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Abstract: Building on a recent paper [8], here we argue that the combinatorics of matroids are

intimately related to the geometry and topology of toric hyperkähler varieties. We show that

just like toric varieties occupy a central role in Stanley’s proof for the necessity of McMullen’s

conjecture (or g-inequalities) about the classification of face vectors of simplicial polytopes,

the topology of toric hyperkähler varieties leads to new restrictions on face vectors of matroid

complexes. Namely in this paper we will give two proofs that the injectivity part of the Hard

Lefschetz theorem survives for toric hyperkähler varieties. We explain how this implies the

g-inequalities for rationally representable matroids. We show how the geometrical intuition in

the first proof, coupled with results of Chari [3], leads to a proof of the g-inequalities for general

matroid complexes, which is a recent result of Swartz [20]. The geometrical idea in the second

proof will show that a pure O-sequence should satisfy the g-inequalities, thus showing that our

result is in fact a consequence of a long-standing conjecture of Stanley.
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1 Introduction

McMullen [14] conjectured† in 1971 that the face vector‡ (f0, . . . , fk−1) of a k-dimensional

simplicial polytope P ⊂ Rk should satisfy, the following g-inequalities:

gi ≥ 0, for 1 ≤ i ≤ ⌊k
2
⌋,

and, if one writes
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(
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i

)
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(1)

where

gi = hi − hi−1

and

hi =
i

∑

j=0

(−1)i−j

(

k − j

i − j

)

fj−1. (2)

Stanley [17] in 1980 proved this conjecture using toric varieties. In a nutshell the

proof goes as follows. First one perturbs the vertices of P a little bit so that P becomes a

rational polytope. Because P is simplicial this does not change the face vector of P . The

next step is to take the corresponding k-dimensional toric orbifold X(∆P ), where ∆P is

the fan of cones over the faces of P . It is a well-known fact (see e.g. [6]) that the ith

h-number hi = b2i(X(∆P )) agrees with the 2ith Betti number of X(∆P ). Now X(∆P )

has an ample class ω ∈ H2(X(∆P ), C), which induces a map

L : H∗(X(∆P ), C) → H∗(X(∆P ), C),

by multiplication with ω. Using the injectivity part of the Hard Lefschetz theorem (see

e.g. [4]), which implies that L is an injection below degree k, we get that the degree 2ith

part of the graded algebra H∗(X(∆P ), C)/(im(L))) has dimension

dim(H2i(X(∆P ), C)/(im(L))) = hi − hi−1 = gi (3)

for 2i < k. Since H∗(X(∆P ), C) is generated by H2(X(∆P ), C) we also get that the

algebra H∗(X(∆P ), C)/(im(L)) is generated in degree 2. Now, using (3), a well-known

theorem of Macaulay (see e.g. [19, Theorem II.2.3]) proves the g-inequalities (1). See [6]

or [19] for more details.

† He, in fact, conjectured a complete characterization, the sufficiency part of which was proven by an

ingenious construction of Billera and Lee in [2].
‡ fi is the number of i-dimensional faces.
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Our starting point is the observation [8, Corollary 1.2] that the h-vectors of a rationally

representable matroid MB agree hi(MB) = b2i(Y (A, θ)) with the Betti numbers of a toric

hyperkähler variety Y (A, θ), for a generic choice of θ, where the toric hyperkähler variety

can be considered as a quaternionic analogue of a toric variety. Therefore any restriction

on the cohomology of a toric hyperkähler variety will yield restrictions on the face vectors

of rationally representable matroid complexes and vice versa any known restriction on

the face vectors of (rationally representable) matroids yields cohomological restrictions

on toric hyperkähler varieties. This two-way relationship between these two seemingly

unrelated subjects, hyperkähler geometry on one hand and combinatorics of matroids on

the other, is what we call the “Quaternionic geometry of matroids”. A relationship of this

flavor is exploited in a recent paper by Swartz and the author [9]. There the combinatorics

of affine hyperplane arrangements yields the existence of many L2 harmonic forms on the

corresponding toric hyperkähler manifold, in harmony with conjectures by physicists in

string theory. For details see [9].

In the present paper our purpose is to use intuition arising from the study of the

geometry of toric hyperkähler varieties to prove results in the combinatorics of matroids.

We will proceed as follows: In Section 2 and Section 3 we recall some basic notations and

results from [19] and from [8]. Then we go on and in Section 4 give two different proofs

for the injectivity part of the Hard Lefschetz theorem for toric hyperkähler varieties.

The second one is basically taken from [19, Theorem 7.4], while the first proof could

be easily generalized for other similar hyperkähler manifolds, such as Nakajima’s quiver

varieties [16] or Hitchin’s moduli of Higgs bundles§ [11]. In Section 5 we explain how the

geometric idea in the first proof can be generalized to any matroid complexes, a result

recently proven by Swartz in [20]. We show that the geometrical structure needed for

the first proof for general matroids is provided by Chari’s decomposition theorem [3].

In fact this proof is similar to Swartz’s original proof in [20]. We conclude our paper

by showing that the geometric structure which yielded the second proof of the injective

Hard Lefschetz theorem is present for pure O-sequences. This way we find that the g-

inequalities we proved in the previous section are in fact a consequence of a long standing

conjecture of Stanley [18]. This last result is a strengthening of a result of Hibi in [10].

2 Simplicial and matroid complexes

We collect here some basic definitions and results on simplicial complexes and in particular

matroid complexes from [19].

A simplicial complex Σ on a finite set V = {1, . . . , n} is a set of subsets of V , i.e.

Σ ⊂ 2V , such that {x} ∈ Σ for any x ∈ V and F ∈ Σ and F ′ ⊂ F implies F ′ ∈ Σ. We

call F ∈ Σ a face of Σ, the dimension of the face is one less than its size. The dimension

of Σ is then the maximum dimension of its faces, while its rank is 1 more. A facet is a

§ A recent paper of the author [7] conjectures a strong version of the Hard Lefschetz theorem for the

moduli space of Higgs bundles, generalizing the one in this paper; and also relates it to the Alvis-Curtis

duality in the representation theory of finite groups of Lie-type.
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face of maximal dimension. A simplicial complex is called pure if its maximal faces are

all facets. The f -vector of a rank-k simplicial complex is (f0, f1, . . . , fk−1), where fi is the

number of i-dimensional faces in Σ. The h-vector of the simplicial complex is (h0, . . . , hk)

given by (2).

Define the Stanley-Reisner ring of a rank-k simplicial complex Σ as the graded ring

given by:

C[Σ] = C[x1, . . . , xn]/〈xF =
∏

i∈F

xi|F /∈ Σ〉.

All our simplicial complexes in this paper will be Cohen-Macaulay, which will imply that

we will always have a linear system of parameters or l.s.o.p for short, which is a sequence

(θ) = (θ1, . . . , θk) of linear combinations of the xi, such that the graded ring

C[Σ]/(θ) := C[Σ]/(θ1C[Σ] + · · · + θkC[Σ])

is finite dimensional as a vector space over C and that the h-numbers hi(Σ) = (C[Σ]/(θ))i

agree with the dimension of the corresponding graded piece of C[Σ]/(θ).

We will use the following operation on simplicial complexes in Section 5. Given two

simplicial complexes Σ with vertex set V and Θ with vertex set U we define their poset-

theoretic product (or join) Σ × Θ as a simplicial complex with vertex set U ∪ V and all

faces of the form F ∪ F ′ where F ∈ Σ and F ′ ∈ Θ. The poset-theoretic product has the

advantage that it behaves nicely after taking the corresponding Stanley-Reisner rings:

C[Σ × Θ] ∼= C[Σ] ⊗ C[Θ].

For examples of (Cohen-Macaulay) simplicial complexes we mention the boundary

complex of a simplicial convex polytope, which was mentioned in the introduction. An-

other class for interest for us are matroid complexes or simply just matroids. A matroid

complex M is a simplicial complex on a vertex set V such that for every W ⊂ V the

induced subcomplex MW = {F ∈ M : F ⊂ W} is pure. The rank of the matroid is 1

more than its dimension. A vertex i ∈ V is a coloop of M if MV \i has rank smaller than

the rank of M.

The motivating example of a matroid complex MB on vertex set V = {1, . . . , n} is

obtained from a vector configuration B = (b1, . . . , bn) ∈ Kk in a k-dimensional vector

space over a field K, defined by F ∈ M iff {bi}i∈F is linearly independent. Such a

matroid is called representable over K. For example, if K = Q then we call the matroid

M rationally representable.

For more details on these definitions consult [19], the poset-theoretic product was

used in [3].

3 Toric hyperkähler varieties

Here we collect notation and terminology from [8] which we will need in the present

paper. For more details see [8].

Let A = [a1, . . . , an] be a d×n-integer matrix whose d×d-minors are relatively prime.

We choose an n × (n−d)-matrix B = [b1, . . . , bn]T which makes the following sequence
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exact:

0 −→ Zn−d B
−→ Zn A

−→ Zd −→ 0.

Taking θ ∈ NA, where A := {a1, . . . , an} is a vector configuration in Zd, [8] constructs

a quasi-projective variety Y (A, θ) (which sometimes we abbreviate as Y ), called a toric

hyperkähler variety. (This construction is an algebraic geometric version of the original

construction of Bielawski and Dancer in [1].) By [19, Proposition 6.2] if θ ∈ NA is generic

Y (A, θ) is an orbifold, while if, in addition, A is unimodular then Y (A, θ) is a smooth

variety.

The topology of Y (A, θ) is governed by an affine hyperplane arrangement denoted by

H(B,ψ) of n planes in Rn−d. For example a key result in [19, Corollary 6.6] claims that

the h-numbers of the matroid of the vector configuration B = {b1, . . . , bn} agree with the

Betti numbers of Y :

hi(MB) = b2i(Y (A, θ)).

In the next section we will make use of a projective subvariety C(A, θ) of Y (A, θ), which is

called the core of Y (A, θ). It is a reducible variety whose components are projective toric

varieties, corresponding to top dimensional bounded regions in H(B,ψ). If the matroid

of B is coloop-free than the core is a middle and pure dimensional projective subvariety

of Y (A, θ).

Finally we need to mention a result from [5]. They construct and study a certain

residual U(1)-action on Y (A, θ), which comes from an algebraic C×-action. It follows

from their results that, when B is coloop-free, one can always choose such a circle action,

which makes Y (A, θ), a hyper-compact hyperkähler manifold. It means that the U(1)-

action is Hamiltonian with proper moment map with a minimum, and also that the

holomorphic symplectic form ωC is of homogeneity 1, meaning that for λ ∈ C×

λ∗ω = λω. (4)

For further results about the topology and geometry of toric hyperkähler varieties

consult the papers [1], [5], [8], [9] and [12].

4 Injective Hard Lefschetz for hyperkähler manifolds

We are now ready to give two proofs of the following

Theorem 4.1. For a smooth toric hyperkähler variety Y (A, θ) of real dimension 4n−4d =

4k, such that B is coloop-free, we have that

Lk−2i : H2i(Y, C) → H2k−2i(Y, C)

Lk−2i(α) = α ∧ ωk−2i

(5)

is injective if 2i < k, where ω = [ωI ] is the cohomology class of the Kähler form corre-

sponding to the complex structure I.



T. Hausel / Central European Journal of Mathematics 3(1) 2005 26–38 31

Just like in Stanley’s proof of the McMullen conjecture, we also have the following

numerical consequences:

Corollary 4.2. The h-vector (h1(M), . . . , hk(M)) of a coloop-free and rank k matroid

M, which is (unimodularly and) rationally representable, satisfies

hi(M) ≤ hj(M), (6)

for i ≤ j ≤ k − i and the g-inequalities (1).

Proof of Corollary. Let the (unimodular) vector configuration B = {b1, . . . , bn} ∈ Zk ⊂

Qk represent the matroid M. Choosing a Gale dual configuration A = (a1, . . . , an) ∈ Zd

and a generic θ ∈ NA, we can construct a smooth toric hyperkähler variety Y (A, θ),

whose Betti numbers agree with the h-numbers of M. Now Theorem 4.1 immediately

implies (6). From Theorem 4.1 we can also deduce (1) exactly as in Stanley’s argument

for simplicial convex polytopes. See the introduction or for more details [19, Theorem

III.1.1].

Proof 1 of Theorem 4.1. As explained above we have a C×-action on Y := Y (A, θ),

for which the corresponding U(1) ⊂ C×-action is hyper-compact. Recall that this means

that it is Hamiltonian with a proper moment µR : Y → R map with respect to ω, and

for which the holomorphic symplectic form ωC is of homogeneity 1 meaning (4). Suppose

that the fixed point set of the circle action has f components, which are denoted by

F1, . . . , Ff . The numbering is such that µR(Fm) > µR(Fl) implies m > l. Now we

define the Bialynicki-Birula stratification of Y with respect to our C×-action. Namely

define Um = {p ∈ Y | limλ→0 λp ∈ Fm}, which is an affine bundle over Fm. Moreover

we let U≤m = ∪j≤mUj and U<m = ∪j<mUj, which are open subvarieties of Y . Because

the moment map µR is proper it follows that U≤f = Y , i.e. that we get this way a

stratification of Y . Finally we denote by Nm the negative normal bundle of Fm. Because

the holomorphic symplectic form is of homogeneity 1 with respect to our C×-action, it

follows (cf. [15, Proposition 7.1]) that

rankC(Nm) + dimC(Fm) =
1

2
dimC Y = k. (7)

By induction on m we prove that the map Lk−2i in (5), when restricted to U≤m, is injective

for 2i < k. For m = 1 the statement is clear because by (4) U1 = T ∗F1 thus dimC(F1) = k

and the statement follows from the traditional Hard Lefschetz theorem for the compact

Kähler manifold F1. Now suppose we have the required injectivity of the map Lk−2i on

U<m. Then consider the decomposition U≤m = U<m ∪ Um. ¿From this decomposition,

using the Thom isomorphism

H2i(U≤m, U<m; C) ∼= H2i−2nm(Um, C), (8)

we get the cohomology exact sequence:

0 → H2i−2nm(Um, C)
τ
→ H2i(U≤m, C)

r
→ H2i(U<m, C) → 0,
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where nm = rankC(Nm), τ is the Gysin map and r is the natural restriction map on co-

homology. Now suppose 2i < k and 0 6= α ∈ H2i(U≤m, C). If r(α) 6= 0, then by induction

we can deduce that Lk−2i(α) 6= 0. If r(α) = 0, then there is a β ∈ H2i−2nm(Um, C) such

that τ(β) = α. However, Um is homotopy equivalent with the smooth compact Kähler

manifold Fm and ω|Fm
is a Kähler class. If we denote fm = dimC Fm, then the Hard

Lefschetz theorem for Fm yields that 0 6= β ∧ ωfm−2(i−nm) = β ∧ ωk−2i+nm|Fm
, because

fm +nm = k by (7). Since, τ is injective we get that τ(β∧ωk−2i|Fm
) = α∧ωk−2i|U≤m

6= 0.

The result follows.

Because we only used the hyper-compactness of the toric hyperkähler variety, the

same proof also yields the following

Corollary 4.3. For a hyper-compact hyperkähler manifold M (such as toric hyperkähler

varieties, Nakajima’s quiver varieties [16] or moduli spaces of Higgs bundles [11]) we have

that

Lk−2i : H2i(M, C) → H2k−2i(M, C)

Lk−2i(α) = α ∧ ωk−2i

is injective if 2i < k, where ω = [ωI ] is the class of the Kähler form corresponding to the

complex structure I.

Remark 4.4. In a recent work [7] the author explains a conjecture for a strong version

of the Hard Lefschetz theorem for the moduli space of Higgs bundles, which is a theorem

for rank 2 Higgs bundles. This completely unexpected conjecture is a generalization of

the corollary above and has some intriguing relationship with the representation theory

of finite groups of Lie type.

We now recall our original proof of Theorem 4.1 from [8, Theorem 7.4] in the smooth

case because we will use the idea in the final section.

Proof 2 of Theorem 4.1. Let X1, . . . Xr denote the irreducible components of the core

of Y . Let φi : H∗(Y, C) → H∗(Xi, C) denote the natural restrictions. The heart of the

proof of [8, Theorem 7.4] is that

(φ1) ∩ (φ2) ∩ . . . ∩ ker(φr) = {0}. (9)

In [8] we presented two proofs of this fact. One [8, Proposition 3.4] was a more general

result for semi-projective toric orbifolds and the proof goes similarly to our first Proof

1 of Theorem 4.1 above, i.e. uses Morse theory type considerations with induction. It

turns out that [8, Proposition 3.4] is equivalent with the fact that the bounded complex

of the polytope (or in our case the bounded complex of the affine hyperplane arrangement

H(B,ψ)) is always contractible. The second proof was given after equation (34) of [8],

which showed that (9) is in fact equivalent with Stanley’s result [19, Proposition III.3.2]

that the Stanley-Reisner ring of a matroid is level.
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Now we proceed as follows. For 2i < k take α ∈ H2i(Y, C). Then, because of (9),

we have a j so that φj(α) ∈ H2i(Xj, C) is nonzero. But the traditional hard Lefschetz

theorem for the smooth compact Kähler manifold Xj implies that φj(α ∧ ωk−2i) 6= 0.

The result follows.

Remark 4.5. [8, Theorem 7.4] proves the same result, in the way sketched above, for a

rationally representable matroid, i.e. for toric hyperkähler orbifolds, not just for smooth

toric hyperkähler varieties. Here we restricted our attention to the smooth case, because

the other Proof 1 only works in this case. The reason is that (7) could be false in the

orbifold case.

2. Proof 1 works for any hyper-compact hyperkähler manifold, however an extension

of Proof 2 in the general case is not immediate. Indeed, the equivalent of (9) perhaps in

intersection cohomology is not known for a general hyper-compact hyperkähler manifold.

3. Another consequence of (9), explained in [8, Section 7], is that one can present the

cohomology ring of Y in terms of cogenerator polynomials corresponding to the Xi, the

components of the core. Indeed this algebraic presentation is rather similar to a presen-

tation of a pure O-sequence, the only difference will be that we replace the cogenerator

polynomials by monomials. This similarity will lead to the proof of Theorem 6.3 below.

5 Proof of the g-inequalities for matroid complexes

In this section we will use the geometrical idea from our first proof of Theorem 4.1 to

prove the following generalization:

Theorem 5.1. The h-vector (h1(M), . . . , hk(M)) of a coloop-free and rank k matroid

M satisfies (6) and the g-inequalities (1).

Remark 5.2. This was first proven by Swartz [20], by using an algebraic version of

Chari’s [3] decomposition theorem of matroids. Here we will show, that [3] gives us the

geometrical structure for a general matroid so that we can repeat our Morse theory type

first proof of Theorem 4.1. In fact this proof is similar to Swartz’s original proof.

Proof 5.3. So let us first recall Chari’s result [3, Theorem 3]:

Theorem 5.4 (Chari). A coloop-free matroid complex has a PS-ear decomposition.

A PS-ear decomposition of a pure rank-k simplicial complex Σ on a vertex set {1, . . . , n}

is a covering by pure rank-k simplicial subcomplexes Σ = ∪m
i=1Σi, such that

• Σ1 is the poset-theoretic product of boundaries of simplices (a PS-k-sphere in the

terminology of [3]), while for each i = 2, . . . ,m, Σi is the poset-theoretic product of

a simplex and a PS-sphere (called a PS-ball in [3]), and
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• For i ≥ 2, Σi ∩
(

∪i−1
j=1Σj

)

= ∂Σi, where ∂Σi denotes the pure rank-(k − 1) simplicial

complex (which is just a PS-sphere in this case) whose facets are the rank-(k − 1)

faces of Σi that are contained in only one facet of Σi.

We will show that Theorem 5.1 holds for simplicial complexes having a PS-ear decom-

position, a result which was also mentioned by Swartz in [20]. We will see that this PS-ear

decomposition is in fact a very good combinatorial analogue of the Morse stratification

of Y (or rather its Lagrangian core) used in Proof 1 of Theorem 4.1.

We first make a

Definition 5.5. Let R be a ring and M be a graded R-module. Then we say that M

satisfies injective hard Lefschetz (IHL for short) around degree k/2 for ω ∈ R1 if the map

Lk−2i : Mi → Mk−i

Lk−2i(α) = αωk−2i

is injective for 0 < i ≤ k/2.

We will proceed by induction on m to show that

there is an l.s.o.p (θ1, . . . , θk) so that the graded ring C[Σ]/(θ)

satisfies IHL around k/2 with ω =
∑

i xi.
(10)

When m = 1, then Σ is just a poset-theoretic product of boundaries of simplices. There-

fore C[Σ] can be thought of as the torus equivariant cohomology ring of a product of

projective spaces, while an l.s.o.p. (θ) can be chosen so that C[Σ]/(θ) is just the coho-

mology ring of the product of projective spaces. Then ω =
∑

xi is just a Kähler class,

so the classical Hard Lefschetz theorem proves (10).

Now suppose we know our statement for m− 1 and consider a pure rank-k simplicial

complex with a PS-ear-decomposition. Let us denote Σ<m = ∪m−1
j=1 Σj. Consider the

natural surjective map C[Σ] → C[Σ<m]. We think of the kernel of this map as a graded

C[x1, . . . , xn]-module and denote it by C[Σ, Σ<m]. So we have the following exact sequence

of graded C[x1, . . . , xn]-modules:

0 → C[Σ, Σ<m] → C[Σ] → C[Σ<m] → 0.

We now claim that we can find an l.s.o.p (θ) = (θ1, . . . , θk) for C[Σ] such that in both

graded C[x1, . . . , xn]-modules C[Σ<m]/(θ) and C[Σ, Σ<m]/(θ) the IHL for ω is satisfied

around degree k/2 .

By induction we know that the set of (θ) which is an l.s.o.p. for C[Σ<m] and

C[Σ<m]/(θ) satisfies IHL for ω is non-empty and clearly Zariski open in Cnk. Because the

set of (θ) which is l.s.o.p. for C[Σ] is also non-empty and Zariski open, the intersection of

these two sets will also be non-empty and Zariski open. In summary we see that the set

of (θ) which is an l.s.o.p for C[Σ] and C[Σ<m]/(θ) satisfies IHL for ω is non-empty and

Zariski open.
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It is also clear that the set of (θ) which is an l.s.o.p for C[Σ] and C[Σ, Σ<m]/(θ)

satisfies IHL around degree k/2 for ω is Zariski open. We now prove that it is in fact

non-empty. Take the natural map C[Σm] → C[∂Σm] and denote by C[Σm, ∂Σm] the

kernel. We think of this kernel as an C[x1, . . . , xn]-module by letting the variables xj

which correspond to vertices not in Σm acting trivially. Then it is easy to see that

C[Σm, ∂Σm] and C[Σ, Σ<m] are isomorphic as graded C[x1, . . . , xn]-modules (this is the

analogue of excision in cohomology). But Σm = ∆ × Φ is a poset-theoretic product of a

k-simplex ∆ with a poset-theoretic product of boundary of simplices Φ. Now it is clear

that

C[Σm, ∂Σm] ∼= C[Φ] ⊗ C[∆, ∂∆]

as graded C[x1, . . . , xn]-modules (this corresponds to the Thom isomorphism (8) in co-

homology). If x1, . . . , xl correspond to the vertices of ∆ then C[∆, ∂∆] is just a free

C[x1, . . . , xl]-module generated by a degree l element x1x2 . . . xl (which is the analogue of

the Thom class).

Recall that the set of (θ) = (θ1, . . . , θk) ∈ (C[Σ])k
1 = Cnk for which

C[Σ, Σ<m]/(θ) := C[Σ, Σ<m]/(θ1C[Σ, Σ<m] + · · · + θkC[Σ, Σ<m])

satisfies IHL around degree k/2 for ω =
∑n

i=1 xi is clearly Zariski open in Cnk. Now we

show that it is non-empty. Take (θ) = (x1, . . . , xl, θl+1, . . . , θk), so that (θl+1, . . . , θk) is

an l.s.o.p for C[Φ] and C[Φ]/(θl+1, . . . , θk) satisfies IHL around (k − l)/2 with ω =
∑

xi.

For this choice we have

C[Σ, Σ<m]/(θ) = x1x2 . . . xlC[Φ]/(θl+1, . . . , θk),

and so IHL for C[Φ]/(θl+1, . . . , θk) around degree (k− l)/2 implies IHL for C[Σ, Σ<m]/(θ)

around degree k/2 with ω =
∑

xi.

As the intersection of non-empty Zariski subsets of Cnk is non-empty we can choose a

(θ) = (θ1, . . . , θk), which is an l.s.o.p for C[Σ] and C[Σ<m] and for which both C[Σ<m]/(θ)

and C[Σ, Σ<m]/(θ) satisfies IHL around k/2 with ω =
∑

xi. Now using the short exact

sequence:

0 → C[Σ, Σ<m]/(θ) → C[Σ]/(θ) → C[Σ<m]/(θ) → 0,

we can repeat the argument of Proof 1 of Theorem 4.1, to get that C[Σ]/(θ) satisfies IHL

around k/2 with ω =
∑

xi.

Because Σ has a PS-ear decomposition it is shellable (see [3, Proposition 5]), and so

Cohen-Macaulay, we have that hi(Σ) = dimC((C[Σ]/(θ))i) and so Theorem 5.1 follows.

Remark 5.6. Because we have Hard Lefschetz theorem for boundary complexes of sim-

plicial convex polytopes the above proof would have worked equally well for simplicial

complexes with a decomposition just like PS-ear-decomposition above, but changing PS-

spheres, in the definition, with boundary complexes of simplicial convex polytopes. For

a unimodularly and rationally representable matroid such a presentation always arises
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naturally. Namely we can consider the Morse stratification (for details on this see [5]) of

a hyper-compact U(1)-action on the bounded complex of a generic hyperplane arrange-

ment which represents our given matroid. In this case the above combinatorial proof of

Theorem 5.1 would essentially agree with Proof 1 of Theorem 4.1.

6 Proof of the g-inequalities for pure O-sequences

First a definition:

Definition 6.1. A sequence of non-negative integers (h1, h2, . . . , hk) is called a pure O-

sequence, if hk > 0 and there exists monomials m1, . . . ,mhk
of degree k in the degree one

variables x1, . . . , xh1
, so that hl is the number of monomials m of degree l in variables

x1, . . . , xh1
, such that m|mi for some 0 < i ≤ hk.

Now we can state a long standing conjecture of Stanley [18]:

Conjecture 6.2 (Stanley). The h-vector (h1(M), . . . , hk(M)) of a rank k matroid M

is a pure O-sequence.

This conjecture is still open for general matroids, although recently it has been proved

for cographic matroids using [13], i.e. for the Betti numbers of toric quiver varieties

[8, Section 8]. Another attack on Stanley’s conjecture has been to deduce numerical

inequalities between the numbers in a pure O-sequence and then prove these inequalities

for the h-vector of a matroid complex. As an example, Hibi [10] proved that for a pure

O-sequence one has

hi ≤ hj, (11)

where i ≤ j ≤ k − i and in particular that

h1 ≤ h2 ≤ · · · ≤ h⌊ k
2
⌋,

this was in turn proven for h-vectors of matroid complexes by Chari [3].

Here we strengthen this result by proving the following

Theorem 6.3. A pure O-sequence (h1, h2, . . . , hk) satisfies (11) and the g-inequalities.

Corollary 6.4. Theorem 5.1 is a consequence of Stanley’s Conjecture 6.2.

Proof of Theorem 6.3. We are going to follow the structure of Proof 2 of Theorem 4.1.

Namely take a pure O-sequence (h1, h2, . . . , hk) with generating monomials m1, . . . ,mhk

in variables x1, . . . , xh1
. First we construct a graded ring

R =
C[∂1,...,∂h1

]

I

I = ann(m1) ∩ · · · ∩ ann(mhk
)
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which will be the analogue of the cohomology ring H∗(Y, C) of a toric hyperkähler man-

ifold. Here ∂i is a variable of degree one, which we think of as a differential operator,

satisfying ∂i(xj) = δij. The ideal in the denominator is the ideal I of polynomials in

the ∂i which annihilate all the monomials mj. Clearly dim Rj = hj. Then we construct

graded rings

Rj =
C[∂1,...,∂h1

]

Ij

Ij = ann(mj)

for each monomial mj, which will be the analogue of H∗(Xj, C) (in fact it is useful to

think about Rj as the cohomology ring of the product of projective spaces of dimension

given by the exponents in the monomial mj). Because I ⊂ Ij, we have a natural map

pj : R → Rj. The equation I = ∩jIj now implies the analogue of (4), i.e. that the map

p = p1 × · · · × phk
: R → R1 × · · · × Rhk

is injective. Now take the degree 1 class ω =
∑

j ∂j. It is clear that the map Lk−2i
j :

Rj
i → Rj

k−i given by Lk−2i
j (α) = αpj(ω

k−2i) is injective for 2i < k. Indeed, think of

Rj as the cohomology ring of the product of projective spaces. Then pj(ω) corresponds

to the natural ample class, so the hard Lefschetz theorem implies injectivity of Lk−2i
j .

Of course in this case one can check this result by hand for the explicitly defined rings

Rj. The injectivity of p and of Lk−2i
j implies the injectivity of Lk−2i : Ri → Rk−i,

Lk−2i(α) = αωk−2i for 2i < k. The result follows.
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