+n. Hence η times a relation on Fd ∩Mn is a
relation on Fd. �

These results suggest that, even if we are interested only in the relations onM0,
it is useful to study Mn for all n.

(8.3) For n ≥ 0 and k = 0, . . . , [n/2], the equivariant class

F k(u, 1)2g+2n =
g+n∑
r=0

ξkr,g+n−ru
r

is an equivariant relation on Mn+2.

Proof. By Kirwan’s theorem (3.1)(iii), it suffices to show that it restricts to a rela-
tion on each component of the fixed-point set of Mn+2.
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For the first component F0, namely N , this follows immediately from (7.6) and
(7.3).

For the remaining components Fd with d > 0, use (6.1) to restrict (7.5) to Fd.
This yields

F k(u, 1)2g+2n =
(
eθu

(1− (η − u)(η − 2u))d+k−1

(1 − η(η − u))d−k

)
2g+2n

,

where the subscript, as in the past, denotes the part in total degree 2g + 2n, that
is, in ordinary degree 2(2g+ 2n). To show that this vanishes in H∗(C2g−2d+1+n) ⊂
H∗(Fd), express it aseθu (1 − (η − u)(η − 2u))d+k−1

(1 + ηu)d−k
(

1− η2

1+ηu

)d−k


2g+2n

=

( ∞∑
i=1

(
d−k+i
i

) η2ieθu

(1 + ηu)d−k+i
(1− (η − u)(η − 2u))d+k−1

)
2g+2n

.

It follows immediately from (5.1) that(
eθu(ηu)2i

(1 + ηu)d−k+i

)
2(g−d+n+i+1−k)+j

= 0

for j ≥ 0 (the 2 appearing in the subscript since ηu and θu are substituted for η
and θ) and hence that(

eθuη2i

(1 + ηu)d−k+i

)
2(g−d+n+1−k)+j

= 0

for n ≥ 0. Consequently each term in the sum above vanishes in total degree
2g + 2n. �

(8.4) (a) For even n ≥ 0 and k = 0, . . . , n/2, the equivariant class(
(2 + u2 − β)n/2−kF k(u, 1)

)
2g+n+2k

is an equivariant relation on Mn+2 divisible by u2k.
(b) For odd n ≥ 0 and k = 0, . . . , (n−1)/2, the equivariant class(

(1 + u2 − β)(2 + u2 − β)(n−1)/2−kF k(u, 1)
)

2g+n+2k+1

is an equivariant relation on Mn+2 divisible by u2k+1.
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Proof. Since u is not a zero-divisor in H∗T (Mn+2), to show the expression in (a) is
a relation, it suffices to do the same for the part in total degree 2g + 2n of

un−2k (2 + u2 − β)n/2−k F k(u, 1)

=
(
(1 + u2 − β)2 − ((1− β)2 − βu2)

)n/2−k
F k(u, 1)

=
∑
i

(n
2
−k
i

)
(1 + u2 − β)2i

(
(1 − β)2 − βu2

)n/2−k−i
F k(u, 1)

=
∑
i

(n
2
−k
i

)
(1 + u2 − β)2i Fn/2−i(u, 1)

=
∑
i,j

(n
2
−k
i

)(
2i
j

)
(u2 − β)j Fn/2−i(u, 1).

By (8.3), Fn/2−i(u, 1)2g+2n−2j is a relation on Mn−j+2; hence by (8.2),(
(u2 − β)jFn/2−i(u, 1)

)
2g+2n

is a relation on Mn+2.
The statement about divisibility is easy, since F k(u, 1) =

∑
ξkr,su

r and ξkr,s = 0
for r < 2k.

The proof of (b) is similar: first multiply by un−1−2k, compute as before

un−1−2k (1 + u2 − β) (2 + u2 − β)(n−1)/2−k F k(u, 1)

=
∑
i,j

(n−1
2
−k
i

)(
2i+1
j

)
(u2 − β)j F (n−1)/2−i(u, 1),

and then apply (8.2) and (8.3).
As in (a), this is clearly divisible by u2k, but the quotient is further divisible by

another factor of u. This is because the coefficient of u0 in the quotient is(
(1− β)(2 − β)(n−1)/2−k

∞∑
s=0

ξk2k,s

)
2g+n+1

=

(
(1 − β)(2 − β)(n−1)/2−k

∞∑
s=g

ξk2k,s

)
2g+n+1

=

(
(1 − β)(2 − β)(n−1)/2−k ξk2k,g

∞∑
l=0

βl

)
2g+n+1

=
(

(2− β)(n−1)/2−kξk2k,g

)
2g+n+1

= 0

using ξk2k,g+l = βlξk2k,g . �

(8.5) For n ≥ −2 even (resp. odd), ξkr,s (resp. ξkr,s − βξkr,s−1) is a relation in
the ordinary cohomology of Mn+2

(i) for k = [n/2]− i, r = n− 2i, and s = g + i, where i = 0, . . . , [n/2];
(ii) for k = [n/2] + j, r = n+ 3j, and s = g − j, where j = 1, . . . , g.

Proof. Suppose first that n is even. For (i), just take the formula from (8.4)(a)
with k = n/2− i, plug in F k(u, 1) =

∑
ξkr,su

r, divide by u2k and set u = 0. Then
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compute using the definition of ξkr,s, the binomial theorem, and γg+1 = 0. For (ii),
take the same formula onMn+2j with k = n/2+j, apply (8.1) j times, and proceed
as in (i). Now suppose that n is odd. It suffices to prove the same statement for the
class ξkr,s− βξkr,s−1 + ξkr−2,g+1, because in case (i) the last term vanishes altogether,
and in case (ii) it was shown in the even case to be a relation on Mn+3 ⊃Mn+2.
Then everything is similar to the even case. �

9. Expressing the ξ-classes in terms of the ρ-classes

We now have many relations on Mn. We cannot yet show that the simple
polynomials ρcr,s,t of the main theorem are relations, but at least we can show that
the relations we do have are linear combinations of them. Hence the goal of this
section is to prove the following purely algebraic result.

(9.1) (a) For r ≥ 2k, ξkr,s is a linear combination of those ρr−2k+v−w
u,v,w with

w ≤ r − 2k and u + 3w ≤ r. (b) For r ≥ 2k + 1, ξkr,s − βξkr,s−1 is a linear
combination of those ρr−2k+1+v−w

u,v,w with w ≤ r − 2k + 1 and u+ 3w ≤ r.

It is an easy matter to check, using high-school algebra and the equality of total
degrees r + 2s + 3t = u + 2v + 3w, that when n, k, r and s are as in (8.5), the
conditions (2.4) of membership in Ign are satisfied by the ρ-classes named above.
Hence the relations of (8.5) belong to Ign.

The proof of (9.1) will use a generating function for the ξkr which generalizes a
formula for the ξr stated without proof in Zagier’s paper [33]. Zagier kindly com-
municated a proof to us, and it goes through almost verbatim for the generalization.

(9.2) If

φkm(r, p) = Coeff
xm

1
cosh2k

√
3x

√
3x

sinh
√

3x

( √
3x

tanh
√

3x

)r(1
x
− tanh

√
3x

x
√

3x

)p
,

then for r ≥ 0,

ξkr =
∑
m,p

φkm(r, p)
3m+p(r − 2m− 3p)! p!

αr−2m−3pβm(2γ)p.

Proof. The formula for φkm(r, p) may be abbreviated as Coeffxm A(x)B(x)rC(x)p.
This directly gives a generating function for these numbers with r and p fixed, but
to compute

F k0 (t) =
∑
r

ξkr t
r

we need instead a generating function for φkm(l+ 2m+ 3p, p) with l and p fixed and
m variable. The passage from one to the other, as usual, is by residue calculus:
write φkm(r, p) as Resx=0(A(x)B(x)rC(x)pdx/xm+1) and change variables to y =
x/B(x)2 = (1/3) tanh2(

√
3x) to get

φkm(l + 2m+ 3p, p) = Res
y=0

(a(y)b(y)lc(y)pdy/ym+1)

with a(y) = A(x(y))x′(y)/B(y)2, b(y) = B(x(y)), c(y) = C(x(y))B(x(y))3 . In
other words, ∑

m

φkm(l + 2m+ 3p, p) ym = a(y)b(y)lc(y)p.
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Then we need to verify

F k0 (t) =
∑

l,m,p≥0

φkm(l + 2m+ 3p, p)
(αt)l

l!
(βt2/3)m

(2γt3/3)p

p!

=
∑
l,p≥0

a(y)
(αtb(y))l

l!
(γt3c(y)/3)p

p!

= a(y) exp (αtb(y) + γt3c(y)/3)

with y = βt2/3. Substituting for a, b, and c the formulas above, we find

F k0 (t) = cosh1−2k(
√

3x) exp ((αβ + 2γ)
√

3x/β3 − 2γ tanh(
√

3x)/β3/2)

which, since the new variable t is related to the original variable x by t =
√

3y/β =
β−1/2 tanh(

√
3x), is equivalent to (7.2). �

Proof of (9.1). Consider first part (a). Regarded as a polynomial in α and γ only,
each ρr−2k+v−w

u,v,w is homogeneous of degree u+w. So let us decompose ξkr,s likewise
into its homogeneous summands relative to this α, γ-grading. They are nonzero
only in α, γ-degree r − 2m for m ≥ 0. Indeed, using (9.2) and (7.4), we find that
the part of ξkr,s in α, γ-degree r − 2m equals

1
3m

∑
i,j

(r − 2k + s− i)!
(r − 2k)!

αr−2m−j

(r − 2m− j)!
βs+m−j

(s− i)!
(2γ)j

i! (j − i)! φ
k
m−j+i(r − i, j − i),

where we adopt the convention of summing over those indices where the factorials
all have nonnegative arguments.

The ρ-classes having total degree u+ 2v+ 3w = r+ 2s and α, γ-degree u+w =
r− 2m are of the form ρr

′+s′−2w
r−2m−w,s′−w,w for w = 0, . . . ,min([(r′ + s′)/2], s′, r− 2m),

where we have introduced the abbreviations r′ = r − 2k and s′ = s + m. Using
their definition (2.3), we may express any linear combination of these ρ-classes as

1
3m

∑
i,w

aw (q − 2w − i)! αr−i−2m−w

(r − i− 2m− w)!
βs
′−i−w

(s′ − i− w)!
(2γ)i+w

i!

=
1

3m
∑
j,w

aw (q − w − j)! αr−2m−j

(r − 2m− j)!
βs
′−j

(s′ − j)!
(2γ)j

(j − w)!
,

where aw are arbitrary scalars, q = r′ + s′, and the factor of 1/3m is inserted for
convenience.

At least when s is large enough that s′ and [(r′ + s′)/2] ≥ r− 2m, these span all
the polynomials in α, β, γ of the given total degree and α, γ-degree. It is therefore
possible to write the part of ξkr,s in α, γ-degree r − 2m as a linear combination of
this kind. The goal is to show that aw = 0 whenever either w > r′ or u+ 3w > r,
that is, w > m.

The reader may worry that this will only prove the desired result for s large
compared to r. But, according to (2.3) and (7.4), the coefficient, in all of the
polynomials we are concerned with, of the monomial αaβs−bγc for fixed a, b, c is a
rational function of s. So if a linear dependence between these polynomials can be
established for sufficiently large s, then it holds for all s.
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To determine the scalars aw, set the coefficients of αr−2m−jβs
′−j(2γ)j in the last

two equations to be equal:∑
i

(r′ + s− i)! (s′ − j)!
r′! (s− i)! i! (j − i)! φ

k
m−j+i(r − i, j − i) =

∑
w

aw (q − w − j)!
(j − w)!

.

Let bj be the left-hand side, and let L be the lower triangular matrix whose
(j, w) entry is (q−w− j)!/(j−w)!. Here j, w index the rows and columns and run
from 0 to r − 2m. In vector notation, the equation above then says (bj) = L(aw).

The inverse of L is the lower triangular matrix whose (w, j) entry is

(−1)w+j (q + 1− 2w)
(w − j)! (q + 1− w − j)! .

Indeed, the sum that needs to be demonstrated is

w′∑
j=w

(−1)w
′+j (q + 1− 2w′)(q − w − j)!

(w′ − j)!(q + 1− w′ − j)!(j − w)!
= δw,w′.

This is obvious for w ≥ w′. For w < w′, if the summand is denoted Nj, then as
Shalosh B. Ekhad has pointed out [7],

(q+1−w−w′)(w′−w)Nj = (j−w)(q+1−w− j)Nj− (j+1−w)(q−w− j)Nj+1;

since the coefficient on the left is independent of j and is nonzero for large s (and
hence for large q), the sum telescopes.

Hence

aw =
∑
i,j

(−1)w−j(q + 1− 2w) (r′ + s− i)! (s′ − j)!
(w − j)! (q + 1− w − j)! r′! (s− i)! i! (j − i)! φ

k
m−j+i(r − i, j − i).

Now sum over all variables, and group the factorials together as binomial coef-
ficients, to create the grand generating function∑
m,q,s,w

aw
(q + 1− w)!

(q + 1− 2w) (s′ −w)!
Mm Qq SsWw

=
∑

i,j,m,q,s,w

(−1)w−j
(
r′+s−i
r′

)(
s′−j
w−j
)(
q+1−w

j

)(
j
i

)
φkm−j+i(r − i, j − i) Mm Qq SsWw.

Using the binomial series, we can successively eliminate the sums over q, w, and
s, to obtain∑

i,p,m

(
i+p
i

) (1−WQ)m (WQ2)i+pMp+m Si

Q(1−Q)i+p+1(1 − S(1−WQ))r′+1
φkm(r − i, p).

Substituting (9.2) for the sum over m yields

1
Q(1− S(1−WQ))r′+1

∑
i,p

(
i+p
i

)(WQ2)i+pMp Si

(1−Q)i+p+1

· 1
cosh2k

√
X

√
X

sinh
√
X

( √
X

tanh
√
X

)r−i ( 3
X
− 3 tanh

√
X

X
√
X

)p
,
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where X = 3(1 −WQ)M . Applying the binomial theorem again and simplifying
transforms this to

1

Q(1− S(1−WQ))r′+1

1−WQ

1−Q−WQ+WQ2(1− S(1−WQ)) tanh
√
X√

X

(9.3)

· 1
cosh2k

√
X

√
X

sinh
√
X

( √
X

tanh
√
X

)r
.

The goal is to show that the coefficient of MmQqSsWw vanishes in the above
for q = r′ + s′ and w > min(r′,m). Since X = 3(1 −WQ)M , it is equivalent to
multiply the generating function (9.3) by 3m(1 −WQ)m and take the coefficient
of XmQqSsWw. But the second line of (9.3) is a power series in X only, so this
coefficient is a linear combination of the coefficients, for n ≤ m, of XnQqSsWw in

1

Q(1− S(1−WQ))r′+1

(1−WQ)m+1

1−Q−WQ+WQ2(1− S(1−WQ)) tanh
√
X√

X

.

We will show that these all vanish.
In fact, we may replace tanh

√
X/
√
X by 1 + X in the above, for this can be

undone by substituting a power series of the form c1X+c2X2+· · · for X . Hence the
coefficients of XnQqSsWw in the former are linear combinations of XpQqSsWw in
the latter, for p ≤ m.

Taking coefficients of Xp, Ss, Ww, and Qr
′+s′ in the resulting rational function

yields
s∑
i=0

(−1)w+i
(
r′+s−p−i
r′−p

)(
p+i
i

)(
s′−p−i
w−p−i

)(
r′+s′+1−w

n+i

)
.

Let F (s, i) be the ith term in the sum. As pointed out by Shalosh B. Ekhad [7], if
we define G(s, i) by

i(r′ + s+ 1− p− i)(s′ + 1− p− i)(r′ + s′ + 2− w)(r′ + s+ s′ + 3− p −w − i)
(s+ 1− i)(s′ + 1−w)(r′ + s′ + 2− p− w − i)

F (s, i),

then by high-school algebra,

G(s, i+ 1)−G(s, i) =
(r′ + s+ 1− w)(r′ + s′ + 2− w)F (s, i)− (s+ 1)(r′ + s′ + 2− p− w)F (s+ 1, i),

and so, summing over i, we deduce that the sum satisfies a linear recurrence relation
in s:

(r′+s+1−w)(r′+s′+2−w)
s∑
i=0

F (s, i)−(s+1)(r′+s′+2−p−w)
s+1∑
i=0

F (s+1, i) = 0.

If w > r′ and p ≤ m, the coefficient of the first sum in the recurrence is 0 for
s = w − r′ − 1, and the coefficient of the second sum is nonzero for all subsequent
s. Hence the sum vanishes for all s sufficiently large, namely ≥ w − r′.

If w > m and p ≤ m, then every term in the sum is easily seen to vanish for
s = 0, and for s = −r′ − m − 1 + p + w if this is positive. The recurrence then
implies that the sum is 0 for all positive s.

This completes the proof of part (a); the proof of (b) is similar. Because(
r′+s−i
r′

)
−
(
r′+s−1−i

r′

)
=
(
r′−1+s−i
r′−1

)
,
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the grand generating function has r′ − 1 substituted for r′; hence the same is true
for all subsequent formulas. �

10. The relations divisible by γ

Many Γ-invariant relations on Mn were computed in §8, but none of these re-
lations were divisible by γ. To find some Γ-invariant relations that are divisible
by γ, we revive the space M of flat connections, which is diffeomorphic to M0 as
described in §2 of our previous paper [14]. We will find a relationship between the
cohomology at genus g and genus g− 1. Accordingly, we will writeMg to indicate
the dependence of M on the genus. Let G = SL(2,C), and define µg : G2g → G

by µg(Aj , Bj) =
∏
AjBjA

−1
j B−1

j . Then Mg = µ−1
g (−I)/G, where G acts by

simultaneous conjugation. The goal of this section is to prove the following.

(10.1) Let ρ ∈ Q[α, β, ψj ] be a relation on Mg−1. Then ψjψj+gρ for each
j ≤ g, and hence γρ, are relations on Mg.

The proof will involve the following lemma.

(10.2) The only critical value of µg is the identity matrix I.

Proof. The derivative dµg : g2g → g at (Aj , Bj) ∈ G2g is easy to compute explicitly:
see for example Goldman [8] or Gunning [10, Lemma 26]. It is a sum of g terms, the
kth being conjugate to (aj , bj) 7→ (I − AdA−1

k )bk − (I − AdB−1
k )ak. At a critical

point, then, all g of these maps must fail to surject.
For A 6= ±I ∈ G = SL(2,C), it is easy to check by hand, using Jordan canonical

form, that the image of (I−AdA−1) : g→ g is a 2-dimensional subspace from which
the eigenspaces of A can be recovered and that it is a subalgebra if and only if A is
not diagonalizable. If the maps are not surjective, then either these 2-dimensional
subspaces must coincide, or one of Ak or Bk is ±I. In the former case, Ak and Bk
must have a common eigenspace (if they are not diagonalizable) or eigenspaces (if
they are). In any case, they must commute, and so µg(Aj , Bj) = I. �

Notice that the arguments of the last paragraph are special to SL(2,C); the
situation for SL(r,C) with r > 2 is more complicated.

Proof of (10.1). Let K = SU(2), and let L ⊂ G be the locus of matrices of the
form U−1DU , where U ∈ K and D = diag(λ, 1/λ) for some positive real λ. Then
L is a smooth, contractible submanifold of G whose tangent space at the identity
is i times that of K.

Let L be the intersection µ−1
g (−I) ∩ (G2g−2 × L2). This is preserved by the

K-action, and there are inclusions

µ−1
g−1(−I)× {I} × {I} ⊂ L ⊂ µ−1

g (−I).

Dividing by the K-action yields inclusions

M̃g−1 ⊂ L/K ⊂ M̃g.

Here M̃g = µ−1
g (−I)/K, which is a G/K-bundle over Mg. Since G/K is con-

tractible, this is homotopy equivalent to Mg. It is not hard to check, using the
definition of the universal classes in §1 of our previous paper [14], that α, β, and γ,
regarded as classes on M̃g, restrict to their counterparts on M̃g−1.

It therefore suffices to prove the following two claims: that M̃g−1 ⊂ L/K induces
an isomorphism on cohomology and that L/K ⊂ M̃g is Poincaré dual to ψgψ2g.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
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For then ψgψ2gρ must be a relation on M̃g. The result follows by symmetry, since
the action of Γ on Q[α, β, ψj ] certainly preserves the ideal of relations, and there is
an element of Γ taking ψgψ2g to ψjψj+g for each j.

To prove the first claim, first note that L can be regarded as the fibered product
G2g−2 ×G (L× L), where the map G2g−2 → G is µg−1 and the map L × L→ G is
(A,B) → −ABA−1B−1. A direct computation shows that no two A,B ∈ L have
ABA−1B−1 = −I; hence by (10.2) the map L × L → G never touches a critical
value of µg−1. So L is locally trivial over L× L with fiber µ−1

g−1(−I). Since L× L
is contractible, this implies that L is homeomorphic to L× L× µ−1

g−1(−I).
It follows that M̃g−1 and L/K are homotopy equivalent. Indeed, they are homo-

topy equivalent to the homotopy quotients (µ−1
g−1(−I)×EK)/K and (L×EK)/K,

respectively, and the latter retracts onto the former, since BK is a direct limit of
manifolds and L× L is contractible.

To prove the second claim, first note that L meets K ⊂ G transversely at the
single point I. It is therefore Poincaré dual to the standard generator of H3(G,Z).
We can now either imitate the argument given by the second author [31, Prop. 19.3]
for the SU(2) space N g = (µ−1

g (−I)∩K2g)/K or simply use that result. It tells us
that the natural maps in the top row of the diagram

K2g ←− µ−1
g (−I) ∩K2g −→ N gy y y

G2g ←− µ−1
g (−I) −→ M̃g

induce isomorphisms on H3 under which the generator of the jth copy of H3(K,Z)
corresponds to ψj . Since the outer columns also induce isomorphisms on H3, so
does every map in the diagram.

Since the pull-back by inclusion is Poincaré dual to transverse intersection, it
now suffices to check that G2g−2 × L2 is transverse to µ−1

g (−I), or equivalently,
that at every point of L the derivative dµg remains surjective when restricted to
the tangent space to G2g−2 × L2. But this is true even if we restrict further to the
tangent space to G2g−2, since as stated before we are at a regular value of µg−1. �

11. The cohomology not fixed by Γ

Everything so far has been about the Γ-invariant part of H∗(Mn)Σ, generated
by α, β, and γ. Now it is time to say something about the noninvariant part and
the classes ψj .

We begin with a result relating the noninvariant parts of the cohomology of the
symmetric product Cm at genus g to the invariant part at lower genera.

(11.1) As a Γ-module, the cohomology of the symmetric product Cgm has the
form

H∗(Cgm) =
g⊕
k=0

Λk0(ξ) ⊗Q[η, θ]/I(Cg−km−k),

where I(Cg−km−k) is the ideal of relations between η and θ in Cg−km−k, with the conven-
tion that I(Cg−km−k) = Q[η, θ] if m− k < 0.
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Proof. As shown in §5, there is a surjection of Γ-algebras
g⊕
k=0

Λk0(ξ) ⊗Q[η, θ] −→ H∗(Cgm),

where Λk0 , being irreducible, is spanned by the orbit of ξ1ξ2 · · · ξk under Γ. It
therefore suffices to show that a polynomial p(η, θ) is a relation on Cg−km−k if and
only if p(η, θ)ξ1ξ2 · · · ξk is a relation on Cgm.

By Poincaré duality the latter is true if and only if for all polynomials q(η, ξj),

(11.2) p(η, θ)ξ1ξ2 · · · ξkq(η, ξj)[Cgm] = 0.

Now, from the description of H∗(Cgm) in Macdonald [20], it follows that∏2g
j=1 ξ

pj
j η

q[Cgm] = 1 if
∑g

j=1 pj + q = m (so that the degrees match) and pj =
pj+g ≤ 1 for each j ≤ g (so that it becomes a monomial in η and θj = ξjξj+g).
Otherwise it equals 0. Hence in (11.2) we only need to consider the case

q(η, ξj) = ξg+1 · · · ξg+kr(η, θk+1, . . . , θg).

But q can be averaged with its images under all permutations of θk+1, . . . , θg without
changing the value of (11.2). Hence we only need to consider the case where r is a
polynomial in η and θk+1 + · · ·+ θg. But then

p(η, θ)ξ1ξ2 · · · ξkq(η, ξj)[Cgm]

= (−1)kp(η, θ)θ1θ2 · · · θkr(η, θk+1 + · · ·+ θg)[C
g
m]

= (−1)kp(η, θk+1 + · · ·+ θg)θ1θ2 · · · θkr(η, θk+1 + · · ·+ θg)[C
g
m].

This always vanishes if k > m. Otherwise it equals (−1)kp(η, θ)r(η, θ)[Cg−km−k ]. This
vanishes for all r if and only if p(η, θ)q(η, ξj)[C

g−k
m−k] vanishes for all polynomials

q in η and ξj , since it does not alter the latter expression to replace q with its
projection on the Γ-invariant part, which is a polynomial in η and θ. Again by
Poincaré duality, this is equivalent to p(η, θ) = 0 in Cg−km−k. �

(11.3) As a Γ-module, the Σ-invariant part of the T -equivariant cohomology of
Mg

n has the form

H∗T (Mg
n)Σ ∼=

g⊕
k=0

Λk0(ψ)⊗Q[α, β, γ, u]/IT (Mg−k
n+k).

Consequently, as a Γ-module, the Σ-invariant part of the ordinary cohomology of
Mg

n has the form

H∗(Mg
n)Σ ∼=

g⊕
k=0

Λk0(ψ)⊗Q[α, β, γ]/I(Mg−k
n+k).

Proof. First we show that if λ ∈ Λk0(ψ) and r ∈ IT (Mg−k
n+k), then λr ∈ IT (Mg

n).
Certainly r restricts to relations between α, β, γ and u on N g = F g0 and between
η, θ and u on the remaining fixed components F gd ⊂ Mg

n. On the other hand, by
Kirwan’s theorem (3.1)(iii) it suffices to show that λr restricts to similar relations
on the fixed components F g−kd of Mg−k

n+k.
The case of d > 0 follows immediately from the lemma. As for d = 0, Proposition

2.5 of King-Newstead [16] asserts that if λ ∈ Λk0(ψ) and if r is a relation between
α, β, γ on N g, then λr is a relation on N g−k. This is exactly what is needed.
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The left-hand side is therefore a quotient of the right-hand side. To complete
the proof, it remains only to check that the Σ-invariant, T -equivariant Poincaré
polynomials agree. But if P =

∑
i t
i dimHi, then

(1− t2)PΣ
T (Mg

n)

= PΣ(Mg
n)

= PΣ(N g) +

g+[n−1
2 ]∑

d=1

t2g+2d−2P (Cg2g+n−1−2d)

=

g∑
k=0

((
2g
k

)
−
(

2g
k−2

))(
t3kPΣ(N g−k) +

g+[n−1
2 ]∑

d=1

t2g+2d−2tkP (Cg−k2g+n−1−2d−k)

)

=

g∑
k=0

((
2g
k

)
−
(

2g
k−2

))
t3k
(
PΣ(N g−k) +

g+[n−1
2 ]∑

d=1

t2(g−k)+2d−2P (Cg−k2(g−k)+n−1−2d+k)

)

=

g∑
k=0

((
2g
k

)
−
(

2g
k−2

))
t3kPΣ(Mg−k

n+k)

= (1− t2)

g∑
k=0

((
2g
k

)
−
(

2g
k−2

))
t3kPΣ

T (Mg−k
n+k),

using Kirwan’s theorem on the Leray sequence (3.1)(ii) in steps 1 and 6, the perfec-
tion of the Morse stratification (3.1)(i) in steps 2 and 5, the lemma and the result
of King-Newstead in step 3, and high-school algebra in step 4. �

12. Wrap-up

At last we can show that the polynomials ρcr,s,t of (2.3) are relations, using every
tool at our disposal: (9.1), (10.1), (11.3), and a dimension count. Recall that Ign is
the ideal of ρ-classes introduced in §(2).

(12.1) Every element of Ign is a relation on Mg
n.

Proof. It is actually more convenient to work with n + 2 than n, so let n ≥ −2.
Then every element of Ign+2 has total degree ≥ 2g + n. In degree 2g + n, Ign+2 is
spanned by the elements ρg+in−2i,g+i,0 for i = 0, . . . , [n/2]. The degrees with respect

to α are all different, so these are linearly independent. The relations ξ[n/2]−i
n−2i,g+i

of type (i) given in (8.5) are all of degree 2g + n, also number [n/2] + 1, and are
linearly independent for the same reason. By (9.1) they are in the linear span of
the ρg+in−2i,g+i,0. Hence this equals the linear span of the relations of type (i), so all
the ρg+in−2i,g+i,0 are relations.

The diagram is intended to help the reader visualize the ideal of relations. Each
dot represents one of the ρcr,s,t. The total degree is the vertical coordinate, and
r is the horizontal coordinate. The two edges of the dotted region reflect the two
constraints imposed by (2.4). To avoid having to draw a third dimension, only those
relations with t = 0 have been shown. The dotted region for any fixed t > 0 would
look similar, only translated in a northwesterly direction. The relations established
in the previous paragraph are those in the bottom row.

The rest of the proof proceeds by induction on the total degree. We have already
seen that the part of Ign in total degree 2g+n consists entirely of relations. Now fix
j > 0 and consider the part of Ign+2 in degree 2g+n+ j. Assume by induction that
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for all g and n, the parts of Ign+2 in degree < 2g + n+ j are known to be relations
on Mg

n+2.
In particular, if ρcr,s,t ∈ Ign+2 has degree 2g + n + j and t > 0, then ρcr,s,0 ∈

Ig−tn+2 has degree 2(g − t) + n + (j − t) and hence is a relation on Mg−t
n+2. By

(11.3), ψ1 · · ·ψn+2ρ
c
r,s,0 is a relation onMg−t+n+2

0 , so by (10.1), ψ1 · · ·ψn+2ρ
c
r,s,t is

a relation on Mg+n+2
0 , and by (11.3) again, ρcr,s,t is a relation on Mg

n+2. Because
these relations have t > 0, they are not shown in the diagram.

Only the ρcr,s,t with t = 0 remain. Consider first those relations of the form
ρc0,s,0 = c!/s!βs ∈ Ign+2. These are the relations at the left-hand edge of the diagram.
If the degree equals 2g + n+ j, then since j > 0,

2s = 2g + n+ j ≥ 2g − 2 + (n+ 3)

and

3s = 3g + 3
2n+ 3

2j > 3g − 3 + (n+ 3),

so in fact ρc0,s,0 ∈ I
g
n+3. Since it has degree 2g+n+j = 2g+(n+1)+(j−1), by the

induction hypothesis again it is a relation onMg
n+3 and hence onMg

n+2 ⊂M
g
n+3.

What if t = 0 but r > 0? It is easily checked that

rρcr,s,0 = c αρc−1
r−1,s,0 + (c− r)ρc−2

r−1,s−1,1.

Now if r+ 2s = 2g+ n+ j and 1 ≤ r ≤ n+ 3j − 2 (so that we are not at the right-
hand edge of the diagram), we know from the induction hypothesis that ρc−1

r−1,s,0 is a
relation. And certainly ρc−2

r,s−1,1 is a relation, since it belongs to Ign+2 and has t > 0.
Hence under these circumstances ρcr,s,0 is a relation. This fills in the interior of the
diagram; the arrows depict multiplication by α (modulo γ), which takes ρc−1

r−1,s,0 to
ρcr,s,0.
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Only one class of total degree 2g+n+j remains in Ign+2. This is ρgn+3j,g−j , at the

right-hand edge of the diagram. We know from (8.5)(ii) that the class ξ[n/2]+j
n+3j,g−j is a

relation if n is odd and that ξ[n/2]+j
n+3j,g−j−βξ

[n/2]+j
n+3j,g−j−1 is a relation if n is even. Since

the leading term with respect to α of ξkr,s is
(
r−2k+s
r−2k

)
αk/k!, the monomial αn+3jβg−j

appears in these relations with a nonzero coefficient. On the other hand, by (9.1)
these relations can be expressed as a linear combination of ρcr,s,t ∈ Ign+2. Since
ρgn+3j,g−j is the class of maximal degree n+ 3j with respect to α among these, its
coefficient in this combination must be nonzero. It is therefore indeed a relation.
This completes the proof. �

(12.2) Every relation between α, β, γ on Mg
n is an element of Ign.

Proof. Since the converse has just been shown, it suffices to show that dimHI(Mg
n)

= dimQ[α, β, γ]/Ign, where HI denotes the part of H∗ invariant under the action
of both Σ and Γ.

(In the proofs of the analogous statement for N g [4, 16, 25, 33], it has been
customary to show that all the Betti numbers match up. This can certainly be done
for Mg

n, but the cruder statement about overall dimension is clearly sufficient.)
Now since by (3.1)(i) the C× action is perfect, the dimension of HI(Mg

n) may
be expressed as a sum over the fixed components enumerated in (4.1):

dimHI(Mg
n) = dimHI(N g) +

g+[n−1
2 ]∑

d=1

dimHI(C2g+n−1−2d).

The Poincaré polynomial of HI(N g) is

(1− t2g)(1 − t2g+2)(1− t2g+4)
(1 − t2)(1− t4)(1− t6)

;

this is clear, for example, from the presentation with three generators and three
relations [4, 16, 25, 33]. To find dimHI(N g) we want to substitute t = 1. Of course
0 appears in the denominator, but the limit as t → 1 can easily be evaluated to(
g+2

3

)
by substituting t2 = 1 + ε and then using (1 + ε)k = 1 + kε+O(ε2).

As for dimHI(Cm), it follows easily from the discussion in Arbarello et al. [1,
VII B] that this equals

[
m+2

2

] [
m+3

2

]
if m ≤ 2g − 1 and (g + 1)(m − g + 1) if

m ≥ 2g − 1. Hence

dimHI(Mg
n)

=
(
g+2

3

)
+

[n−1
2 ]∑

d=1

(g + 1)(g − 2d+ n)

+
[n−1

2 ]+g∑
d=[n−1

2 ]+1

(
g − d+ 1 +

[
n−1

2

]) (
g − d+ 1 +

[
n
2

])
.

On the other hand,

dimQ[α, β, γ]/Ign =
∑
r,s,t

1
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where the right-hand sum runs over all nonnegative r, s, t such that t ≤ g and
r + 3s+ 3t ≤ 3g − 3 + n or r + 2s+ 2t < 2g − 2 + n. This can be rewritten as

g∑
t=0

g−1+[n2 ]−t∑
s=0

max(3g−3+n−3s−3t,
2g−3+n−2s−2t)∑

r=0

1

=
g∑
t=0

g−1−t∑
s=0

(3g − 2 + n− 3s− 3t) +
g−1+[n2 ]−t∑

s=0

(2g − 2 + n− 2s− 2t)

 .

It is straightforward, using high-school algebra and the identities
∑k
d=1 d = k2/2 +

k/2 and
∑k
d=1 d

2 = k3/3 + k2/2 + k/6, to show that this equals the above formula
for dimHI(Mg

n). �

Proof of (2.5). The two results above show that the ideal I(Mg
n) of Γ-invariant

relations on Mg
n is precisely Ign. Now apply (11.3). �

13. Relationship with other papers

The present paper is closely related to several other works by the authors; in
this final section we indicate briefly a few of the points of contact.

The first author has constructed a compactification Hn of the moduli space of
Higgs bundles [11] by adding a divisor Zn at infinity which is a quotient by T = C×
of an open subset of Hn. Indeed, Hn itself is a quotient by T of Hn × C. Many
of the constructions given herein apply to Hn and Zn. In particular, there are
direct limits H∞ and Z∞. Just as H∞ is shown in (9.7) of our previous paper [14]
to be homotopy equivalent to BG, we expect H∞, and also Z∞, to be homotopy
equivalent to BG, the classifying space of the full gauge group.

The cohomology rings of H∞ and Z∞, and hence those of Hn and Zn, will have
generators like those of Hn, but with one additional generator h ∈ H2, correspond-
ing to the class discarded in the proof of (10.1) of our previous paper. Indeed,
the quotient map H∗T (Hn) → H∗(Zn) is surjective, and h is the image of u. It
can be shown that the kernel is the image in H∗T (Hn) of the compactly supported
cohomology. The relations between the generators in H∗(Zn) are therefore of two
types: those coming from relations in H∗T (Hn) and those coming from the com-
pactly supported cohomology. The former are covered by the results of this paper.
As for the latter, they ought to be determined by the results of another paper of the
first author [12], in which the intersection pairings between the cohomology and the
compactly supported cohomology of M0 were computed (and shown to vanish).

By studying the stratification of H∞ by the Harder-Narasimhan type of the
underlying bundle E — not (E, φ) — in the rank 2 case, the first author has been
able to extract the relations in the cohomology of the lowest stratum, which retracts
onto N . This recovers the description of the ring H∗(N ), given by several authors
[4, 16, 25, 33], in an especially simple and geometrical fashion. It will be described
in a forthcoming paper [13], where it will also be shown how consideration of the
Mumford conjecture leads to a natural geometrical proof of the generation theorem
for the moduli space of Higgs bundles in ranks 2 and 3.

The second author has studied moduli problems providing smooth resolutions of
the upward and downward flows from the components of the fixed-point set of Hn
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in the rank 2 case. The downward flow is intriguing because it can be interpreted
as a master space of Bradlow pairs, but the upward flow is particularly related to
the present paper. It is relatively simple to describe, but it contains the parts of
H∗(Hn) not invariant under Σ = Z2g

2 , in the sense that none of them are killed
by the restriction map. These upward flows can therefore be used to complete
the description of the cohomology rings H∗(Hn), by characterizing the part not
invariant under Σ. In fact this is not so difficult, since for dimension reasons these
classes have square 0 and are killed by the ψj . So the products with α and β are
all that must be computed. Details will appear in a forthcoming paper [32].
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