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Summary. The paper surveys the mirror symmetry conjectures of Hausel–Thaddeus
and Hausel–Rodriguez-Villegas concerning the equality of certain Hodge numbers of
SL(n, C) vs. PGL(n, C) flat connections and character varieties for curves, respec-
tively. Several new results and conjectures and their relations to works of Hitchin,
Gothen, Garsia–Haiman and Earl–Kirwan are explained. These use the representa-
tion theory of finite groups of Lie-type via the arithmetic of character varieties and
lead to an unexpected conjecture for a Hard Lefschetz theorem for their cohomology.

1 Introduction

Non-Abelian Hodge theory [29], [44] of a genus g smooth complex projective
curve C studies three moduli spaces attached to C and a reductive complex
algebraic group G, which in this paper will be either GL(n, C) or SL(n, C) or
PGL(n, C). They are

- Md
Dol(G), the moduli space of semistable G-Higgs bundles on C;

- Md
DR(G), the moduli space of flat G-connections on C and

- Md
B(G) the character variety, i.e., the moduli space of representations of

π1(C) into G modulo conjugation.

Under certain assumptions these moduli spaces are smooth varieties (or orb-
ifolds when G = PGL(n, C)) with the underlying differentiable manifolds
canonically identified and endowed with a natural hyperkähler metric.

The cohomology of this underlying manifold has been studied mostly from
the perspective of Md

Dol(G). Using a natural circle action on it [29] and [16]
calculated the Poincaré polynomials for G = SL(2, C) and G = SL(3, C)
respectively; while [25] and [39] found a simple set of generators for the co-
homology ring for G = PGL(2, C), respectively G = PGL(n, C). The paper
[26] then calculated the cohomology ring explicitly for G = PGL(2, C). The
techniques used in these papers do not seem to generalize easily to higher n.
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A new point of view was introduced in [27] and [28]. It was shown that
hyperkähler metrics and Hitchin systems [30] for Md

DR(G) and Md
DR(GL),

with G = SL(n, C) and Langlands dual GL = PGL(n, C), realize the geomet-
rical setup for mirror symmetry proposed in [49]. Based on this observation,
[28] conjectured the existence of a topological version of mirror symmetry, i.e.,
the equality of certain Hodge numbers of Md

DR(G) and Md
DR(GL). This was

checked for G = SL(2, C) and SL(3, C) using [29] and [16].

This mirror symmetry conjecture suggests to study not only the coho-
mology of Md

DR(G), Md
Dol(G) and Md

B(G) but also its mixed Hodge struc-
ture. It was shown in [28] that the mixed Hodge structures of Md

Dol(G) and
Md

DR(G) agree, and are pure (see Theorem 2.1 or [38]). However, the mixed
Hodge structure of the character variety Md

B(G) has not been investigated
until recently.

In this paper we study this mixed Hodge structure, more precisely,

- the mixed Hodge polynomial H(x, y, t);
- the E-polynomial

E(x, y) := xnynH(1/x, 1/y,−1),

where n = dimC Md
B(G) and

- the Poincaré polynomial H(1, 1, t).

Here the H-polynomial encodes the dimensions of the graded pieces of the
mixed Hodge structure on Md

B(G) (see Section 2.2).

In [23] an arithmetic method was used to calculate the E-polynomial of
Md

B(G). The idea was to count the Fq-rational points of Md
B(G(Fq)), for the

variety Md
B(G) over the finite field Fq. Using a result of [37] we found a closed

formula, resembling the famous Verlinde formula [51], as a simple sum over
irreducible representations of G(Fq). In particular, the representation theory
behind the E-polynomial of the character variety is that of finite groups of
Lie type. This could be considered as an analog of Nakajima’s principle [40],
stating that the representation theory of a Kac–Moody algebra is encoded in
the cohomology of (hyperkähler) quiver varieties.

The shape of the E-polynomials of the various character varieties lead us
to conjecture [23] that mirror symmetry also holds for the pair Md

B(G) and
Md

B(GL), at least for G = SL(n, C). Calculating Hodge numbers via number
theory, we were able to check this conjecture for n = 4 or a prime. Since
the two mirror symmetry conjectures of [28] and [23] are equivalent on the
level of Euler characteristics, we get a proof of the original mirror symmetry
conjecture of [28] on the level of Euler characteristics as well.
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More interestingly, [23] arrives at explicit formulas, in terms of a simple
generating function, for E-polynomials of Md

B(GL(n, C)). For example, the
Euler characteristic of Md

B(PGL(n, C)) equals µ(n)n2g−3, where µ is a basic
number theoretic function: the Möbius function, i.e., the sum of all primitive
nth roots of unity. This hints at an interesting link between number theory and
topology of the above hyperkähler manifolds. Furthermore, the E-polynomials
turn out to be palindromic, i.e., they satisfy an unexpected Poincaré duality-
type symmetry. We can trace back this symmetry to the Alvis–Curtis duality
[1, 5] in the representation theory of finite groups of Lie type.

We present a deformation of the E-polynomial of Md
B(PGL(n, C)), which,

conjecturally [23], should agree with the H-polynomial. Modifying this for-
mula we obtain the conjectural H-polynomial of the Higgs moduli space
Md

Dol(GL(n, C)). We then explain how, using our mirror symmetry con-
jectures as a guide, one arrives at conjectures regarding H-polynomials of
the varieties associated to SL(n, C). These conjectures imply a conjecture on
Poincaré polynomials of Md

Dol(PGL(n, C)). The latter resembles Lusztig’s
conjecture [36] on Poincaré polynomials of Nakajima’s quiver varieties, also
hyperkähler manifolds, similar to the Higgs moduli space Md

Dol(G). We should
also mention Zagier’s [52] formula for the Poincaré polynomial of the moduli
space N d of stable bundles (the “Kähler version” of Md

Dol(SL(n, C))), where
the formula is a similar sum, but is parametrized by ordered partitions of n.

We discuss in detail several checks of these conjectures, showing how they
imply results of Hitchin [29], Gothen [16] and Earl–Kirwan [8]. The combi-
natorics of these formulas are quite non-trivial. Surprisingly, the calculus of
Garsia–Haiman [12] is used to check the conjecture for g = 0.

The curious Poincaré duality satisfied by the conjectured Hodge numbers
of Md

B(PGL(n, C)), leads to a conjecture that a version of the Hard Lefschetz
theorem is satisfied for the non-compact varieties under consideration. This
can be thought of as a generalization of a result in [21] on the quaternionic
geometry of matroids, and as an analogue of Faber’s conjecture [9] on the
moduli space of curves.

Acknowledgments. This survey paper is based on the author’s talk at the
“Geometric Methods in Algebra and Number Theory” conference at the Uni-
versity of Miami in December 2003. I would like to thank the organizers for the
invitation and for the memorable conference. Most of the results and conjec-
tures surveyed here have been obtained in joint work with Michael Thaddeus
[27, 28] and with Fernando Rodriguez-Villegas [23]. This research was partially
supported by the NSF grant DMS-0305505.
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2 Abelian and non-Abelian Hodge theory

In this section we recall some basic definitions on Abelian and non-Abelian
Hodge theory.

2.1 Hodge–De Rham theory

There are various cohomology theories associating a graded anti-commutative
ring to a smooth complex algebraic variety M . First of all, the singular, or
Betti, cohomology H∗

B(M, C) of M with complex coefficients, defined for any
reasonable topological space. The dimension bk(M) := dimHk

B(M, C) is called
the k-th Betti number. The Poincaré polynomial is

P (t; M) :=
∑

k

bk(M)tk.

Next, the De Rham cohomology H∗
DR(M, C), the space of closed differen-

tial forms modulo exact forms, defined for any differentiable manifold. The
De Rham theorem establishes the isomorphism:

H∗
B(M, C) ∼= H∗

DR(M, C). (1)

For projective M we have the Dolbault cohomology

Hk
Dol(M, C) =

⊕

p+q=k

Hq(M, Ωp
M ).

The Hodge theorem establishes a natural isomorphism

Hk
DR(M, C) ∼= Hk

Dol(M, C). (2)

The above isomorphisms imply the Hodge decomposition theorem:

Hk
B(M, C) ∼=

⊕

p+q=k

Hp,q(M), (3)

where Hp,q(M) := Hp(M, Ωq
M ). The numbers hp,q(M) := dim Hp,q(M) are

called Hodge numbers of M . The Hodge polynomial is:

H(x, y; M) :=
∑

p,q

hp,q(M)xpyq.

For more details on these cohomology theories see [15].
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2.2 Mixed Hodge structures

Deligne [7] generalized the Hodge decomposition theorem (3) to any complex
variety M , not necessarily smooth or projective, by introducing a so-called
mixed Hodge structure on H∗

B(M, C). This implies a decomposition 1

Hk
B(M, C) ∼=

⊕

p,q

Hp,q;k(M),

where p + q is called the weight of Hp,q;k(M). For a smooth projective va-
riety we have Hp,q;p+q(M) = Hp,q(M), i.e. the weight of Hp,q;k(M) is al-
ways k (called the pure weight). In general, other weights appear in the
mixed Hodge structure; we will see such examples later. The dimensions
hp,q;k(M) := Hp,q;k(M) are called mixed Hodge numbers of M . Form the
three variable polynomial:

H(x, y, t; M) :=
∑

p,q,k

hp,q;k(M)xpyqtk. (4)

Similarly, Deligne [7] constructs a mixed Hodge structure on the compactly
supported H∗

B,cpt(M, C) singular cohomology of a complex algebraic variety
M . This yields the decomposition

Hk
B,cpt(M, C) ∼=

⊕

p,q

Hp,q;k
cpt (M),

and compactly supported mixed Hodge numbers hp,q;k
cpt (M) := dimHp,q;k

cpt (M).
One introduces the e-numbers

ep,q(M) =
∑

k

(−1)khp,q;k
cpt (M)

and the E-polynomial:

E(x, y; M) :=
∑

p,q

ep,q(M)xpyq. (5)

Clearly, for M smooth projective, E(x, y) = H(−x,−y). Moreover, for a
smooth variety Poincaré duality implies that

E(x, y) = (xy)nH(1/x, 1/y,−1),

where n is the complex dimension of M . The significance of the E-polynomial
is that it is additive for decompositions and multiplicative for Zariski locally
trivial fibrations.

For more details see [7] or [3].
1In fact what one gets from a mixed Hodge structure are two filtrations on the

cohomology, and the decomposition in question is the associated graded.
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2.3 Stringy cohomology

Let Γ be a finite group acting on M . By the naturality of the mixed Hodge
structure, Γ will act on Hp,q,k(M) and we have

Hp,q;k(M/Γ ) ∼=
(
Hp,q;k(M)

)Γ
.

However, for a Calabi–Yau M and a Γ preserving the Calabi–Yau structure
string theorists [50, 53] introduced different Hodge numbers on the Calabi–
Yau orbifold M/Γ : the so-called stringy Hodge numbers, which are the “right”
Hodge numbers for mirror symmetry. Their mathematical significance is high-
lighted by a theorem of Kontsevich [34] which says that stringy Hodge numbers
agree with ordinary Hodge numbers of any crepant resolution. Following [3]
we can define the stringy E-polynomials:

Est(x, y; M/Γ ) :=
∑

[γ]

E(x, y; Mγ)C(γ)(xy)F (γ),

where the sum runs over the conjugacy classes of Γ ; C(γ) is the centralizer of
γ; Mγ is the subvariety fixed by γ; and F (γ) is an integer, called the fermionic
shift, which is defined as follows. The group element γ has finite order, so it
acts on TM |Mγ as a linear automorphism with eigenvalues e2πiw1 , . . . , e2πiwn ,
where each wj ∈ [0, 1). Let F (γ) =

∑
wj ; this is an integer since, by hypoth-

esis, γ acts trivially on the canonical bundle.

The last cohomology theory needed is the stringy cohomology of a Calabi–
Yau orbifold twisted by a B-field. Following [31] we let B ∈ H2

Γ (M, U(1)), i.e.,
an isomorphism class of a Γ -equivariant flat unitary gerbe. For any γ ∈ Γ this
B-field induces a C(γ)-equivariant local system [LB,γ ] ∈ H1

C(γ)(M
γ , U(1)) on

the fixed point set Mγ and we can twist the stringy E-polynomial:

EB
st (x, y; M/Γ ) :=

∑

[γ]

E(x, y; Mγ ; LB,γ)C(γ)(xy)F (γ). (6)

For more information about stringy cohomology see [3], for twisting with
a B-field see [28].

2.4 Non-Abelian Hodge theory

The starting point of non-Abelian Hodge theory is the identification of the
space H1

B(M, C×) with the space of homomorphisms from π1(M) → C×; the
space H1

DR(M, C×) with algebraic local systems on M and the space

HDol(M, C×) ∼= H1(M,O×) ⊕ H0(M, Ω1)

with pairs of a holomorphic line bundle and a holomorphic one-form.
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This can be generalized to any non-Abelian complex reductive group G.
We define H1

B(M, G) to be conjugacy classes of representations of π1(M) → G.
I.e.,

H1
B(M, G) := Hom(π1(M), G)//G,

the affine GIT quotient of the affine variety Hom(π1(M), G) by the conju-
gation action of G, called the character variety. The space H1

DR(M, G) can
be identified as the moduli space of algebraic G-local systems on M . Finally,
H1

Dol(M, G) is the moduli space of certain semistable G-Higgs bundles on M .
We will give a precise definition in the case of a curve below. The identifica-
tion between H1

B(M, G) and H1
DR(M, G), which is analogous to the De Rham

map (1), is given by the Riemann–Hilbert correspondence [6, 47], while the
identification between H1

DR(M, G) and H1
Dol(M, G), analogous to the Hodge

decomposition (2), is given in [4, 45] by the theory of harmonic bundles, the
non-Abelian generalization of Hodge theory.

For an introduction to non-Abelian Hodge theory see [44], and ([33], Sec-
tion 3), for more details on the construction of the spaces appearing in non-
Abelian Hodge theory and the maps between them see [45, 46, 47].

2.5 The case of a curve

We fix a smooth projective complex curve C of genus g and specify our spaces
in the case when M = C and G = GL(n, C). We have:

MB(GL(n, C)) := H1
B(C, GL(n, C))

= {A1, B1, . . . , Ag, Bg ∈ GL(n, C)|[A1, B1] · · · · · [Ag, Bg] = Id}//GL(n, C).

There is a natural way to twist these varieties. This will be needed for
PGL(n, C) and we introduce these twists below. For d ∈ Z, consider:

Md
B(GL(n, C)) := {A1, B1, . . . , Ag, Bg ∈ GL(n, C)|

[A1, B1] · · · · · [Ag, Bg] = e
2πid

n Id}//GL(n, C).

The De Rham space looks like

MDR(GL(n, C)) := H1
DR(C, GL(n, C))

= {moduli space of flat GL(n, C)-connections on C}

and in the twisted case we need to fix a point p ∈ C, and define

Md
DR(GL(n, C)) :=

{
moduli space of flat GL(n, C)-connections on C ! {p},

with holonomy e
2πid

n Id around p

}
.

Finally, the Dolbeault spaces are:
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MDol(GL(n, C)) := H1
Dol(C, GL(n, C)) = {moduli space

of semistable rank n degree 0 Higgs bundles on C},

where a rank n Higgs bundle is a pair (E, φ) of a rank n algebraic vector
bundle E on C, with degree 0 and Higgs field φ ∈ H0(C, KC ⊗ End(E)). A
Higgs bundle is called semistable if for any Higgs subbundle (F, ψ) (i.e., a
subbundle with compatible Higgs fields) we have

deg(F )
rank(F )

≤ deg(E)
rank(E)

= 0.

The twisted version of MDol(GL(n, C)) is defined:

Md
Dol(GL(n, C)) := {moduli space

of semistable rank n degree d Higgs bundles on C}.

The varieties above for GL(n, C) have dimension n2(2g − 2) + 2. The Betti
space is affine, while the De Rham space is analytically (but not algebraically)
isomorphic, via the Riemann–Hilbert correspondence, to the Betti space, so
that the De Rham space is a Stein manifold as a complex manifold but not
an affine variety as an algebraic variety. Finally, the Dolbeault space is a
quasi-projective variety with large projective subvarieties.

From now on we fix a d with (n, d) = 1. In this case the correspond-
ing twisted spaces are smooth, have a diffeomorphic underlying manifold
Md(GL(n, C)) which carries a complete hyperkähler metric [29]. The com-
plex structures of Md

Dol(GL(n, C)) and Md
DR(GL(n, C)) appear in the hy-

perkähler structure.
We started this subsection by determining these spaces for GL(1, C) ∼= C×.

With the identifications explained, we see that

Md
B(GL(1, C)) ∼= (C×)2g,

Md
Dol(GL(1, C)) ∼= T ∗Jacd(C) (7)

and Md
DR is a certain affine bundle over Jacd(C).

Interestingly, for d = 0 they are all algebraic groups and they act on the
corresponding spaces for GL(n, C) and any d by tensorization.

We can consider the map

λDol : Md
Dol(GL(n, C)) → Md

Dol(GL(1, C)),
(E, Φ) (→ (det(E), tr(φ)).

The fibres of this map can be shown to be isomorphic using the above ten-
sorization action. It follows that up to isomorphism it is irrelevant which fibre
we take, but we usually take a point (Λ, 0) ∈ Md

Dol(GL(1, C)) and define



Mirror symmetry and Langlands duality 201

Md
Dol(SL(n, C)) := λ−1

Dol((Λ, 0)).

For the other two spaces we have:

Md
DR(SL(n, C)) =

{
moduli space of flat SL(n, C)-connections on C ! {p}

with holonomy e
2πid

n Id around p

}
,

and

Md
B(SL(n, C)) = {A1, B1, . . . , Ag, Bg ∈ SL(n, C)|

[A1, B1] · · · · · [Ag, Bg] = e
2πid

n Id}//SL(n, C).

The varieties Md
B(SL(n, C)), Md

DR(SL(n, C)) and Md
DR(SL(n, C)) are

smooth of dimension (n2−1)(2g−2), with diffeomorphic underlying manifold
Md(SL(n, C)). The Betti space is affine, and the Betti and De Rham spaces
are again analytically, but not algebraically, isomorphic.

We see that the finite subgroup Jac[n] ∼= Z2g
n ⊂ MDol(GL(1, C)) preserves

the fibration λDol and thus acts on Md
Dol(SL(n, C)). The quotient then is:

Md
Dol(PGL(n, C)) := Md

Dol(SL(n, C))/Jac[n]

and similarly

Md
DR(PGL(n, C)) := Md

DR(SL(n, C))/Jac[n],

and

Md
B(PGL(n, C)) = Md

B(SL(n, C))/Z2g
n .

This shows that all the three spaces Md
B(PGL(n, C)), Md

DR(PGL(n, C)) and
Md

Dol(PGL(n, C)) are hyperkähler orbifolds of dimension (n2 − 1)(2g − 2).
As they are orbifolds we can talk about their stringy mixed Hodge num-
bers as defined above in Section 2.3. Moreover, they carry natural orbifold
B-fields, constructed as follows: Consider a universal Higgs pair (E,Φ) on
Md

Dol(SL(n, C)) × C; it exists because (d, n) = 1. Restrict E to Md
Dol × {p}

to get the vector bundle Ep on Md
Dol(SL(n, C)). Now we can consider the

projective bundle PEp of Ep which is a PGL(n, C)-bundle. The bundle Ep

is a GL(n, C)-bundle but not a SL(n, C)-bundle, because it has a non-trivial
determinant. The obstruction class to lifting the PGL(n, C)-bundle PE to an
SL(n, C)-bundle is a class

B ∈ H2(Md
Dol(SL(n, C), Zn)) ⊂ H2(Md

Dol(SL(n, C)), U(1)),

which gives us a B-field on Md
Dol(SL(n, C)). By ([28], Section 3), this field has

a natural equivariant extension B̂ ∈ H2
Γ (Md

Dol(SL(n, C)), U(1)), giving a B-
field on Md

Dol(PGL(n, C)). This B-field will appear in our mirror symmetry
discussions below.
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Non-Abelian Hodge theory on a curve is explained in [29], via a gauge-
theoretical approach. This yields natural hyperkähler metrics on our spaces.
The case GL(1, C) is treated in [13]. Further information about the geometry
and cohomology of M1

Dol(SL(2, C)) is in [20].

2.6 Mixed Hodge structure on non-Abelian Hodge cohomologies

The main subject of this paper is the mixed Hodge polynomial of the (stringy,
sometimes with a B-field) cohomology of Md

Dol(G), Md
DR(G) and Md

B(G),
for G = GL(n, C), PGL(n, C) or SL(n, C). For notational convenience, we
omit G and simply write Md

B, Md
DR and Md

Dol.

Consider first G = GL(1, C). From (7) we calculate:

H(x, y, t;Md
B(GL(1, C))) = (1 + xyt)2g,

H(x, y, t;Md
Dol(GL(1, C))) = H(x, y, t;Md

DR(GL(1, C)))
= (1 + xt)g(1 + yt)g.

It is remarkable that H(x, y, t;Md
B(GL(1, C))) += H(x, y, t;Md

DR(GL(1, C)))
even though the spaces are analytically isomorphic. Furthermore, we can ex-
plicitly see that the mixed Hodge structure on Hk(Md

Dol(GL(1, C)), C) and
on Hk(Md

DR(GL(1, C)), C) is pure, while on Hk(Md
B(GL(1, C)), C) it is not.

A Künneth argument implies that:

H(x, y, t;Md
Dol(GL(n, C)))

= H(x, y, t;Md
Dol(PGL(n, C)))H(x, y, t;Md

Dol(GL(1, C))),

and similarly for the other two spaces. Thus the calculation for GL(n, C) is
equivalent to the calculation for PGL(n, C).

Now we list what is known about the cohomologies H∗(Md, C). The
Poincaré polynomials P (t;M1(SL(2, C))) and P (t;M1(PGL(2, C))) were cal-
culated in [29], while P (t;M1(SL(3, C))) and P (t;M1(PGL(3, C))) have been
calculated in [16]. Both papers used Morse theory for a natural C×-action on
Md

Dol (acting by multiplication on the Higgs field). The idea was to calculate
the Poincaré polynomial of the various fixed point components of this action,
and then sum them up with a certain shift. The largest of the fixed point
components, when φ = 0, is the important and well-studied space:

N d(SL(n, C)) := {the moduli space of stable vector bundles
of fixed determinant bundle of degree d}. (8)

Its Poincaré polynomial was calculated in [18] by arithmetic and in [2] by
gauge-theoretical methods, with explicit formulas given in [52]. Thus its con-
tribution to P (t;Md(SL(n, C))) is easy to handle. However, the other com-
ponents of the fixed point set of the circle action are more cumbersome to
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determine already for n = 4. Consequently, the Morse theory approach has
not been completed for n ≥ 4.

As a representative example we calculate from [29] the Poincaré polynomial
P (t;M1(PGL(2, C))), when g = 3:

3 t12+12 t11+18 t10+32 t9+18 t8+12 t7+17 t6+6 t5+2 t4+6 t3+t2+1. (9)

The cohomology ring of M1
Dol(PGL(2, C)) has been described explicitly

by generators [25] and relations [26]. This information was essential for our
main Conjecture 5.1. Finally, Markman [39] showed that for PGL(n, C) the
universal cohomology classes do generate the cohomology ring.

The following result first appeared in [38] using a construction of [25]. Here
we present a simple proof.

Theorem 2.1. The Hodge structure on Hk(Md
Dol, C) is pure of weight k.

Proof. The compactification Md
Dol of Md

Dol constructed in [19] is a projective
orbifold so that the Hodge structure on Hk(Md

Dol, C) is pure of weight k.
Now [19] also implies that the natural map H∗(Md

Dol, C) → H∗(Md
Dol, C) is

surjective. The claim follows from the functoriality of mixed Hodge structures
[7]. !

One can similarly prove the same result for Md
DR.

Theorem 2.2. The Hodge structure on Hk(Md
DR, C) is pure of weight k.

Proof. As explained in ([28], Theorem 6.2) one can deform the complex struc-
ture of Md

Dol to the projective orbifold Md
DR, which is the compactification

of Md
DR given by Simpson in [48]. This way we see that the natural map

H∗(Md
DR, C) → H∗(Md

DR, C) is a surjection, and we conclude as above. !

In fact the argument in ([28], Theorem 6.2) shows that

Theorem 2.3 (HT4). The mixed Hodge structure on H∗(Md
Dol, C) is iso-

morphic to the mixed Hodge structure on H∗(Md
DR, C).

However, the Hodge structure on Md
B has not been studied in the litera-

ture. We will see later that it is not pure anymore. In the following section we
explain our interest in the Hodge structures on Md

Dol, Md
DR and Md

B. Our
motivation is mirror symmetry.
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3 Mirror symmetry conjectures

The starting point in [28] was the observation that the pairs Md
DR(SL(n, C))

together with the B-field Be and Md
DR(PGL(n, C)) with the B-field B̂d give

a geometric realization for mirror symmetry as proposed in Strominger–Yau–
Zaslow [49] and modified for B-fields by Hitchin in [31]. This geometric picture
predicts the existence of a special Lagrangian fibration on each space, with
dual fibres. In [28] it is shown that the so-called Hitchin map [30] provides
the required special Lagrangian fibration on our spaces, with dual Abelian
varieties as fibers. For details see ([28], Section 3).

Our focus in this survey is on the topological implications of this man-
ifestation of mirror symmetry. The following conjecture can be called the
topological mirror test for our SYZ-mirror partners.

Conjecture 3.1 ([28]). For d, e ∈ Z, with (d, n) = (e, n) = 1, we have

EBe

st

(
x, y;Md

DR(SL(n, C))
)

= EB̂d

st

(
x, y;Me

DR(PGL(n, C))
)
.

Remark 3.2. Since Md
DR(SL(n, C)) is smooth, the left-hand side actually

equals the E-polynomial E
(
x, y; Md

DR(SL(n, C))
)
, which is independent of e.

This motivates the following:

Conjecture 3.3 (HT4). For d1.d2 ∈ Z with (d1, n) = (d2, n) = 1 we have:

E
(
x, y;Md1

Dol(SL(n, C))
)

= E
(
x, y;Md2

Dol(SL(n, C))
)
. (10)

This is quite interesting since the Betti numbers of N d(SL(n, C)), the moduli
space of stable vector bundles, with fixed determinant of degree d (the “Kähler
version” of Md

Dol(SL(n, C))), are known to depend on d. Already for n = 5,
Zagier’s explicit formulas [52] for P (t;N 1(SL(5, C))) and P (t;N 3(SL(5, C)))
are different. We will see evidence for this Conjecture 3.3 in Corollary 3.11.

Remark 3.4. Conjecture 3.1 was proved for n = 2 and n = 3 in [28]. The
proof proceeds by first transforming the calculation to Md

Dol via Theorem 2.3
and then using the Morse theoretic method of [29] and [16]. It is unclear how
to extend this method to n ≥ 4.

Remark 3.5. An important ingredient of the proofs was a modification of a
result of Narasimhan–Ramanan [41] to Higgs bundles. It describes the fixed
points of the action of elements of Jac[n] on Md

Dol(SL(n, C)). The fixed point
sets have lower rank m|n Higgs moduli spaces Md

Dol(SL(m, C); C̃) for a cer-
tain covering C̃ of C. Their cohomology enters in the stringy contribution to
the right-hand side of Conjecture 3.1 (recall (6)).
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3.1 Number theory to the rescue

Although the mirror symmetry Conjecture 3.1 is still open for n ≥ 4, recently
some evidence for its validity has been achieved in form of progress on a
related conjecture.

Conjecture 3.6 (HRV). For d, e ∈ Z with (d, n) = (e, n) = 1, we have

EBe

st

(
x, y,Md

B(SL(n, C))
)

= EB̂d

st

(
x, y,Me

B(PGL(n, C))
)
.

This conjecture has been proved [23] when n is a prime and when n = 4;
which implies Conjecture 3.1 on the level of Euler characteristic in these cases.
The method is arithmetic: one counts rational points on the variety Md

B over
a finite field Fq, when n divides q− 1, where q = pr is a prime power. We get:

Theorem 3.7 ([23]). The E-polynomial of Md
B has only xkyk type terms,

and

E(q) = #(Md
B(G)(Fq)).

The problem reduces to the count of solutions of the equation:

[A1, B1] · · · · · [Ag, Bg] = ξn,

in the finite group of Lie type G(Fq), i.e., so that Ai, Bi ∈ G(Fq), where
ξn ∈ G is a central element of order n. A simple modification of a theorem of
Mednykh [37], (which goes back to Frobenius–Schur [11], and has since been
rediscovered by many authors, (see Freed–Quinn [10], (5.19)), implies:

Theorem 3.8. Let G = SL(n, C) or G = GL(n, C). Then the number of
rational points on Md

B(G) over a finite field Fq, where q = pr is a prime
power, with n|(q − 1) is given by:

#(Md
B(G)(Fq)) =

∑

χ∈Irr(G(Fq))

|G|2g−2

χ(1)2g−1
χ(ξn),

where the sum is over all irreducible characters of G(Fq).

The two theorems above imply the following

Corollary 3.9 ([23]). The E-polynomial of Md
B(G) is given by:

E(q) =
∑

χ∈Irr(G(Fq))

|G|2g−2

χ(1)2g−1
χ(ξn). (11)
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Remark 3.10. An immediate consequence of this formula is the Betti analog
of Conjecture 3.3. This follows from Corollary 3.9 since that character for-
mula transforms by a Galois automorphism when one changes from d1 to d2.
Moreover, because our Md1

B (G) and Md2
B (G) are Galois-conjugate, we can de-

duce that their Betti numbers agree, and presumably, that their mixed Hodge
structures also agree. In summary, we have

Corollary 3.11 ([23]). For d1, d2 ∈ Z with (d1, n) = (d2, n) = 1 we have

E
(
x, y;Md1

B (G)
)

= E
(
x, y;Md2

B (G)
)

(12)

and

P
(
t;Md1

B (G)
)

= P
(
t;Md2

B (G)
)
. (13)

This gives an affirmative answer to Conjecture 3.3 on the level of Poincaré
polynomials. In general, Galois conjugate varieties tend to be (although need
not be, see, e.g. [43]) homeomorphic over C.

Problem 3.12. Are the underlying topological spaces of the varieties Md1
B (G)

and Md2
B (G) homeomorphic for (n, d1) = (n, d2) = 1? Are they birationally

isomorphic? Are Md1
Dol(G) and Md2

Dol(G) birationally isomorphic?

Remark 3.13. In order to calculate the character formula in Corollary 3.9, we
will need to know the values of irreducible characters of G on central elements.
Fortunately, for GL(n, Fq) this has been done by Green [14]. For SL(n, Fq)
the required information, i.e., the value of characters on central elements, was
obtained by Lehrer in [35]. In the next section we show an explicit result for
the character formula for GL(n, Fq).

Remark 3.14. Our mirror symmetry Conjecture 3.6 can be translated to a
complicated formula which is valid for the character tables of PGL(n, Fq)
and SL(n, Fq). In particular, we believe that by introducing punctures for
our Riemann surfaces, a similar mirror symmetry conjecture would in fact
capture the exact difference between the full character tables of PGL(n, Fq)
and SL(n, Fq) (not just on central elements as above). This way our mirror
symmetry proposal could be phrased as follows: the differences between the
character tables of PGL(n, Fq) and its Langlands dual SL(n, Fq) are governed
by mirror symmetry. It is particularly enjoyable to see the effect of mirror
symmetry on the differences between the character tables of GL(2, Fq) and
SL(2, Fq), which were first calculated in 1907 by Jordan [32] and by Schur
[42].

4 Explicit formulas for the E-polynomials

Here we calculate the E-polynomials of Md
B(PGL(n, C)), which we denote

by En(q).
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We start with partitions. Let λ = (λ1 ≥ λ2 ≥ · · · ≥ λl > 0) be a partition
of n, so that

∑
λi = n. The Ferrers diagram d(λ) of λ is the set of lattice

points
{(i, j) ∈ Z≤0 × N : j < λ−i+1}. (14)

The arm length a(z) and leg length l(z) of a point z ∈ d(λ) denote the number
of points strictly to the right of z and below z, respectively, as indicated in
this example:

• • • • •
•z• • • • a(z)

• • • •
• • •
•l(z)

where λ = (5, 5, 4, 3, 1), z = (−1, 1), a(z) = 3 and l(z) = 2. The hook length
then is defined as

h(z) = l(z) + a(z) + 1.

Let
Vn(q) = En(q)q(1−g)n(n−1)(q − 1)2g−2,

and

Zn(q, T ) = exp




∑

r≥1

Vn(qr)
T r

r



 .

We define the Hook polynomials for a partition λ as follows :

Hλ(q) =
∏

z∈d(λ)

q−l(z)(1 − qh(z)).

Theorem 4.1 ([23]). For n = 1, 2, 3, . . . one has

∞∏

n=1

Zn(q, T n) =
∑

λ∈P
(Hλ(q))2g−2T |λ|, (15)

where P is the set of all partitions.

One simple corollary of this is a new topological result:

Corollary 4.2 ([23]). The Euler characteristic of Md(PGL(n, C)) equals
µ(n)n2g−3, where µ is the Möbius function, i.e., µ(n) is the sum of primi-
tive nth root of unities.

Another interesting application of the theorem is the following:
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Corollary 4.3. The E-polynomial En(q) = E(q;Md
B(PGL(n, C))) is palin-

dromic, i.e., it satisfies, what we call, the curious Poincaré duality:

q2NEn(1/q) = En(q),

where 2N = (n2 − 1)(2g − 2) is the complex dimension of Md
B(PGL(n, C)).

Remark 4.4. This result originates in the so-called Alvis–Curtis duality [1],
[5] in the character theory of GL(n, Fq), which is a duality between irreducible
representations of GL(n, Fq). In particular, if χ, χ′ ∈ Irr(GL(n, Fq)) are dual,
then the dimension χ(1) is a polynomial in q which satisfies

q
n(n−1)

2 χ(1)(1/q) = χ′(1)(q).

For example when n = 2, Theorem 4.1 gives:

E2(q) = (q2 − 1)2g−2 + q2g−2(q2 − 1)2g−2

− 1
2
q2g−2(q − 1)2g−2 − 1

2
q2g−2(q + 1)2g−2, (16)

when g = 3 this gives

E(x, y;M1
B(PGL(2, C))) = q12 − 4 q10 + 6 q8 − 14 q6 + 6 q4 − 4 q2 + 1, (17)

which is a palindromic polynomial. Note also that there does not seem to be
much in common with the Poincaré polynomial (9).

5 A conjectured formula for mixed Hodge polynomials

Here we present the conjecture of [23] on the H-polynomials of the spaces
Md

B(PGL(n, C)). As usual we fix the curve C and its genus g and the
group PGL(n, C) and write Md

B for Md
B(PGL(n, C)) and Hn(x, y, t) for

H(x, y, t;Md
B).

Let

Vn(q, t) = Hn(q, t)
(qt2)(1−g)n(n−1)(qt + 1)2g

(qt2 − 1)(q − 1)
,

and

Zn(q, t, T ) = exp




∑

r≥1

Vn(qr,−(−t)r)
T r

r



 .

We define the t-deformed Hook polynomials for genus g and partition λ:

Hλ
g (q, t) =

∏

x∈d(λ)

(qt2)(2−2g)l(x)(1 + qh(x)t2l(x)+1)2g

(1 − qh(x)t2l(x)+2)(1 − qh(x)t2l(x))
.
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The following generating function then defines our rational functions Hn(q, t):

∞∏

n=1

Zn(q, t, T n) =
∑

λ∈P
Hλ

g (q, t)T |λ|. (18)

Because for the character variety we have that hi,j;k(Md
B) = 0 provided that

i += j, the following conjecture describes Hn(x, y, t) completely.

Conjecture 5.1 ([23]). The mixed Hodge polynomials of the character vari-
eties Md

B(PGL(n, C)) are given by the generating function (18):

Hn(
√

q,
√

q, t) = Hn(q, t).

Thus Hn(q, t), which is a priori only a rational function, is conjectured
to be the H-polynomial of the character variety, so in the next conjecture
we formalize our expectations from Hn(q, t), with the addition of a curious,
Poincaré duality-type of symmetry, which was in fact our most important
guide in the derivation of these formulas:

Conjecture 5.2. The rational functions Hn(q, t) defined in the generating
function of (18) satisfy the following properties:

• Hn(q, t) is a polynomial in q and t.
• The q and the t degree of Hn(q, t) equal 2N = 2(n2−1)(g−1). The largest

degree monomial in both variables is (qt)2(n
2−1)(g−1).

• All coefficients of Hn(q, t) are non-negative integers.
• The coefficients of Hn(q, t) =

∑
hi

jq
jti satisfy what we call the curious

Poincaré duality:

hi−j
N−j = hi+j

N+j (19)

Now we list some checks and implications of the above conjectures:

Remark 5.3. Computer calculations with Maple gives Hn(q, t) from the
above generating function when n = 2, 3, 4. In all these cases for small g
we do get a polynomial in q and t with the expected degree and positive
coefficients, satisfying the curious symmetry (19).

Remark 5.4. The paper [26] contains a monomial basis, in the tautological
generators, for the cohomology ring H∗(M1

B(PGL(2, C)), C). Understanding
the action of the Frobenius on these generators leads to a formula for the
mixed Hodge polynomial of M1

B(PGL(2, C)) of the form

H2(
√

q,
√

q, t) =
(q2t3 + 1)2g

(q2t2 − 1)(q2t4 − 1)
+

q2g−2t4g−4(q2t + 1)2g

(q2 − 1)(q2t2 − 1)

− 1
2

q2g−2t4g−4(qt + 1)2g

(qt2 − 1)(q − 1)
− 1

2
q2g−2t4g−4(qt − 1)2g

(q + 1)(qt2 + 1)
, (20)
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which agrees with the conjectured one through (18), and clearly reduces to
(4.1), when t = −1. For example when g = 3, this gives

H(
√

q,
√

q, t;Md(PGL(2, C)))

= t12q12 + t12q10 + 6 t11q10 + t12q8 + t10q10 + 6 t11q8 + 16 t10q8 + 6 t9q8 + t10q6

+ t8q8 +26 t9q6 +16 t8q6 +6 t7q6 + t8q4 + t6q6 +6 t7q4 +16 t6q4 +6 t5q4 + t4q4 + t4q2

+ 6 t3q2 + t2q2 + 1, (21)

which is a common refinement of (9) when q = 1 and of (17) when t = −1.
Note also how the curious Poincaré duality appears when one refines the
Poincaré polynomial (9), which does not possess any kind of symmetry, to the
mixed Hodge polynomial (21).

Remark 5.5. Note that Pn(t) = Hn(1, t) should be the Poincaré polynomial
of the character variety, which is the same as the Poincaré polynomial of the
diffeomorphic Higgs moduli space Md

Dol. For n = 2, Hitchin in [29] calculated
the Poincaré polynomial of this latter space, and an easy calculation shows
that if one substitutes q = 1 into (20) we get P2(t) = H2(1, t), the Poincaré
polynomial of Hitchin. For n = 3, Gothen in [16] calculated P3(t). Since
it is a pleasure to work with a formula like (20), we write down what our
Conjecture 5.1 gives for n = 3:

H3(q, t) =
`
q3t5 + 1

´2 g `
q2t3 + 1

´2 g

(q3t6 − 1) (q3t4 − 1) (q2t4 − 1) (q2t2 − 1)
+

q6 g−6t12 g−12
`
q3t + 1

´2 g `
q2t + 1

´2 g

(q3t2 − 1) (q3 − 1) (q2t2 − 1) (q2 − 1)

+
q4 g−4t8 g−8

`
q3t3 + 1

´2 g
(qt + 1)2 g

(q3t4 − 1) (q3t2 − 1) (qt2 − 1) (q − 1)
+

1
3

q6 g−6t12 g−12
`
(qt + 1)2 g´2

(qt2 − 1)2 (q − 1)2

−1
3

q6 g−6t12 g−12
`
q2t2 − qt + 1

´2 g

(q2t4 + qt2 + 1) (q2 + q + 1)
−

q4 g−4t8 g−8
`
q2t3 + 1

´2 g
(qt + 1)2 g

(q2t4 − 1) (q2t2 − 1) (qt2 − 1) (q − 1)

−
q6 g−6t12 g−12

`
q2t + 1

´2 g
(qt + 1)2 g

(q2t2 − 1) (q2 − 1) (qt2 − 1) (q − 1)
.

It is a nice exercise to show that H3(1, t) does produce (the corrected version2

of) Gothen’s complicated looking formula in [16].
It is also worth noting that many terms in Hn(q, t) have poles at q = 1,

which somehow cancel, according to our conjecture.

Remark 5.6. When g = 0, we know from the definitions that H1(x, y, t) = 1
and Hn(x, y, t) = 0 otherwise. One can deduce the same from Conjecture 5.1
by applying Theorem 2.10 in [12] to calculate the right-hand side of (18).
Moreover Conjecture 5.2 has the same flavour as the main conjecture in [12]
about q, t Catalan numbers, which was in turn proved by Haiman in [17]
using subtle intersection theory on the Hilbert scheme of n points on C2.

2One accidental mistake in the calculation of [16] was pointed out in (10.3) of
[28].
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Apart from the fact that this Hilbert scheme is also a hyperkähler manifold,
the similarities between the two conjectures are rather surprising.

Remark 5.7. When g = 1 we have Hn(x, y, t) = 1 for every n, but this we
could not prove from (18) for Hn(q, t).

Remark 5.8. Let us look at the conjecture (19). Recall that H2 of our vari-
eties are exactly one dimensional, generated by a class, call it [ω], which is the
Kähler class in the complex structure of Md

Dol. This carries the weight q2t2

in the mixed Hodge structure. The following Hard Lefschetz type conjecture
enhances the curious Poincaré duality of the conjecture (19):

Conjecture 5.9. If L denotes the map by multiplication with [ω], then the
map

Lk : HN−k,N−k;i−k(Md
B(PGL(n, C))) → HN+k,N+k;i+k(Md

B(PGL(n, C)))

is an isomorphism.

Interestingly this conjecture implies a theorem of [21] that the Lefschetz
map Lk : HN−k → HN+k is injective for Md

Dol, and it is explained there
how this weak version of Hard Lefschetz, when applied to toric hyperkähler
varieties, yields new inequalities for the h-numbers of matroids. See also [24]
for the original argument on toric hyperkähler varieties. Furthermore, this
conjecture can be proved when n = 2 using the explicit description of the
cohomology ring in [26]. The general case can be thought of as an analog
of Faber’s conjecture [9] on the cohomology of the moduli space of curves,
which is another non-compact variety whose cohomology ring is conjectured
to satisfy some form of Hard Lefschetz theorem.

Remark 5.10. There are two subspaces of the cohomology H∗(Md
B, C) which

are particularly interesting. One of them is the middle dimensional cohomol-
ogy H2N (Md

B, C), which is the top non-vanishing cohomology. The mixed
Hodge structure breaks up into parts with respect to the q-degree. The cu-
rious Poincaré dual (19) of these spaces are also interesting: it is easy to see
that they are exactly the pure part of the mixed Hodge structure, i.e., spaces
of the form H i,i;2i. (Another significance of the pure part is that if there
is a smooth projective compactification of the variety, then its image is in
this pure part.) Thus it would already be interesting to get the pure part of
Hn(q, t). It is easy to identify the pure part in our case with what we call the
Pure ring, which is the subring of H∗(Md, C) generated by the tautological
classes ai ∈ H2i(Md, C) for i = 2, . . . , n (the other tautological classes, which
generate the cohomology ring, are not pure classes).

For example, when n = 2, it was known [29] that the middle degree co-
homology of the Higgs moduli space Md

Dol(PGL(2, C)) is g dimensional. The
Pure ring was determined in [26], and it was found to be g dimensional due
to the relation βg = 0 (where β = a2). Thus these two seemingly unrelated
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observations are dual to each other via our curious Poincaré duality (19). To
see this curious duality in action let us recall the formula (21). The terms
which contain the top degree 12 in t are t12q12, t12q10 and t12q8, which are
curious Poincaré dual via (19) to the terms 1, t4q2 and t8q4, which is exactly
the ring generated by the degree-four class β, which has additive basis 1, β
and β2.

The analogous ring, generated by the corresponding classes a2, . . . , an ∈
H∗(N d, C), which a priori is a quotient of our Pure ring (as N d ⊂ Md

Dol
naturally), was studied for the moduli space N d of rank n, degree-d stable
bundles (with (n, d) = 1) in [8], where it was found that the top non-vanishing
degree of this ring is 2n(n−1)(g−1). Computer calculations for our conjecture
for n = 2, 3, 4 also show that our conjectured Pure ring has the same 1-
dimensional top degree. This and the known situation for n = 2 (see [26]),
yields the following

Conjecture 5.11. The Pure rings of Md
Dol and N d, i.e., the subrings of

the cohomology rings generated by the classes a2, . . . , an are isomorphic. In
particular, unlike the whole cohomology ring of N d, it does not depend on d.

Now we explain a combinatorial consequence of this conjecture. First we
extract a conjectured formula for PPn(t) the Poincaré polynomial of the Pure
ring. Indeed we only have to deal with monomials in Conjecture 5.1 whose
t-degree is double of their q-degree.

Let

PVn(t) = PPn(t)
t2(1−g)n(n−1)

(t2 − 1)
,

and

PZn(t, T ) = exp




∑

r≥1

PVn(tr)
T r

r



 .

We now define the pure part of the t-deformed Hook polynomials for genus g
and partition λ as follows:

PHλ
g (t) = t4(1−g)n(λ′)

∏

x∈d(λ);a(x)=0

1
(1 − t2h(x))

,

where
n(λ′) :=

∑

z∈d(λ)

l(z).

We get the conjecture that PPn(t) is given by

∞∏

n=1

PZn(t, T n) =
∑

λ∈P
PHλ

g (t)T |λ|. (22)

Combining the two conjectures above we can formulate:
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Conjecture 5.12. The rational functions PPn(t) defined in (22) satisfy

• PPn(t) is a polynomial in t;
• all coefficients of PPn(t) are non-negative integers;
• The degree of PPn(t) is 2n(n−1)(g−1), and the coefficient of the leading

term is 1.

For example, when n = 3 the Poincaré polynomial of the Pure ring should be:

PP3(t) =
1

(t6 − 1) (t4 − 1)
+ t12 g−12 − t8 g−8

t2 − 1
+

1
3

t12 g−12

(t2 − 1)2

− 1
3

t12 g−12

t4 + t2 + 1
− t8 g−8

(t4 − 1) (t2 − 1)
+

t12 g−12

t2 − 1
.

Remark 5.13. The formula of Conjecture 5.1 can be modified to give a con-
jectured formula for the mixed Hodge polynomial of Md

Dol. Recall from The-
orem 2.1 that the mixed Hodge structure on Hk(Md

Dol, C) is pure of weight
k; thus this mixed Hodge polynomial coincides with the E-polynomial.

We now introduce polynomials Hn(q, x, y) of three variables. Let

Vn(q, x, y) = Hn(q, x, y)
(qxy)(1−g)n(n−1)(qx + 1)g(qy + 1)g

(qxy − 1)(q − 1)
,

and

Zn(q, x, y, T ) = exp




∑

r≥1

Vn(qr,−(−x)r,−(−y)r)
T r

r



 .

Define the (x, y)-deformed Hook polynomials for genus g and partition λ:

Hλ
g (q, x, y)

=
∏

z∈d(λ)

(qxy)(2−2g)l(z)(1 + qh(z)yl(z)xl(z)+1)g(1 + qh(z)xl(z)yl(z)+1)g

(1 − qh(z)(xy)l(z)+1)(1 − qh(z)(xy)l(z))
. (23)

The following generating function defines Hn(q, x, y):

∞∏

n=1

Zn(q, x, y, T n) =
∑

λ∈P
Hλ

g (q, x, y)T |λ|. (24)

Clearly we have Hn(q, t, t) = Hn(q, t) which says that a specialization of
Hn(q, x, y) gives the mixed Hodge polynomial Hn(q, t) of Md

B. The following
conjecture says that another specialization gives the mixed Hodge polynomial
of Md

Dol and Md
DR.

Conjecture 5.14. Hn(q, x, y) is a polynomial with non-negative integer coef-
ficients with specialization Hn(1, x, y) equal to the E-polynomial of the Higgs
moduli space Md

Dol(PGL(n, C)).
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Thus we have a mysterious formula Hn(q, x, y) which specializes, on one
hand to the H-polynomial of the character variety, and on the other hand
to the mixed Hodge polynomial of the Higgs (or equivalently flat connection)
moduli space. It would be very interesting to find a geometrical meaning for
Hn(q, x, y).

Checks on this Conjecture 5.14 include a proof for n = 2 and n = 3,
(one can easily modify Hitchin’s and Gothen’s argument to get the Hodge
polynomial instead of the Poincaré polynomial of the Higgs moduli space)
and also computer checks that the shape of the polynomial Hn(1, x, y) is the
expected one when n = 4.

Consider now the specification Hn(q,−1, y). Interestingly, the correspond-
ing specification of the (x, y)-deformed Hook polynomials (23) becomes a poly-
nomial, showing that at least Hn(q,−1, y) is a polynomial. We get an even
nicer formula if we make the further specification Hn(1,−1, y) which by Con-
jecture 5.14 should be the Hirzebruch y-genus of the moduli space of Higgs
bundles Md

Dol. Namely, for g > 1, most of the (x, y) deformed Hook polyno-
mials vanish, when one substitutes first x = −1 and then q = 1. Indeed, the
only partitions which will have a non-zero contribution to the y-genus are the
partitions of the form n = 1+1+ · · ·+1; when l(z) = 0 only for once. This in
turn gives the following closed formula for the conjectured y-genus of Md

Dol:

Conjecture 5.15. The Hirzebruch y-genus of Md
Dol(PGL(n, C)), for g > 1,

equals

(1−y+· · ·+(−y)n−1)g−1
∑

m|n

µ(m)
m



(−y)n(n−n/m)m

n/m−1∏

i=1

(1 − (−y)mi)2



g−1

.

Note that the term corresponding to m = 1 is exactly the known y-genus
of N d (see [41]). The rest should be thought of as the contribution of the
other fixed point components of the circle action on Md

Dol. Of course, this
conjectured formula gives the known specialization of Corollary 4.2 at y = −1,
while the y = 1 specialization gives µ(n)ng−2 when n is odd, and 0 when n
is even. The specialization at y = 1 can be thought of as the signature of the
pairing on the rationalized circle equivariant cohomology of Md

Dol as defined
in [22].

Remark 5.16. Finally we discuss how to obtain a conjecture for the mixed
Hodge polynomial of Md

B(SL(n, C)). For the mixed Hodge polynomial of
Md

Dol(SL(n, C)) the mirror symmetry Conjecture 3.1, together with Conjec-
ture 5.14 imply a conjecture. For Md

B(SL(n, C)) the mixed Hodge polynomial
contains more information than the E-polynomial. In order to have a conjec-
ture on Hn(x, y, t;Md

B(SL(n, C))) a mirror symmetry conjecture is needed
on the level of the H-polynomial. We finish by formulating such a conjecture,
generalizing Conjecture 3.6 for H-polynomials:
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Conjecture 5.17. For all d, e ∈ Z, with (d, n) = (e, n) = 1 we have

HBe

st

(
x, y, t;Md

B(SL(n, C))
)

= HB̂d

st

(
x, y, t;Me

B(PGL(n, C))
)
,

where HB
st is the stringy mixed Hodge polynomial twisted with a B-field, which

can be defined identically as EB
st in (6).
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