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Abstract
We study the space of L2 harmonic forms on complete manifolds with metrics of fi-
bred boundary or fibred cusp type. These metrics generalize the geometric structures
at infinity of several different well-known classes of metrics, including asymptotically
locally Euclidean manifolds, the (known types of) gravitational instantons, and also
Poincaré metrics on Q-rank 1 ends of locally symmetric spaces and on the comple-
ments of smooth divisors in Kähler manifolds. The answer in all cases is given in
terms of intersection cohomology of a stratified compactification of the manifold. The
L2 signature formula implied by our result is closely related to the one proved by Dai
[25] and more generally by Vaillant [67], and identifies Dai’s τ -invariant directly in
terms of intersection cohomology of differing perversities. This work is also closely
related to a recent paper of Carron [12] and the forthcoming paper of Cheeger and
Dai [17]. We apply our results to a number of examples, gravitational instantons
among them, arising in predictions about L2 harmonic forms in duality theories in
string theory.
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1. Introduction
The Hodge theorem for a compact Riemannian manifold (M, g) identifies the space
L2H ∗(M, g) of L2 harmonic forms on M with the de Rham cohomology of this
space. When M is no longer compact, L2H ∗(M, g) is still of considerable interest,
but no general theorem identifies it with a topologically defined group. In a number
of special noncompact geometric situations, there are topological interpretations of
this Hodge cohomology space. These include the Hodge theorem for manifolds with
cylindrical ends in Atiyah, Patodi, and Singer [2], Cheeger’s seminal work [16], [15],
[18] on Hodge theory on spaces with conic and iterated conic singularities and its re-
lationship with intersection theory, the considerable literature on Hodge cohomology
on locally symmetric spaces (cf., in particular, [68], [62]), and Mazzeo’s work [52],
[55] concerning (asymptotically) geometrically finite hyperbolic quotients.

The aim of this paper is to prove a Hodge-type theorem for two different classes
of Riemannian manifolds, special cases of which arise frequently in many interesting
problems in geometry and mathematical physics. These are fibred boundary and fibred
cusp metrics. Manifolds with fibred boundary metrics include all identified classes of
gravitational instantons, the name coined by Hawking for complete hyperkähler four-
manifolds. Special cases of fibred cusp metrics include the familiar Poincaré metrics
in the theory of locally symmetric spaces. Slightly more specifically, a product of
a compact manifold with an asymptotically locally Euclidean (ALE) manifold is an
example of a general fibred boundary metric, and a product of a compact manifold
with a finite volume hyperbolic cusp is an example of a fibred cusp metric. The most
general case incorporates twisted versions of these examples and also only requires
that the fibration structure exist at the boundary. In particular, there are two special
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and very familiar subclasses of metrics amongst these: the ALE manifolds, also called
scattering metrics, and manifolds with asymptotically cylindrical ends, also called b-
metrics, which are fibred boundary and fibred cusp metrics, respectively, with trivial
fibre. We describe these rigorously and in more detail below.

Let M be a smooth compact manifold with boundary, and suppose that x is a
boundary-defining function. (Thus x vanishes on ∂M and dx 6= 0 there.) We recall
four classes of metrics in terms of their behaviour in some neighbourhood U of ∂M .
In the first two of these, M is arbitrary, but in the latter two we assume that Y ≡ ∂M
is the total space of a fibration φ : Y → B with fibre F .
• The metric g is called a b-metric on the interior M of M if in U it takes the

form

g =
dx2

x2 + h,

where h is a smooth metric on ∂M (i.e., nondegenerate up to the boundary).
• The metric g is called a fibred cusp metric if in U it takes the form

g =
dx2

x2 + h̃ + x2k,

where h̃ is a smooth extension to U of φ∗h, where h is an arbitrary metric on
B, and k is a symmetric two-tensor on ∂M which restricts to a metric on each
fibre F .

• The metric g is called a scattering metric if in U it takes the form

g =
dx2

x4 +
h
x2 ,

where h is a smooth metric on ∂M ;
• The metric g is called a fibred boundary metric if in U it takes the form

g =
dx2

x4 +
h̃
x2 + k,

where h̃ and k are as above.
We have made a simplification here in not allowing cross-terms in these metrics,

and members of these restricted classes are usually called exact b-metrics, and so
on. This is not serious because, as discussed in §2, Hodge cohomology is invariant
under quasi-isometries, and so these cross-terms can always be deformed away with-
out changing the Hodge cohomology. In fact, we henceforth assume that a product
structure [0, 1)x × ∂Y is fixed on U and that the metrics h and k in each of the four
cases are independent of x with respect to this decomposition. We simply write h in-
stead of h̃. This multiwarped product structure simplifies computations, and general
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fibred boundary and fibred cusp metrics may be deformed to ones of this type without
affecting the Hodge cohomology.

These metrics, or at least special cases of them, are all familiar, albeit in different
coordinate systems. Thus if we set x = e−t , then a b-metric becomes dt2

+ h on
R+

×∂M , so it has cylindrical ends, while the same change of coordinates transforms
a fibred cusp metric to dt2

+ h + e−2t k, which is a standard form for a Q-rank 1
cusp when ∂M is a torus bundle over a torus. Similarly, if we set x = 1/r , then a
scattering metric becomes dr2

+ r2h with r → ∞, which is the standard form of the
infinite end of a cone, and corresponds to the ALE class of gravitational instantons,
such as the Eguchi-Hanson metric. Finally, a fibred boundary metric transforms under
this coordinate change to dr2

+ r2h + k, which is a common form for metrics in the
asymptotically locally flat (ALF) and ALG classes of gravitational instantons, such as
the Taub-NUT metric and reduced 2-monopole moduli space metric.

The obvious compactification of M as the manifold with boundary M is useful
for many purposes, but to state the Hodge theorems here, we define a new compact-
ification X by collapsing the fibres F of ∂M . When F is a sphere, X is a manifold,
but in general X is a stratified space with one singular stratum, which we denote by
B (hopefully this should cause no confusion), and principal stratum M = X \ B. A
neighbourhood of B is a cone bundle with link F over B. In particular, when B is
trivial, X is the one-point compactification of M , whereas when F is trivial, X = M .
In any case, we set b = dim B and f = dim F throughout this paper. X is called a
Witt space if H f/2(F) = 0, and as we explain below, the analysis is much simpler in
this case.

Our main theorems relate the Hodge cohomology of M , with either a fibred
boundary or fibred cusp metric, to the intersection cohomology of X . We refer to §2
for a review of these latter spaces and an explanation of the notation in the following.

THEOREM 1
Let (M, g) be a manifold of dimension n with fibred boundary metric. Then for any
degree 0 ≤ k ≤ n, there are natural isomorphisms

L2H k(M, g)

−→

{
Im
(
IH k

f +(b+1)/2−k(X, B) −→ IH k
f +(b−1)/2−k(X, B)

)
, b odd,

IH k
f +b/2−k(X, B), b even,

where the notation IH k
j (X, B) is explained in §2.2.2, equation (9).

THEOREM 2
Let (M, g) be a manifold of dimension n with fibred cusp metric. Then for 0 ≤ k ≤ n,



HODGE COHOMOLOGY OF GRAVITATIONAL INSTANTONS 489

there is a natural isomorphism

L2H k(M, g) −→ Im
(
IH k

m(X, B) −→ IH k
m(X, B)

)
,

where m and m are the lower-middle and upper-middle perversities. These give the
same cohomology when X is a Witt space, in which case we write simply

L2H k(M, g) ∼= IH k
m(X, B).

The perversity functions that arise in Theorem 1 are somewhat nonstandard, but they
appear naturally in this problem. We shall return in another paper to a closer examina-
tion of the relationships between perversity functions and weighted L2-cohomologies
in these and other related geometric settings. However, for now, note that an interest-
ing special case occurs when F is the sphere S f , in which case X is a manifold and
intersection cohomology reduces to ordinary cohomology. Then Theorem 1 becomes
the following.

COROLLARY 1
Let (M, g) be a manifold of dimension n with a fibred boundary metric where the fibre
of Y = ∂M is a sphere; thus M is identified with the complement of the submanifold
B in the compact manifold X . Then for any degree 0 ≤ k ≤ n, there are natural
isomorphisms

L2H k(M, g) ∼=


H k(X, B), k ≤

b
2 ,

H k(X), b
2 < k < n −

b
2 ,

H k(X \ B), k ≥ n −
b
2

(1)

if b is even, and

L2H ∗(M, g) ∼=



H k(X, B), k ≤
b−1

2 ,

Im
(
H k(X, B) −→ H k(X)

)
, k =

b−1
2 + 1,

H k(X), b+1
2 < k < n −

b+1
2 ,

Im
(
H k(X) −→ H k(X \ B)

)
, k = n −

b+1
2 ,

H k(X \ B), k ≥ n −
b−1

2

(2)

if b is odd.

The specialization of Theorem 2 is even simpler.

COROLLARY 2
Let (M, g) be a manifold of dimension n with a fibred cusp metric, where F = S f
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as in the previous corollary. Then the compactification X is a manifold, and for any
degree 0 ≤ k ≤ n,

L2H k(M, g) = H k(X).

Two degenerate cases of Theorems 1 and 2 are fairly well known.

THEOREM 1A
Let (M, g) be a manifold of dimension n with scattering metric. Then there are natural
isomorphisms

L2H k(M, g) −→


H k(M, ∂M), k < n/2,

Im
(
H k(M, ∂M) → H k(M)

)
, k = n/2,

H k(M), k > n/2.

THEOREM 2A
Let (M, g) be a manifold of dimension n with b-metric. Then for any degree 0 ≤ k ≤

n, there is a natural isomorphism

L2H k(M, g) −→ Im
(
H k(X, B) → H k(X − B)

)
∼= Im

(
H k(M, ∂M) → H k(M)

)
.

Theorem 2A is proved in [2], while Theorem 1A is stated in [57], but the proof does
not seem to be readily available in the literature. We prove these first as a warm-up to
the more general cases because the proofs are structured similarly but present fewer
analytic and geometric demands.

In all these results, but particularly in the latter two where the notation is more
familiar, it is apparent that the topological expressions on the right depend on the strat-
ification (X, B) and not just on X . The traditional hypotheses about perversities were
designed to make the corresponding intersection cohomology spaces independent of
stratification, but as explained in §2, this independence is lost in certain degrees be-
cause of our use of slightly more general perversity functions.

As already indicated, there is a simpler proof of Theorem 2 when X is a Witt
space. The reason is that with this hypothesis the range of d is closed in all degrees,
and so the space of L2 harmonic forms is isomorphic to the L2-cohomology. One can
then directly apply techniques of [68] which are mainly sheaf-theoretic and topologi-
cal. We discuss this further in §5.5. Note that since L2H n/2(M, g) depends only on
the conformal class of g, we can also compute the middle degree Hodge cohomology
for fibred boundary metrics when X is Witt. In fact, this case shows a trick that is
used to prove Theorem 1 in certain cases: if k < n/2 and ω ∈ L2H k(M, ĝ), then
ω ∧ η ∈ L2H n−k(M × Sn−2k, ĝ), in particular, is a middle-degree class, where ĝ is
the product of a fibred boundary metric on M and the standard metric on the sphere,
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and where η is the volume form on Sn−2k . The easier analytic argument now works
provided the compactification X × Sn−2k is a Witt space, which requires that both
H ( f +n)/2−k(F) = H k−( f +n)/2(F) = 0 (one of which is of course always true). This
can always be used, for example, to reduce Theorem 1A to a simple special case of
Corollary 2, which follows easily from Theorem 2A. In the end, however, this would
express the Hodge cohomology for a fibred boundary metric in terms of the homology
of a different space altogether and hence is certainly less preferable.

In any case, when X is not a Witt space, one needs to do something to confront
the main issue that the range of d is not closed. The analytic machinery we introduce
in §§4 and 5 provides one avenue for doing this. Another possible approach involves
Carron’s notion in [12] of nonparabolicity at infinity. In fact, Carron has used this
method to characterize the L2-cohomology of arbitrary complete Riemannian man-
ifolds with flat ends. There is a substantial, but not complete, overlap of his results
with ours; we comment on this further in §6.

Other work very closely related to ours is a forthcoming paper by Cheeger and
Dai [17] concerning the L2-cohomology of cone bundles. It is likely that we could
deduce some of their results using the methods here and using parametrices in the
edge calculus (see [53]). Their methods should certainly give some of our results too.

Hodge theorems are of course closely related to index theorems, and Theorems 1
and 2 imply a signature formula.

COROLLARY 3
Let (M, g) be a fibred boundary or fibred cusp metric. Then

sgnL2(M, g) = sgn
(
Im (IH∗

m(X, B) → IH∗

m(X, B))
)
.

This corollary is very closely related to the signature theorem for fibred cusp metrics
proved by Dai [25, Theorem 3] in a special case (using Müller’s L2 index theorem for
manifolds with ends which are locally symmetric of Q rank 1), and in more generality
by Vaillant [67, page 103]. This theorem of Dai and Vaillant states that

sgnL2(M, g) = sgn
(
Im (H∗(M, ∂M) → H∗(M))

)
+ τ, (3)

where the final term is the τ -invariant of the fibration of ∂M defined by Dai [25].
Combining this with the above corollary gives the very interesting equality

τ = sgn
(
Im (IH∗

m(X, B) → IH∗

m(X, B))
)
− sgn

(
Im (H∗(M, ∂M) → H∗(M))

)
.

(4)
We discuss this further in §§6 and 7, and we shall explore this identity in another
paper.

Our initial and primary motivation for this work came from predictions arising
in duality theories in string theory, some of which we describe in §7. In particular,
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physicists have predicted the dimensions of the spaces L2H ∗ on the moduli space
of magnetic monopoles on R3 (see [63]), multi-Taub-NUT gravitational instantons
(see [64]), quiver varieties (see [66]), and certain G2- and Spin(7)-manifolds (see
[10]). In many of these cases, the metrics are of fibred boundary type, and our The-
orem 1 confirms most of these predictions. A notable exception is the prediction for
the G2-manifold in [10], which our results prove is false. Most of these results have
been or could be proved by techniques available in the literature (see [43], [67]). In
particular, as we explain in §6, taking [43] into account, Dai’s signature theorem in
[25] suffices to calculate L2H ∗ for all hyperkähler metrics of fibred boundary type,
that is, all known gravitational instantons. Our methods and results give a unified ap-
proach and have the advantage of using only basic asymptotic properties of the metric
rather than any refined properties, for example, having a large symmetry group or
special holonomy group. Moreover, the interpretation of Hodge cohomology in terms
of the intersection cohomology of a compactification is very much in the spirit of the
original Hodge theorem for compact manifolds. We hope (see [22]) that the results
here, as well as those in [46], suggest the correct form for a general result that would
encompass the remaining cases of these predictions.

This paper is organized as follows. In §2 we review L2-cohomology and the ba-
sics of intersection theory, focusing on spaces with only one singular stratum. We also
define two different versions of weighted L2-cohomology. A review of the proof of
the Hodge theorem for compact manifolds is presented in the brief §3; this provides
the basic analytic structure for the proofs of our main theorems, and we emphasize
here the main analytic points for which replacements are needed. The Hodge theo-
rems for b- and scattering metrics are proved in §4; this is accompanied by a review
of the requisite analysis of b-pseudodifferential operators. The more general Hodge
theorems are proved in §5, first by identifying the Hodge cohomology with weighted
cohomology, and then by relating weighted cohomology to intersection cohomology.
We briefly explain the relationship of our results to those of Dai, Vaillant, Cheeger,
Hitchin, and Carron in §6. Finally, in §7, we discuss the special cases of these the-
orems which provided our original motivation, where M is one of the gravitational
instantons of currency in physics.

2. Cohomologies
We discuss various cohomology theories (in a loosely construed sense) that play sig-
nificant rôles in this paper.

As a general word about notation, if F is some function space on the Riemannian
manifold (M, g), then F�∗(M) denotes the space of sections of the exterior bundle∧

∗(M) with this regularity. When F = L2 or a Sobolev space, then we indicate the
dependence on the metric by writing F�∗(M, g).



HODGE COHOMOLOGY OF GRAVITATIONAL INSTANTONS 493

2.1. L2- and Hodge cohomology
We start with a review of some facts about L2-cohomology and its relationship to the
space of L2 harmonic forms.

The absolute cohomology H k(M) of a general (open) manifold M is identified
with the de Rham complex of smooth forms with unrestricted growth at infinity:

· · · −→ C ∞�k−1(M) −→ C ∞�k(M) −→ C ∞�k+1(M) −→ · · · .

Similarly, its compactly supported cohomology H k
c (M) is computed by the de Rham

complex of smooth compactly supported forms:

· · · −→ C ∞

0 �k−1(M) −→ C ∞

0 �k(M) −→ C ∞

0 �k+1(M) −→ · · · . (5)

It is well known (see [26]) that these same cohomologies can also be computed using
the complexes of distributional forms (C −∞�∗(M), d) and (C −∞

0 �∗(M), d). How-
ever, there are many interesting complexes incorporating restrictions on regularity and
growth at infinity between these extremes. The most popular of these (for good reason)
is L2-cohomology in the presence of a Riemannian metric. To define it, complete the
differential complex (5) with respect to the norms on the exterior bundles associated
to g and the volume form dVg so as to obtain the Hilbert complex

· · · −→ L2�k−1
g (M) −→ L2�k

g(M) −→ L2�k+1
g (M) −→ · · · . (6)

Strictly speaking, this is not a complex since the differential d is defined at each
stage only on a dense subspace. Thus the space of degree k should be defined as
{ω ∈ L2�k(M, g) : dω ∈ L2�k+1(M, g)} ⊆ H1�k(M, g). The cohomology of (6)
is called the L2-cohomology of M and denoted H∗

(2)(M, g). In other words,

H k
(2)(M, g)

=
{
ω ∈ L2�k(M, g) : dω = 0

}/{
dη : η ∈ L2�k−1

g (M), dη ∈ L2�k
g(M)

}
.

To set this into context, recall the Kodaira decomposition theorem, which states
that for arbitrary manifolds, there is an orthogonal decomposition

L2�k(M, g) = L2H k(M, g) ⊕ dC ∞

0 �k−1 ⊕ δC ∞

0 �k+1, (7)

where the first summand consists of forms ω ∈ L2�k(M, g) such that both dω =

δω = 0. This is the space of L2 harmonic fields, or Hodge cohomology, and is our
main object of study. The proof of the Kodaira decomposition is closely related to
the essential self-adjointness of d + δ on L2�∗(M, g), which in turn follows from
Gaffney’s L2 Stokes theorem (cf. [26]). It follows from this that the subspace of closed
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forms is precisely the sum of the first two summands here, and hence

H k
(2)(M, g) = L2H k(M, g)

⊕
{
dη ∈ L2�k(M, g) : η ∈ L2�k−1

g (M)
}
/
{
dη ∈ L2�k

g(M), η ∈ L2�k−1
g (M)

}
.

In particular, when the range of d from L2�k−1 to L2�k is not closed, then
H k
(2) is infinite-dimensional. This behaviour occurs in many instances, for example, on

Euclidean space, and indeed is the reason for some of the difficulties in understanding
L2-cohomology. However, we can define the reduced L2-cohomology

H
k
(2)(M, g)

=
{
ω ∈ L2�k(M, g) : dω = 0

}/{
dη ∈ L2�k(M, g), η ∈ L2�k−1(M, g)

}
.

Combined with (7), this gives the useful isomorphism

H
k
(2)(M, g) ∼= L2H k(M, g),

which reveals the surprising fact—certainly not apparent from the basic definition—
that Hodge cohomology is invariant under quasi-isometric changes of the metric. In
other words, if two metrics are comparable, g′

≤ cg, g ≤ c′g′ for constants c, c′ > 0,
then H

∗

(2)(M, ∗) is the same when computed with respect to either metric, and hence
the same is true for L2H ∗(M, ∗). Moreover, if H k

(2)(M, g) is finite-dimensional, then
it is naturally isomorphic to L2H k(M, g).

Reduced L2-cohomology is not quite as tractable as it might appear. For ex-
ample, it is quite important in calculations that there is a Mayer-Vietoris sequence
for unreduced L2-cohomology, but this is true only in special cases for reduced L2-
cohomology.

2.2. Intersection cohomology
We now review some definitions and facts about the intersection cohomology of strat-
ified spaces.

2.2.1. Generalities
Let X be a stratified space of real dimension n with no codimension one singulari-
ties. We always assume, without further comment, that this space satisfies some extra
hypotheses: if a point q ∈ X is contained in the stratum of codimension `, then it
has a neighbourhood U diffeomorphic to V × C(L), where V is diffeomorphic to
a Euclidean ball and is contained in that stratum and C(L) is the cone over a link L ,
which itself is a stratified space (of dimension `− 1).

A perversity p is an n-tuple of natural numbers (p(1), p(2), . . . , p(n)) satisfying
p(1) = p(2) = 0 and p(`−1) ≤ p(`) ≤ p(`−1)+1 for all ` ≤ n. Associated to such
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a space X and perversity p is the intersection complex I C∗
p(X), where, roughly speak-

ing, the integer p(`) regulates the dimension of the intersection of generic chains with
the stratum of codimension `. The homology of this complex is the intersection ho-
mology IHp

∗ (X). The dual intersection cohomology IH∗
p (X) is more relevant to our

purposes.
The following result is fundamental.

PROPOSITION 1 (see [37])
Let X be a stratified space, and let (L ∗, d) be a complex of fine sheaves on X with co-
homology H∗(X,L ). Suppose that if U is a neighbourhood in the principal (smooth)
stratum of X , then H∗(U ,L ) = H∗(U ,C), while if q lies in a stratum of codimen-
sion ` and U = V × C(L) as above, then

H k(U ,L ) ∼= IH k
p(U ) =

{
IH k

p(L), k ≤ `− 2 − p(`),

0, k ≥ `− 1 − p(`).
(8)

Then there is a natural isomorphism between the hypercohomology H ∗(X,L ∗) as-
sociated to this complex of sheaves and IH∗

p (X), the intersection cohomology of per-
versity p.

Thus intersection cohomology with perversity p may be calculated using any fine
sheaf so long as its local cohomology satisfies (8), which we refer to as the local
computation (see also [18] and [7] for more on this).

This proposition is modified later in Section 2 to provide a link between weighted
cohomology and intersection cohomology.

2.2.2. Intersection cohomology for spaces with only two strata
Suppose now that X has only two strata: the principal smooth stratum and the stra-
tum of codimension `, which we denote B. For convenience we assume that B is
connected, although all results here generalize easily to allow B to have many compo-
nents (even of different dimensions, so long as their closures are disjoint). We denote
by F the link associated to any point q ∈ B. This is a smooth compact manifold
of dimension ` − 1 with trivial stratification, and IH∗

p (F) = H∗(F) no matter the
perversity p. We associate to X the manifold with boundary M which is obtained by
blowing up B, that is, replacing B by its spherical normal bundle. (This may be vi-
sualized as the complement of a tubular neighbourhood of B in X .) Notice that ∂M
fibres over B with fibre F .

The only part of the perversity which affects I C∗
p(X), and hence IH∗

p (X), is the
value p(`). The basic hypothesis on p implies that 0 ≤ p(`) ≤ ` − 2, and by (8),
only the spaces H k(F), 0 ≤ k ≤ ` − 2 − p(`), are relevant for the calculation



496 HAUSEL, HUNSICKER, and MAZZEO

of these intersection spaces. We now introduce an extension of these definitions by
allowing p(`) to take on any integer value. This does not give anything dramatically
new; when p(`) ≤ −1, the local calculations (8) agree with those for the computation
of H∗(X − B) = H∗(M), whereas when p(`) ≥ `−1, then they agree with those for
the computation of H∗(X, B) ∼= H∗(M, ∂M). Thus for any j ∈ Z we fix the notation

IH∗

j (X, B) =


H∗(X − B), j ≤ −1,

IH∗
p (X), 0 ≤ j ≤ `− 2,

H∗(X, B), j ≥ `− 1,

(9)

where in the middle case, p is any perversity with p(`) = j .
We note some properties of these extended groups. First,

IH k
j (X, B) ∼= IHn−k

`−2− j (X, B),

just as with the standard intersection cohomology groups. Next, suppose that X is
smooth and endowed with the stratification (X \ B, B), where B is just a distinguished
smooth (n − `)-dimensional submanifold. The link at any point q ∈ B is S`−1, and
so if U = V × C(S`−1) is a neighbourhood of a point q ∈ B, then

IH k
p(U ) =

{
IH k

p(S
`−1) = H k(S`−1), k ≤ `− 2 − p(`),

0, k ≥ `− 1 − p(`).

If 0 ≤ p(`) ≤ ` − 2, this equals C for k = 0 and 0 for k > 0, which is the
same local calculation as for the ordinary cohomology of a smooth manifold; hence
IH∗

j (X, B) = H∗(X) in this case. As expected, this is independent of the subman-
ifold B, and hence of the choice of stratification of X , because the perversity p is a
traditional one. However, in the other cases, when j ≤ −1 or j ≥ `− 1, IH∗

j (X, B)
depends strongly on B. We also remark that this extension allows us to consider spaces
with a codimension one stratum, that is, a boundary. In this case, the link of a point
on the boundary is any point, so the local calculations corresponding to j ≤ −1 and
j ≥ 0 give absolute and relative cohomologies, respectively.

This use of nonstandard perversities is now common in intersection theory; for
example, they enter into calculations of weighted cohomology on locally symmetric
spaces (see [60]).

Now we return to the class of manifolds of interest in this paper, where M is the
interior of a compact n-dimensional manifold with boundary M , such that ∂M is the
total space of a fibration with base B and fibre F , dim B = b, and dim F = f . M has
two natural compactifications: the first, M , is obtained simply by adding ∂M , while
the second, X , is the result of collapsing the fibres of ∂M in M . We write the image
of ∂M in X as B. Thus X is a stratified space with a single singular stratum, B, of
codimension ` = n − b.
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Let us calculate the extended intersection groups IH∗

j (M, B). The first step is to
localize the calculation around B. Let N (B) denote a normal neighbourhood of B, so
that X = M t N (B). The overlap M ∩ N (B) retracts onto ∂M ∼= ∂N (B). For each j
there is a Mayer-Vietoris sequence

−→ IH k
j (M, B) −→ H k(M)⊕ IH k

j
(
N (B), B

)
−→ H k(∂M) −→ .

This is elementary since M ∩ N (B) retracts onto a compact subset of X \ B. In any
case, it suffices to calculate the groups IH k

j (N (B), B).
Assume that (L ∗

j , d) is a complex of fine sheaves, the hypercohomology of which
is isomorphic to IH∗

j (N (B), B). Choose an open cover {Uα} of B in X such that the
bundle ∂M → B is trivial over each Uα; this lifts to the cover U = {φ−1(Uα)} of
N (B). The bigraded complex of Čech cochains with coefficients in L ∗

j ,

...
...

...

C0(U ,L 2
j )

d

OO

δ // C1(U ,L 2
j )

d

OO

δ // C2(U ,L 2
j )

d

OO

δ // . . .

C0(U ,L 1
j )

d

OO

δ // C1(U ,L 1
j )

d

OO

δ // C2(U ,L 1
j )

d

OO

δ // . . .

C0(U ,L 0
j )

d

OO

δ // C1(U ,L 0
j )

d

OO

δ // C2(U ,L 0
j )

d

OO

δ // . . .

has hypercohomology that can be calculated using either of the two associated spec-
tral sequences (cf. [8]). Consider first the spectral sequence that starts with with the
vertical differential d . Any intersection of neighbourhoods φ−1(Uα) is of the form
(0, s) × F × U ′, where U ′ is an intersection of the neighbourhoods Uα in B. The
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local calculation (8) gives that the E1-term of the spectral sequence is

.

.

.
.
.
.

.

.

.

0
δ // 0

δ // 0
δ // . . .

C0(U , H `−2− j (F)
) δ // C1(U , H `−2− j (F)

) δ // C2(U , H `−2− j (F)
) δ // . . .

.

.

.
.
.
.

.

.

.
.
.
.

C0(U , H1(F)
) δ // C1(U , H1(F)

) δ // C2(U , H1(F)
) δ // . . .

C0(U , H0(F)
) δ // C1(U , H0(F)

) δ // C2(U , H0(F)
) δ // . . .

In all the rows below level ` − 1 − j , this is the same as the E1-term of the Leray-
Serre spectral sequence for the bundle ∂M → B, but all rows at level ` − 1 − j and
above are set to zero. The next differential, d1, is the horizontal Čech differential δ.
Using it to calculate the E2-term gives a bigraded diagram that agrees below level
j with the E2-term of the same Leray-Serre spectral sequence. The higher terms Ek

of this truncated Leray-Serre spectral sequence converge to the extended intersection
cohomology IH∗

j (N (B), B).
One can, for example, see by examining the further terms of the resulting spectral

sequence that this truncation does not change the limit E p,q for p + q < ` − 1 − j .
Thus for k < ` − 1 − j ,

∑
p+q=k E p,q

= IH k
j (N (B), B) ∼= H k(∂M). Using this in

the Mayer-Vietoris sequence, we find that for k < `− 1 − j , IH k
j (M, B) ∼= H k(M).

2.3. Weighted cohomology and intersection cohomology
As we have already explained, one difficulty with L2-cohomology is that in many
cases the range of d is not closed; this leads to the (somehow spurious) infinite di-
mensionality of the quotient spaces. There are many ways to circumvent this, each of
which involves a perturbation of the Hilbert spaces L2�∗(M). One possibility is to
use an L p-completion, p 6= 2 (cf. [69]), but the loss of the Hilbert space structure is
unfortunate and unnecessary. An alternate and preferable method involves the use of
weighted L2-norms. The associated theory is called weighted cohomology.

We do not attempt a general definition of weighted cohomology, but specialize
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directly to the cases of interest here. Thus let M be a compact smooth manifold with
boundary, with boundary-defining function x . If a ∈ R, then xa L2(X) is the space
of all functions (or forms) u = xav, where v ∈ L2(X). In the following, fix a fibred
boundary metric gfb and a fibred cusp metric gfc on X ; we may as well assume that
gfc = x2gfb. We also use the notation�∗

fb and�∗

fc. This is explained in §5, but for now
we say only that this denotes the normalizations of the exterior bundle corresponding
to gfb and gfc which are best suited for computations.

Definition 1
For a ∈ R, define the Hilbert complexes

· · · → xa L2�k−1
fc (M, gfc) → xa L2�k

fc(M, gfc) → xa L2�k+1
fc (M, gfc) → · · · (10)

and

· · · → xa−1L2�k−1
fb (M, gfb) → xa L2�k

fb(M, gfb)

→ xa+1L2�k+1
fb (M, gfb) → · · · (11)

as completions of the de Rham complex of smooth compactly supported forms
with respect to the stated norms at each degree. We then set W H k(M, gfc, a) and
W H k(M, gfb, a), respectively, to be the cohomology of these two complexes at de-
gree k. Thus

W H k(M, gfc, a) =

{
ω ∈ xa L2�k

fc(M, gfc) : dω = 0
}{

dη : η ∈ xa L2�k−1
fc (M, gfc), dη ∈ xa L2�k

fc(M, gfc)
} (12)

and

W H k(M, gfb, a) =

{
ω ∈ xa L2�k

fb(M, gfb) : dω = 0
}{

dη : η ∈ xa−1L2�k−1
fb (M, gfb), dη ∈ xa L2�k

fb(M, gfb)
} .
(13)

We suppress the metric in this notation when it is unambiguous. Since fibred boundary
and fibred cusp metrics are conformally related, these two cohomologies are essen-
tially the same. More precisely,

W H k(M, gfb, a) = W H k(M, gfc, (n/2)− k + a
)
. (14)

Thus for the remainder of this section we discuss only W H k .
Our main goal now is to relate the weighted cohomology for fibred cusp metrics

to intersection cohomology.
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PROPOSITION 2
Suppose that k − 1 + a − f/2 6= 0 for 0 ≤ k ≤ f . Then

W H∗(M, gfc, a) ∼= IH∗

[a+ f/2]
(X, B),

where [a + f/2] is the greatest integer less than or equal to a + f/2.

Proof
We prove this by considering the complex of sheaves associated to xa L2, so that its
hypercohomology equals W H∗(M, a), and show that its entries satisfy the appropri-
ate local calculation (8). In order to apply Proposition 1, however, we must first show
that this sheaf is fine.

For each k, define the presheaf

L k
a (U ) =

{
L2�k(U ), U ∩ B = ∅,

xa L2�k
fc
(
U \ (U ∩ B)

)
, U ∩ B 6= ∅,

where the notation in this last line should be self-explanatory. The associated sheaf is
denoted L k

a .
In general, the sheaf of (weighted) L2-forms on the compactification of a man-

ifold is not fine unless one has a good partition of unity, that is, such that the cutoff
functions χα have gradients that are bounded uniformly in α. However, such parti-
tions of unity are easy to construct for fibred cusp metrics (cf. the essentially identical
discussion in [68, proof of Proposition 4.4]). We construct a good cover and partition
of unity on M as follows. First, choose a finite cover {Uα} of (the interior of) M such
that all j-fold intersections of these sets are contractible. Choose a similar cover {Vβ}

of B, and let U ′
β = φ−1(Vβ) × (0, ε), where φ : ∂M → B. Then for ε sufficiently

small, {Uα,U
′
β} = {U ′′

γ } is a good cover for M . Now choose a partition of unity
{χ ′′
γ }, where the elements satisfy no additional extra requirements over sets not inter-

secting M but which have the form φ∗χ̃β(y)χ̂(x) on neighbourhoods intersecting the
boundary; then it is easy to see that |dχ ′′

α | ≤ C uniformly in α, as required.
Now turn to the local cohomology computation, following the discussion in [68,

§2]. Over neighbourhoods not intersecting B in X , we apply the standard Poincaré
lemma. On the other hand, suppose that U = V × F × (0, ε), where V ⊂ B. First,
by an adapted form of the Künneth theorem, the (weighted) L2-cohomology of the
product neighbourhood U is the same as the weighted L2-cohomology of F × (0, ε);
this is valid since the weight function xa does not depend on y ∈ V . This reduces us
to computing W H k(F × (0, ε), dx2/x2

+ x2kF , a), where for the moment we write
the metric on F as kF to distinguish it from the form degree. Setting r = − log x to
accord with the notation of [68], and regarding the weight as a norm on the trivial
local coefficient system, then the conclusion of [68, Corollary 2.34] is the following.
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(i) W H k(X, a) is finite-dimensional; that is, the denominator in its definition is
closed if and only if the same is true for W H j ((0, ε), dx2/x2, k − j + a −

( f/2)), and simultaneously H k− j (F) 6= 0, j = 0, 1.
(ii) If this condition is satisfied, then

W H k(X, a) ∼= W H0((0, ε), dx2/x2, k + a − f/2)⊗ H k(F)
)

⊕ W H1((0, ε), dx2/x2, k − 1 + a − f/2)⊗ H k−1(F)
)
.

In fact, this follows once again from the Künneth theorem in [68]. We have

W H0((0, ε), dx2/x2, b
)

=

{
C, b < 0,

0, otherwise,

whereas W H1((0, ε), dx2/x2, b) = 0 if b 6= 0 and is infinite-dimensional when
b = 0 (the range of d is not closed at weight zero).

Returning to the local calculation, we deduce that

W H k(U , a) =
(
W H0((0, ε), dx2/x2, k + a − f/2)⊗ H k(F)

)
⊕
(
W H1((0, s), dx2/x2, k − 1 + a − f/2)⊗ H k−1(F)

)
.

Since we are assuming that k − 1 + a − f/2 6= 0 when 0 ≤ k ≤ f , we obtain finally

W H k(U , a) ∼= W H0((0, s), dx2/x2, k + a − f/2
)
⊗ H k(F)

∼=

{
H k(F), k < f/2 − a,

0, k ≥ f/2 − a.

Since the codimension of B is f + 1, this is the same as the local calculation for
IH∗

p (X) when p( f + 1) = [a + ( f/2)].

A closer reading of this proof, which we leave to the reader, gives the following.

COROLLARY 4
When a is sufficiently large, then

W H k(M, gfc, a) = W H k(M, gfb, a) = H k(M)

and
W H k(M, gfc,−a) = W H k(M, gfb,−a) = H k(M, ∂M)

for every k = 0, . . . , n. If F = ∅, then these equalities are true for any a > 0.
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2.4. Representing intersection cohomology with conormal forms
It is quite useful later to be able to represent classes in intersection cohomology with
forms having some better regularity, especially near B (or, in the other compactifi-
cation of M , near ∂M). On a manifold with boundary, a natural and useful replace-
ment for smoothness at the boundary is conormality. This is closely associated with
b-geometry, which is discussed in §4.1, and we refer ahead to that section for the
definition of the space of b-vector fields Vb(M). For now, we say less formally that
V ∈ Vb if it is a smooth vector field on M and is tangent to ∂M . Let γ ∈ R, and
define the space of conormal functions of order γ by

A γ (M) =
{
u : |V1 · · · V`u| ≤ Cxγ , ∀ ` and V j ∈ Vb

}
.

Clearly, any conormal function is C ∞ in the interior of M , and it has full tangen-
tial regularity at the boundary. This definition extends directly to sections of vector
bundles.

We now define a complex of conormal forms. As we discuss later (cf. §5.1), the
operator d acting on �∗

fc(M) involves differentiations with respect to elements of Vb,
but also involves the nonsmooth term x−1dF . Hence we set

A a�k
fc,0(M) =

{
α ∈ A a�k

fc(M) : dα ∈ A a�k+1
fc (M)

}
,

so that (A a�∗

fc,0(M), d) is a complex. In essence, forms in this complex have a de-
composition η = η0 + η′, where η′

∈ A a+1�∗

fc(M) and η0 ∈ A a�∗

fc(M) is fibre-
harmonic as defined in §5.

It is well known (cf. [56, Proposition 6.13]) that the relative and absolute coho-
mology of a manifold with boundary can be calculated using complexes of conormal
forms. Generalizing this, we have the following.

PROPOSITION 3
The cohomology of the conormal complex (A a− f/2�∗

fc,0(M), d) is isomorphic to the
weighted cohomology W H∗(M, gfc, a). Provided k −1+a− f/2 6= 0 for 0 ≤ k ≤ f ,
it is also isomorphic to IH∗

[a+ f/2]
(X).

The argument to prove this is nearly identical to that for Proposition 2. The point
is simply that A a�∗

fc,0(M) is the space of global sections of a free sheaf, the local
cohomology of which satisfies the same local calculation as the sheaf of appropriately
weighted L2-forms. We omit the details.

3. Review of the compact Hodge theorem
Despite some trade-off in work, we mainly use the Hodge–de Rham operator Dg =

d + δg rather than its square D2
g = 1g , the Hodge Laplacian. We now review one
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proof of the standard Hodge theorem on compact manifolds which is phrased in terms
of Dg; this is intended as a guide for the analogous arguments in the various noncom-
pact settings considered below and is also meant to draw attention to certain analytic
aspects of the argument which are standard when M is compact, but not so straight-
forward in these other settings.

Recall the two most important components of the argument when M is compact.
First, the ellipticity of the self-adjoint operator D = d + δ (we drop the subscript g
from now on) shows that it has a generalized inverse G, which is a pseudodifferential
operator of order −1. Write L2H ∗(M) = ker(D), and let 5 denote the orthogonal
projection L2�∗(M) → L2H ∗(M), so that G D = DG = I − 5. Implicit in
this equation is the fact that the kernel and cokernel of D are both identified with
L2H ∗(M). We have

G : H s�∗(M) −→ H s+1�∗(M),

5 : H s�∗(M) −→ C ∞�∗(M), for all s ∈ R, (15)

and of course 5 is finite rank. Also, d and δ commute with G. It follows directly
that D is Fredholm, for example, on L2�∗(M). Furthermore, (15) also shows that
the de Rham cohomology H k(M) can be calculated using any one of the complexes
C ∞�∗(M), L2�∗(M), or C −∞�∗(M), that is, the complexes of smooth, L2- or
distributional (current) forms.

Now to the argument. First, let ω ∈ L2H k(M). Then D2ω = 0, and since ω is
smooth, there is no problem in the integration by parts,

〈D2ω,ω〉 = 〈Dω, Dω〉 = ‖dω‖
2
+ ‖δω‖

2,

so that dω = δω = 0. In particular, ω is closed and [ω] ∈ H k(M) is well defined.
This defines a map

8 : H k(M) −→ H k(M).

We must show that 8 is both injective and surjective.
Suppose 8(ω) = [ω] = 0; that is, suppose ω = dζ for some (k − 1)-form ζ .

We may assume that we are calculating using the complex of smooth forms, so we
can choose ζ to be smooth. Since there are no boundary terms to worry about, we can
integrate by parts to obtain

‖ω‖
2

= 〈ω, dζ 〉 = 〈δω, ζ 〉 = 0, (16)

and so 8 is injective.
Next, let [η] ∈ H k(M), and choose a smooth representative η. Applying G D =

I −5 to it yields

η = Dζ + γ, where ζ = Gη, γ = 5η. (17)
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By (15) again, ζ ∈ C ∞�∗, and of course the same is true for γ ∈ L2H ∗. Because D
and G act on forms of all degrees together, we do not know yet whether ζ is of pure
degree k − 1 or γ of pure degree k, so we argue as follows. Write

δζ = η − dζ − γ ;

then
‖δζ‖2

= 〈δζ, η − dζ − γ 〉 = 〈ζ, dη − d2ζ − dγ 〉 = 0.

Hence η = dζ + γ , where γ ∈ L2H ∗(M). Now, clearly, neither ζ nor γ has terms
of degree other than k − 1 and k, respectively. This establishes surjectivity of 8 and
completes the proof.

When (M, g) is noncompact, each of these steps may fail in a variety of ways,
and our main task is to show that they can be justified for fibred boundary and fibred
cusp metrics. Most fundamentally, D may no longer be Fredholm on L2�∗, and so we
must find some other function space on which it does have closed range. In fact, in our
cases it is Fredholm on a scale of weighted L2-spaces, and we must study the action
of D on these spaces. In particular, we wish to find function spaces X and Y such
that D : X → Y is Fredholm with cokernel identified with L2H ∗(M). This serves
as the replacement for (17). To justify the various integrations by parts, we must also
establish that elements of L2H ∗(M) decay at some definite rate at infinity and also
show similar decay and regularity properties for the forms ζ .

4. Nonfibred ends
Although the L2 Hodge theorems for b- (cylindrical) and scattering (asymptotically
Euclidean) metrics, Theorems 1A and 2A, are already known, we nevertheless present
here proofs of these results which address some (but not all) of the difficulties encoun-
tered in the general fibred boundary and fibred cusp cases.

We sometimes denote the Hodge–de Rham operator for a b or scattering metric by
Db or Dsc, respectively. Recall from the end of §3 that we need to find function spaces
on which these operators have closed range, and we must also establish various decay
and regularity properties for the L2 harmonic forms, as well as for the other auxiliary
forms that enter into the proof. To obtain these properties, we use the machinery of
the b-calculus (see [56]; cf. also [53]). In other words, we adopt the point of view that
in either case D is an elliptic element in an appropriate ring of degenerate differential
operators on the manifold M . Mapping and regularity properties of these operators
can be investigated using a parametrix for D constructed in an associated calculus of
degenerate pseudodifferential operators.

4.1. b-metrics and operators
Let g be an exact b-metric. Associated to it is the space of b vector fields Vb, which
by definition is the Lie algebra of all smooth vector fields on M which are tangent
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to ∂M . In a coordinate chart (x, y1, . . . , yn−1) near ∂M , where (y1, . . . , yn−1) are
coordinates on ∂M extended to the collar neighbourhood U and x is a boundary-
defining function, any Z ∈ Vb can be written as

Z = a(x, y)x∂x +

n−1∑
j=1

b j (x, y)∂y j , a, b j ∈ C ∞(M).

Notice that Vb contains precisely those smooth vector fields on M which have point-
wise bounded norms with respect to any b-metric. The vector fields x∂x , ∂y j form a
local spanning set of a vector bundle over M called the b-tangent bundle, bT M . This
bundle is canonically isomorphic to the ordinary tangent bundle T M only over the in-
terior, M , of M , but the canonical map bT M → T M given by evaluating sections at a
point extends to a map that is neither injective nor surjective over ∂M ; its null space is
one-dimensional and is spanned by x∂x . The dual of bT M is the b-cotangent bundle,
bT ∗M , which is locally spanned by the one-forms dx/x , dy j . We write b ∧∗ M and
C ∞�∗

b(M) for the exterior powers of this bundle and its space of smooth sections,
respectively.

A differential operator P on M is called a b-operator if it can be written locally
as a sum of products of elements of Vb. Thus in these coordinates,

P =

∑
j+|α|≤m

a j,α(x, y)(x∂x )
j∂αy

with all coefficients a j,α ∈ C ∞(M). If P is an operator on a space of sections of a
bundle over M , then the coefficients a j,α are smooth endomorphisms of the bundle.
The b-symbol

bσm(P)(x, y; ξ, η) = i−m
∑

j+|α|=m

a j,α(x, y)ξ jηα

is invariantly defined as a homogeneous function on bT ∗M , and P is elliptic in this
setting if bσm(P) is nonvanishing (or invertible if P is a system) for (ξ, η) 6= 0.

Our primary example of a b-differential operator is the Hodge–de Rham operator
D = d + δ with respect to a b-metric g on M . To illustrate the definitions above, we
determine its form now, assuming that the metric h which appears in the decomposi-
tion of g does not depend on x in the boundary neighbourhood U .

Near ∂M any element of �k
b(M) can be written as

ω = α +
dx
x

∧ β,

where α(x, y) and β(x, y) are families of k- and (k − 1)-forms, respectively, on ∂M
depending on x as a smooth parameter. The L2-norm is given by

‖ω‖
2

=

∫
M
(|α|

2
h + |β|

2
h)

dx dy
x

.
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Since b-metrics are special cases of fibred cusp metrics, where the fibration
∂M → B has trivial fibres, we cohere with the more general notation of this paper
and identify ∂M with B. The induced differential is written dB , and the codifferential,
induced by the metric h on B, is written δB . We have

dω = dBα +
dx
x

∧ (x∂xα − dBβ), (18)

δω = δBα − x∂xβ −
dx
x

∧ δBβ. (19)

Finally, the b symbol of D is computed just as in the standard case, so that if ζ =

(ξ, η) ∈
bT ∗M , then bσ1(D) = i (ζ ∧ · + ιζ ·). This gives the following.

PROPOSITION 4
The operator

D = d + δ : C ∞�∗

b(M) −→ C ∞�∗

b(M)

on (M, g) is an elliptic b-differential operator of order 1.

Remark. It is natural to write forms in terms of the b covector fields dy j and dx/x
since these have (essentially) unit length, but it is also important since, in a poorly
chosen coframe, the expression of D might no longer be a b-operator. For example,
this is the case if we use the standard basis dx and dy j .

Unlike the usual interior calculus, symbol ellipticity alone is not enough to determine
whether a b-differential operator P is Fredholm. For this, one must also use another
model for P called the indicial operator IP . This operator acts on functions on By ×

R+
s and is invariant with respect to dilations in s; for a general P written as above,

IP =

∑
j+|α|≤m

a j,α(y)(s∂s)
j∂αy .

To analyze this operator we use its dilation invariance. Thus, conjugating IP by the
Mellin transform in s,

u(s, y) 7−→ uM (γ, y) =

∫
∞

0
sγ u(s, y)

ds dy
s

, γ ∈ C,

yields the indicial family, IP(γ ), which is a holomorphic family of elliptic operators
on B (when P is b-elliptic). By the analytic Fredholm theorem, this family is either
never invertible for any γ or else is invertible for all γ ∈ C \3, where 3 is a discrete
set of complex numbers called the indicial set, the elements of which are called the
indicial roots of P . It is not hard to see that the first possibility never holds. We use an
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alternate (equivalent) characterization of this indicial set which is more intuitive and
certainly easier to calculate:

γ ∈ 3 ⇐⇒ ∃φ ∈ C ∞(Y ) such that P
(
xγφ(y)

)
= O(xγ+1), where Y = ∂M .

Notice that P(xγφ(y)) = O(xγ ) for all γ and φ, and so γ ∈ 3 if and only if there is
some additional cancellation, which arises precisely when there is an element sγφ(y)
in the null space of IP .

Again we illustrate this through the operator D. Since we are assuming that h
does not depend on x in U , we can identify ID with D near ∂M , and so all approx-
imate solutions of Dω = 0 in the sense above are exact solutions in this boundary
neighbourhood. Now write ω = ω′xγ , where ω′

= α′
+ dx/x ∧ β ′ and neither α′ nor

β ′ depend on x . Then by (18) and (19), in U ,

D(ω′xγ ) ≡ xγ ID(γ )(ω
′) = xγ

(
DBα

′
− γβ ′

+
dx
x

∧ (γ α′
− DBβ

′)
)
. (20)

Hence γ is an indicial root if and only if there is a solution ω′ of the equations

DBα
′
= γβ ′, DBβ

′
= γα′, (21)

which implies
1Bα

′
= γ 2α′, 1Bβ

′
= γ 2β ′. (22)

Thus γ is an indicial root of D if and only if γ 2
∈ spec(1B) on �∗(B). Note that

the operators in (22) preserve the form degree and so are easier to analyze than the
operators in (21). However, arbitrary solutions of (22) do not necessarily satisfy (21);
in other words, we must be cautious not to introduce spurious indicial roots by all
solutions of the decoupled equations. From the Kodaira decomposition on �∗B, the
only coupling in (21) is between closed k-forms and coclosed (k−1)-forms for each k.
Thus let φ j and ψ j be a complete set of eigenforms for1B on coclosed (k −1)-forms
and closed k-forms, with eigenvalue λ2

j and such that dBφ j = λ jψ j , δBψ j = λ jφ j

for λ j 6= 0. If we write

α′
=

∑
α j (x)ψ j , β ′

=

∑
β j (x)φ j ,

then (21) gives
γα j = λ jβ j , γβ j = λ jα j ,

which implies γ 2
= λ2

j , as expected. We see finally that

ω′
=

∑
j

{(
α+

j +
dx
x

∧ β+

j

)
xλ j +

(
α−

j +
dx
x

∧ β−

j

)
x−λ j

}
, (23)

where α±

j , β
±

j are both eigenforms of 1B with eigenvalue λ2
j . We have proved the

following.
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PROPOSITION 5
The indicial set 3 for the operator D with respect to a b-metric g consists of the
values ±λ, where λ2

∈ spec(1B) acting on b�∗(M)
∣∣

B .

Note here that these calculations seem to leave open the possibility that zero is a
double root, which would allow for the possibility of solutions of the indicial equation
of the form ω = ω′ log x + ω′′x0. However, (20) admits no solutions of this form,
and so we see that the double root is spurious and arises merely from the algebraic
calculations above.

We conclude this section by discussing some general mapping properties of b-
operators on weighted L2-spaces as well as regularity results for their solutions.
Proofs of these theorems may be found in [56].

Let L2
b(M) = L2(M, dx dy/x); this is the same as L2(M, dVg) if g is any b-

metric. We also define

H `
b (M) =

{
u ∈ L2

b(M) : V1 · · · V j u ∈ L2
b(M), ∀ j ≤ ` and Vi ∈ Vb

}
and

xγ H `
b (M) =

{
u = xγ v : v ∈ H `

b (M)
}
,

whenever ` ∈ N and γ ∈ R.

PROPOSITION 6
Let P be an elliptic differential b-operator of order m, acting between sections of the
vector bundles E and F over M , with indicial set 3. Then the mapping

P : xγ H `+m
b (M; E) −→ xγ H `

b (M; F)

is Fredholm if and only if γ /∈ Re(ζ ) : ζ ∈ 3}.

To state the final proposition, we introduce the important subspace of polyhomoge-
neous distributions, sitting in the space of conormal distributions:

A ∗

phg(M) =

{
u ∈ A ∗(M) : u ∼

∑
Re γ j →∞

N j∑
k=0

u jk(y)xγ j (log x)k u jk ∈ C ∞(∂M)
}
.

These expansions are meant in the standard asymptotic sense as x → 0 and hold
along with all derivatives. The superscript ∗ here may be replaced by an index set I
containing all pairs (γ j , k) which are allowed to appear in this expansion.

PROPOSITION 7
If u ∈ xγ L2

b(M; E) and Pu = 0, then u ∈ A I
phg(M; E), where I is an index set
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derived from the index set 3 for P truncated below the weight γ . If Pu = f , where
u ∈ xγ L2

b(M; E) and f ∈ A γ ′

(M; F) for some γ ′ > γ , γ ′ /∈ Re3, then u = v+w,
where v ∈ A I

phg(M; E) and w ∈ A γ ′

(M; F).

The powers γ appearing in the polyhomogeneous expansion in this proposition are of
the form γ j + `, where each γ j is an element of the index set for P and ` ∈ N0. Log-
arithms can arise either from indicial roots with multiplicity greater than one or else
(as in classical ordinary differential equation theory) when two indicial roots differ by
an integer (for more details on this, see [56]). All the roots we encounter in this paper
are of multiplicity one (although this fact does not really affect the arguments much),
and we justify this in the various cases below, as we did following Proposition 5.

These results about b-operators may be proved in a variety of ways, some fairly
elementary (e.g., see [2] for the analysis of 1g on cylinders using separation of vari-
ables). We refer, however, to [56] and [53] for proofs based on the calculus of b-
pseudodifferential operators. This general theory is quite flexible and is ideally suited
for the proofs of more general index theorems in the b-category. A thorough treatment
of this calculus, along with many applications, is given in [56].

We do not need to know much about these operators beyond their mapping prop-
erties, but for the sake of completeness, we say a few words about them. The calculus
b9∗(M) is designed in part to contain parametrices for elliptic b-operators. Elements
A ∈ 9∗

b (M) are characterized in terms of the structure of their Schwartz kernels κA.
Each such κA is a distribution on M2

= M × M with singularities along the diagonal
and side faces of this double space; kernels of elements in b9∗(M) are characterized
by the fact that they lift to distributions on a resolution M2

b of M2 with only polyho-
mogeneous singularities. This resolution is the normal blowup of M2 along its corner
and is obtained by replacing the corner (∂M)2 by its interior normal spherical bundle.

4.2. Analysis for scattering metrics and operators
We next consider scattering metrics on M . The analysis of general elliptic operators in
the scattering calculus is considerably more subtle than for operators in the b-calculus,
but because we only consider the Hodge–de Rham operator, various simplifications
permit us to reduce directly to the b-calculus. (Later in the paper, however, we need
to use the calculus of fibred boundary pseudodifferential operators, which is much
closer in spirit to the scattering calculus than to the b-calculus.)

Recall that a scattering metric g has the form g = g′/x2, where g′ is a b-metric.
We define the Lie algebra Vsc of scattering vector fields to consist of all smooth vec-
tor fields on M which have bounded length with respect to any scattering metric g.
Clearly,

Vsc = xVb =
{

V : V = xW, W ∈ Vb
}
;
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alternately, in local coordinates (x, y1, . . . , yn−1) near ∂M , Vsc is spanned by the
vector fields x2∂x and x∂y j . By definition, these form the full set of sections of the
scattering tangent bundle scT M ; its dual, scT ∗M , is locally smoothly trivialized by
the sections

dx
x2 ,

dy1

x
, . . . ,

dyn−1

x
.

The space of smooth sections of the exterior powers of this bundle is C ∞�∗
sc(M).

Thus any ω ∈ C ∞�∗
sc(M) can be written as

ω =

∑
k

ωk =

∑
k

(αk

xk +
dx
x2 ∧

βk−1

xk−1

)
, αk, βk−1 ∈ C ∞. (24)

An advantage of this normalization is that

‖ω‖
2

=

∫
M

∑
k

(|αk |
2
+ |βk−1|

2)
dx dy
xn+1 .

An operator P is a scattering differential operator if it can be locally written as a
finite sum of multiples of elements of Vsc:

P =

∑
j+|α|≤m

a j,α(x, y)(x2∂x )
j (x∂y)

α, a j,α ∈ C ∞(M).

Its scattering symbol is defined as

scσm(P)(x, y; ξ, η) = i−m
∑

j+|α|=m

a j,α(x, y)ξ jηα.

P is elliptic in this calculus if this symbol is invertible for (ξ, η) 6= 0.
The analysis of (1 − λ)u = 0 is quite different depending on whether λ is neg-

ative or positive; for example, in the former case, solutions decay rapidly, while in
the latter they oscillate with slow decay as x → 0. Accordingly, the nature of the re-
solvent changes dramatically when λ ∈ spec(1) (cf. [57], [38]). Because of this, the
general theory of parametrices, mapping properties, and regularity theory for elliptic
scattering operators is fairly complicated. Fortunately, we can sidestep this calculus
by virtue of the following.

PROPOSITION 8
If g is a scattering metric on M , then

D = d + δ : C ∞�∗
sc(M) −→ xC ∞�∗

sc(M)

is an elliptic first-order scattering operator of the form D = x D′, where D′ is an
elliptic first-order b-operator.
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Remark. It seems initially somewhat confusing that D′ is a b-operator when acting
between sections of the scattering form bundles (normalized as above) but not when
acting between sections of the b-form bundles. We can understand why this is true,
however, when we consider that the endomorphism dx∧ has the same operator norm
on forms as the does the form dx . This norm depends upon the metric on M . Thus
dx/x is a unit norm endomorphism on the bundle of forms when M has a b-metric,
whereas dx/x2 is the unit endomorphism on the bundle of forms when M has a
scattering metric. There is a similar shift in the power of x in the other coordinates,
so in the scattering case, an extra power of x is absorbed into the denominator of the
endomorphism part of the Laplacian. This makes D′ a b-operator on the bundle of
scattering forms, although it is not an operator on the bundle of b-forms.

Proof
Write ω ∈ C ∞�∗

sc(M) as in (24), and set α =
∑
αk , β =

∑
βk . Then a brief

calculation gives

Dω =

∑
k

( x(DBα)k − x2∂xβk + (n − k − 1)xβk

xk

+
dx
x2 ∧

x2∂xαk − kxαk − x(DBβ)k

xk

)
, (25)

where (DBζ )k is the component of degree k of DBζ for ζ = α or β. This shows
immediately that D′

≡ x−1 D is a b-operator; it differs from Dg′ , where g′
= x2g

is the associated b-metric, only in terms of order zero. Of course, these affect the
indicial set 3 markedly.

The mapping properties of D and the regularity properties of its solutions may be
deduced directly from the corresponding properties for D′ in Propositions 6 and 7.
Note, however, that the extra factor of x causes a shift in the weight of the function
spaces.

PROPOSITION 9
Suppose that g is a scattering metric, so that D = x D′ as above. Let 3 denote the
indicial set for D′. Then

D : xγ H `+1
b �∗

sc(M) −→ xγ+1 H `
b�

∗
sc(M)

is Fredholm for any ` ∈ N0 and γ /∈ {<(λ) : λ ∈ 3}.

PROPOSITION 10
If ω ∈ xγ L2�∗

sc(M) for any γ ∈ R and Dω = 0, then ω ∈ A I
phg�

∗
sc(M), where
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I is some augmented index set determined by the indicial set 3 of D′ and the cutoff
weight γ . If, on the other hand, Dω = η, where η ∈ xγ

′
+1A ∗�∗

sc(M) for some
γ ′ > γ , then ω = ω′

+ ω′′ with ω′
∈ A ∗

phg�
∗
sc(M) and ω′′

∈ A a+1�∗
sc(M).

We conclude this section with a computation of the relevant part of the indicial set
3 for D′. As in the b-case, this set is determined by the spectrum of 1B , but the
computation is more intricate.

First, define the numerical operators N1 and N2:

N1βk = (n − k − 1)βk, N2αk = −kαk

(i.e., N1 and N2 are diagonal on�∗(B) with respect to the decomposition by degree).
Let

ω =

∑
ωk, ωk =

αk

xk +
dx
x2 ∧

βk−1

xk−1 ,

where all α j and β j are independent of dx . Then D(xγω) = xγ+1 ID′(γ )(ω), where

ID′(γ )(ω) =

∑
k

( (DBα + (N1 − γ )β)k

xk +
dx
x2 ∧

(−DBβ + (N2 + γ )α)k−1

xk−1

)
.

Writing I for ID′ , this vanishes when

I (γ )
(
α

β

)
≡

(
DB N1 − γ

N2 + γ −DB

)(
α

β

)
=

(
0
0

)
. (26)

Although this equation seems strongly coupled and hence difficult to analyze,
computations can be simplified using the special structure that 1 = D2 preserves
degree. On the indicial level this gives

I (γ + 1)I (γ )
(
α

β

)
=

(
DB N1 − γ − 1

N2 + γ + 1 −DB

)(
DB N1 − γ

N2 + γ −DB

)(
α

β

)
=

(
0
0

)
.

Multiplying out this matrix of operators and using the easily verified fact that

[DB, N j ] = dB − δB,

we have(
1B + (N1 − γ − 1)(N2 + γ ) 2dB

2δB 1B + (N2 + γ + 1)(N1 − γ )

)(
α

β

)
=

(
0
0

)
.
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The coupling here occurs only between closed k-forms and coclosed (k − 1)-forms.
We do not need to calculate all the indicial roots of D′, although this can be done

readily from these formulae. Instead, we focus on the special value γ = n/2−1. This
is a critical value in our calculations because xn/2 is just on the border of lying in
L2(dVg) = L2(x−n−1dx dy) and we need to analyze the map D : xγ−1L2

→ xγ L2

for γ near this borderline value. Thus setting γ = n/2 − 1 gives(
N1 −

n
2

)(
N2 +

n
2

− 1
)
αk =

(n
2

− k − 1
)2
αk,(

N2 +
n
2

)(
N2 −

n
2

+ 1
)
βk−1 =

(n
2

− k + 1
)2
βk−1.

Hence if ω lies in the null space of ID(n/2 − 1), then for all k we have(
1B +

(n
2

− 1 − k
)2
)
αk + 2dBβk−1 = 0,(

1B +

(n
2

+ 1 − k
)2
)
βk−1 + 2δBαk = 0.

Decompose these equations using an eigendecomposition for 1B such that αk =

aψk, βk−1 = bφk−1, where both ψk and φk−1 are eigenforms with eigenvalue λ2
≥ 0

and dφk−1 = λψk , δψk = λφk−1. Then(
λ2

+ (n/2 − k − 1)2 2λ
2λ λ2

+ (n/2 − k + 1)2

)(
a
b

)
=

(
0
0

)
,

and so there are nontrivial solutions only if this matrix is singular. Its determinant
equals (λ2

+ (n/2 − k)2 − 1)2; hence there are no solutions unless |k − n/2| ≤ 1.
First, if λ = 0, then k = n/2 ± 1, and the null space consists of harmonic forms
αn/2−1 and βn/2+1. Next, if λ2

= 1 is in the spectrum of 1B , then there are solutions
for αk and βk−1 only if k = n/2, and elements of the null space of I (n/2)I (n/2 − 1)
are obtained by taking a + b = 0. Finally, there are solutions of a similar type when
k = (n ± 1)/2 and λ2

= 3/4 ∈ spec(1B). One can then verify that only the solutions
corresponding to λ = 0 also lie in the null space of I (n/2 − 1); hence these are the
only ones that appear in the polyhomogeneous expansions for solutions of Dω = 0.

Note that γ = n/2 − 1 is not an indicial root of multiplicity two. As in the
b-setting, this follows by checking that there are no solutions of (26) of the form
ω′ log x + ω′′.

We conclude these computations by noting that if ω ∈ L2(dVg) satisfies Dω = 0,
then D2ω = 0 and the usual integration by parts, which is justified in L2, gives
dω = δω = 0 individually. To relate this to the preceding calculations, this implies
that if γ > n/2 is an indicial root for x−1 D, then it is also one for both x−1d and
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x−1δ (and conversely), and these are much simpler to compute. In fact,

Ix−1d(γ )(ω) =

∑
k

(dBαk

xk+1 +
dx
x

∧
(γ − k)αk − dBβk−1)

xk

)
and

Ix−1δ(γ )(ω) =

∑
k

(δBαk + (n − k − γ )βk−1

xk−1 +
dx
x

∧
−δBβk−1

xk−2

)
.

Hence ω is in the null space of both these operators provided dBα = δBβ = 0 and
also

δBαk = −(n − k − γ )βk−1, dBβk−1 = (γ − k)αk .

Thus αk is closed, βk−1 is coclosed, and both are in the null space of 1B + (γ −

k)(n − k − γ ). On an eigenspace with eigenvalue λ2 for 1B , we must have

γ 2
− nγ +

(
k(n − k)− λ2)

= 0,

and by assumption, above we must choose the root that is greater than n/2. (Of course,
solutions of these equations, no matter the value of γ , give indicial roots of x−1 D,
corresponding to non-L2-solutions. The point of the earlier calculations is that there
are other indicial roots corresponding to solutions which are not individually closed
and coclosed.) In summary, these comprise the subset

3′
=
{
γ±

j : roots of γ 2
− nγ + k(n − k)− λ2

j = 0, λ2
j ∈ spec(1B)

}
(27)

inside the possibly larger set of all indicial roots of x−1 D. Note, in particular, that
when λ2

j = 0, γ±

j = k, n − k.

4.3. Hodge theorems for b- and scattering metrics
Having assembled these analytic facts and calculations, we now complete the proofs
of the Hodge theorems for b- and scattering metrics following the outline from the
compact case. We invert the usual order of presentation and discuss first the b-case,
which specializes Theorem 2, and afterwards the scattering case, which specializes
Theorem 1. These results equate Hodge cohomology with weighted cohomology only;
Corollary 4 shows that the results are indeed the same as stated in Theorems 2A and
1A, respectively.

THEOREM 2B
Let g be an exact b-metric on the manifold M . Then for sufficiently small ε > 0 and
for every k = 0, . . . , n, there is a canonical isomorphism

8 : L2H k(M) −→ Im
(
W H k(M, g, ε) −→ W H k(M, g,−ε)

)
. (28)
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Proof
As in the compact case, if ω ∈ L2H k(M), then dω = 0. Further, by Proposition
7 and (23), ω is polyhomogeneous with an expansion of the form

∑
ω±

j (y)x
±λ j ,

where the tangential and normal parts of ω±

j are eigenforms on ∂M with eigenvalue
λ2

j . Since ω ∈ L2, we see that all coefficient forms ω−

j vanish, as do those ω+

j = 0
corresponding to values of j with λ j = 0. Hence ω = α + dx/x ∧ β, where α, β =

O(xλ), where λ = inf{|λ j | 6= 0 : λ2
j ∈ spec(1B)}. Thus [ω] ∈ W H k(M, g, ε) is well

defined provided ε < λ.
If ω ∈ L2H k(M) and 8(ω) = 0, then ω = dζ for some ζ ∈ x−ηL2�k−1

b (M).
Computing cohomology with the complex of conormal forms as explained in §2, we
can take ζ = µ+dx/x∧ν, whereµ, ν ∈ A −η

(
[0, 1)x×B;

∧
∗(B)

)
. In the integration

by parts ‖ω‖
2

= 〈ω, dζ 〉 = 〈δω, ζ 〉 = 0, the boundary term equals limx→0〈α, ν〉B ,
and this vanishes since ε < λ. Hence ω = 0, and so 8 is injective.

Next, by Proposition 6, the map

D : x−ηH1
b�

∗(M) −→ x−ηL2�∗(M) (29)

is Fredholm when ε ∈ (0, λ). This gives the decomposition

x−ηL2�∗(M, dVg) = (ran D|x−ηH1
b�

∗)⊕ (ran D|x−ηH1
b�

∗)
⊥.

The second summand on the right is finite-dimensional and could be replaced with
any other finite-dimensional subspace of x−ηL2�∗ which is complementary to the
range of D since the orthogonality of this decomposition does not play any role. In
particular, we claim that we can replace this term by L2H ∗(M). To see this, note
simply that the natural pairing between x−ηL2�∗ and xηL2�∗ identifies the orthogo-
nal complement of the range of D on x−ηL2�∗ with the null space of D on xηL2�∗,
which equals L2H ∗(M). In any case, we have shown that for any η ∈ x−ηL2�∗,
there exist elements ζ ∈ x−ηH1

b�
∗ and γ ∈ L2H ∗ such that

η = Dζ + γ. (30)

Now we prove surjectivity of 8. Fix any [η] in the space on the right in (28), and
choose a conormal representative η ∈ A η�∗ for it. Decompose η as Dζ+γ as above,
in the space x−ηL2�∗. Proposition 7 shows that ζ is partially polyhomogeneous; that
is, it is a sum of a finite number of terms of the form ζ j,` xσ j (log x)` and a term
ζ ′

∈ A ε�∗. All exponents σ j lie in the interval (−ε, ε), and because we can choose
ε as small as desired, we may assume that the only terms that appear have σ j = 0.
The remaining terms correspond to solutions of the indicial operator ID(0), and the
analysis in §4.1 shows that zero is an indicial root of multiplicity one, so no log terms
occur. Thus ζ = ζ0 + ζ ′, where ID(0)ζ0 = 0; if we write ζ0 = µ0 + (dx/x) ∧ ν0,
then both µ0 and ν0 are harmonic on B.
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As in §3, to conclude that δζ = 0 we must check that all three terms, 〈δζ, η〉,
〈δζ, γ 〉, and 〈δζ, dζ 〉, vanish. This is true formally, that is, integrating by parts and
neglecting the boundary terms, so it suffices to check that these boundary terms also
vanish. For the first two this is straightforward since |ζ | is bounded and both η and γ
vanish at x = 0. For the final term the boundary contribution is∫

M
d(ζ ∧ ∗δζ ) =

∫
B
µ0 ∧ dB ∗B ν0 = 〈µ0, δBν0〉B,

and this vanishes since ν0 ∈ L2H ∗(B). Hence δζ = 0, and so η = dζ + γ , as
required. As in the compact case, there are only forms of degree k here. This finishes
the proof.

Now suppose that

g =
dx2

x4 +
h
x2

is a scattering metric on M .

THEOREM 1B
Let g be a scattering metric on M . Then for any ε > 0 sufficiently small, there is a
canonical isomorphism

8 : L2H k(M) −→ Im
(
W H k(M, g, ε) → W H k(M, g,−ε)

)
. (31)

Proof
If ω ∈ L2H k(M, g), then dω = 0. By Proposition (10), ω ∈ A λ�k

sc(M) for some
λ > 0. Hence [ω] ∈ W H k(M, g, ε) is well defined provided 0 < ε < λ. Thus 8(ω)
is well defined.

Suppose 8(ω) = 0, so that ω = dζ for some ζ ∈ x−ε−1L2�k−1
sc . Write

ω =
α

xk +
dx
x2 ∧

β

xk−1 and ζ =
µ

xk−1 +
dx
x2 ∧

ν

xk−2 .

We may assume that ζ is conormal and hence that |µ|, |ν| ∈ O(xn/2+ε′−1) for
some ε′ > ε. This implies that limx→0〈x−k+1µ, x−n+kβ〉B = 0, whence ‖ω‖

2
=

〈dζ, ω〉 = 〈ζ, δω〉 = 0. This shows that ω = 0 and thus that 8 is injective.
The surjectivity argument proceeds as before. Since

D : x−ε−1 H1
b�

∗(M) −→ x−ηL2�∗(M)

is Fredholm, we have

x−ηL2�∗(M) = (ran D|x−ε−1 H1
b
)⊕ (ran D|x−ε−1 H1

b
)⊥.
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The same argument as in the b-case identifies this orthocomplement with L2H ∗.
Now let η ∈ A ε�∗ represent a nontrivial class [η] in the space on the right in (31).
Write η = Dζ + γ , γ ∈ L2H ∗. By Proposition 10, ζ is partially polyhomogeneous
and is a finite sum of terms ζ j,`xσ j (log x)` and some ζ ′

∈ A ε�∗
sc. By taking ε small

enough, we can eliminate all but the term of weight n/2 − 1, and by the computations
in §4.3, this indicial root occurs with multiplicity one, so there are no log terms. In
fact, those computations give

ζ = ζ0 + ζ ′, ζ0 =

(αn/2−1

xn/2−1 +
dx
x2 ∧

βn/2+1

xn/2+1

)
xn/2−1

+ ζ ′, |ζ ′
| = O(xε

′

),

where αn/2−1 and βn/2+1 are harmonic on B. Using the same reasoning as in the
proof of Theorem 2B, we see that the boundary terms in the integrations by parts
〈δζ, η〉 = 〈ζ, dη〉 and 〈δζ, γ 〉 = 〈ζ, dγ 〉 both vanish. Since dη = dγ = 0, these
terms vanish altogether. Finally, 〈δζ, dζ 〉 equals the sum of the (vanishing) interior
term, 〈ζ, d2ζ 〉 = 0, and a boundary term. Since d and δ are both x times b-operators,
dζ ′ and δζ ′ both decay, so only ζ0 contributes. This boundary term equals∫

M
dζ0 ∧ ∗δζ0 = ±

∫
M

d(ζ0 ∧ d ∗ ζ0) = ±〈αn/2−1, δBβn/2+1〉 = 0.

Hence δζ = 0, and finally, η = dζ+γ , where γ ∈ x−ε−1L2�k−1 and γ ∈ L2H k .

5. Fibred ends
We now turn to the general case, where both the base and fibre in the fibration of
∂M are nontrivial. As in the b- and scattering cases, we must determine the explicit
structure of D, calculate its indicial roots, and understand its mapping properties and
the regularity (polyhomogeneity) of elements of L2H ∗. For the construction of a
parametrix for D, we invoke the fibred boundary calculus of pseudodifferential oper-
ators, as developed in [54] and extended in [67]. This serves as a replacement for the
b-calculus in this context but is more intricate. To help mitigate the analytic requi-
sites, we include a discussion of this parametrix construction in the very special case
where M is a global product and the fibred boundary or fibred cusp metric respects
this decomposition. Although the Hodge theorems in these cases follow directly via
a Künneth theorem from those for b- and scattering metrics, we sketch an explicit
parametrix construction for D in hopes that this gives some insight into the more
general case.

We begin with a general discussion of the fibred boundary calculus and then
proceed immediately to a discussion of D and its parametrix in the product case. This
is followed by a review of the geometry of fibrations and the structure of D in the
general case. The identifications of Hodge cohomology with weighted cohomology
are then proved, as usual following the general line of argument from §3. Section 5.5
relates the weighted cohomology to intersection cohomology.
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5.1. The fibred boundary calculus
Suppose that φ : Y = ∂M → B is a fibration with fibre F , dim B = b, and dim F =

f . Fixing an extension of this fibration to a collar neighbourhood U of ∂M in M , we
choose a fibred boundary metric

gfb =
dx2

x4 +
φ∗(h)

x2 + kF ,

where h is a metric lifted from B and kF is a symmetric 2-tensor that restricts to a
metric on each fibre. There is an associated fibred cusp metric gfc = x2gfb. These
metrics stand in the same relationship to one another as do scattering and b-metrics.
As we saw in those cases, only the b-calculus (but not the scattering calculus) is re-
quired to analyze the operator D in both cases. Similarly, the fibred boundary calculus
is enough to analyze the Hodge–de Rham operators for both gfb and gfc. (Indeed, there
is no calculus directly associated to gfc, for reasons indicated below.)

The fibred boundary calculus relies on the choice of a 1-jet of the defining func-
tion x along the fibres at ∂M . Making such a choice, define the Lie algebra of fibred
boundary vector fields

Vfb =
{

V ∈ Vb(M) : V tangent to fibres F at ∂M, V x = O(x2)
}
.

To understand this more clearly, choose local coordinates (x, y, z), where y are co-
ordinates on B, pulled back to Y via φ and then extended into the manifold, z are
functions on Y that restrict to coordinates on the fibres, similarly extended inward,
and x is in the given equivalence class of defining functions. Then Vfb is spanned
locally over C ∞ by the vector fields x2∂x , x∂y j , ∂z` . If (x̃, ỹ, z̃) is a new choice of
coordinates adapted to the fibration, then ∂z̃ transforms into a vector field with one
component equal to (∂x/∂ z̃)∂x , and this explains why we need to fix the differential
of x along each fibre in order that the coefficient here vanish to second order.

In contrast, the vector fields associated to a fibred cusp metric are x∂x , ∂y j ,
x−1∂z` ; these are singular, but much more seriously, their span is not closed under
Lie bracket. Involutivity is a basic requirement in the microlocalization procedure
leading to the construction of the associated pseudodifferential calculus, and this ex-
plains why there is no separate fibred cusp calculus. The elements of Vfb constitute the
full set of sections of the fb tangent bundle fbT M . We use its dual, the fb cotangent
bundle, and the bundle of fb exterior forms,

∧
∗

fb(M). Thus in the coordinates above,

C ∞�k
fb(M) 3 ω =

k∑
i=0

αi

x i +
dx
x2 ∧

k−1∑
j=0

β j

x j ,

where αi is a sum of wedge products of i-forms in y and (k − i)-forms in z, and β j is
a sum of wedge products of j-forms in y and (k − j − 1)-forms in z, all of which are
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smooth in the ordinary sense on M . (This decomposition is recast more invariantly
later.)

We now define the space of fb differential operators on M , the associated φ-
symbol, and finally, the corresponding notion of symbol ellipticity. This leads to the
following.

PROPOSITION 11
For an exact fibred boundary metric, the Hodge–de Rham operator D = d + δ is
an elliptic first-order fibred boundary differential operator. For an exact fibred cusp
metric, the operator D is of the form x−1 D′, where D′ is an elliptic first-order fibred
boundary operator.

Elliptic fibred boundary operators may be analyzed using the calculus of fibred bound-
ary pseudodifferential operators from [54]. We use the elaboration of this theory de-
veloped by Vaillant [67]. He constructs parametrices for any Dirac-type operator asso-
ciated to a fibred boundary or fibred cusp metric and in particular proves the following.

PROPOSITION 12 ([67, Proposition 3.28])
Let D be a Dirac-type operator associated to a fibred boundary metric (e.g., ei-
ther D or D′ above). Suppose that ω ∈ xγ L2�∗

fb(M) satisfies Dω = 0. Then
ω ∈ A ∗

phg�
∗

fb(M).

We also require a replacement for the other parts of Propositions 7 and 10 as well
as replacements for the basic mapping properties, as in Propositions 6 and 9. The
precise forms of these results in the fibred boundary setting are somewhat different,
and as explained in the preamble to this section, to motivate these results we take a
detour and investigate the mapping and regularity properties for product metrics. This
involves little more than rephrasing the corresponding results for b- and scattering
metrics but is included to help orient the reader. We also include a discussion of the
indicial root structure for D in these two cases; the computations are more transparent
in the product cases, but the general results are qualitatively the same.

5.2. The product case
5.2.1. Fibred boundary metrics
Suppose that M = N × F , where ∂N = B, and fix a fibred boundary metric g on M
which is of the form g′

+ k, where g′ is a scattering metric on N and k is a metric on
the compact manifold F .
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We write Y = ∂M = B × F . Since T Y splits canonically as T B ⊕ T F , we have∧k T ∗Y =

⊕
p+q=k

∧p,qY,
∧p,qY =

∧pT ∗B ⊗
∧q T ∗F.

Thus any ω ∈
∧k M can be written as

ω =
α

xk +
dx
x2 ∧

β

xk−1 , where α ∈

⊕
j

∧k− j, j Y, β ∈

⊕
j

∧k−1− j, j Y

depend parametrically on x .
The Hodge–de Rham operator D = DM acts on ω, regarded as a column vector

(α, β)t , as(
0 −x2∂x + (b − k + 1)x

x2∂x − kx 0

)
+

(
x DB + DF 0

0 −x DB − DF

)
.

(32)
Here DF acts on a (p, q)-form η ∧ ν as (−1)pη ∧ (DFν). In the more general (non-
product) case, D has a similar decomposition, but the second matrix has extra terms
coming from the nontrivial geometry of the bundle.

The space of harmonic forms on the compact manifold F is finite-dimensional.
Let

50 : L2�∗(F) −→ L2H ∗(F), 5⊥ = I −50

be the natural orthogonal projectors. These extend naturally to L2�∗

fb(M), and we
have

DM = 50 DM50 +5⊥DM50 +50 DM5⊥ +5⊥DM5⊥.

Since [DM ,50] = 0 in the product case, the second and third terms vanish and this
reduces to

DM = 50 DM50 ⊕5⊥DM5⊥.

We use this decomposition to construct a parametrix for DM . First,

50 DM50 = DN ⊗ IdH ∗(F),

and so by the theory from §§4.1 and 4.2, if a ∈ R is not an indicial root for x−1 DN ,
this operator is Fredholm as a mapping from xa L2�∗

→ xa+1L2�∗. We write the
generalized inverse as

Ga
0 : xa+1L2�∗

fb(N )⊗ H ∗(F) −→ xa H1�∗

fb(N )⊗ H ∗(F).

The second term in the decomposition of DM has square1N +5⊥1F5⊥. Since
1N ≥ 0 and 5⊥1F5⊥ ≥ c > 0, we have that 5⊥DM5⊥ : xa H1�∗

fb → xa L2�∗

fb
is an isomorphism for any a. Thus for any a we get

Ga
⊥

≡ (5⊥DM5⊥)
−1

: xa5⊥L2�∗

fb(M) −→ xa5⊥H1�∗

fb(M).
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Altogether, we have proved that

Ga
0 ⊕ Ga

⊥
≡ Ga

: xa+150L2�∗

fb(M)⊕ xa5⊥L2�∗

fb(M) −→ xa H1�∗

fb(M)

is bounded. Clearly, I − Ga DM = 5a
M is the projector onto the null space of DM

in xa L2�∗

fb, which is the same as the null space of 50 DM50, that is, L2H ∗(N ) ⊗

H ∗(F). By Proposition 10,5a
M maps xa L2 into the space of polyhomogeneous fibre

harmonic forms. We emphasize that the indicial roots for DM are exactly the same as
for DN . In particular, the critical root (1/2) dim N − 1 = (b − 1)/2 has multiplicity
one!

In summary, we have proved that the mappings

DM : xa H1�∗

fb(M) −→ xa+150L2�∗

fb(M)⊕ xa5⊥L2�∗

fb(M) (33)

and
DM : xa−150 H1�∗

fb(M)⊕ xa5⊥H1�∗

fb(M) −→ xa L2�∗

fb(M) (34)

are Fredholm when a, respectively, a − 1, is not an indicial root of DN .
The generalized inverse Ga has other mapping properties. Suppose η = DMζ ,

where η ∈ A a�∗

fb(M) and ζ ∈ xc−150 H1�∗

fb(M)⊕ xc5⊥H1
fb(M) for some c < a.

Then, in fact, ζ ∈ 50A
∗

phg�
∗

fb(M)+ A a�∗

fb(M).

5.2.2. Fibred cusp metrics
Now suppose that M = N × F has a fibred cusp metric gfc; notice that this is a
warped product (since kF is multiplied by x2). We obtain a parametrix for the associ-
ated Hodge–de Rham operator D as above. Write all forms in terms of the (essentially
orthonormal) coframe, dx/x , dy, x dz, and denote the space of forms with this nor-
malization as

∧
∗

fc. Thus

3∗

fc(M) 3 ω = xkα +
dx
x

∧ xkβ, where α, β ∈

⊕
j

∧ j,kY.

Write ω ∈ �∗,k
fc (M) if it decomposes into terms all with fibre degree k. DM acts on

the pair (α, β) as the matrix of operators(
0 −x∂x − ( f − k)

x∂x + k 0

)
+

(
DB + x−1 DF 0

0 −DB − x−1 DF

)
. (35)

As before, this splits as DM = 50 DM50 ⊕ 5⊥DM5⊥. If α and β are ( j, k)-
and ( j − 1, k)-forms, respectively, then

5⊥DM5⊥ = x−1 D̃,
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where

D̃ = DN ,sc +

(
5⊥DF5⊥ (b − j + 1 − f + k)x
(k − j)x −5⊥DF5⊥

)
.

The diagonal terms in this final matrix are constant in x and invertible on 5⊥L2�∗

fc,
and reasoning as before, for any a ∈ R, the mapping

5⊥DM5⊥ : xa5⊥L2�∗

fc(M) −→ xa−15⊥L2�∗

fc(M)

has bounded inverse, Ga
⊥

.
On the other hand, 50 DM50 ∈ Diff1

b(N ;�∗,k
fc H ∗(F)) is a b-operator (it has no

x−1dF or x−1δF terms!) and equals(
DB −x∂x − ( f − k)

x∂x + k −DB

)
. (36)

This operator preserves fibre degrees, so we can reduce to any fixed �∗,k
fc (M), for

example, when computing indicial roots. We have

I(50 DM50)2
(γ ) =

(
D2

B − (γ + f − k)(γ + k) 0
0 D2

B − (γ + f − k)(γ + k)

)
.

The critical exponent in the surjectivity calculation is γ = − f/2, and inserting this
into the expression above gives D2

B + (k − f/2)2 in both diagonal components. Hence
elements in the null space are in L2H ∗(B) and are of fibre degree k = f/2. As
before, at this point one also checks that − f/2 is not an indicial root of multiplicity
two, which simply involves showing as usual that (36) has no solutions of the form
ω′x− f/2 log x + ω′′x− f/2.

In any case, so long as a is not in the indicial set of 50 DM50, then

50 DM50 : xa50L2�∗

fc(M) −→ xa50L2�∗

fc(M)

is Fredholm with generalized inverse Ga
0 .

Altogether, this gives the generalized inverse

Ga
= Ga

0 ⊕ Ga
⊥

: xa50L2�∗

fc(M)⊕ xa−15⊥L2�∗

fc(M) −→ xa H1�∗

fc(M),

and I − Ga DM = 5a
M is the projection onto the null space of 50 DM50 at weight a,

all elements of which are polyhomogeneous.
In summary, the mappings

DM : xa H1�∗

fc(M) −→ xa50L2�∗

fc(M)⊕ xa−15⊥L2�∗

fc(M) (37)

and
DM : xa50 H1�∗

fc(M)⊕ xa+15⊥H1�∗

fc(M) −→ xa L2�∗

fc(M) (38)
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are Fredholm when a is not an indicial root of DN .
As in the fibred boundary case, if η = DMζ , where η ∈ A a�∗

fc(M) and ζ ∈

xc50 H1�∗

fc(M) ⊕ xc+15⊥H1
fc(M) for some c < a, then ζ ∈ 50A

∗

phg�
∗

fc(M) +

A a�∗

fc(M).

5.3. Manifolds with nonproduct fibre bundle ends
5.3.1. Geometry of fibrations
In this section we review some of the geometry associated to a Riemannian fibration
and use it to describe the precise structure of DY . The exposition here is drawn from
[3, §10.1], [25], [67], and [4], but since the notation in these sources varies consider-
ably, it has seemed worthwhile to develop this material in detail.

Suppose that G = φ∗(h)+ k is a metric on the total space of a fibration Y , where
φ : Y → B and φ−1(b) = Fb. As before, we assume that k annihilates the horizontal
subbundle T H Y , which is the orthogonal complement of the vertical tangent bundle
T V , and we let PV

: T Y → T V Y , P H
: T Y → T H Y denote the orthogonal

projections. The tangent bundle T B is naturally identified via φ∗ with T H Y , and
we denote the lift of a section X ∈ C ∞(B; T B) by X̃ . In the following, we denote
sections of T V Y and T H Y by U1,U2, . . . and X̃1, X̃2, . . ., respectively. Finally, let
∇

L denote the Levi-Civita connection of G.
The extent to which these subbundles fail to be parallel with respect to ∇

L is
measured in terms of two tensor fields, the second fundamental form of the fibres,
and the curvature of the horizontal distribution. The second fundamental form is the
symmetric bilinear form on T V Y defined by

IIX̃ (U1,U2) =
〈
∇

L
U1

U2, X̃
〉
. (39)

We let II(U1,U2) be the horizontal vector given by〈
II(U1,U2), X̃

〉
= IIX̃ (U1,U2),

and we let IIX̃ (U1) denote the vertical vector determined by〈
IIX̃ (U1),U2

〉
= IIX̃ (U1,U2).

The nonintegrability of the horizontal distribution is measured by its curvature

R(X̃1, X̃2) = PV ([X̃1, X̃2]), (40)

which is tensorial and vertical. We define the horizontal vector R̂U (X̃1) by〈
R̂U (X̃1), X̃2

〉
=
〈
R(X̃1, X̃2),U

〉
=
〈
[X̃1, X̃2],U

〉
. (41)
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Four additional facts are used repeatedly. First, the bracket of a vertical vector field
with the horizontal lift of a vector field from B is again vertical; that is,

[X̃ ,U ] ∈ C ∞(Y, T V Y ).

This is proved by noting that vertical vector fields are characterized by the fact that
they annihilate functions of the form φ∗ f , f ∈ C ∞(B). Second, the Koszul formula
determines the Levi-Civita connection in terms of the metric and Lie brackets:〈

∇
L
V1

V2, V3
〉
=

1
2

{〈
[V1, V2], V3

〉
−
〈
[V2, V3], V1

〉
+
〈
[V3, V1], V2

〉
+ V1

〈
V2, V3

〉
+ V2

〈
V1, V3

〉
− V3

〈
V1, V2

〉}
,

for any V1, V2, V3 ∈ C ∞(Y, T Y ).
Third, by definition of the induced Levi-Civita connection ∇

F on the fibres,〈
∇

L
U1

U2,U3
〉
=
〈
∇

F
U1

U2,U3
〉
.

Finally, since vertical and horizontal vector fields are perpendicular and because the
vertical distribution is integrable,〈

[U1,U2], X̃
〉
= U1

〈
X̃ ,U2

〉
= U2

〈
X̃ ,U1

〉
= 0.

We now determine the vertical and horizontal components of ∇
L
V1

V2 when the V j are,
successively, vertical and horizontal fields. First, by definition, the horizontal part of
∇

L
U1

U2 is 〈
∇

L
U1

U2, X̃
〉
=
〈
II(U1,U2), X̃

〉
,

and also by definition, the vertical part is ∇
F
U1

U2.
From the Koszul formula and the expansion of X̃〈U1,U2〉 using (39),〈

∇
L
X̃

U1,U2
〉
=
〈
[X̃ ,U1],U2

〉
−
〈
IIX̃ (U1),U2

〉
,

or in other words,
PV

∇
L
X̃

U = [X̃ ,U ] − IIX̃ (U ).

As for the horizontal component of ∇
L
X̃

U , most of the terms in the Koszul formula
vanish, leaving only

〈
∇

L
X̃1

U, X̃2
〉
= −

1
2

〈
[X̃1, X̃2],U

〉
= −

1
2

〈
R̂U (X̃1), X̃2

〉
.

Next, 〈
∇

L
U1

X̃ ,U2
〉
= −

〈
X̃ ,∇L

U1
U2
〉
= −

〈
IIX̃ (U1),U2

〉
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is the vertical part of ∇
L
U1

X̃ , and the horizontal part is〈
∇

L
U X̃1, X̃2

〉
=
〈
∇

L
X̃1

U + [U, X̃1], X̃2
〉
=
〈
∇

L
X̃1

U, X̃2
〉
= −

1
2

〈
R̂U (X̃1), X̃2

〉
,

where the Koszul formula is used for the final equality.
Finally, putting the covariant derivative on the other side of the inner product and

using the last equality of the previous displayed formula,〈
∇

L
X̃1

X̃2,U
〉
=

1
2

〈
R(X̃1, X̃2),U

〉
,

and at last, 〈
∇

L
X̃1

X̃2, X̃3
〉
=
〈
∇

B
X1

X2, X3
〉
,

where ∇
B is the Levi-Civita connection on (B, h). This last formula holds because

all the terms in the Koszul formula expansion depend only on h.
In summary, we have proved the following.

PROPOSITION 13
The Levi-Civita connection decomposes into vertical and horizontal components as

∇
L
U1

U2 = ∇
F
U1

U2 + II(U1,U2),

∇
L
X̃

U =
(
[X̃ ,U ] − IIX̃ (U )

)
−

1
2
R̂U (X̃),

∇
L
U X̃ = −IIX̃ (U )−

1
2
R̂U (X̃),

∇
L
X̃1

X̃2 =
1
2
R(X̃1, X̃2)+ (∇B

X1
X2)̃ . (42)

We wish to define a new connection that preserves the splitting of T Y . As a first guess,
one might do this by projecting ∇

L onto the vertical and horizontal subspaces, that is,
by defining ∇V U = PV (∇L

V U ), ∇V (X̃) = P H (∇L
V (X̃), where V is any vector (either

horizontal or vertical). The formulae above indicate which terms should be subtracted
from ∇

L to accomplish this. However, there is another natural choice, which turns out
to be more convenient for many computational purposes, given by using the projected
connection on the vertical bundle and lifting the connection on the horizontal bundle
from the Levi-Civita connection on B. In other words, we define

∇ := (PV
∇

L)⊕ ∇
B

or, even more specifically,

∇U1U2 = PV (∇L
U1

U2), ∇X̃ U = PV (∇L
X̃

U ) = [X̃ ,U ] − IIX̃ (U ),

∇U X̃ = 0, ∇X̃1
X̃2 = (∇B

X1
X2).
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We use this connection henceforth. Notice that it differs from the projected connection
only in the removal of the terms (1/2)R̂U (X̃). One important feature of ∇ vis a vis
computations related to the families index theorem is that it is in upper triangular
form with respect to the vertical/horizontal splitting (cf. [3]).

The difference tensor Q = ∇
L

− ∇ is given by

QU1(U2) = II(U1,U2), Q X̃ (U ) = −
1
2
R̂U (X̃),

QU (X̃) = −IIX̃ (U )−
1
2
R̂U (X̃), Q X̃1

(X̃2) =
1
2
R(X̃1, X̃2).

We note also that the torsion tensor of ∇ is the negative of the skew-symmetrization
of Q.

We now express the de Rham differential dY and its adjoint in terms of ∇, II,
and R. Because the connections ∇

L and ∇ are both metric connections, they act on
1-forms by duality. That is, if φ is the 1-form given by 〈w, ·〉, then ∇Zφ is the 1-form
given by 〈∇Zw, ·〉. The action extends to forms of higher degree as a derivation.

Let ei , i = 1, . . . , f , and ηµ, µ = 1, . . . , b, be orthonormal frame fields for F
and B, respectively, and let {ei

}, {ηµ} be the dual coframe fields. It is standard that

dY =

f∑
i=1

ei
∧ ∇

L
ei

+

b∑
µ=1

ηµ ∧ ∇
L
ηµ

(43)

with analogous formulae for dF and dB . Now substitute ∇L = ∇ + Q into (43) to get
first

dY e j
= dF e j

+

∑
ηµ ∧ ∇ηµe j

−

∑(〈
IIηµ(ei ), e j

〉
ηµ ∧ ei

+
1
2

〈
R(ηµ, ην), e j

〉
ηµ ∧ ην

)
, (44)

and then
dYη

µ
= dBη

µ. (45)

The last formula initially has many terms, all of which cancel, but the result is no
surprise since dYφ

∗
= φ∗dB .

Now extend to forms of higher degrees. First, the splitting of T Y induces a de-
composition

3k(T ∗Y ) =

⊕
p+q=k

3p,q(T ∗Y ),

where

3p,q(T ∗Y ) = 3p((T V Y )∗
)
⊗3q((T H Y )∗

)
.
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We regard the space of sections �p,q(Y ) as the completed tensor product
�p(B) ⊗̂�q(Y, T V Y ). By construction, ∇ preserves this splitting. Thus for ω ∈

�p,q(Y ) with ω = φ∗(α) ∧ β, α ∈ �p(B), and β ∈ C ∞(Y,3q(T V Y )∗),

dF
(
φ∗(α) ∧ β

)
= (−1)pφ∗(α) ∧ dFβ,

and we also define

d̃Bφ
∗(α) ∧ β = φ∗(dBα) ∧ β + (−1)pφ∗(α) ∧

(∑
µ

ηµ ∧ ∇ηµβ
)
.

Rewrite (44) as

dY e j
= dF e j

+ d̃Be j
− II(e j )−

1
2
R(e j ),

where
II(e j ) = IIµi j η

µ
∧ ei , R(e j ) = Rµν jη

µ
∧ ην .

To simplify notation, let R = −(1/2)R. Then we have proved the first part of the
following.

PROPOSITION 14
We have dY = dF + d̃B − II + R, δY = δF + (d̃B)

∗
− II∗ + R∗.

The second part is tautologous. Notice that

dF : �p,q(Y ) → �p,q+1(Y ), d̃B : �p,q(Y ) → �p+1,q(Y ),

II : �p,q(Y ) → �p+1,q(Y ), R : �p,q(Y ) → �p+2,q−1(Y ).

We can deduce some useful information from the fact that both dY and dF are
legitimate differentials; that is, their squares are zero. First, there is a Kodaira decom-
position on the fibres, so any smooth form α on Y can be decomposed uniquely and
orthogonally as α = dFη + δFµ+ γ , where γ is fibre harmonic. Thus

50dF = 50δF = dF50 = δF50 = 0. (46)

Second, applying d2
Y = 0 to a form of pure bidegree and decomposing into bidegrees

gives

R2
= 0, d2

F = 0,

dF (d̃B − II)+ (d̃B − II)dF = 0,

R(d̃B − II)+ (d̃B − II)R = 0,

dF R + RdF = −(d̃B − II)2 (47)
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with analogous relationships between the adjoints of these operators.
Now define the operator

d = 50
(
d̃B − II

)
50;

this acts on the space of fibre-harmonic forms.

PROPOSITION 15
The operator d and its adjoint d∗ are differentials; that is, d2

= (d∗)2 = 0.

Proof
It suffices to prove only one of these. Recalling that 50 = I −5⊥, we have

d2
= 50

(
d̃B − II

)2
50 −50

(
d̃B − II

)
5⊥

(
d̃B − II

)
50;

substituting from (47) and using (46), this equals

−50
(
dF R + RdF + (d̃B − II)5⊥(d̃B − II)

)
50 = −50

(
d̃B − II

)
5⊥

(
d̃B − II

)
50.

Now, dF
(
d̃B − II

)
50 = −

(
d̃B − II

)
dF50 = 0, so for any form α, (d̃B − II)50α =

dFη + γ with γ fibre-harmonic, and hence 5⊥

(
d̃B − II

)
50α = dFη. Finally,

d2α = −50
(
d̃B − II

)
dFη = 50dF

(
d̃B − II

)
η = 0.

COROLLARY 5
Let D = d + d∗, and suppose that Dα = 0 for some fibre-harmonic form α. Then
dα = d∗α = 0, and so the terms αp,q of pure bidegree also satisfy Dαp,q = 0.

This follows just as for the usual Hodge Laplacian, for D2
= d∗d + dd∗ preserves

bidegree, and so
0 = 〈D2α, α〉 = ‖dα‖

2
+ ‖d∗α‖

2
;

in addition, we have that both d and d∗ commute with D.

5.3.2. Hodge–de Rham operators in general
The structure of the Hodge–de Rham operators for general exact fibred boundary and
fibred cusp metrics is obtained by substituting the expression for dY from Proposition
14 into (32) and (35). To distinguish them, we write Dfb for the operator DM associ-
ated to the fibred boundary metric gfb and write Dfc for this operator associated to the
fibred cusp metric gfc. The action of Dfb onω = α/xk

+(dx/x2)∧β/xk−1
∈ �k,∗

fb (M)
is given by replacing the second matrix in (32) with(

DF + x DB − x(I I + I I ∗)+ x2(R + R∗) 0
0 −DF − x DB + x(I I + I I ∗)− x2(R + R∗)

)
.
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Similarly, the action of Dfc on ω = xkα + (dx/x) ∧ xkβ ∈ �∗,k
fc (M) is obtained by

substituting(
x−1 DF + DB − (I I + I I ∗)+ x(R + R∗) 0

0 −x−1 DF − DB + (I I + I I ∗)− x(R + R∗)

)
for the second matrix in (35).

As explained in the beginning of §5, the construction of parametrices for Dfb and
Dfc requires the machinery of fibred boundary pseudodifferential operators. The basic
strategy is the same in that one inverts50 D50 and5⊥D5⊥ separately but now must
also show that the off-diagonal terms50 D5⊥ and5⊥D50, which no longer vanish,
play only an insignificant role. This is all carried out by Vaillant [67] (cf. especially
[67, Proposition 3.27], although beware that the Fredholm result is misstated in the
special case λ0 = 0), and we simply quote the two results we need, looking back
to the product case for motivation. Before stating these, we remark that the operators
50,5⊥ are only defined right at the boundary. However, the fibred boundary structure
requires that we have fixed the one-jet of a defining function x along the fibres, and
this implies that the spaces xc50L2

⊕ xc±15⊥L2 are well defined for any c ∈ R
(because the weights differ only by 1).

PROPOSITION 16
Suppose that a is not an indicial root for 50 Dfb50. Then

Dfb : xa H1
fb(M) −→ xa+150L2�∗

fb(M)⊕ xa5⊥L2�∗

fb(M) (48)

and
Dfb : xa−150 H1�∗

fb(M)⊕ xa5⊥H1
fb(M) −→ xa L2�∗

fb(M) (49)

are Fredholm. If Dfbω = 0, then ω is polyhomogeneous with exponents in its ex-
pansion determined by the indicial roots of 50x−1 Dfb50, while if η ∈ A a�∗

fb(M),
ζ ∈ xc−150 H1�∗

fb(M) ⊕ xc5⊥H1
fb(M) for c < a and η = Dfbζ , then ζ ∈

50A
I

phg�
∗

fb(M)+ A a�∗

fb(M).

PROPOSITION 17
Suppose that a is not an indicial root for 50 Dfc50. Then

Dfc : xa H1
fc(M) −→ xa50L2�∗

fc(M)⊕ xa−15⊥L2�∗

fc(M) (50)

is Fredholm. If a + 1 is not an indicial root, then

Dfc : xa50 H1�∗

fc(M)⊕ xa+15⊥H1�∗

fc(M) −→ xa L2�∗

fc(M) (51)

is Fredholm. If Dfcω = 0, then ω is polyhomogeneous, with exponents in its ex-
pansion determined by the indicial roots of 50 Dfc50, while if η ∈ A a�∗

fc(M),
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ζ ∈ xc50 H1�∗

fc(M) ⊕ xc+15⊥H1
fc(M) for c < a and η = Dfcζ , then ζ ∈

50A
I

phg�
∗

fc(M)+ A a�∗

fc(M).

We remark that the indicial roots for the operators 50 D50, D = Dfb or Dfc, are
different than in the product case because of the term II + II∗ and because of the
action of d̃B on the fibre part of forms; on the other hand, the term R + R∗ is lower
order at x = 0 and does not affect the indicial roots.

5.4. Hodge theorems for fibred boundary and fibred cusp metrics
We now complete the proofs of the identifications of L2 harmonic forms with
weighted cohomology in the two cases.

THEOREM 1C
If (M, g) is a manifold with fibred boundary metric, then for every k there is a natural
isomorphism

L2H k(M) −→ Im
(
W H k(M, gfb, ε) −→ W H k(M, gfb,−ε)

)
. (52)

Proof
If ω ∈ L2H k(M), then Proposition 16 shows that ω is polyhomogeneous and hence
lies in xε0 L2�k

fb(M) for some ε0 > 0 (with polyhomogeneous coefficients). This
gives the mapping

L2H k(M) −→ W H k(M, gfb, ε)

−→ Im
(
W H k(M, gfb, ε) −→ W H k(M, gfb,−ε)

)
.

If [ω] = 0, then ω = dζ for some ζ ∈ x−ε−1L2�k−1
fb (M); by the discussion in

§2.4, we can choose ζ to be conormal. Write

ω =

∑
p,q

αp,q

x p +
dx
x2 ∧

βp,q

x p , ζ =

∑
p,q

µp,q

x p +
dx
x2 ∧

νp,q

x p ,

where |αp,q |, |βp,q | = O(x (b+1)/2+ε0) and |µp,q |, |νp,q | = O(x (b−1)/2+ε). The usual
integration by parts gives

‖ω‖
2

=

∫
M

dζ ∧ ∗ω =

∫
M

d(ζ ∧ ∗ω) = lim
x→0

∫
B×F

ζ ∧ ∗ω

= lim
x→0

∑
p,q

∫
Y

µp,q

x p ∧
∗Yβp,q

xb−p ,

which vanishes by the decay properties of the µp,q and βp,q . Thus ω = 0, and this
proves injectivity.
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For surjectivity, we note that for sufficiently small ε > 0, the space L2H ∗(M)
can be identified with the cokernel of the map

Dfb : x−ε−150 H1�∗

fb(M)⊕ x−ε5⊥H1�∗

fb(M) −→ x−εL2�∗

fb(M).

Thus we can write

x−εL2�∗

fb(M) = Im(Dfb|x−ε−150 H1�∗

fb(M)+x−ε5⊥ H1�∗

fb(M)
)⊕ L2H ∗(M).

So suppose that η ∈ xηL2�k
fb(M) is a polyhomogeneous representative for a class in

the space on the right in (52). Then η = Dfbζ + γ , where ζ ∈ 50A
∗

phg�
∗

fb(M) ⊕

5⊥A ε�∗

fb(M) and γ ∈ L2H ∗(M). In fact, comparing orders of vanishing in x , we
see that ζ = ζ0 + ζ ′, ζ ′

∈ A η�∗

fb(M), and ζ0 ∈ ker I50x−1 DM50
((b − 1)/2).

We must analyze the structure of ζ0 more closely. Acting on pairs (α, β), the
indicial operator has the form

I50x−1 Dfb50

(b − 1
2

)
=

(
D N1 − (b − 1)/2

N2 + (b − 1)/2 −D

)
,

where D = d + d∗. The operators N1 and N2 are defined by N1βk = (b − k)βk

and N2αk = −kαk (which agrees with the scattering case since n = b + 1 there).
Following the calculation and reasoning for the scattering case, we expand in terms of
an eigenbasis for D2 and deduce that this indicial root has rank 1 and that an element
of the null space of this indicial operator has the form

ζ0 = x (b−1)/2
(α(b−1)/2

x (b−1)/2 +
dx
x2 ∧

β(b+1)/2

x (b+1)/2

)
,

where α(b−1)/2, β(b+1)/2 ∈ ker D.
We now have

‖δζ‖2
= 〈η − dζ − γ, δζ 〉 =

〈
d(η − dζ − γ ), ζ

〉
= lim

x→0

∫
Y
ζ0 ∧ d ∗ ζ0

= lim
x→0

∫
Y
α(b−1)/2 ∧ dY ∗Y β(b+1)/2 =

〈
α(b−1)/2, d

∗β(b+1)/2 + R∗β(b+1)/2
〉
Y .

But R∗β(b+1)/2 is a ((b − 3)/2, ∗)-form, so it pairs trivially with α(b−1)/2. Hence
δζ = 0.

The rest of the argument is as in the scattering case.

THEOREM 2C
If (M, gfc) is a manifold with fibred cusp metric, then there is a natural isomorphism

L2H ∗(M) −→ Im
(
W H∗(M, ε) −→ W H∗(M,−ε)

)
. (53)
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Proof
The proofs of the existence of this mapping and its injectivity are nearly identical to
those in the fibred boundary case, so we omit them.

For the surjectivity argument, we decompose

x−ηL2�∗(M) = (ran DM |x−η50 H1
b ⊕x−ε+15⊥ H1

b
)⊕ (ran DM |x−η50 H1

b ⊕x−ε+15⊥ H1
b
)⊥.

So we can write any η ∈ xηL2�∗

fc(M) which represents a nontrivial class as η =

Dζ + γ , where γ ∈ L2H ∗(M) and ζ ∈ x−ηL2�∗

fc(M). Since the indicial root
γ = − f/2 occurs with multiplicity one, we have ζ = ζ0 +ζ ′, where ζ ′

∈ A ε�∗

fc(M)
and

ζ0 =

∑
k

(
xkαk +

dx
x

∧ xkβk

)
x− f/2,

where αk and βk are independent of x and dx . Matching up powers of x in η =

Dζ + γ , we find that ζ0 is in the null space of the operator Id′ , d′
= 50 Dfc50, which

acts on (∗, k)-forms by

Id′

(
−

f
2

)
=

(
D k −

f
2

k −
f
2 D

)
.

This implies that α and β must both be forms on B with coefficients in H f/2(F) and
in the kernel of D. Thus the boundary term in the integration by parts vanishes as in
the fibred boundary case.

5.5. From weighted cohomology to intersection cohomology
To prove our main theorems, we must relate the weighted cohomology groups ap-
pearing in the statements of Theorems 1C and 2C to intersection cohomology groups.
Most of the work has already been done in §2.3, so it remains only to reinterpret the
answers.

The statement for fibred cusp metrics is slightly simpler, so we consider that case
first. We have proved that when (M, g) is a fibred cusp metric, then

L2H ∗(M) ∼= Im
(
W H∗(M, ε) −→ W H∗(M,−ε)

)
.

Using Proposition 2, this is equivalent to

L2H ∗(M) ∼= Im
(
IH∗

[ε+( f/2)](X, B) −→ IH∗

[−ε+( f/2)](X, B)
)
,

where X is the compactification of M defined in the introduction. The two spaces on
the right correspond to intersection cohomology with the middle perversities

m( f + 1) =

{
f −1

2 , f odd,
f
2 , f even,

m( f + 1) =

{
f −1

2 , f odd,
f
2 − 1, f even,

respectively. This proves the main theorem (Theorem 2).
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THEOREM 2′

Suppose that (M, g) is a manifold with fibred cusp metric. Then

L2H ∗(M) ∼= Im
(
IH∗

m(X, B) −→ IH∗

m(X, B)
)
.

We remark on a few special cases of this result.
If f = 0 (i.e., (M, g) has cylindrical ends), then

IH∗

[ε+( f/2)](X, B) = H∗(M, ∂M), IH∗

[−ε+( f/2)](X, B) = H∗(M),

and so the Hodge cohomology is equated with the image of the relative in absolute
cohomology, as already proved in §4.

If dim F = f > 0, then the two spaces on the right coincide when f is
odd, or if we have only H f/2(F) = 0, that is, if (X, B) is a Witt space. In ei-
ther case, L2H ∗(M) equals the (unique) middle perversity intersection cohomology
IH∗

m(X, B).
We can see this simplification directly from the analysis in the last section. Recall

the decomposition η = dζ + γ for the closed form η ∈ A η�k
fc(M). We have ζ =

ζ0 + ζ ′, where ζ ′
∈ A ε�∗

fc(M) and ζ0 is the sum of pullbacks of forms on B wedged
with elements of H f/2(F). But the assumption that X is a Witt space gives ζ0 = 0,
and hence [η] = [γ ] already in W H(M, gfc, ε). Thus in this case,

W H(M, gfc,−ε) = W H(M, gfc, ε) = W H(M, gfc, 0) = L2H ∗(M),

and all these spaces are finite-dimensional. This already follows from [68, Corollary
2.34]. Finally, the discussion in §2.3 shows how to interpret this in terms of intersec-
tion cohomology.

However, when H f/2(F) 6= 0, the unweighted L2-cohomology is infinite-
dimensional and the two middle perversity intersection cohomologies are different.
In this case, some sort of more elaborate analysis, such as we have carried out in this
paper, is needed.

We obtain the Hodge theorem for fibred boundary metrics by a translation from
the fibred cusp case. To do this, first rewrite the isomorphism

L2H k(M) ∼= Im
(
W H k(M, gfb, ε) −→ W H k(M, gfb,−ε)

)
in terms of weighted L2-cohomology for the associated fibred cusp metric gfc =

x2gfb. This gives

L2H k(M) ∼= Im
(
(W H k(M, gfc, n/2 − k + ε) −→ W H k(M, gfc, n/2 − k − ε)

)
,

and hence by Proposition 2, we get the following.
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THEOREM 1′

If (M, g) is a fibred boundary metric, then

L2H k(M) ∼= Im
(
IH k

[(n+ f )/2−k+ε](X, B) −→ IH k
[(n+ f )/2−k−ε](X, B)

)
.

We list the various cases.
Suppose b is even. Since n = b + f + 1, this is the same as when n + f is odd,

and then the two groups are the same, so that

L2H k(M) ∼= IH k
f +b/2−k(X, B) ∼=



H k(X, B), k ≤
b
2 ,

IH k
f −1(X, B), k =

b
2 + 1,

...

IH k
0 (X, B), k = n −

b
2 + 1,

H k(X \ B), k ≥ n −
b
2 .

Just as in the fibred cusp case, when b is even, the form ζ0 which arises in the surjec-
tivity argument must vanish since it lies in �(b±1)/2,∗

= {0} on the boundary. Hence
the map 8 is now surjective onto W H∗(M, gfb, ε). In this case the range of D is
closed, and the theorem follows from the techniques of [68].

When b is odd,

L2H k(M) ∼= Im
(
IH k

f +(b+1)/2−k(X, B) −→ IH k
f +(b−1)/2−k(X, B)

)

∼=



H k(X, B), k ≤
b−1

2 ,

Im
(
H k(X, B) −→ IH k

f −1(X, B)
)
, k =

b−1
2 + 1,

Im
(
IH k

f −1(X, B) −→ IH k
f −2(X, B)

)
, k =

b−1
2 + 2,

...

Im
(
IH k

1 (X, B) −→ IH k
0 (X, B)

)
, k = n −

b−1
2 − 2,

Im
(
IH k

0 (X, B) −→ H k(X \ B)), k = n −
b−1

2 − 1,

H k(X \ B), k ≥ n −
b−1

2 .

Simpler corollaries of this theorem, for cases when F is a sphere and X a smooth
manifold, were stated in Corollary 1 in the introduction.

6. Relationship to other works
We now briefly discuss some consequences of the Hodge theorems proved here and
their relationship to other work in the field.

Carron’s Hodge theorem for manifolds with flat ends
In a recent paper [12], Carron has calculated the Hodge cohomology for manifolds
with finitely many ends, on all of which it is assumed that the curvature tensor van-
ishes identically. He uses two main tools: a precise geometric structure theorem for
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flat ends (see [27]), and his theory of nonparabolicity at infinity in order to obtain
new function spaces that are extensions of H1

0�
∗(M) and on which the range of D

is closed. This work has substantial overlap with ours in the sense that many but not
all fibred boundary and fibred cusp metrics are nonparabolic at infinity and satisfy the
extra conditions implied by the flatness hypothesis.

The signature formula of Dai and Vaillant
As discussed in the introduction, an immediate corollary of Theorems 1 and 2 is that

sgnL2(M, g) = sgn Im
(
IHm(X, B) −→ IHm(X, B)

)
. (54)

This formula holds both for fibred boundary and fibred cusp metrics.
On the other hand, there is an L2 signature theorem for manifolds with fibred

cusp ends proved by Dai [25] and generalized by Vaillant [67]:

sgnL2(M, g) = sgn Im
(
H∗(M, ∂M) −→ H∗(M)

)
+ τ. (55)

The final term here is the τ -invariant, originally defined by Dai, which is a sum of sig-
natures coming from the higher terms in the Leray spectral sequence for the fibration
of ∂M . Combining these two signature theorems now identifies τ = τ(∂M) with the
difference of the two algebraic signatures in (54) and (55) (see (4) in the introduction).
The original definition of τ involves algebraic signatures on the higher terms (i.e., the
Ek-terms, k ≥ 3) of the Leray spectral sequence of the fibration for ∂M . It seems very
tempting to conjecture that the summands in this definition arise from signatures on
the weighted cohomology for weights ±a, where a varies from some small positive
number to one sufficiently large so that the weighted cohomologies W H(M, g,±a)
equal the relative and absolute cohomologies, respectively. There should be finitely
many jumps in this deformation, and the intermediate weighted cohomologies should
correspond to intersection cohomologies with perversities varying from lower middle
or upper middle to one of the extremes. We shall return to a precise exploration of
these ideas elsewhere.

Hitchin’s Hodge theorem
Section 7 contains an explanation of our Hodge and signature theorems in several
interesting examples. Most of those examples are hyperkähler, and the Hodge coho-
mology of such manifolds has been recently studied by Hitchin [44]. Amongst his
results is one particularly relevant to our paper.

THEOREM 3 (Hitchin)
Let M be a complete hyperkähler manifold of real dimension 4k such that one of
the Kähler forms ωi satisfies ωi = dβ, where β has linear growth. Then any L2
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harmonic form on M is of degree 2k and is self-dual or antiself-dual provided that k
is even (resp., odd).

This implies the following.

COROLLARY 6
If M is a hyperkähler manifold as above, then dim L2H ∗(M, g) = |sgnL2(M, g)|.

Hence for the class of hyperkähler manifolds satisfying the hypothesis of Hitchin’s
theorem (including most of the examples in §7), the Hodge cohomology can be com-
puted from the L2-signature index theorem of Dai and Vaillant.

We obtain two consquences that follow from this result and the analysis devel-
oped for the proofs of our main theorems. The first gives an interesting topological
obstruction to the existence of a fibred boundary or fibred cusp hyperkähler metric
satisfying the linear growth hypothesis of Theorem 3.

COROLLARY 7
If M is a hyperkähler manifold as in Theorem 3 which is either of fibred cusp or
fibred boundary type, then the intersection form on H∗(M, ∂M) is semidefinite, so
that sgn(M) is nonpositive if k is odd and nonnegative if k is even.

Proof
To be definite, suppose that g is a fibred cusp metric. We know by Theorem 3 that
the intersection form on L2H 2k(M, g) is semidefinite of the correct sign. On the
other hand, the topological signature of a manifold with boundary is by definition the
index of the intersection form on the image of (middle degree) relative cohomology
in absolute. Thus we must show that this latter intersection form is also semidefinite.

Suppose that η and ν are smooth closed compactly supported 2k-forms that repre-
sent nontrivial classes in Im(H2k(M, ∂M) → H2k(M)). By Theorem 2 or, rather, by
its proof in §5, we have η = dζ + γ , ν = dξ + ρ, where γ, ρ ∈ L2H 2k(M); we also
have ζ = ζ0 + ζ ′, where ζ ′

∈ A ε�2k
fc (M) and ζ0 is polyhomogeneous with growth at

just the critical value for square integrability and in addition is fibre-harmonic in form
and in the kernel of D. There is a similar decomposition for ξ .

We now compute that∫
M
η ∧ ν =

∫
M
(dζ + γ ) ∧ (dξ + ρ)

=

∫
M

dζ ∧ dξ +

∫
M

dζ ∧ ρ +

∫
M
γ ∧ dξ +

∫
M
γ ∧ ρ.

Now integrate by parts in each of the first three terms on the right. Using the infor-
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mation in the last paragraph, the boundary terms all vanish, and we are left with the
equality of the pairing of η and ν with the pairing of γ and ρ, as desired.

Remark. This topological obstruction is investigated further in [41] for toric hy-
perkähler varieties.

The arguments in the proof above also yield the following.

COROLLARY 8
If M has a hyperkähler fibred boundary metric as above, then the τ -invariant of ∂M
is nonpositive if k is odd and nonnegative if k is even.

7. Examples
A mathematically interesting theme in contemporary research in string theory in-
volves the use of duality to predict the dimensions of spaces of L2 harmonic forms on
various classes of noncompact manifolds. Probably the most famous of these is the S-
duality conjecture made by Sen in [63, page 220], which predicts the dimension of the
Hodge cohomology on moduli spaces of monopoles on R3; these moduli spaces in-
clude the Atiyah-Hitchin manifold, the Taub-NUT space, and its higher-dimensional
generalizations. A similar S-duality prediction in [66, page 57] concerns the Hodge
cohomology of quiver varieties, while [39, Conjecture 1] contains a mathematical
conjecture about the Hodge cohomology of moduli of Higgs bundles. Similarly to
Sen’s conjecture, these last predictions equate the Hodge cohomology of these moduli
spaces with the image of compactly supported cohomology in absolute cohomology.
We also mention the predictions about Hodge cohomology in [64] for multi-Taub-
NUT spaces and in [10] for the G2-space constructed in that paper.

The justification of these predictions has been a key motivation for our work.
In this final section we examine these conjectures in light of the results of this pa-
per. The point is that, particularly in the low-dimensional cases, the moduli spaces
in these conjectures carry natural fibred boundary metrics, and hence our Theorem 1
can be applied. We discuss several examples where we can confirm the predictions,
but notably, we also show that the L2 harmonic form predicted to exist on the ALF
G2-space of [10] does not in fact exist. This is labeled as a U (1)-puzzle in [10, §6]
and awaits further explanation.

Many of the calculations below have been or could be done using techniques al-
ready in the literature. For example, Hitchin [44] has already settled Sen’s S-duality
conjecture for the Atiyah-Hitchin and Taub-NUT manifolds. Likewise, the computa-
tions for all hyperkähler ALE spaces follow from Theorem 3 above and the computa-
tion of Hodge cohomology in the b-case, which was previously known (see [2], [56]).
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For spaces with hyperkähler metrics of fibred boundary type, the calculations follow
from Theorem 3 again and the signature formula (55) of Dai and Vaillant. We hope
the advantages of our more unified approach to these problems is apparent and that
our results give new topological insight even in the previously understood cases. We
state as a corollary those applications that we believe are new.

7.1. Gravitational instantons
A gravitational instanton is by definition (see [42]) a four-dimensional complete hy-
perkähler manifold. In all known topologically finite and noncompact examples, the
metric is of fibred boundary type. These examples can be separated into three classes:
ALE (short for asymptotically locally Euclidean), where F is a point; ALF (short
for asymptotically locally flat), where F = S1; and ALG (by induction), where
F = S1

× S1.
The space L2H 2(M) of L2 harmonic 2-forms for gravitational instantons is par-

ticularly interesting since it contains the curvatures of U(1) Yang-Mills connections.
Because of this, we also mention what is known about SU(2) Yang-Mills connections
on gravitational instantons and how these U(1) Yang-Mills connections fit into that
picture as subspaces of reducible connections.

7.1.1. ALE gravitational instantons
In his thesis, Kronheimer [49], [50] classified all ALE gravitational instantons. The
underlying manifolds in this classification are (diffeomorphic to) minimal resolutions
of C2/0, where 0 is a finite subgroup of SU(2). These are of type Ak , Dk , E6, E7, or
E8. If we denote the resolution of C2/0 by M0 , the correspondence is given by the
fact that the intersection form on H2

c (M0) is isomorphic to the Cartan matrix of some
simply laced Lie algebra of type ADE. Topologically, this means that M0 retracts to
a configuration of Lagrangian 2-spheres forming the corresponding Dynkin diagram.
The intersection form gives a pairing H2

c (M0)× H2(M0) → Z, and since the Cartan
matrix defining the form is always negative definite, we see that the forgetful map
H2

c (M0) → H2(M0) is an isomorphism.
Now apply Theorem 1 to get the well-known result that L2H k(M) is nontrivial

only in degree 2 and
L2H 2(M0, gALE) ∼= H2(M0).

In particular, if k is the number of conjugacy classes in 0, then
dim L2H 2(M0, gALE) = k − 1.

A nice explicit construction of k − 1 independent elements giving a basis of
L2H 2(M0) in this case appears in [35]. The paper [51] combines this with [49] to
construct all finite-energy U(k) Yang-Mills instantons on M0 .
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7.1.2. ALF gravitational instantons
There is no classification known for ALF gravitational instantons parallel to that of
Kronheimer for the ALE case. However, Cherkis and Kapustin [20] have recently
conjectured a classification scheme; using a physics argument, they predict that all
ALF instantons are of the types Ak , Dk , so that D0 stands for the Atiyah-Hitchin
manifold.

Consider first the Ak- (for k ≥ 1) and Dk- (for k ≥ 4) families. The underlying
manifolds of these gravitational instantons are the same as in the ALE case, although
the metrics are of course now ALF. Thus now 0 is either a cyclic or dihedral subgroup
of SU(2) and M0 is the minimal resolution of C2/0. The Ak-family was constructed
first in [42] (see below for the details), while the Dk-family appears in [20] and [19].

The following corollary confirms the prediction made in [64] concerning the
Hodge cohomology of ALF gravitational instantons in the Ak-case but includes the
Dk-case as well.

COROLLARY 9
Suppose that 0 ⊂ SU(2) is a finite cyclic or dihedral subgroup, and let k be the
number of conjugacy classes in 0. If (M0, gALF) is the associated ALF gravitational
instanton, then dim L2H 2(M0) = k; L2H d(M0) is trivial for d 6= 2.

Proof
In both the Ak and Dk settings, X0 = X0 ∪ S2. The Mayer-Vietoris sequence
gives H∗(X0) ∼= H2(X0) ⊕ H0(S2). Therefore by (1), dim L2H 2(M, gALF) =

dim H2(X0)+ 1 = k.
Alternatively, apply Theorem 3 and (55). One calculates that the τ -invariant of

the fibration at infinity is −1; hence sgnL2(M0, gALF) = sgn(M0) − 1 = −k. The
result follows by applying Theorem 3 again.

A consequence of this result is that for an ALF gravitational instanton M0 there is,
up to scaling, a unique L2 harmonic form; this form is exact but not, of course, in the
range of d on L2. In the Ak-case, the metric and all L2 harmonic 2-forms are known
explicitly. We now explain this in more detail and determine which L2-harmonic form
is exact.

The explicit construction of the ALF gravitational instantons of type Ak uses the
Gibbons-Hawking ansatz (see [33])

gALF = V (dx2
1 + dx2

2 + dx2
3)+ V −1(dθ + α)2,

where α is a 1-form on R3 such that dα = ∗dV . There is a metric gk
ALF of this type

that lives on a four-manifold Mk and admits an isometric circle action with k fixed
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points. Away from these fixed points, Mk fibres over R3
\ {p1, . . . , pk} with S1 fibres,

and it induces a degree −1 fibration around each pi ∈ R3. Here (x1, x2, x3) is the
standard coordinate system on R3 and θ ∈ S1. Finally,

V =

k∑
1

2m
|x − pi |

+ 1, m > 0.

These are called Gibbons-Hawking or multi-Taub-NUT metrics, and g1
ALF is the fa-

mous Taub-NUT metric.
The paper [61] explicitly describes the k-dimensional space L2H 2(Mk) as

�i = dξi , i = 1, . . . , k,

where

ξi = αi −
Vi

V
(dθ + α), where Vi =

2m
|x − pi |

and dαi = ∗dVi .

This description is only local in the given coordinate chart, and indeed, ξi extends
globally only as a connection on a U(1)-bundle. Its curvature �i is globally defined.
There is one exception: the connection ξ =

∑
ξi = V −1(dθ + α) − dθ is gauge

equivalent to V −1(dθ + α), which extends globally as the metric dual of the Killing
vector field ∂/∂θ from the circle action. Its curvature is the L2 harmonic 2-form
d
(
V −1(dθ + α)

)
. For the Taub-NUT metric, that is, when k = 1, this 2-form was

discovered by Gibbons [32] and exhibited as support for Sen’s S-duality conjecture.
(As already noted, Hitchin [44] settled Sen’s conjecture in this case by proving that
there are no other nontrivial L2 harmonic forms.)

Our result explains the topological origin of Gibbons’s L2 harmonic 2-form. For
although M1 is diffeomorphic to R4, its compactification (as an ALF space) is X1 =

CP2. The nontrivial cohomology of CP2 in degree 2 is the topological source of
Gibbons’s L2 harmonic 2-form.

The other infinite family of ALF gravitational instantons, of type Dk , was con-
structed in [19] and [20] as moduli spaces of certain singular SU(2) monopoles on
R3. The metrics are defined using twistor theory and so are not as explicit as the
Gibbons-Hawking metrics above. However, for k ≥ 4, Theorem 1 again gives a k-
dimensional space of L2 harmonic 2-forms, a one-dimensional subspace of which is
exact. It would be interesting to find these harmonic forms explicitly.

We now come to the Atiyah-Hitchin manifold M (see [1]). As explained in [43],
the compactification of this space is obtained by adding a copy of RP2, and in fact,
M∪RP2

= S4. Hence (1) shows that L2H ∗(M) = 0. However, π1(M) is Z2, and the
universal cover M̃ has compactification M̃ ∪ RP2

= CP2. Therefore L2H 2(M̃) is
one-dimensional. This 2-form was constructed by Sen in [63], and Hitchin [44] proved
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its uniqueness. Our proof of Sen’s conjecture, through (1), explains the topological
origin of this form since it comes from the one-dimensional H2(CP2).

In contrast to the ALE case, very little is known about Yang-Mills instantons on
these ALF gravitational instantons (though, of course, the discussion above can be ap-
plied to understand the situation for U(1) Yang-Mills instantons). Recently, new fam-
ilies of SU(2) Yang-Mills instantons on multi-Taub-NUT spaces have been found (cf.
[28], [30]). In particular, [30] contains an intrinsic construction of the L2 harmonic
forms �i defined above as the curvatures of reducible SU (2) Yang-Mills instantons.

We conclude this section with a final example, the well-known Euclidean
Schwarzschild space M , which is a complete Ricci-flat 4-manifold but not hy-
perkähler. Its Hodge cohomology is calculated in [29] using techniques from [44],
and it is shown there that L2H k(M) = 0 when k 6= 2 and L2H 2(M) is two-
dimensional, with a one-dimensional subspace of (anti)-self-dual solutions. This is
explained neatly by (1): namely, M is diffeomorphic to R2

× S2 and is ALF with
F = S1

= ∂(R2); hence it compactifies as X = S2
× S2. Applying (1), we see that

the Hodge cohomology of M is concentrated in degree 2, and

dim L2H 2(M) = dim H2(X) = dim H2(S2
× S2) = 2.

As explained in [29], the self-dual L2 harmonic 2-forms on M had already appeared
in the physics literature in the disguise of SU(2) Yang-Mills instantons (see [14]).

7.1.3. ALG gravitational instantons
The ALG gravitational instantons are the most recent of these spaces to be studied,
and examples have only recently been constructed (see [21]); they arise as moduli
spaces of periodic monopoles on R2

× S1. In these examples the underlying manifold
M is an elliptic fibration of type D1, D2, D3, D4 or E6, E7, E8 (cf. [21] for the precise
meaning of this). They have a fibred boundary metric with F = T 2, and hence their
compactification X = M ∪ S1 is not a Witt space. Theorem 1 gives the following.

COROLLARY 10
Let (M, gALG) be an ALG gravitational instanton with a fibred boundary metric with
F = T 2. Then

L2H 2(M, gALG) ∼= Im
(
H2(M, ∂M) → H2(M)

)
is an isomorphism or, in other words, dim L2H 2(M, gALG) equals the rank of the
intersection matrix on H2(M, ∂M).

Proof
The intersection cohomology of X can be calculated using Mayer-Vietoris, so that the



542 HAUSEL, HUNSICKER, and MAZZEO

result follows from Theorem 1. However, another approach may be more transparent.
By Theorem 3 and the signature formula (55), it is enough to show that the fibration
∂(M) → B has τ -invariant equal to zero. But this follows from [25, pages 316 – 319],
where it is shown that τ = 0 on any fibration that admits a flat connection. This
applies in the present situation because over the one-dimensional base B = S1 any
connection is flat.

In the examples of type D4, the intersection matrix is the Cartan matrix of type D̂4

(see [21]). Hence in this case L2H 2(M, gALG) is four-dimensional.
A parallel construction in [21] of certain moduli spaces of solutions to Hitchin’s

equations (or, equivalently, Higgs bundles) yields manifolds with hyperkähler metrics
gHit which have the same complex structure and underlying topology as the moduli
spaces of periodic monopoles discussed above. A conjecture in [21] states that the
corresponding elements of these two classes of moduli spaces are in fact isometric.
For example, it is known that the moduli space of rank 2 parabolic Higgs bundles on
CP1

\ {p1, p2, p3, p4} is an elliptic fibration (given by the Hitchin map) with one
singular fibre of type D̂4.

If this conjecture is valid in general, then Corollary 10 implies that for the
four-dimensional moduli space of solutions to Hitchin’s equations on a cylinder,
L2H 2(M, gHit) ∼= Im(H2(M, ∂M) → H2(M)). This would be the first evidence,
albeit indirect, for [39, Conjecture 1].

7.2. ALE toric hyperkähler manifolds
Toric hyperkähler manifolds were defined and first studied in [6]. An algebraic geo-
metric account of the underlying varieties, with some novel applications to combina-
torics, is given in [40].

Let U(1)d act on Hn , preserving the hyperkähler structure, and let Mξ =

Hn////ξU(1)d be a smooth toric hyperkähler manifold of dimension 4n − 4d . The
notation X////ξG here denotes a hyperkähler quotient (see [45]). This construction
determines a family of metrics on Mξ corresponding to the regular values of the hy-
perkähler moment map. For any such value, consider the family Mtξ , t > 0. The
asymptotics of the metrics in the family Mtξ are the same for t 6= 0 (i.e., these metrics
are quasi-isometric, with increasing quasi-isometry constant as t → 0). As t → 0,
Mtξ degenerates to the singular space M0 = Hn////0U (1)d . If we suppose that M0

has only one isolated singularity, then the metrics in this family maintain the same
asymptotics at infinity even when t = 0. In this case, M0 is the cone over a 3-Sasakian
compact smooth manifold. This implies that Mξ is ALE.

The question of when M0 has only one isolated singularity is intimately related to
3-Sasakian geometry (see [9]), and we quote a result from [6, Theorem 4.1]: M0 has
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only one isolated singularity if and only if the action of U(1)d on Hn is unimodular
(this means that the generic quotient Mξ is smooth) and generic (this means that the
vector configuration described by the embedding U(1)d ⊂ U(1)n is generic; see [5]).
Now Theorem 1 and [41] give the following.

COROLLARY 11
Suppose that the toric hyperkähler manifold Mξ is smooth and generic. Then

L2H 2n−2d(Mξ ) ∼= Im
(
H2n−2d(Mξ , ∂Mξ ) → H2n−2d(Mξ )

)
∼= H2n−2d(Mξ ),

and L2H k(Mξ ) = 0 in all other degrees.

The Hodge cohomology is concentrated in the middle degree because Mξ has no
cohomology above the middle dimension. It is proven in [41] that the intersection
form on H2n−2d(Mξ , ∂Mξ ) is definite, which in the case of a smooth and generic
toric hyperkähler variety is consistent with Corollary 7. It follows that the forgetful
map H2n−2d(Mξ , ∂Mξ ) → H2n−2d(Mξ ) is an isomorphism for any smooth toric
hyperkähler variety, proving the last isomorphism in Corollary 11.

There are two extreme cases for a smooth generic toric hyperkähler manifold Mξ .
One occurs when d = n − 1, and these are just the ALE gravitational instantons of
type Ak , which we have discussed earlier. The other extreme is when d = 1, and then
we obtain the Calabi metric on T ∗CPn−1. From the argument above, it has an ALE
metric and its Hodge cohomology is supported in the middle degree 2n − 2, where it
is one-dimensional. An explicit generator for this space was found in [47].

A closely related example is the ALE Ricci-flat Kähler metric on T ∗Sn , con-
structed by Stenzel in [65]. Theorem 1 shows that there is a one-dimensional space
of L2 harmonic n-forms on that manifold when n is even. For n = 2 this is just the
Eguchi-Hanson metric. For general n = 2k, physicists have found explicit expressions
for the L2 harmonic k-form (see [24]).

7.3. Spin(7)- and G2-metrics
There has been recent interest amongst physicists in constructing new noncompact
complete Spin(7)- and G2-metrics (cf. [10]), and there have been predictions about
the L2 harmonic forms on such spaces. All known examples have fibred boundary
metrics, and so our results, Theorem 1, (1), and (2) can be used to check these predic-
tions. We mention just two examples.

In fact, our Theorem 1 suggested that physicists look for an L2 harmonic 3-form
on a particular example, an ALE G2-metric on a rank 3 real vector bundle over S4,
constructed first in [11]. We have the following as a simple corollary of Theorem 1.
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COROLLARY 12
The G2-metric of [11] on a rank 3 real vector bundle over S4 supports exactly a one-
dimensional space of degree 3 and a one-dimensional space of degree 4 L2 harmonic
forms.

Armed with the knowledge that such forms existed, physicists (see [23]) were able to
find their explicit forms (see [23, (2.18)]) and also [23, footnote 4].

There is another example of a G2-metric, constructed in [10], which lives on
R4

× S3. It is ALF with F = S1, and so our result (2) implies the following.

COROLLARY 13
There are no nontrivial L2 harmonic forms on the G2-space of [10].

A prediction coming from duality arguments between M-theory and type IIA string
theory suggested the existence on this space of an L2 harmonic 2-form or, equiva-
lently, a finite energy U(1) Yang-Mills field, whose counterpart exists in dual theory.
Corollary 13 shows that this prediction fails; actually, the methods of [44] were al-
ready used in [10, §6] to establish the nonexistence of L2 harmonic 2-forms on this
G2-manifold. Those authors call this the U(1)-puzzle.
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