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Abstract. Let K be a convex body of E¢ and L be a d—dimensional lattice
of E?, where d > 2. Assume that the union of n lattice hyperplanes of L covers
the lattice points in KN L # @. In this note we prove that n > ¢-d™* - w,(K),
where wy,(K) denotes the lattice width of K with respect to L and ¢ is an absolute
constant.

1. INTRODUCTION

A convex body of the d—dimensional Euclidean space E? is a compact convex
set with a non-empty interior. A d—dimensional lattice L of E? is the set of all
integral linear combinations of d linearly independent vectors in E¢. A lattice hy-
perplane of L is a hyperplane of E¢ the intersection of which with the d—dimensional
lattice L is a (d —1)—dimensional sublattice. The polar lattice L* of L is the lattice
{z € EY|(z,y) € Z for all y € L}, where Z is the set of integers and ( , ) denotes
the usual inner product of E?. Now, let K be a convex body of E? and let L be a
d—dimensional lattice of E¢. Then the lattice width wg,(K) of K with respect to
the lattice L is defined by

miﬁl max{(v,z)|z € K} — min{(v, z)|z € K}].

veL*

Many important properties of the lattice width are discussed in [8]. The problem
which we want to raise and partially discuss in this note can be formulated as
follows.

Problem. Take a convex body K of E? and a d—dimensional lattice L of
E?, where d > 2. Assume that the union of n lattice hyperplanes of L covers the
lattice points in K NL # &. Prove or disprove that n > ¢* - d™' - wr,(K), where
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wr,(K) denotes the lattice width of K with respect to the lattice L and ¢* > 0 is
some absolute constant.

Let K be a convex body of E? containing the origin O of E¢ as an interior
point. Then the set K* = {z € E¢|(z,y) <1 for all y € K}, which is also a convex
body is called the polar body of K. If K is symmetric about O, then

cf o S
ESVOI (K) - Vol (K*) < pTk

where Vol () stands for the volume of the corresponding set and ¢; > 0 and ¢ > 0
are absolute constants. The upper bound is due to Blaschke [2] and Santalé [9].

The lower bound is due to Bourgain and Milman [4]. Let ¢ = 4. (Clearly, we may

assume that 0 < ¢ < %) In this note we prove the following

Theorem 1. Let K be a convex body of E? and L be a d—dimensional lattice
of E¢, where d > 2. If the union of n lattice hyperplanes of L covers the lattice
points in KNL # &, then n > ¢-d™? - w,(K), where wr,(K) denotes the lattice

width of K with respect to L and ¢ = %~ is an absolute constant.

Remark. Kannan and Lovész conjecture [8] that if L is a d—dimensional
lattice of E? and B is a d—dimensional ball in E? with BN L = &, then w,(B) <
¢3 - d, where wr,(B) denotes the lattice width of B with respect to L and ¢5 > 0
is an absolute constant. This and the proof below would yield the inequality n >

L. q-2. wr,(K) in Theorem 1.
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It is worth mentioning that for a centrally symmetric convex body K one can
prove a stronger statement than Theorem 1. Namely, if K is a centrally symmetric

convex body of E¢, then the ellipsoid concentric and homothetic with factor %

to the John-Lowner ellipsoid of K lies in K (see [6] and [7]), where d > 2. Thus,

combining this result with the following proof of Theorem 1 one can get

Theorem 2. Let K be a centrally symmetric convex body of E? and let L be
a d—dimensional lattice of E?, where d > 2. If the union of n lattice hyperplanes
of L covers the lattice points in KNL # &, then n > c-d=3 -wr,(K), where wr,(K)

denotes the lattice width of K with respect to L and ¢ = - is an absolute constant.

Hence, it is sufficient to prove Theorem 1.



2. PROOF OF THEOREM 1

Let Hy,Hs, ..., H, be the n lattice hyperplanes of L the union of which covers
the lattice points in KN L. The idea of the proof is the following. We approximate
K by an ellipsoid B C K and construct n congruent strips symmetric about the
lattice hyperplanes Hy, Hs, ..., H, such that the union of them covers B. Then a
theorem of Bang [1] (see also [3], [5]) which solves Tarski’s plank problem implies
that the sum of the widths of our strips is at least the width of B yielding the
required inequality of Theorem 1. The details are as follows.

A well-known application of the John-Léwner ellipsoid ([6] and [7]) yields that
there are concentric ellipsoids B and d - B of E¢ with the property that B ¢ K C
d-B, where d- B is the homothetic image of B with the factor d. As a consequence
of this we get that

(1) wi(B) < wi,(K) < wi(d-B) = d - wi,(B).

As any affinity does not change neither the lattice width nor the fact that certain
lattice hyperplanes cover some lattice points we may assume that the concentric
ellipsoids B and d - B are concentric d—dimensional (closed) balls.

The lattice hyperplanes Hy, Hs, ..., H, generate a tiling 7 of the ball B.
More precisely, a tile T of T is the closure of an open connected component of
(ET\ U?zlﬂj) N int B, where int B denotes the interior of B. Obviously, T is a
convex body. Assume that there is a point ¢ of some T' the distances of which from
the lattice hyperplanes Hy, Hs,..., H, are larger than cq - d* - mp,, where ¢ = 64—1 is
an absolute constant and my, denotes the largest distance between two consequtive
parallel lattice hyperplanes of L. Then the closed d—dimensional ball B, centered
at ¢t with radius co - d* - m1, + € for some € > 0 is disjoint from U’—y Hj. Obviously,
BNB. CT. Then either B\ B, # @ or B\ B, = &.

First assume that B\ B, # @. As B as well as B, are balls it is easy to see
that there exists a closed d—dimensional ball By with diameter ¢g - d? - myp, + § for
some 0 < 6 < € such that Bs C int (B N B,) C int 7. As the union of the lattice
hyperplanes Hy, H,,..., H, covers the lattice points in K N L and so in BN L
therefore int TN L = @. Hence, B; N L = @. Now recall the following theorem of
Kannan and Lovasz [8]. If L is a d—dimensional lattice of E? and M is a centrally
symmetric convex body of E? with M NL = &, then wr(M) < ¢o - d®. Thus,
wrL(Bs) < co - d*. However, B; is a closed ball of diameter ¢o - d? - my + 6 yielding
wr(Bs) > co - d?, a contradiction.

Second we assume that B\ B, = @. Then B C B, and so int B = int (B N
B.) = int 7. Thus, (int B) N L = @. Hence, the d—dimensional closed ball which
is concentric to B and the radius of which is say, half of the radius of B is disjoint
from L. Thus, the mentioned theorem of Kannan and Lovasz [8] immediately yields
that % ~wr,(B) < ¢o - d? that is

(2) c-d? wL(B) < 1.



From (1) and (2) we get that ¢-d™* - w,(K) < 1 < n which then proves Theorem
1.

Thus, without loss of generality we may assume that in each tile T of T there
is no point the distances of which from the lattice hyperplanes Hy, Ho, ..., H,, are
larger than cq - d? - my. In other words, the closed strips of width 2 - ¢q - d* - my
symmetric about the lattice hyperplanes Hy, Ho, ..., H, cover each tile of T that
is the union of the strips covers B. Thus, via the theorem of Bang [1] the sum
n-(2-co- d?- my,) of the widths of the strips is not smaller than the diameter diam B
of B. So we have n-(2-co-d*-my,) > diam B. Consequently, n-(2-cq-d*) > wr(B)
and so

(3) n>c-d? wL(B).

From (1) and (3) we get that n > ¢-d™® - wr(K). This completes the proof of

Theorem 1.
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