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1053 Hungary. E-mail: etesi@math-inst.hu

2 Miller Institute for Basic Research in Science and Department of Mathematics, University of California
at Berkeley, Berkeley, CA 94720, USA. E-mail: hausel@math.berkeley.edu

Received: 16 September 2002 / Accepted: 22 October 2002
Published online: 21 February 2003 – © Springer-Verlag 2003

Abstract: In this paper we explicitly calculate the analogue of the ’t Hooft SU(2)

Yang–Mills instantons on Gibbons–Hawking multi-centered gravitational instantons,
which come in two parallel families: the multi-Eguchi–Hanson, or Ak ALE gravitation-
al instantons and the multi-Taub–NUT spaces, or Ak ALF gravitational instantons. We
calculate their energy and find the reducible ones. Following Kronheimer we also ex-
ploit the U(1) invariance of our solutions and study the corresponding explicit singular
SU(2) magnetic monopole solutions of the Bogomolny equations on flat R

3.

1. Introduction

Asymptotically Locally Euclidean or ALE and Asymptotically Locally Flat or ALF
gravitational instantons are complete, non-compact hyper-Kähler four-manifolds which
are intensively studied from both physical and mathematical sides recently. This paper
is a continuation of the project of constructing SU(2) Yang–Mills instantons on ALF
gravitational instantons started in [10] and [11]. In [10] we identified all the reducible
SU(2) instantons on the Euclidean Schwarzschild manifold (which is ALF and Ricci
flat, though not self-dual), and showed that these solutions, albeit not their reducibili-
ty, were already known to [6]. Then in [11] we went on and studied SU(2) instantons
on the Taub–NUT space (which is an ALF gravitational instanton). Following [16] we
exploited the self-duality of the metric, to obtain a family of SU(2) instantons, which
could be considered as the analogue of the ’t Hooft solutions on R

4. (For more historical
remarks the reader is referred to [11].)

Here we carry out the generalization of [11] to the more general case of multi-Taub–
NUT spaces (which are also ALF gravitational instantons). An interesting aspect of our
paper is that what we do goes almost verbatim in the case of the other family of Gibbons–
Hawking multi-centered gravitational instantons [13], namely the multi-Eguchi–Hanson
spaces.
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The only difference in the two cases will be the energy of some of the Yang–Mills
instantons. Namely in the multi-Eguchi–Hanson case the infinity may contribute minus
a fraction of one to the energy, while in the multi-Taub–NUT case the energy is always
an integer.

We will make the calculation of the energy integral in the convenient framework of
considering the U(1)-invariant instantons as singular monopoles on R

3. We will follow
[18] to write down this reduction and perform the integral. This way we will also exhibit
explicit, but singular, solutions to the SU(2) Bogomolny equation on R

3. Remarkably we
will get the same monopoles, regardless of which family of Gibbons–Hawking metrics
we consider: the ALE or ALF.

Then we go on and identify the reducible U(1) instantons among our solutions. They
are interesting from the point of view of Hodge theory as their curvatures are L2 harmon-
ic 2-forms. Namely, only very recently has the dimension of the space of L2 harmonic
forms on ALF gravitational instantons been calculated in [14]. Remarkably we are able
to identify a basis of generators for these L2 harmonic 2-forms, arising in this paper as
curvatures of reducible ’t Hooft instantons.

In the last part of our paper we put everything together and look at the parameter
spaces of solutions we uncovered in this paper and explain its properties in light of the
results and point out some future directions to consider.

Our instantons are not new. Most of them were found during the early eighties by
Aragone and Colaiacomo [1] and by Chakrabarti, Boutaleb-Joutei and Comtet in a se-
ries of papers [4]; for a review cf. [5]. The ’t Hooft solutions and a few more general
ADHM solutions in the Eguchi–Hanson case were written down explicitly in [3]. Finally,
SU(2) Yang–Mills instantons over Ak ALE gravitational instantons were classified by
Kronheimer and Nakajima [19].

2. Instantons over the Multi-Centered Spaces

In this section we generalize the method of [11], designed for finding Yang–Mills in-
stantons on Taub–NUT space, to the multi-centered gravitational instantons (MV , gV )

of Gibbons and Hawking [13, 15].
In our previous paper we used the following result. Suppose (M, g) is a four-dimen-

sional Riemannian spin-manifold which is self-dual and has vanishing scalar curvature.
Consider the metric spin connection ∇̃S of the rescaled manifold (M, g̃) with g̃ = f 2g,
where f is harmonic (i.e., �f = 0 with respect to g). This so(4)-valued connection
lives on the complex spinor bundle SM . Take the ∇− component of ∇̃S . This connection
can be constructed as the projection onto the chiral spinor bundle S−M , according to the
splitting SM = S+M⊕S−M and can be regarded as an su(2)−-valued connection. This
is because the above splitting of the spinor bundle is compatible with the Lie algebra
decomposition so(4) ∼= su(2)+ ⊕ su(2)−. In light of a result of Atiyah, Hitchin and
Singer [2] (see also [11]) ∇− is self-dual with respect to g. These ideas in the case of
flat R

4 were first used by Jackiw, Nohl and Rebbi [16], in the case of ALE gravitational
instantons in [4] while for the Taub–NUT case by the authors [11] to construct plenty
of new instantons. Our aim is to repeat this method in the present more general case.

If ∇̃S is represented locally by an so(4)-valued 1-form ω̃ then we write A− for the
su(2)−-valued connection 1-form of ∇− in this gauge over a chart U ⊂ M .

Now we turn our attention to a brief description of the Gibbons–Hawking spaces
denoted by MV . This space topologically can be understood as follows. There is a circle
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action on MV with k fixed points p1, . . . , pk ∈ MV , called NUTs1. The quotient is R
3

and we denote the images of the fixed points also by p1, . . . , pk ∈ R
3. Then UV :=

MV \ {p1, . . . , pk} is fibered over ZV := R
3 \ {p1, . . . , pk} with S1 fibers. The degree

of this circle bundle around each point pi is one.
The metric gV on UV looks like (cf. e.g. p. 363 of [8])

ds2 = V (dx2 + dy2 + dz2) + 1

V
(dτ + α)2, (1)

where τ ∈ (0, 8πm] parametrizes the circles and x = (x, y, z) ∈ R
3; the smooth

function V : ZV → R and the 1-form α ∈ C∞(�1ZV ) are defined as follows:

V (x, τ ) = V (x) = c +
k∑

i=1

2m

|x − pi | , dα = ∗3 dV. (2)

Here c is a parameter with values 0 or 1 and ∗3 refers to the Hodge-operation with respect
to the flat metric on R

3. We can see that the metric is independent of τ hence we have a
Killing field on (MV , gV ). This Killing field provides the above mentioned U(1)-action.
Furthermore it is possible to show that, despite the apparent singularities in the NUTs,
these metrics extend analytically over the whole MV .

If c = 0 with k running over the positive integers we find the multi-Eguchi–Hanson
spaces. If c = 1 we just recover the multi-Taub–NUT spaces. In particular if c = 1 and
k = 1 then (1) is the Taub–NUT geometry on R

4 (cf. Eq. (6) of [11]): this is easily seen
by using the coordinate transformation x2 + y2 + z2 = (r − m)2. Note that under this
transform V has the form (by putting the only NUT into the origin r = m)

V (r) = 1 + 2m

r − m

i.e., coincides with the scaling function f found in the Taub–NUT case (cf. Eq. (8)
in [11]) with λ = 2m. From here we guess that in the general case the right scaling
functions will have the shape

f (x) = λ0 +
k∑

i=1

λi

|x − pi | , (3)

where by an inessential rescaling we can always assume that λ0 is either 0 or 1.
We can prove that these are indeed harmonic functions. In order to put our formulas

in the simplest form, we introduce the notation (x, y, z) = (
x1, x2, x3

)
and will use the

Einstein summation convention.

1 The reason for writing the nut with block letters is the following. In 1951 Taub discovered an emp-
ty space solution of the Lorentzian Einstein equations [23] whose maximal analytical extensions were
found by Newman, Unti and Tamburino in 1963 [20]. Hence this solution is referred to as Taub–NUT
space-time.

On the other hand in 1978 Gibbons and Hawking presented a classification of known gravitational
instantons taking into account the topology of the critical set of the Killing field appearing in these spaces
[8, 13]. Those whose critical set contains only isolated points were called “nuts” while another class
having two dimensional spheres as singular sets were called “bolts”. It is a funny coincidence that an
example for the former class is provided by the generalization of the Riemannian version of Taub–NUT
space-time, called multi-Taub–NUT space in the present work.
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First note that from the form of the metric, we have the following straightforward
orthonormal tetrad of 1-forms on UV :

ξ0 = 1√
V

(dτ + α), ξ1 =
√

V dx1, ξ2 =
√

V dx2, ξ3 =
√

V dx3. (4)

The orientation is fixed such that ∗(ξ0∧ξ1∧ξ2∧ξ3) = 1 which is the opposite to the ori-
entation induced by any of the complex structures in the hyper-Kähler family. Let us thus
take a general U(1)-invariant function f : MV → R. It means that f = f (x1, x2, x3)

does not depend on τ . Then we have on UV :

df = ∂f

∂xi
dxi = 1√

V

∂f

∂xi
ξ i (i = 1, 2, 3).

By using the above orthonormal tetrad (4), we see that

∗df = εi
jk

1√
V

∂f

∂xi
ξ j ∧ ξk ∧ ξ0 = εi

jk

∂f

∂xi
dxj ∧ dxk ∧ (dτ + α).

(Note that ∗ is the Hodge star operator on (MV , gV ).) Consequently

�f = δ df = − ∗ d ∗ df = ∂2f

∂x2 + ∂2f

∂y2 + ∂2f

∂z2 .

Thus we see that the U(1)-invariant f is harmonic on (MV , gV ) if and only if it is har-
monic on the flat R

3. Positive harmonic functions on R
3 which are bounded at infinity

and have finitely many point-singularities, with at most inverse polynomial growth, have
the shape

f (x) = λ0 +
∑

i

λi

|x − qi | ,

where qi’s are finitely many points in R
3. Note if we want our function f : MV → R

to be a harmonic function with only point singularities, we need to place the qi’s at
the NUTs pi of the metric. Thus we have found all reasonable positive U(1)-invariant,
harmonic functions on (MV , gV ) with point singularities and bounded at infinity. They
are of the form (3).

Now we determine the Levi–Civitá connection of the re-scaled metric g̃ = f 2gV

restricted to UV . By using the trivialization (4) of the tangent bundle T UV , the Levi–
Civitá connection can be represented by an so(4)-valued 1-form ω̃ on UV . With the help
of the Cartan equation we can write

dξ̃ i = −ω̃i
j ∧ ξ̃ j .

Taking into account that ξ̃ i = f ξ i , this yields

dξ i + d(log f ) ∧ ξ i = −ω̃i
j ∧ ξj .

As we have seen, f does not depend on τ , therefore we have an expansion like

d(log f ) = 1√
V

∂ log f

∂xj
ξj (j = 1, 2, 3).
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Putting this and dξ i = −ωi
j ∧ ξj for the original connection into the previous Cartan

equation, we get
(

ωi
j + 1√

V

∂ log f

∂xj
ξ i

)

∧ ξj = ω̃i
j ∧ ξj ,

consequently the local components of the new connection on UV , after antisymmetrizing,
have the shape

ω̃i
j = ωi

j + 1√
V

(
∂ log f

∂xj
ξ i − ∂ log f

∂xi
ξ j

)

.

(Here it is understood that ∂ log f/∂x0 = 0.) By the aid of the Cartan equation in the
original metric, the components of the original connection ω take the form on UV ,

ω1
2 = − 1

2
√

V

∂ log V

∂x3 ξ0 + 1

2
√

V

∂ log V

∂x2 ξ1 − 1

2
√

V

∂ log V

∂x1 ξ2,

and

ω0
1 = − 1

2
√

V

∂ log V

∂x1 ξ0 + 1

2
√

V

∂ log V

∂x3 ξ2 − 1

2
√

V

∂ log V

∂x2 ξ3,

and cyclically for the rest. Notice that from this explicit form we see that in this gauge
the Levi–Civitá connection is itself self-dual i.e., ω0

1 = ω2
3 etc. (cf. p. 363 of [8]).

Consequently it cancels out if we project ω̃ onto the su(2)− subalgebra via

A−
λ0,...,λk

= 1

4

3∑

a=1

3∑

i,j=0

(

ηi
a,j ω̃

i
j

)

ηa,

where the ’t Hooft matrices ηi are given by:

η1 =






0 1 0 0
−1 0 0 0
0 0 0 −1
0 0 1 0




 , η2 =






0 0 −1 0
0 0 0 −1
1 0 0 0
0 1 0 0




 , η3 =






0 0 0 −1
0 0 1 0
0 −1 0 0
1 0 0 0




 .

Using the identification su(2)− ∼= Im H via (η1, η2, η3) �→ (i, −j, −k) we get for
∇−

λ0,...,λk
in the gauge (or bundle trivialization) given by (4) on UV that

A−
λ0,...,λk

= i

2
√

V

(
∂ log f

∂x1 ξ0 − ∂ log f

∂x3 ξ2 + ∂ log f

∂x2 ξ3
)

+ j

2
√

V

(
∂ log f

∂x2 ξ0 + ∂ log f

∂x3 ξ1 − ∂ log f

∂x1 ξ3
)

+ k

2
√

V

(
∂ log f

∂x3 ξ0 − ∂ log f

∂x2 ξ1 + ∂ log f

∂x1 ξ2
)

.

This long but very symmetric expression can be written in a quite simple form as fol-
lows. Consider the following quaternion-valued 1-form ξ and the imaginary quaternion
d(log f ) (we use the symbol “d” to distinguish it from the real 1-form d(log f )):

ξ := ξ0 + ξ1i + ξ2j + ξ3k, d(log f ) := ∂ log f

∂x1 i + ∂ log f

∂x2 j + ∂ log f

∂x3 k.
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It is easily checked that with this notation the connection takes the simple shape

A−
λ0,...,λk

= Im
d(log f ) ξ

2
√

V
. (5)

This form emphasizes the analogy with the case of flat R
4 (cf. p. 103 of [12]). By con-

struction these connections are self-dual over (UV , gV ); but we will prove in the next
sections that they are furthermore gauge equivalent to smooth, self-dual connections
over the whole (MV , gV ) and have finite energy.

We remark that there is a familiar face in the crowd (5). This is the solution corre-
sponding to the choice f = V . The Yang–Mills instanton (5) is then the same as the
projection of the Levi–Civitá connection of MV onto the other chiral bundle S+MV ,
which is easy to see from the form of the Levi–Civitá connection calculated earlier in
this section. We denote this connection by ∇metric. This is the solution which we called
in [11] the Pope–Yuille solution of unit energy in the Taub–NUT case [21, 4]. In the
Eguchi–Hanson case this is the solution of energy 3/2 found in [4] and later again in
[17].

To conclude this section, we write down the field strength or curvature of (5) over
UV . The field strength of a connection ∇ with connection 1-form A over a chart is
F = dA + A ∧ A. Therefore we can see by (5) that our field strength has the form over
UV ,

F−
λ0,...,λk

= − dV

4V 3/2 ∧ Im(d(log f ) ξ) + 1

2
√

V
Im(d(log f )dξ)

+ 1

2
√

V
Im(dd(log f ) ∧ ξ) + 1

4V
(Im(d(log f )ξ) ∧ Im(d(log f )ξ)) .

The terms in the first line can be adjusted as follows. Using the identity

dξ = ∗3
dV√

V
− dV

2V
∧ ξ,

we can write them in the form
(

− dV

2V 3/2 ∧ ξ0 + ∗3
dV

2V

)

d(log f ) = −d(log f )

4V 2 Re
(
dV ξ ∧ ξ

)

with

dV = ∂V

∂x1 i + ∂V

∂x2 j + ∂V

∂x3 k.

One immediately sees at this point that these two terms are self-dual with respect to gV

at least over UV because ξ ∧ξ is a basis for self-dual 2-forms. Self-duality of the remain-
ing two terms is not so transparent; however a tedious but straightforward calculation
assures us about it. So we can conclude that the connections ∇−

λ0,...,λk
are self-dual with

respect to gV at least over UV .
The action, or energy, or L2-norm of the connection (if it exists) is the integral

‖F−
λ0,...,λk

‖2 = 1

8π2

∫

MV

|F−
λ0,...,λk

|2gV
= − 1

8π2

∫

MV

tr
(

F−
λ0,...,λk

∧ ∗F−
λ0,...,λk

)

. (6)

Next we turn our attention to the extendibility of (5) over the NUTs and its asymptotical
behaviour in order to calculate the above integral.
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3. A Gauge Transformation Around a NUT

Our next goal is to demonstrate that the self-dual connections just constructed are well-
defined over the whole MV up to gauge transformations. As we have seen, the gauge (5)
contains only pointlike singularities, hence if we could prove that the energy of ∇−

λ0,...,λk

is finite in a small ball around a fixed NUT then, in light of the removable singularity
theorem of Uhlenbeck [24] we could conclude that our self-dual connections extend
through the NUTs after suitable gauge transformations. However the direct calculation
of (6) is complicated because of its implicit character. Consequently it will be performed
in the next section; here we write down a gauge transformation explicitly, such that the
resulting connection will be easily extendible over the NUTs. To this end, we derive a
useful decomposition of (5).

To keep our expressions as short as possible, we introduce further notations: let us
write rj (x) := |x − pj | and

Vi := c + 2m

ri
, fi := λ0 + λi

ri
,

and define the 1-form αi on R
3 by the equation ∗3 dαi = dVi. With these notations we

introduce a new real valued function ai on UV as follows:

V =: aiVi . (7)

One easily calculates

ai = 1 + 2m

2m + cri

∑

j �=i

ri

rj
.

In the same fashion by putting the fixed NUT pi into the origin of R
3 (i.e., pi = 0) we

can write

d(log f ) = − 1

f
(x1i + x2j + x3k)

k∑

j=1

λj

r3
j

+ 1

f

∑

j �=i

λj

r3
j

(

p1
j i + p2

j j + p3
j k

)

.

On the other hand,

d(log fi) = − 1

fi

λi

r3
i

(
x1i + x2j + x3k

)
,

therefore we can write for a real valued function bi on UV that

d(log f ) =: bid(log fi) + pi , (8)

where

bi =
1 + ∑

j �=i

λj

λi

(
ri
rj

)3

1 + ∑

j �=i

λj

λi+λ0ri

ri
rj

,

and we have introduced the function pi : UV → Im H given by

pi := 1

f

∑

j �=i

λj

r3
j

(p1
j i + p2

j j + p3
j k).
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As a next step, we have to examine these new objects around the NUT pi . It is not
difficult to see, via the explicit expressions for ai , bi and pi that

lim
ri (x)→0

ai(x) = 1, lim
ri (x)→0

bi(x) = 1, lim
ri (x)→0

|pi (x)|H = 0.

These observations show that in fact ai , bi and pi are well defined on UV ∪ {pi}. Now
putting decompositions (7), (8) into (5) we arrive at the expression

A−
λ0,...,λk

= Im
bid(log fi)ξ

2
√

aiVi

+ Im
piξ

2
√

aiVi

. (9)

From here one immediately deduces that the first term (which formally coincides with
the original ’t Hooft solution on flat R

4 when c = 0; and the solution on Taub–NUT
space constructed in [11] when c = 1) is singular while the last term vanishes in the NUT
pi . In order to analyse the structure of the singular term more carefully, we introduce
spherical coordinates around pi i.e., the origin of R

3:

x1 := ri sin �i cos φi, x2 := ri sin �i sin φi, x3 := ri cos �i.

Here �i ∈ (0, π ] and φi ∈ (0, 2π ] are the angles. In this way we rewrite the singular
term as

Im
bid(log fi)ξ

2
√

aiVi

= biλi

2(λ0ri + λi)(ri + 2m)

(

− 1

ai

(dτ + α) + (ri + 2m)αi

)

qi

+ biλi

2(λ0ri + λi)
((sin φi i − cos φij)d�i − k dφi) ,

where we have introduced the notation for the “radial” imaginary quaternion

qi := sin �i cos φi i + sin �i sin φij + cos �ik

and have exploited the identity αi = cos �i dφi at several points. Now we can easily see
that the above expression is singular because the quaternion qi is ill-defined in the NUT
pi i.e., in the origin ri = 0 (all the other terms involved are regular in pi). Consequently
we are seeking for a gauge transformation which rotates the quaternion qi into k, for
example. This gauge transformation cannot be performed continuously over the whole
UV

∼= R
3 \ {p1, . . . , pk} × S1, therefore we introduce the two open subsets

U+
V :=

{

(x1, x2, x3, τ ) | x3 ≥ 0, i.e., �i ≥ π

2

}

,

U−
V :=

{

(x1, x2, x3, τ ) | x3 ≤ 0, i.e., �i ≤ π

2

}

.

Now it is not difficult to check that the gauge transformations g±
i : U±

V → SU(2) given
by

g±
i (τ, ri , �i, φi) := exp

(

±k
φi

2

)

exp

(

−j
�i

2

)

exp

(

−k
φi

2

)

(here exp: su(2) → SU(2) is the exponential map) indeed rotate qi into k. (We remark
that this gauge transformation is exactly the same which was used to identify the Cha-
rap–Duff instantons with Abelian ones over the Euclidean Schwarzschild manifold in
[10].) Notice that exp(kφi)g

−
i = g+

i , showing that the two gauge transformations are
related with an Abelian one along the equatorial plane x3 = 0 i.e., �i = π/2.
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We can calculate that (cf. [10])

g±
i ((sin φi i − cos φij) d�i − kdφi)(g

±
i )−1 = −2g±

i d
(
g±

i

)−1 ∓ kdφi,

therefore we get for the gauge transformed connection B±
λ0,...,λk

:= g±
i A−

λ0,...,λk
(g±

i )−1+
g±

i d
(
g±

i

)−1
by using decomposition (9) that

B±
λ0,...,λk

= biλi

2(λ0ri + λi)(ri + 2m)

(

− 1

ai

(dτ + α) + (ri + 2m)(∓1 + cos �i)dφi

)

k

+
(

1 − biλi

λ0ri + λi

)

g±
i d

(
g±

i

)−1 + g±
i Im

piξ

2
√

aiVi

(
g±

i

)−1
. (10)

Now we have reached the desired result: we can see that, approaching the NUT pi from
the north (i.e., along a curve whose points obey x3 > 0) the terms written in the first
line of B+

λ0,...,λk
remain regular while the (non-Abelian) terms of the second line vanish

if ri = 0. The situation is exactly the same from the south if we use B−
λ0,...,λk

. Moreover

B+
λ0,...,λk

and B−
λ0,...,λk

are related via an Abelian gauge transformation along the equator

x3 = 0. Consequently in this new gauge our instantons are regular in the particular NUT
pi .

By performing the same transformations around all NUTs p1, . . . , pk we can see
that in fact the instantons (5) extend smoothly across all the NUTs.

4. Kronheimer’s Singular Monopoles and the Energy

In this section we identify our U(1)-invariant instantons over the Gibbons–Hawking
spaces with monopoles over flat R

3 carrying singularities in the (images of the) NUTs
p1, . . . , pk . This identification enables us to calculate the energy of our solutions as
well. In this section we will follow Kronheimer’s work [18].

Remember S−MV is an SU(2) vector bundle over MV and the U(1) action can be
lifted from MV to S−MV . Our instantons ∇−

λ0,...,λk
are self-dual, U(1)-invariant SU(2)-

connections on this bundle. If we choose an U(1)-invariant gauge in S−MV (for example
(5) or (10) is suitable) then A−

λ0,...,λk
becomes an U(1)-invariant su(2)−-valued 1-form

which we can uniquely express as

A−
λ0,...,λk

= π∗A − π∗�(dτ + α),

where A and � are a 1-form and a 0-form on ZV and π : UV → ZV is the projec-
tion. Dividing S−MV by the U(1)-action we obtain a SU(2) vector bundle E over ZV

together with a pair (A, �) on it. Omitting π∗ we calculate

F−
λ0,...,λk

= ∇A−
λ0,...,λk

= (F − � dα) − ∇� ∧ (dτ + α). (11)

Here we have used the notation F = ∇A. One finds that the self-duality F−
λ0,...,λk

=
∗F−

λ0,...,λk
of the original connection is equivalent to ∗3(F − � dα) = V ∇� or ∗3F =

∇(V �) since dα = ∗3 dV . Putting � := V � we can write

F = ∗3∇�

which is the Bogomolny equation for the pair (A, �) on ZV . This shows that the pair
(A, �) can be naturally interpreted as a magnetic vectorpotential and a Higgs field while
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F as a magnetic field on ZV . Notice however that in this case the Higgs field � is singular
at the images of the NUTs, hence the reason we have to use the punctured R

3 denoted
by ZV .

In our case, by using (5) we can write down the pair (A, �) explicitly. We easily find
that

�= d(log f )

2
, A= Im

d(log f )i
2

dx1+Im
d(log f )j

2
dx2+Im

d(log f )k
2

dx3. (12)

In this framework one can find a simple formula for the energy we are seeking. In what
follows define ZR

ε to be the intersection of a large ball of radius R in R
3 containing all

the NUTs and the complements of small balls of radius εi surrounding the NUTs pi .
Putting (11) into (6) we can write

8π2‖F−
λ0,...,λk

‖2 =
∫

MV

|(F − � dα) − ∇� ∧ (dτ + α)|2gV

= −
∫

MV

V

(
1

V 2 |F − � dα|2 + |∇�|2
)

∧ (dτ + α)

= 16πm lim
R→∞
εi→0

∫

ZR
ε

V |∇�|2,

taking into account the Bogomolny equation in the form F − � dα = ∗3V ∇�. By
writing 2V |∇�|2 = d ∗3 d(V |�|2) and exploiting Stokes’ theorem we arrive at the
useful formula

8π2‖F−
λ0,...,λk

‖2 = 8πm lim
R→∞
εi→0

∫

∂ZR
ε

∗3 d

( |�|2
V

)

.

In the above expressions |·, ·| stands for the Killing norm of su(2) induced by the Euclid-
ean metric on R

3 i.e., it is the standard Killing norm, hence it is equal to twice the usual
norm square of a quaternion under the identification su(2) ∼= Im H; e.g. |�|2 = 2|�|2

H
.

In order to determine the exact value of the action of our solutions, we simply have
to calculate the contributions of each component of the boundary ∂ZR

ε , in other words,
the NUTs pi and the infinity of R

3.
First we can see that, using (7) and (8), for small εi there is an expansion

|�|2
V

= 1

2

∣
∣
∣
∣

(

− biλi

εi(λ0εi + λi)
qi + pi

) √
εi

ai(cεi + 2m)

∣
∣
∣
∣

2

H

=





1/(4mεi) + O(1) if λi �= 0,

0 if λi = 0.

This implies that

∣
∣
∣
∣d

( |�|2
V

)∣
∣
∣
∣ =






| − 1/(4mε2
i ) + O(1/εi)| if λi �= 0,

0 if λi = 0.
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(For clarity we remark that the outermost | · | in the last expression is the Euclidean
norm on R

3.) However in the above integral there is a contribution −4πε2
i by the spheres

(the minus sign comes from the orientation), consequently each NUT pi together with
the condition λi �= 0 contributes a factor 8π2 to the integral i.e., 1 to the energy. Hence
the total contribution is n, where n stands for the number of non-zero λi’s. Clearly
0 ≤ n ≤ k.

To see the contribution of infinity, we have to understand the fall-off properties of the
function |�|2/V . Clearly this is not modified if we put all the NUTs into the origin of
R

3. Thus asymptotically our functions take the shape

V = c + 2mk

R
, f = λ0 + 1

R

k∑

i=1

λi =: λ0 + λ

R
.

Putting these expressions into |�|2/V and expanding it into 1/R terms one finds the
following for large R:

|�|2
V

= 1

2

∣
∣
∣
∣
∣
− λ

R(λ0R + λ)
q

√
R

cR + 2mk

∣
∣
∣
∣
∣

2

H

=





1/(4mkR) + O(1/R2) if λ0 = 0 and c = 0,

O(1/R2) otherwise.

Consequently

∣
∣
∣
∣d

( |�|2
V

)∣
∣
∣
∣ =






| − 1/(4mkR2) + O(1/R3)| if λ0 = 0 and c = 0,

|O(1/R3)| otherwise.

Since now again 4πR2 is the volume of the large sphere (notice that there is no minus
sign because of the orientation) we get that the contribution of infinity is −8π2/k to the
above integral i.e., −1/k to the energy in the case of the multi-Eguchi–Hanson space
c = 0 with the special limit λ0 = 0. Otherwise the contribution of infinity is zero. Also
notice that if n = 0 then f = λ0 is a constant hence the energy is certainly zero.

We summarize our findings in the following

Theorem 4.1. The connection ∇−
λ0,...,λk

as given in (5) is a smooth self-dual SU(2)

Yang–Mills connection and has energy 0 if all λi = 0 (i > 0) i.e., n = 0 (in which case
∇−

λ0,0,...,0 is the trivial connection), otherwise we have

‖F−
λ0,...,λk

‖2 =





n − (1/k) if λ0 = 0, c = 0,

n otherwise,

where k refers to the number of NUTs while n is the number of non-zero λi’s (i > 0).
�
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5. The Abelian Solutions

In this section we show that (5) is reducible to U(1) if and only if for an i = 0, . . . , k we
have λi > 0 (for simplicity we take λi = 1), while λj = 0 if j �= i and j = 0, . . . , k.
First take the case when λ0 �= 0 but the other λ’s vanish, then our solution (5), which we
denote by ∇0, is trivial. Now suppose that λi �= 0 for i = 1, . . . , k but the others vanish.
Take the NUT pi and consider the new gauge (10). In the case at hand the second line van-
ishes and (10) reduces to the manifestly Abelian instanton ∇i with B±

i := B±
0,...,0,1,0,...,0

(with 1 in the ith place):

B±
i =

(

−dτ + α

V ri
+ (∓1 + cos �i)dφi

)
k
2
.

But in fact these connections are gauge equivalent because B+
i + 1

2 k dφi = B−
i − 1

2 k dφi ,
and ∇i locally can be written as

Bi =
(

−dτ + α

V ri
+ αi

)
k
2
, (13)

where ∗3 dαi = dVi . The curvature Fi = ∇Bi of this Abelian connection is the L2

harmonic 2-forms found by [22] in the multi-Taub–NUT case.
Now take any reducible SU(2) instanton of the form (5). Then in a suitable gauge it

can be brought to the form
∑

i

µiBi,

where µi are real numbers. This follows by applying a result from [14] which claims
that the 2-forms Fi generate the space of L2 harmonic 2-forms on our space. Now note

that the corresponding Higgs field of this instanton is

(
∑

i

µi

ri

)

k
2 . Since |�| is gauge

invariant we have the following identity around a particular NUT pi via (8) and (12):

|�|2 = 1

2




µi

εi

+
∑

j �=i

µj

rj





2

= 1

2

∣
∣
∣
∣−

biλi

εi(λ0εi + λi)
qi + pi

∣
∣
∣
∣

2

H

.

Provided it is not identically zero the right-hand side nowhere vanishes. We can deduce
that the µi’s have to be all non-positive or non-negative (otherwise |�|2 would be zero at
some point). Without loss of generality we suppose they are all non-negative. Moreover
the right-hand side times ε2

i tends to either 0 or 1/2 when εi tends to 0. Therefore we have
that µi is either 0 or 1. Moreover for large R we have 1/(2R2)

∑

i µi for the left-hand
side while the right-hand side asymptotically looks like

|�|2 =





1/(2R2) + O(1/R3) if λ0 = 0,

O(1/R3) if λ0 �= 0.

Thus this last expansion implies that λ0 = 0 and only one µi = 1, the rest vanishes.
This in turn shows that only one λi is not zero which proves the following

Theorem 5.1. An instanton in the form (5) is reducible if and only if for any i = 0, . . . , k

we have λi �= 0 and λj = 0 for j = 0, 1, . . . , i − 1, i + 1, . . . , k; in this case it can be
put into the form (13). �
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6. Conclusion

In this paper we have explicitly calculated the analogue of the ’t Hooft SU(2) instantons
for multi-centered metrics of k NUTs. We found a k parameter family of such solutions
(parametrized by λ0, . . . , λk all non-negative numbers modulo an overall scaling) one
for each NUTs. The structure of the space of solutions could be best visualized as an
intersection of the positive quadrant and the unit ball in R

k . The k flat sides of this body
correspond to the solutions λi = 0 for an i = 1, . . . , k, while the spherical boundary
component corresponds to λ0 = 0. The vertices of this body correspond to the reducible
solutions, the origin corresponding to the trivial solution; the rest to the non-Abelian
solutions (5). The energy of the solutions are k at the interior points of the body, while
it reduces by 1 for every λi = 0 for i = 1, . . . , k and by 1/k if λ0 = c = 0. In order to
see the boundary solutions as ideal solutions of energy k we can imagine an ideal Dirac
delta connection of energy 1 at each NUT pi for which λi = 0 in the Taub–NUT case;
the situation is the same for the multi-Eguchi–Hanson case except that we add a further
Dirac delta connection of energy 1/k at infinity if λ0 = 0.

metric

∆

1

∆

2

∆

0

∆

λ2 = 0

λ1 = 0 λ0 = 0

Fig. 1. Case of 2-Taub–NUT

∆

1

∆

2

∆

0

metric

∆
λ2 = 0

λ1 = 0 λ0 = 0

Fig. 2. Case of Eguchi–Hanson

A puzzling feature of this description in the multi-Taub–NUT case is at the interior
of the spherical boundary component of our solution space, where λ0 = 0 but no oth-
er λi is zero. These solutions are not reducible by Theorem 5.1 but have energy k by
Theorem 4.1. However they are singular points in our solution space. Thus either there
are other solutions on the other side of the spherical boundary, or the moduli space of
energy k instantons will have singularities at non-reducible points, a phenomenon which
does not occur when the underlying 4-manifold is compact or ALE. The relation to the
multi-Eguchi–Hanson case, explained in the next paragraph, however might point to the
second possibility.

Following [18] we have also studied our U(1) invariant instantons as singular mono-
poles on R

3. Interestingly we got the same monopoles (12) from the two cases (c = 0, 1).
This raises the possibility to take a U(1) invariant instanton on a multi-Eguchi–Hanson
space (where all the solutions were classified in [19]), consider it as a singular monopole
on R

3 and then pull it back to a U(1) invariant instanton on the corresponding multi-
Taub–NUT space. This method might lead to the construction of (all) U(1) invariant
instantons on a multi-Taub–NUT space and if so it would indeed exhibit singular points
in the non-reducible part of the moduli space as we explained in the paragraph above.
We postpone a more thorough discussion of these ideas for a future work as well as the
construction of the spectral data [7, 18] for the singular monopoles.
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