ON THE NUMBER OF LATTICE HYPERPLANES WHICH ARE NEEDED TO COVER THE LATTICE POINTS OF A CONVEX BODY

Károly Bezdek¹ and Tamás Hausel

Abstract. Let **K** be a convex body of \mathbf{E}^d and **L** be a d-dimensional lattice of \mathbf{E}^d , where $d \geq 2$. Assume that the union of n lattice hyperplanes of **L** covers the lattice points in $\mathbf{K} \cap \mathbf{L} \neq \emptyset$. In this note we prove that $n \geq c \cdot d^{-3} \cdot w_{\mathbf{L}}(\mathbf{K})$, where $w_{\mathbf{L}}(\mathbf{K})$ denotes the lattice width of **K** with respect to **L** and c is an absolute constant.

1. Introduction

A convex body of the d-dimensional Euclidean space \mathbf{E}^d is a compact convex set with a non-empty interior. A d-dimensional lattice \mathbf{L} of \mathbf{E}^d is the set of all integral linear combinations of d linearly independent vectors in \mathbf{E}^d . A lattice hyperplane of \mathbf{L} is a hyperplane of \mathbf{E}^d the intersection of which with the d-dimensional lattice \mathbf{L} is a (d-1)-dimensional sublattice. The polar lattice \mathbf{L}^* of \mathbf{L} is the lattice $\{x \in \mathbf{E}^d | \langle x, y \rangle \in \mathbf{Z} \text{ for all } y \in \mathbf{L}\}$, where \mathbf{Z} is the set of integers and $\langle \ , \ \rangle$ denotes the usual inner product of \mathbf{E}^d . Now, let \mathbf{K} be a convex body of \mathbf{E}^d and let \mathbf{L} be a d-dimensional lattice of \mathbf{E}^d . Then the lattice width $w_{\mathbf{L}}(\mathbf{K})$ of \mathbf{K} with respect to the lattice \mathbf{L} is defined by

$$\min_{v \in \mathbf{L}^*} \left[\max \{ \langle v, x \rangle | x \in \mathbf{K} \} - \min \{ \langle v, x \rangle | x \in \mathbf{K} \} \right].$$

Many important properties of the lattice width are discussed in [8]. The problem which we want to raise and partially discuss in this note can be formulated as follows.

Problem. Take a convex body **K** of \mathbf{E}^d and a d-dimensional lattice **L** of \mathbf{E}^d , where $d \geq 2$. Assume that the union of n lattice hyperplanes of **L** covers the lattice points in $\mathbf{K} \cap \mathbf{L} \neq \emptyset$. Prove or disprove that $n \geq c^* \cdot d^{-1} \cdot w_{\mathbf{L}}(\mathbf{K})$, where

The work was supported by Hung. Nat. Found. for Sci. Research No. 326–0313.

 $w_{\mathbf{L}}(\mathbf{K})$ denotes the lattice width of \mathbf{K} with respect to the lattice \mathbf{L} and $c^* > 0$ is some absolute constant.

Let **K** be a convex body of \mathbf{E}^d containing the origin O of \mathbf{E}^d as an interior point. Then the set $\mathbf{K}^* = \{x \in \mathbf{E}^d | \langle x, y \rangle \leq 1 \text{ for all } y \in \mathbf{K} \}$, which is also a convex body is called the polar body of **K**. If **K** is symmetric about O, then

$$\frac{c_1^d}{d^d} \le \text{Vol}(\mathbf{K}) \cdot \text{Vol}(\mathbf{K}^*) \le \frac{c_2^d}{d^d},$$

where Vol () stands for the volume of the corresponding set and $c_1 > 0$ and $c_2 > 0$ are absolute constants. The upper bound is due to Blaschke [2] and Santaló [9]. The lower bound is due to Bourgain and Milman [4]. Let $c = \frac{c_1}{8}$. (Clearly, we may assume that $0 < c \le \frac{1}{2}$.) In this note we prove the following

Theorem 1. Let **K** be a convex body of \mathbf{E}^d and **L** be a d-dimensional lattice of \mathbf{E}^d , where $d \geq 2$. If the union of n lattice hyperplanes of **L** covers the lattice points in $\mathbf{K} \cap \mathbf{L} \neq \emptyset$, then $n \geq c \cdot d^{-3} \cdot w_{\mathbf{L}}(\mathbf{K})$, where $w_{\mathbf{L}}(\mathbf{K})$ denotes the lattice width of **K** with respect to **L** and $c = \frac{c_1}{8}$ is an absolute constant.

Remark. Kannan and Lovász conjecture [8] that if **L** is a d-dimensional lattice of \mathbf{E}^d and **B** is a d-dimensional ball in \mathbf{E}^d with $\mathbf{B} \cap \mathbf{L} = \emptyset$, then $w_{\mathbf{L}}(\mathbf{B}) \leq c_3 \cdot d$, where $w_{\mathbf{L}}(\mathbf{B})$ denotes the lattice width of **B** with respect to **L** and $c_3 > 0$ is an absolute constant. This and the proof below would yield the inequality $n \geq \frac{1}{2 \cdot c_3} \cdot d^{-2} \cdot w_{\mathbf{L}}(\mathbf{K})$ in Theorem 1.

It is worth mentioning that for a centrally symmetric convex body **K** one can prove a stronger statement than Theorem 1. Namely, if **K** is a centrally symmetric convex body of \mathbf{E}^d , then the ellipsoid concentric and homothetic with factor $\frac{1}{\sqrt{d}}$ to the John-Löwner ellipsoid of **K** lies in **K** (see [6] and [7]), where $d \geq 2$. Thus, combining this result with the following proof of Theorem 1 one can get

Theorem 2. Let **K** be a centrally symmetric convex body of \mathbf{E}^d and let **L** be a d-dimensional lattice of \mathbf{E}^d , where $d \geq 2$. If the union of n lattice hyperplanes of **L** covers the lattice points in $\mathbf{K} \cap \mathbf{L} \neq \emptyset$, then $n \geq c \cdot d^{-\frac{5}{2}} \cdot w_{\mathbf{L}}(\mathbf{K})$, where $w_{\mathbf{L}}(\mathbf{K})$ denotes the lattice width of **K** with respect to **L** and $c = \frac{c_1}{8}$ is an absolute constant.

Hence, it is sufficient to prove Theorem 1.

2. Proof of Theorem 1

Let H_1, H_2, \ldots, H_n be the *n* lattice hyperplanes of **L** the union of which covers the lattice points in $\mathbf{K} \cap \mathbf{L}$. The idea of the proof is the following. We approximate \mathbf{K} by an ellipsoid $\mathbf{B} \subset \mathbf{K}$ and construct *n* congruent strips symmetric about the lattice hyperplanes H_1, H_2, \ldots, H_n such that the union of them covers **B**. Then a theorem of Bang [1] (see also [3], [5]) which solves Tarski's plank problem implies that the sum of the widths of our strips is at least the width of **B** yielding the required inequality of Theorem 1. The details are as follows.

A well-known application of the John-Löwner ellipsoid ([6] and [7]) yields that there are concentric ellipsoids \mathbf{B} and $d \cdot \mathbf{B}$ of \mathbf{E}^d with the property that $\mathbf{B} \subset \mathbf{K} \subset d \cdot \mathbf{B}$, where $d \cdot \mathbf{B}$ is the homothetic image of \mathbf{B} with the factor d. As a consequence of this we get that

(1)
$$w_{\mathbf{L}}(\mathbf{B}) \le w_{\mathbf{L}}(\mathbf{K}) \le w_{\mathbf{L}}(d \cdot \mathbf{B}) = d \cdot w_{\mathbf{L}}(\mathbf{B}).$$

As any affinity does not change neither the lattice width nor the fact that certain lattice hyperplanes cover some lattice points we may assume that the concentric ellipsoids \mathbf{B} and $d \cdot \mathbf{B}$ are concentric d-dimensional (closed) balls.

The lattice hyperplanes H_1, H_2, \ldots, H_n generate a tiling \mathcal{T} of the ball \mathbf{B} . More precisely, a tile T of \mathcal{T} is the closure of an open connected component of $(\mathbf{E}^d \setminus \bigcup_{j=1}^n H_j) \cap \operatorname{int} \mathbf{B}$, where int \mathbf{B} denotes the interior of \mathbf{B} . Obviously, T is a convex body. Assume that there is a point t of some T the distances of which from the lattice hyperplanes H_1, H_2, \ldots, H_n are larger than $c_0 \cdot d^2 \cdot m_{\mathbf{L}}$, where $c_0 = \frac{4}{c_1}$ is an absolute constant and $m_{\mathbf{L}}$ denotes the largest distance between two consequtive parallel lattice hyperplanes of \mathbf{L} . Then the closed d-dimensional ball \mathbf{B}_{ϵ} centered at t with radius $c_0 \cdot d^2 \cdot m_{\mathbf{L}} + \epsilon$ for some $\epsilon > 0$ is disjoint from $\bigcup_{j=1}^n H_j$. Obviously, $\mathbf{B} \cap \mathbf{B}_{\epsilon} \subset T$. Then either $\mathbf{B} \setminus \mathbf{B}_{\epsilon} \neq \emptyset$ or $\mathbf{B} \setminus \mathbf{B}_{\epsilon} = \emptyset$.

First assume that $\mathbf{B} \setminus \mathbf{B}_{\epsilon} \neq \varnothing$. As \mathbf{B} as well as \mathbf{B}_{ϵ} are balls it is easy to see that there exists a closed d-dimensional ball \mathbf{B}_{δ} with diameter $c_0 \cdot d^2 \cdot m_{\mathbf{L}} + \delta$ for some $0 < \delta < \epsilon$ such that $\mathbf{B}_{\delta} \subset \operatorname{int} (\mathbf{B} \cap \mathbf{B}_{\epsilon}) \subset \operatorname{int} T$. As the union of the lattice hyperplanes H_1, H_2, \ldots, H_n covers the lattice points in $\mathbf{K} \cap \mathbf{L}$ and so in $\mathbf{B} \cap \mathbf{L}$ therefore int $T \cap \mathbf{L} = \varnothing$. Hence, $\mathbf{B}_{\delta} \cap \mathbf{L} = \varnothing$. Now recall the following theorem of Kannan and Lovász [8]. If \mathbf{L} is a d-dimensional lattice of \mathbf{E}^d and \mathbf{M} is a centrally symmetric convex body of \mathbf{E}^d with $\mathbf{M} \cap \mathbf{L} = \varnothing$, then $w_{\mathbf{L}}(\mathbf{M}) \leq c_0 \cdot d^2$. Thus, $w_{\mathbf{L}}(\mathbf{B}_{\delta}) \leq c_0 \cdot d^2$. However, \mathbf{B}_{δ} is a closed ball of diameter $c_0 \cdot d^2 \cdot m_{\mathbf{L}} + \delta$ yielding $w_{\mathbf{L}}(\mathbf{B}_{\delta}) > c_0 \cdot d^2$, a contradiction.

Second we assume that $\mathbf{B} \setminus \mathbf{B}_{\epsilon} = \emptyset$. Then $\mathbf{B} \subset \mathbf{B}_{\epsilon}$ and so int $\mathbf{B} = \text{int } (\mathbf{B} \cap \mathbf{B}_{\epsilon}) = \text{int } T$. Thus, (int \mathbf{B}) $\cap \mathbf{L} = \emptyset$. Hence, the d-dimensional closed ball which is concentric to \mathbf{B} and the radius of which is say, half of the radius of \mathbf{B} is disjoint from \mathbf{L} . Thus, the mentioned theorem of Kannan and Lovász [8] immediately yields that $\frac{1}{2} \cdot w_{\mathbf{L}}(\mathbf{B}) \leq c_0 \cdot d^2$ that is

$$(2) c \cdot d^{-2} \cdot w_{\mathbf{L}}(\mathbf{B}) \le 1.$$

From (1) and (2) we get that $c \cdot d^{-3} \cdot w_{\mathbf{L}}(\mathbf{K}) \leq 1 \leq n$ which then proves Theorem 1.

Thus, without loss of generality we may assume that in each tile T of \mathcal{T} there is no point the distances of which from the lattice hyperplanes H_1, H_2, \ldots, H_n are larger than $c_0 \cdot d^2 \cdot m_{\mathbf{L}}$. In other words, the closed strips of width $2 \cdot c_0 \cdot d^2 \cdot m_{\mathbf{L}}$ symmetric about the lattice hyperplanes H_1, H_2, \ldots, H_n cover each tile of \mathcal{T} that is the union of the strips covers \mathbf{B} . Thus, via the theorem of Bang [1] the sum $n \cdot (2 \cdot c_0 \cdot d^2 \cdot m_{\mathbf{L}})$ of the widths of the strips is not smaller than the diameter diam \mathbf{B} of \mathbf{B} . So we have $n \cdot (2 \cdot c_0 \cdot d^2 \cdot m_{\mathbf{L}}) \geq \text{diam } \mathbf{B}$. Consequently, $n \cdot (2 \cdot c_0 \cdot d^2) \geq w_{\mathbf{L}}(\mathbf{B})$ and so

(3)
$$n \ge c \cdot d^{-2} \cdot w_{\mathbf{L}}(\mathbf{B}).$$

From (1) and (3) we get that $n \geq c \cdot d^{-3} \cdot w_{\mathbf{L}}(\mathbf{K})$. This completes the proof of Theorem 1.

References

- 1. T. Bang, A solution of the "plank problem", Proc. Amer. Math. Soc. 2 (1951), 990-993.
- 2. W. Blaschke, Über Affine Geometrie VII: Neue Extremeigenschaften von Ellipse und Ellipsoid, Leipziger Ber. 69 (1917), 306-318.
- 3. M. Bognár, On Fenchel's solution of the plank problem, Acta Math. Acad. Sci. Hung. 12 (1961), 269-270.
- 4. J. Bourgain and V. D. Milman, Sections euclidiennes et volume des corps symetriques convexes dans Rⁿ, C. R. Acad. Sc. Paris I/13 (1985), 435-438.
- 5. W. Fenchel, On Th. Bang's solution of the plank problem, Mat. Tidsskr. B 1951 (1951), 49-51.
- 6. F. John, Extremum problems with inequalities as subsidiary conditions, Courant Anniv. Volume (1948), 187-204.
- 7. F. Juhnke, Volumenminimale Ellipsoidüberdeckungen, Beiträge zur Alg. und Geom. **30** (1990), 143–153.
- 8. R. Kannan and L. Lovász, Covering minima and lattice-point-free convex bodies, Annals of Mathematics 128 (1988), 577-602.
- 9. L. A. Santaló, Un invariente afin para los courpos convexos de espacios de n dimensiones, Portugal Math. 8 (1949), 155-161.
 - K. Bezdek and T. Hausel, Dept. of Geometry,

Eötvös L. University, 1088 Budapest, Rákóczi út 5, Hungary. of lattice points by lattice hyperplanes.