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Abstract. Here we survey several results and conjectures on the cohomology

of the total space of the Hitchin system: the moduli space of semi-stable rank

n and degree d Higgs bundles on a complex algebraic curve C. The picture

emerging is a dynamic mixture of ideas originating in theoretical physics

such as gauge theory and mirror symmetry, Weil conjectures in arithmetic

algebraic geometry, representation theory of finite groups of Lie type and

Langlands duality in number theory.

1. Introduction

Studying the topology of moduli spaces in algebraic geometry could be con-
sidered the first approximation of understanding the moduli problem. We start
with an example which is one of the original examples of moduli spaces constructed
by Mumford [Mu] in 1962 using Geometric Invariant Theory. Let N denote the
moduli space of semi-stable rank n degree d stable bundles on a smooth complex
algebraic curve C; which turns out to be a projective variety. In 1965 Narasimhan
and Seshadri [NS] proved that the space N is canonically diffeomorphic with the
manifold

NB := {A1, B1, . . . , Ag, Bg ∈ U(n) |[A1, B1] . . . [Ag, Bg] = ζdnI}/U(n),

of twisted representations of the fundamental group of C to U(n), where ζn =
exp(2πi/n). Newstead [Ne1] in 1966 used this latter description to determine the
Betti numbers of NB when n = 2 and d = 1. Using ideas from algebraic number
theory for function fields Harder [Ha] in 1970 counted the rational points N (Fq)
over a finite field when n = 2 and d = 1 and compared his formulae to Newstead’s
results to find that the analogue of the Riemann hypothesis, the last remaining
Weil conjectures, holds in this case. By the time Harder and Narasimhan [HN]
in 1975 managed to count #N (Fq) for any n and coprime d the last of the Weil
conjectures had been proved by Deligne [De1] in 1974, and their result in turn
yielded [DR] recursive formulae for the Betti numbers of N (C) .

The same recursive formulae were found using a completely different method
by Atiyah and Bott [AB] in 1981. They studied the topology of N in another
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reincarnation with origins in theoretical physics. The Yang-Mills equations on R4

appeared in theoretical physics as certain non-abelian generalization to Maxwell’s
equation; and were used to describe aspects of the standard model of the physics of
elementary particles. Atiyah and Bott considered the analogue of these equations
in 2 dimensions, more precisely the solution space NYM of Yang-Mills connections
on a differentiable Hermitian vector bundle of rank n and degree d on the Rie-
mann surface C modulo gauge transformations. Once again we have canonical
diffeomorphisms NYM

∼= NB
∼= N . Atiyah–Bott [AB] used this gauge theoretical

approach to study the topology of NYM obtaining in particular recursive formu-
lae for the Betti numbers which turned out to be essentially the same as those
arising from Harder-Narasimhan’s arithmetic approach. Atiyah-Bott’s approach
has been greatly generalized in Kirwan’s work [Ki] to study the cohomology of
Kähler quotients in differential geometry and the closely related GIT quotients in
algebraic geometry. By now we have a fairly comprehensive understanding of the
cohomology (besides Betti numbers: the ring structure, torsion, K-theory etc) of
N or more generally of compact Kähler and GIT quotients.

In this survey we will be interested in a hyperkähler analogue of the above
questions. It started with Hitchin’s seminal paper [Hi1] in 1987. Hitchin [Hi1]
investigated the two-dimensional reduction of the four dimensional Yang-Mills
equations over a Riemann surface, what we now call Hitchin’s self-duality equa-
tions on a rank n and degree d bundle on the Riemann surface C. Using gauge
theoretical methods one can constructMHit the space of solutions to Hitchin’s self-
duality equations modulo gauge transformations. MHit can be considered as the
hyperkähler analogue of NYM. When n and d are coprime MHit is a smooth, al-
beit non-compact, differentiable manifold with a natural hyperkähler metric. The
latter means a metric with three Kähler forms corresponding to complex struc-
tures I, J and K, satisfiying quaternionic relations. Hitchin [Hi1] found that the
corresponding algebraic geometric moduli space is the moduli spaceMDol of semi-
stable Higgs bundles (E, φ) of rank n and degree d and again we have the natural
diffeomorphism MHit

∼=MDol which in fact is complex analytical in the complex
structure I of the hyperkähler metric onMHit. MDol is the hyperkähler analogue
of N . Using a natural Morse function onMHit Hitchin was able to determine the
Betti numbers of MHit when n = 2 and d = 1, and this work was extended by
Gothen [Go] in 1994 to the n = 3 case. Hitherto the Betti numbers for n > 3 have
not been found, but see §6.

In this paper we will survey several approaches to get cohomological infor-
mation on MHit. The main difficulty lies in the fact that MHit is non-compact.
However as Hitchin [Hi1] says

”... the moduli space of all solutions turns out to be a manifold with an
extremely rich geometric structure”.



Tamás Hausel 3

Due to this surprisingly rich geometrical structures on MHit we will have several
different approaches to study H∗(MHit), some motivated by ideas in theoretical
physics, some by arithmetic and some by Langlands duality.

As mentioned MHit has a natural hyperkähler metric and in complex struc-
ture J it turns out to be complex analytically isomorphic to the character variety

MB := { A1, B1, . . . , Ag, Bg ∈ GLn(C) |[A1, B1] . . . [Ag, Bg] = ζdnI } //GLn(C)

of twisted representations of the fundamental group of C to GLn. The new phe-
nomenon here is that this is a complex variety. Thus cohomological information
could be gained by counting points of it over finite fields. Using the character
table of the finite group GLn(Fq) of Lie type this was accomplished in [HV]. The
calculation leads to some interesting conjectures on the Betti numbers of MB.
This approach was surveyed in [Ha2]. We will also mention this approach in §4
but here will focus on its connections to one more aspect of the geometry ofMHit.
Namely, that it carries the structure of an integrable system.

This integrable system, called the Hitchin system, was defined in [Hi2] by
taking the characteristic polynomial of the Higgs field, and has several remarkable
properties. First of all it is a completely integrable system with respect to the
holomorphic symplectic structure on MDol arising from the hyperkähler metric.
Second it is proper, in particular the generic fibers are Abelian varieties. In this
paper we will concentrate on the topological aspects of the Hitchin system on
MDol.

The recent renewed interest in the Hitchin system could be traced back to two
major advances. One is Kapustin–Witten’s [KW] proposal in 2006, that S-duality
gives a physical framework for the geometric Langlands correspondence. In fact,
[KW] argues that this S-duality reduces to mirror symmetry for Hitchin systems
for Langlands dual groups. This point of view has been expanded and explained
in several papers such as [GW], [FW], [Wi]. One of our main motivation to study
H∗(MDol) is to try to prove the topological mirror symmetry proposal of [HT],
which is a certain agreement of Hodge numbers of the mirror Hitchin systems;
which we now understand as a cohomological shadow of Kapustin–Witten’s S-
duality (see §5.3). This topological mirror symmetry proposal is mathematically
well-defined and could be tested by using the existing techniques of studying the
cohomology of H∗(MDol). Indeed it is a theorem when n = 2, 3 using [Hi1] and
[Go]. Below we will introduce the necessary formalism to discuss these conjectures
and results.

Most recently Ngô proved [Ng] the fundamental lemma in the Langlands
program in 2008 by a detailed study of the topology of the Hitchin map over
a large open subset of its image. Surprisingly, Ngô’s geometric approach will be
intimately related to our considerations, even though Ngô’s main application is the
study of the cohomology of a singular fiber of the Hitchin map. We will explain at
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the end of this survey some connections of Ngô’s work to our studies of the global
topology of the Hitchin map.

We should also mention that both Kapustin–Witten and Ngô study Hitchin
systems for general reductive groups, for simplicity we will concentrate on the
groups GLn,SLn and PGLn in this paper.

Our studies will lead us into a circle of ideas relating arithmetic and the
Langlands program to the physical ideas from gauge theory, S-duality and mirror
symmetry in the study of the global topology of the Hitchin system. This could
be considered the hyperkähler analogue of the fascinating parallels1 between the
arithmetic approach of Harder–Narasimhan and the gauge theoretical approach of
Atiyah–Bott in the study of H∗(N ).
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Huybrechts, Luca Migliorini, David Nadler, Tony Pantev and especially an anony-
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1.1. Mirror symmetry

In order to motivate the topological mirror symmetry conjectures of [HT], we
give some background information on three of the main topics involved starting
with mirror symmetry.

Considerations of mirror symmetry appeared in various forms in string the-
ory at the end of the 1980’s. It entered into the realm of mathematics via the
work [COGP] of Candelas-de la Ossa-Green-Parkes in 1991 by formulating mathe-
matically precise (and surprising) conjectures on the number of rational curves in
certain Calabi-Yau 3-folds.

Mathematically, mirror symmetry relates the symplectic geometry of a Calabi-
Yau manifold X to the complex geometry of its mirror Calabi-Yau Y of the same
dimension. Such an unexpected duality between two previously separately studied
fields in geometry has caught the interest of several mathematicians working in

1For a recent survey on these parallels see [ADK].
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related fields. The literature of mirror symmetry is vast, here we only mention
monographs and conference proceedings on the subject such as [CK, Mi, Mi2].

First aspect of checking a mirror symmetry proposal is the topological mirror
test

hp,q(X) = hdimY−p,q(Y )(1.1)

that the Hodge diamonds have to be mirror to each other. If we introduce the
notation

E(X;x, y) =
∑

(−1)i+jhi,j(X)xiyj

the symmetry translates to

E(X;x, y) = xdimY E (Y ; 1/x, y) .(1.2)

Here we will be interested in the case when the Calabi-Yau manifolds are hy-
perkähler. We note that for a compact hyperkähler manifold X wedging with
powers of the holomorphic (2, 0) symplectic form induces hp,q(X) = hdimX−p,q(X)
and so the above topological mirror test simplifies to the agreement

hp,q(X) = hp,q(Y )(1.3)

of Hodge numbers when both X and Y are hyperkähler.
Kontsevich [Ko1] in 1994 suggested that mirror symmetry is underlined by

a more fundamental homological mirror symmetry, which identifies two derived
categories

Db(Fuk(X,ω)) ∼ Db(Coh(Y, I))

the Fukaya category Db(Fuk(X,ω)) of certain decorated Lagrangian subvarieties
of the symplectic manifold (X,ω) and the derived category of coherent sheaves
Db(Coh(Y, I)) on the mirror Y , considered as a complex variety. This suggestion
has been checked in several examples [PZ, Se] and has been the starting point of
a large body of mathematical research.

A more geometrical proposal is contained in the work of Strominger-Yau-
Zaslow [SYZ] in 1996. They suggested a geometrical construction how to obtain
the mirror Y from any given Calabi-Yau X. It suggested that Y can be constructed
as the moduli space of certain special Lagrangian submanifolds of X together with
a flat line bundle on it; the picture arising then can be described as

X

χX   @
@@

@@
@@

Y

χY��~~
~~

~~
~

B

where χX and χY are special Lagrangian fibrations on X and Y respectively, with
generic fibers dual middle-dimensional tori. Until this [SYZ] proposal there was no
general geometrical conjectures how one might construct Y from X. Even though
there have been a fair amount of work today we do not have an example where
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the geometrical proposal of [SYZ] is completely implemented for the original case
of Calabi-Yau 3-folds. But see [Gr] for a survey of recent developments.

We conclude by noting that many mathematical predictions of mirror sym-
metry have been confirmed but we still have no general understanding yet.

1.2. Langlands duality

Here we give some technically simplified remarks as a sketch of a basic intro-
duction to a few ideas in the Langlands program in number theory; more details
and references can be found in the surveys [Fr, Ge].

As a first approximation, the Langlands correspondence aims to describe a
central object in number theory: the absolute Galois group Gal(Q/Q) via represen-
tation theory. More precisely let G be a reductive group (over the complex numbers
these are just the complexifications of compact Lie groups) and LG its Langlands
dual, which one can obtain by dualizing the root datum of G. For example for
the groups of our concern in the present paper: LGLn = GLn; LSLn = PGLn,
LPGLn = SLn. Langlands in 1967 conjectured that one can find a correspon-
dence between the set isomorphism classes of certain continuous homomorphisms
Gal(Q/Q)→G(Ql) (for G = GLn these are just n-dimensional representations)
and automorphic (certain infinite dimensional) representations of LG(AQ) over
the ring of adèles AQ. The motivation for understanding the representations of
Gal(Q/Q) is that it describes the absolute Galois group itself via the Tannakian
formalism.

Langlands built his programme as a non-abelian generalization of the adèlic
description of class field theory which can be understood as the G = GL1 case of
the above. Indeed representations of Gal(Q/Q) to GL1 describe the abelianization
Galab(Q/Q) which describes all finite abelian extensions of Q. In the case of
G = GL2 elliptic curves enter naturally, via the action of the absolute Galois
group on their two-dimensional first étale cohomology. The corresponding objects
on the automorphic side are modular forms, and the Langlands program in this
case can be seen to reduce to the Shimura-Taniyama-Weil conjecture which is now
a theorem due to the work of Wiles and others.

The adèlic description of class field theory was partly motivated by the deep
analogy between Q, or more generally number fields (i.e. finite extensions of the
rationals), and the function field Fq(C), where C/Fq is an algebraic curve. This
analogy proved powerful in attacking problems in algebraic number theory and in
the Langlands program specifically. Many of the conjectured properties of number
fields can be formulated for function fields, where one can use the techniques of
algebraic geometry and succeed even in situations where the number field case
remains open. Such an example is the Riemann hypothesis, which is still open
over Q, but was proved over function fields Fq(C) of curves by Weil [We] in 1941
and for any algebraic variety by Deligne [De1] in 1974.
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For an example of the more harmonious interaction between the number field
and function field side of algebraic number theory we mention that Ngô’s recent
proof [Ng] of the fundamental lemma for Fq(C) (where he used the topology of
the Hitchin system, for more details see §5.4) yielded the fundamental lemma for
the number field case, due to previous work by Waldspurger [Wa].

If we replace Fq by C, i.e. consider the complex function field C(C) for
complex curves C/C, i.e. Riemann surfaces, then we lose some of the analogies,
but still one can reformulate a version of the Langlands correspondence mentioned
above. This is the Geometric Langlands Correspondence as was proposed by [La1,
BeD]. Originally it was a correspondence between isomorphism classes of G-local
systems on C (analogues of the representations of the absolute Galois group)
and certain Hecke eigensheaves (the analogues of automorphic representations)
on the stack BunLG of LG-bundles on X. In these lectures our point of view
will be that as a cohomological shadow of these considerations of the Geometric
Langlands programme one can extract agreements of certain Hodge numbers of
Hitchin systems for Langlands dual groups.

1.3. Hitchin system

Here we collect some of the basic ideas of completely integrable Hamiltonian
systems and comment on the history of a large class of them: the Hitchin systems.
An extensive account for the former can be found in [Arn] while [DM] details the
latter.

Recall that a Hamiltonian system is given by a symplectic manifold (X2d, ω)
and a Hamiltonian - or energy- function H : X → R. The corresponding XH

Hamiltonian vector field is defined by the property

dH = ω(XH , .).

The dynamics of the Hamiltonian system is given by the flow - the one parameter
group of diffeomorphisms - generated by XH . A function f : X → R is called a
first integral if

XHf = ω(Xf , XH) = 0

holds. The condition is equivalent to say that f is constant along the flow of the
system. Note that ω(XH , XH) = 0 as ω is alternating and so H is constant along
the flow - which is sometimes referred to as the law of conservation of energy.

We say that the Hamiltonian system is completely integrable if there is a map

f = (H = f1, . . . , fd) : X → Rd,

which is generic (meaning that f is generically a submersion) such that ω(Xfi , Xfj ) =
0. The generic fibre of f then has an action of Rd = 〈Xf1 , . . . , Xfd〉 and so when
f is proper the generic fibre can be identified with a torus (S1)d. In such cases
one has a fairly good control of the dynamics of the system (on the generic fiber
it is just an affine motion) hence the name integrable. Several examples arise in
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classical mechanics such as the Euler and Kovalevskaya tops and the spherical
pendulum. For more details see [Arn].

Here we will be concerned with the complexified or algebraic version of inte-
grable Hamiltonian systems. Thus we consider a complex 2d dimensional manifold
X with a holomorphic symplectic 2-form. f : X → Cd now is an algebraically com-
pletely integrable system when f is generically a submersion and ω(Xfi , Xfj ) = 0.
If f turns out to be proper, the generic fiber then will become a torus with a com-
plex structure - in the algebraic case- an Abelian variety. This is the case for a large
class of examples: the Hitchin systems. As we will see in more detail below the
Hitchin system is attached to the cotangent bundle of the moduli space of stable
G-bundles on a complex curve X. Originally it appeared in Hitchin’s study [Hi1] of
the 2-dimensional reduction of the Yang-Mills equations from 4-dimensions. Here
we will follow a more algebraic approach.

2. Higgs bundles and the Hitchin system

2.1. The moduli space of vector bundles on a curve

Let C be a complex projective curve of genus g > 1. We fix integers n > 0
and d ∈ Z. We asssume throughout that (d, n) = 1. Using Geometric Invariant
Theory [Mu, Ne2] one can construct N d; the moduli space of isomorphism classes
of stable rank n degree d vector bundles (equivalently GLn-bundles) on C.

We recall that a vector bundle is called semistable if every subbundle F

satisfies

µ(F ) =
degF
rkF

≤ µ(E) =
degE
rkE

A vector bundle is stable if one has strict inequality above for all proper subbundles.
In general one has to be careful in constructing such moduli spaces as special

care has to be taken for the non-trivial automorphisms of strictly semi-stable ob-
jects. However, as we assume (d, n) = 1 the notions of semi-stability and stability
clearly agree. In particular, we can conclude that N d is smooth and projective of
dimension dn = n2(g − 1) + 1.

Consider the determinant morphism

det : N d → Jacd(C)

which sends a vector bundle of rank n to its highest exterior power ΛnE. Choose
Λ ∈ Jacd(C) and define ŇΛ := det−1(Λ). When Λ = OC is the trivial bundle,
the vector bundles in ŇΛ are exactly the SLn-bundles, for general Λ we can think
of points in ŇΛ as “twisted SLn-bundles”. Tensoring with an nth root of Λ1Λ−1

2

gives an isomoprhism ŇΛ1 ∼= ŇΛ2 thus the isomorphism class of ŇΛ does not
depend on the choice of Λ ∈ Jacd(C). We often abuse notation and write Ň d

instead of ŇΛ.
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The abelian variety Pic0(C) = Jac0(C) acts on N d via

(L,E) 7→ L⊗ E.

As Seshadri showed in [Se] the quotient of a normal variety by an Abelian variety
always exist, so we can define the moduli space of degree d PGLn bundles:

N̂ d := N d/Pic0(C).

The embedding ŇΛ ⊂ N d induces

N̂ d ∼= ŇΛ/Γ.

Here Γ := Pic0(C)[n] is the group of n-torsion points of the Jacobian, isomorphic
to the finite group Z2g

n . It acts on ŇΛ by tensorization. Hence N̂ d is a projective
orbifold.

2.1.1. Cohomology of moduli spaces of bundles The cohomology2 of N d,
Ň d and N̂ d is well understood. The structure of the cohomology rings can be
described by finding universal generators and all the relations between them [AB,
Th, EK].

Here we only comment on the additive structure in more detail. In 1975
Harder and Narasimhan [HN] obtained recursive formulae for the number of points
of these varieties over finite fields. It is then possible to use the Weil conjectures
(which had been proven the year before by Deligne [De1]) to obtain formulae for
the Betti numbers. In 1981 Atiyah and Bott gave a different gauge-theoretic proof
[AB].

The main application in Harder and Narasimhan’s paper is the following:

Theorem 2.1 ([HN]). The finite group Γ acts trivially on H∗(Ň d). In particular,
we have H∗(Ň d) = H∗(N̂ d).

Remark 2.2. This result is difficult to prove and relies on showing that the varieties
Ň d and N̂ d have the same number of points over finite fields. The analogue of this
result is false in the context of the moduli space of Higgs bundles as was already
observed by Hitchin in [Hi1] for n = 2. Interestingly for us, this will lead to the
non-triviality of our topological mirror tests.

2.2. The Hitchin system

We now consider the Hitchin system, which will be an integrable system on
the cotangent bundle to the moduli spaces considered in the previous section. As
in the previous section, fix n and d and abbreviate N := N d.

The cotangent bundle T ∗N is an algebraic variety. The ring of regular func-
tions C[T ∗N ] turns out to be finitely-generated as will be proven below. The

2In this paper cohomology is with rational coefficients; unless indicated otherwise.
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Hitchin map then is simply the affinization:

χ : T ∗N → A = Spec(C[T ∗N ]).(2.3)

We now describe this map more explicitly. For a point [E] ∈ N standard
deformation theory gives us an identification

T[E]N = H1(C,End(E)).

Applying Serre duality we obtain

T ∗[E]N = H0(C,End(E)⊗K),

where K denotes the canonical bundle of C. An element

φ ∈ H0(C,End(E)⊗K)

is called a Higgs field. Morally, it can be thought of as a matrix of one-forms on
the curve. As such if we consider the characteristic polynomial of (E, φ) ∈ T ∗N
then it will have the form

tn + a1t
n−1 + · · ·+ an

where ai ∈ H0(Ki). For example an ∈ H0(Kn) is the determinant of the Higgs
field.

As we will prove below the Hitchin map (2.3) then has the explicit description

χ : T ∗N → A :=
⊕n

i=1H
0(Ki)

(E, φ) 7→ (a1, a2, . . . , an)

The affine space A is called the Hitchin base.
In the SLn-case we have

T ∗[E]Ň
d = H0(End0(E)⊗K)

that is, a covector at E is given by a trace free Higgs field. Thus in this case the
Hitchin base is

A0 :=
n⊕
i=2

H0(C,Ki).

and the Hitchin map

χ̌ : T ∗Ň d → A0.(2.4)

As the characteristic polynomial of the Higgs field does not change when the
Higgs bundle is tensored with a line bundle, the action of Γ on T ∗Ň is along the
fibers of χ̌ and so χ̌ descends to the quotient which gives the PGLn Hitchin map:

χ̂ : (T ∗Ň )/Γ→ Â = A0.

Recall that T ∗N is an algebraic symplectic variety with the canonical Liou-
ville symplectic form.
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Theorem 2.5 (Hitchin, 1987). If χi, χj ∈ C[T ∗N ] are two coordinate functions,
then they Poisson commute, i.e. ω(Xχi , Xχj ) = 0. We have dim(A) = dim(N )
and the generic fibres of χ are open subsets of abelian varieties. Therefore we have
an algebraically completely integrable Hamiltonian system.

As a next step we will projectivize the Hitchin map χ : T ∗N → A. Recall
that a complex point in T ∗N is given by a pair (E, φ). In order to projectivize we
need to allow E to become unstable.

Definition 2.6. A Higgs bundle is a pair (E, φ) where E is a vector bundle and
φ ∈ H0(C,End(E)⊗K) is a Higgs field.

The definition for semi-stability and stability for Higgs-bundles is almost
the same as for vector bundles except we only consider φ-invariant subbundles.
The moduli-space of semi-stable Higgs bundles is denoted by Md

Dol and often
abbreviated asMd or evenM. It is a non-singular quasi-projective variety, having
T ∗N as an open subvariety.

It is straightforward to extend χ :Md → A. The following result shows that
we have succeeded in projectivizing the Hitchin map:

Theorem 2.7 (Hitchin 1987 [Hi1], Nitsure 1991 [Ni], Faltings 1993 [Fa]). χ is a
proper algebraically completely integrable Hamiltonian system. Its generic fibres
are abelian varieties.

Remark 2.8. Note that T ∗N ⊂M is open dense with complement of codimension
greater than 1 [Hi2, Proposition 6.1.iv]. Thus C[T ∗N ] ∼= C[M]. Therefore the
affinization ofM (which must be the Hitchin map as it is proper to an affine space)
restricts to the affinization of T ∗N , which justifies our unorthodox introduction of
the Hitchin map above.

2.3. Hitchin systems for SLn and PGLn

It is straightforward now to compactify the SLn-Hitchin map T ∗Ň d → A0.
We consider M̌Λ

Dol the moduli space of isomorphism classes of semi-stable Higgs
bundle (E, φ) of rank n, detE = Λ and trace-free

φ ∈ H0(End0(E)⊗K)

Higgs field. Again the isomorphism class of M̌Λ
Dol only depends on d, so we will

simplify our notation to M̌d
Dol, M̌d or even M̌ for the SLn Higgs moduli space.

As in the GLn-case the Hitchin map χ̌ : M̌d → A0 is given by the coefficients
of the characteristic polynomial, it is proper and a completely integrable system.
We also have that T ∗Ň d ⊂ M̌d open and dense.

Let us recall the two constructions of the moduli space of PGLn-Higgs bun-
dles. The cotangent bundle T ∗ Pic0(C) = Pic0(C)×H0(C,K) is a group. It acts
on Md by

(L,ϕ) · (E, φ) 7→ (L⊗ E,ϕ+ φ)
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This induces an action of Γ = Pic0[n] on M̌d. Then we may either define the
PGLn-moduli space as

M̂d =Md/T ∗ Pic0(C) ∼= χ−1(A0)/Pic0(C)

or equivalently as the orbifold

M̂d = M̌d/Γ.

The second quotient tells us that we obtain an orbifold. Since χ̌ is compatible
with the Γ action, we obtain a well-defined proper Hitchin map

χ̂ : M̂d = M̌d/Γ→ A0 = Â.

All the three Hitchin maps χ, χ̌ and χ̂ we defined above are proper alge-
braically completely integrable systems, therefore as explained in §1.3 we should
expect the generic fibers to become compact tori, and as we are in the algebraic
situation: Abelian varieties. We will see below §3.2 that this is indeed the case.

2.4. Cohomology of Higgs moduli spaces

Compared to the moduli spaces of bundles N we have less information on
the cohomology of M. Only the case of n = 2 is understood completely. In this
case [HT1] describes the universal generators of H∗(M) and [HT2] describes the
relations among the generators. Universal generators were found in [Ma] for all n,
but we have not even a conjecture about the ring structure of H∗(M).

The Betti numbers ofM are known only when n = 2 by the work of Hitchin
[Hi1] and for n = 3 by the work of Gothen using a Morse theoretical technique
which we will describe below §3.8 in more detail. There is a conjecture of the
Betti numbers for all n in [HV]. But for n > 3 the Betti numbers are not known,
although see §6.

Crucially for us the analogue of Theorem 2.1 does not hold. Thus Γ acts
non-trivially on H∗(M̌) and so H∗(M̌) � H∗(M̂) as was already observed by
Hitchin in [Hi1] for n = 2. One can conjecturally describe the non-trivial part
of the Γ-module H∗(M̌) by using ideas from mirror symmetry. We proceed by
detailing these ideas.

3. Topological mirror symmetry for Higgs bundles

The goal of this section is to establish the global picture:

M̌

χ̌   B
BB

BB
BB

B M̂

χ̂~~||
||

||
||

A0

where χ̌ and χ̂ are the Hitchin maps. The important point is that the generic
fibres are (torsors for) dual abelian varieties. The reason we want to do this is the
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following. As we mentioned in the introduction M = MDol is isomorphic with
the hyperkähler manifold MHit in complex structure I. If we change complex
structure we also have a moduli space interpretation of MHit in complex structre
J . Namely we can identify [Hi1, §9] the complex manifold (MHit, J) with a certain
moduli space MDR of flat connections on C. In this complex structure

M̌DR

χ̌ ""E
EE

EE
EE

E M̂DR

χ̂||yy
yy

yy
yy

A0

(3.1)

the fibres of the Hitchin map become dual special Lagrangian tori. This is the set-
ting proposed by Strominger-Yau-Zaslow [SYZ] for mirror symmetry as discussed
in Subsection 1. We can thus expect M̌DR and M̂DR to be mirror symmetric.
In the physics literature such a mirror symmetry was first suggested by [BJSV]
in 1994 and more recently by Kapustin–Witten [KW] in 2006. Below we will be
aiming at checking the agreements of certain Hodge numbers of M̌DR and M̂DR

which can be called topological mirror symmetry.

3.1. Spectral curves

The simple idea of describing a polynomial by its zeroes leads to the notion
of spectral curve of a Higgs bundle (E, φ) or more generally of its characteristic
polynomial a ∈ A. Recall that it has the form

a = tn + a1t
n−1 + · · ·+ an,

where ai ∈ H0(Ki). What should be the spectrum of such a polynomial? Look at
one point p ∈ C, there we get φp : Ep → Ep ⊗Kp, we expect of an eigenvalue νp
of φp to satisfy that there exists 0 6= v ∈ Ep with the property φp(v) = νpv. Thus,
we need νp ∈ Kp. We do now consider all eigenvalues as a subset of the total
space X of the bundle K → C, and want to identify it with the complex points of
a scheme. The resulting object will be called the spectral curve corresponding to
a ∈ A and denoted by Ca. The picture is this:

Ca
πa

''PPPPPPPPPPPPPP ⊂ X

π

��
C

To construct the scheme structure on the spectral curve Ca, note that there exists
a tautological section λ ∈ H0(X,π∗aK) satisfying λ(x) = x. We can now pullback
the sections ai to X and obtain a section

sa = λn + a1λ
n−1 + · · ·+ an ∈ H0(X,π∗aK

n)

Clearly Ca equals the zero set of this section, i.e. Ca = s−1
a (0), which comes

naturally with a scheme structure.
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3.2. Generic fibres of the Hitchin map

The fibers of the Hitchin map can be complicated: reducible even non-
reduced. But for generic a ∈ A the spectral curve Ca is smooth and the cor-
responding fiber of the Hitchin map is also smooth and has a nice description.
Here we review this description. For more details see [Hi2, §8] and [BNR].

If (E, φ) is a Higgs bundle with characteristic polynomial a, then the pull-
back of E to Ca will have a natural subsheaf M given generically by the eigenspace
〈v〉 ∈ Kp of νp ∈ Ca. As Ca is non-singular M becomes an invertible sheaf, a line
bundle. A more precise definition is to take

M := ker{π∗a(φ)− λId : π∗a(E)→ π∗a(E ⊗K)}.

One can recover E from M by the formula

E = πa∗(L),(3.2)

where L = M(∆) and ∆ is the ramification divisor of πa (cf. [BNR, Remark 3.7]).
Then equation (3.2) can be considered the eigenspace decomposition of φ on E.

More generally we want to get a correspondence between line bundles on Ca
and Higgs bundles on C with characteristic polynomial a. Starting with a line
bundle L on Ca we do at least know that πa∗(L) is a torsion free sheaf on C, but
since C is a non-singular curve this means that it is actually a vector bundle of
rank n, which is the degree of the covering πa : Ca → C. Recall the canonical
section λ ∈ H0(X,π∗aK). It gives us a homomorphism

L
λ−→ L⊗ π∗aK.

We can now push this forward to the curve C to obtain

E = πa∗(L)
πa∗(λ)−→ πa∗(L⊗ π∗aK) = πa∗(L)⊗K.

This way from a line bundle L on C we get a Higgs bundle E → E ⊗K.
As Ca is integral, (E,ϕ) cannot have any sub Higgs bundle (as its spectral

curve would be a one-dimensional subscheme of Ca), hence it is automatically
stable. Thus if we set

d′ := d+ n(n− 1)(g − 1)

then we get a map:

Picd
′
(Ca)→Md

L 7→ (πa∗(L), πa∗(λ))

To see that the Higgs bundle (πa∗(L), πa∗(λ)) has characteristic polynomial a recall
that

λn + an−1λ
n−1 + · · ·+ a0 = 0

holds on Ca. So if we push-forward this equation to C we obtain

πa∗(λ)n + an−1πa∗(λ)n−1 + · · ·+ a0 = 0.
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Now the Cayley-Hamilton theorem implies the assertion.

Theorem 3.3 (Hitchin 1987, Beauville-Narasimhan-Ramanan 1989). When a ∈
Areg (⇔ Ca is non-singular) we have χ−1(a) ∼= Picd

′
(Ca).

We need some modifications for SLn and PGLn. In the SLn-case we have a ∈
A0, we need to find the line bundles L, such that πa∗(L) has the right determinant.
Define Prymd′(C) ⊂ Jacd

′
(Ca) by

L ∈ Prymd′(Ca)⇔ detπa∗(L) = Λ

It is clear that for all a ∈ A0
reg, the Hitchin fibre satisfies χ̌−1(a) ∼= Prymd′(Ca).

For PGLn we have χ̌−1(a) ∼= Prymd′(Ca)/Γ. This makes sense since for
Lγ ∈ Pic(C)[n] we do have

det(πa∗(π∗a(Lγ)⊗ L)) = det(Lγ ⊗ πa∗(L)) = Lnγ ⊗ det(πa∗L) = det(πa∗L).

To summarize, the fibres of the Hitchin map are given:

• For GLn: By Thm 3.3, for a ∈ Areg

Aa := χ−1(a) ' Jacd
′
(Ca).

• For SLn: following the definitions it is straighforward that for a ∈ A0
reg

Ǎa := χ̌−1(a) ' Prymd′(Ca).

• For PGLn: There are two ways of thinking of the Hitchin fibre:

Âa := Prymd′(C)/Γ ' Jacd
′
(Ca)/Pic0(C),

where Pic0(C) acts on Jacd
′
(Ca) by tensoring with the pull-back line bun-

dle. A short computation shows that the Γ ⊂ Pic0(C) action preserves
Prymd′(C).

3.3. Symmetries of the Hitchin fibration

We will see in this subsection how natural Abelian varieties act on the regular
fibers of the three Hitchin map, giving them a torsor structure. Again, we study
the GLn,SLn,PGLn cases separately.

3.3.1. For GLn Fixing a ∈ Areg, tensor product defines a simply transitive
action of Pic0(Ca) on Jacd(Ca), and therefore Ma is a torsor for Pa := Pic0(Ca).

3.3.2. For SLn Fix a ∈ A0
reg, we have the (ramified) spectral covering map

π : Ca → C.

Definition 3.4. The norm map

NmCa/C : Pic0(Ca)→ Pic0(C)(3.5)

is defined by any of the following three equivalent way:
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(1) Using divisors. For any divisor D on Ca we have

NmCa/C(O(D)) = O(πa∗D),

where πa : Ca → C is the projection. Then one can show that the norm of
a principal divisor will be a principal divisor (using the norm map between
the function fields C(Ca)→ C(C) - this justifies the name ”norm map”) -
thus inducing a well-defined norm map as in (3.5). This definition points
out why Nm is a group homomorphism.

(2) For L ∈ Pic0(Ca) define

NmCa/C(L) = det(πa∗(L))⊗ det−1(πa∗OCa).

(3) Using the fact that Pic0(C),Pic0(Ca) are Abelian varieties, we can define
the norm map as the dual of the pull-back map

π∗a : Pic0(C)→ Pic0(Ca),

that is

NmCa/C = π̌∗a : Pic0(Ca) ' P̌ic
0
(Ca)→ P̌ic

0
(C) ' Pic0(C).

Here recall that for an Abelian variety A the dual Â Abelian variety denotes
the moduli space of degree 0 line bundles on A and that the dual of the
Jacobian of a smooth curve is itself.

Let

Prym0(Ca) := ker(NmCa/C)(3.6)

denote the kernel of the norm map, which is an Abelian subvariety of Pic0(C).
Then Prym0(Ca) acts on Prymd(Ca) = M̌a, and M̌a is a torsor for P̌a :=
Prym0(Ca).

3.3.3. For PGLn In this case

M̂a = M̌a/Γ =Ma/Pic0(C)

is a torsor for P̂a := P̌a/Γ = Pa/Pic0(C).
To complete the SYZ picture (3.1) we show that P̌a and P̂a are dual abelian

varieties.

3.4. Duality of the Hitchin fibres

Take the short exact sequence

0→ Prym0(Ca) ↪→ Pic0(Ca)
NmCa/C

� Pic0(C)→ 0

and dualize. Since Pic0(C) and Pic0(Ca) are isomorphic to their duals, we get

0← ˇPrym
0
(Ca) � Pic0(Ca)

π∗a← Pic0(C)← 0 ,
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and therefore
ˇ̌Pa = Pic0(Ca)/Pic0(C) = P̂a,

that is P̌a and P̂a are duals. (See [HT, Lemma (2.3)] for more details.)
This is the first reflection of mirror symmetry. To summarize, we can state

Theorem 3.7 ([HT]). For a regular a ∈ A0
reg the fibers M̌a and M̂a are torsors

for dual Abelian varieties P̌a and P̂a, respectively.

We can state this theorem more precisely using the language of gerbes. To
that end here is a short summary.

3.5. Gerbes on M̌ and M̂

Here we sketch a quick definition of gerbes for more details see [HT],[Th] and
[DG]. Let A be a sheaf of Abelian groups on a variety X. The typical examples
are O×X , and the constant sheaves µn,U(1), where µn is the group of mth roots of
unity. Note that µn ⊂ O×X and µn ⊂ U(1).

Definition 3.8. An A-torsor is a sheaf F of sets on X together with an action
of A, such that F is locally isomorphic with A. In particular, when nonempty,
Γ(U,F ) is a torsor for Γ(U,A) for all open U ⊂ X.

Examples:

• O×X -torsor = line bundle
• U(1)-torsor = flat unitary line bundle
• µn-torsor = µn-Galois cover

Note that the natural tensor category structure on the category of torsors TorsA(U)
endows it with a group-like structure. Moreover, the automorphism of an A-torsor
is an element of Γ(A).

Definition 3.9. An A-gerbe B is a sheaf of categories (which is roughly what one
would think) so that locally B|U becomes the analogue of a torsor over TorsA(U).

Let (E,Φ) be a universal Higgs-bundle on M̌ × C, where

Φ ∈ H0(End0 E⊗ π∗a(KC)),

and Ec = E|M̌×{c} be the fiber over c ∈ C. Such a universal bundle exists by our
running assumption (d, n) = 1. Then

(3.10) c1(Ec) ∈ H2(M̌,Z) ' Z is a generator modulo n.

Note that E is not unique: it can be tensored by L ∈ Pic(M̌), but this property
always holds.

Let PEc → M̌ be the corresponding PGLn-bundle. Let B̌ be the µn-gerbe of
liftings of PEc as an SLn-bundle. Because for every lifting as a GLn-bundle (3.10)
holds, there is no global lifting as an SLn-bundle and so B̌ is not a trivial gerbe.
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But for a ∈ Areg it turns out that c1(PEc)|M̌a
is 0 mod n, and so PEc|M̌a

can be
lifted as an SLn-bundle, therefore B̌|M̌a

is a trivial gerbe.
Finally we note that the action of Γ on M̌ can be lifted to B̌ to get an orbifold

gerbe B̂ on M̂. As B̌ and B̂ are µm ⊂ U(1)-gerbes we can consider the induced
U(1)-gerbes as well.

Theorem 3.11 ([HT]). One can identify the set of trivializations

TrivU(1)(B̌e|M̌d
a
) ' M̂e

a

as P̌a-torsors. Similarly,

TrivU(1)(B̂d|M̂e
a
) ' M̌d

a.

Remark 3.12. The analogue of this result for arbitrary pair of Langlands dual
groups was handled by Donagi–Pantev in [DP1]. There they also implement the
fiberwise Fourier-Mukai transform over the regular locus which will be discussed
in §5.3. The case of G2 was considered by Hitchin in [Hi4] in detail.

This Theorem 3.11 can be interpreted as the twisted version of the Strominger-
Yau-Zaslow proposal suggested in [Hi3]. Thus we have established the picture

M̌d
DR

χ̌ ""D
DD

DD
DD

D
M̂e

DR

χ̂||zz
zz

zz
zz

A0

with χ̌ and χ̂ two special Lagrangian fibrations with dual tori as generic fibers
according to Theorem 3.11. Thus the pair (M̌d

DR, B̌
e) and (M̌e

DR, B̂
d) can con-

sidered mirror symmetric in the twisted SYZ sense of [Hi3] Hitchin.

3.6. The stringy Serre polynomial of an orbifold

As our spaces satisfy a suitable version of the Strominger-Yau-Zaslow mirror
symmetry proposal we need a definition of Hodge numbers of non-projective va-
rieties to be able to formulate topological mirror symmetry for our mirror pairs.
For more details on these Hodge numbers see [De2, BaD, HT, HV, PS].

Definition 3.13. Let X be a complex algebraic variety. The Serre polynomial
(virtual Hodge polynomial) is defined as

E(X;u, v) =
∑
p,q,i

(−1)ihp,q(GrWp+qH
i
c(X))upvq

where GrWp+qH
i
c(X) is the p + qth graded piece of the weight filtration of Hi

c(X).
This has a Hodge structure of weight p + q, and hp,q is the corresponding Hodge
number. This so-called mixed Hodge structure was constructed by Deligne [De2].
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Remark 3.14. We say that the mixed Hodge structure is pure if hp,q 6= 0 implies
that p+ q = i. For example, smooth projective varieties have pure MHS on their
cohomology. One can also show [Ha2, Theorems 2.1,2.2] that the spaces Md

Dol

and Md
DR also have pure MHS on their cohomology.

The definition of the virtual Hodge polynomial is the first step of formulating
the topological mirror test. In order to obtain the correct Hodge numbers of the
orbifold M̂. We need to define stringy Hodge numbers twisted by a gerbe. Let X
be smooth, and assume that a finite group Γ acts on X. Then we can define the
stringy Serre polynomial of the orbifold X/Γ as follows:

(3.15) Est(X/Γ), u, v) =
∑

[γ]∈[Γ]

E(Xγ/Cγ ;u, v)(uv)F (γ),

where

• [γ] is a conjugacy class of Γ
• Xγ is the fixed point set, Cγ is the centralizer of γ in Γ, acting on Xγ .
• F (γ) is the Fermionic shift, defined as F (γ) =

∑
wi, where γ acts on

TX|Xγ with eigenvalues e2πiwi , wi ∈ [0, 1).

Remark 3.16. These orbifold Hodge numbers can be considered the cohomological
shadow of the stringy derived category of coherent sheaves on the variety X/Γ,
or more topologically the stringy K-theory of X/Γ. Both can be simply defined
by considering Γ-equivariant coherent sheaves or Γ-equivariant complex vector
bundles on X. See [JKK] for more details.

Another important property of Est(X/Γ;u, v) is the following theorem:

Theorem 3.17 ([Ko2, BaD]). If π : Y → X/Γ is a crepant resolution, i.e.
π∗ωX/Γ = ωY , then Est(X/Γ;u, v) = E(Y ;u, v).

Remark 3.18. This is a nice way to see what the stringy Hodge numbers mean,
in terms of the Hodge numbers of (any) crepant resolution. However our orbifolds
never have crepant resolutions, because the generic singular points are infinites-
imally modelled by quotients of symplectic representations of Zn which are not
generated by symplectic reflections as in [Ve, Theorem 1.2]. So we will be stuck
with the definition in (3.15).

Finally let B be a Γ-equivariant U(1)-gerbe on X. Then more generally, we
define

(3.19) EBst(X/Γ;u, v) =
∑

[γ]∈[Γ]

E(Xγ/Cγ , LB,γ ;u, v)(uv)F (γ),

where LB,γ is the local system on Xγ given by B.
These B-twisted stringy Hodge numbers can again be considered as the coho-

mological shadow of a certain derived category of B-twisted Γ-equvariant sheaves
on X or the corresponding B-twisted equivariant K-theory.
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3.7. Topological mirror test

We can now formulate our original topological mirror symmetry

Conjecture 3.20 ([HT]). For (d, n) = (e, n) = 1

E(M̌d
DR;u, v) = EB̂

d

st (M̂e
DR;u, v),

where B̂d is the Γ-equivariant gerbe on M̌e appearing in Theorem 3.11.

Remark 3.21. One can object that this conjecture does not feature the change in
the indices of the Hodge numbers as in the original topological mirror test (1.1)
between projective Calabi-Yau manifolds. Our, rather hand-waving, argument for
this in [HT] was that for compact hyperkähler manifolds (1.1) is equivalent with
(1.3) that is agreement of Hodge numbers. This was only what we could offer
to explain the agreement of Hodge numbers in Conjecture 3.20, even though our
examples are not compact, and their Hodge numbers do not possess any non-trivial
symmetries. As will be explained after Conjecture 5.9 some recent developments
lead to a solution of this problem.

As MDR can be algebraically deformed to MDol, inside nice compactifica-
tions, it is not surprising that we could prove that their mixed Hodge structure is
isomorphic:

Theorem 3.22 ([HT, Theorem 6.2,6.3] ). For (d, n) = (e, n) = 1

E(M̌d
DR;u, v) = E(M̌d

Dol;u, v)

and similarly

EB̂
d

st (M̂e
DR;u, v) = EB̂

d

st (M̂e
Dol;u, v).

Thus we have an equivalent form of Conjecture 3.20, the so-called Dolbeault
version of topological mirror symmetry:

Conjecture 3.23 ([HT]). For (d, n) = (e, n) = 1

E(M̌d
Dol;u, v) = EB̂

d

st (M̂e
Dol;u, v),

where B̂d is the Γ-equivariant gerbe on M̌e appearing in Theorem 3.11.

As we will sketch in §5.3 this conjecture could be interpreted as a cohomo-
logical shadow of some equivalence of derived categories of sheaves on the Hitchin
systems which arise in the Geometric Langlands programme.

This latter conjecture we were able to prove in the following cases:

Theorem 3.24 ([HT]). Conjecture 3.23 and so Conjecture 3.20 are valid for n = 2
and n = 3.
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In §3.8 below we will sketch the computation in the n = 2 case.
Now we will unravel the meaning of Conjecture 3.23. Recall that Γ acts on

M̌d and hence Γ also acts on H∗c (M̌d). We get a decomposition

H∗c (M̌d) =
⊕
κ∈Γ̂

H∗c (M̌d)κ

which is compatible with the mixed Hodge structure. Therefore we can write

E(M̌d;u, v) =
∑
κ∈Γ̂

Eκ(M̌d;u, v),(3.25)

where

Eκ(M̌d;u, v) :=
∑
p,q,i

(−1)ihp,q(GrWp+qH
i
c(M̌d)κ)upvq.

We can also expand the RHS of Conjecture 3.23. By the definition of the
stringy Serre polynomial, and because Γ is commutative, we have

EB̂
d

st (M̂e;u, v) =
∑
γ∈Γ

E(M̌e
γ/Γ;LB̂d,γ , u, v)(uv)F (γ)

Thus the unravelled Conjecture 3.23 takes the form:

∑
κ∈Γ̂

Eκ(M̌d;u, v) =
∑
γ∈Γ

E(M̌e
γ/Γ;LB̂d,γ , u, v)(uv)F (γ)(3.26)

We note that there are the same number of terms in (3.26); and in fact there
is a canonical way to identify them. Note that Γ is canonically isomorphic to
H1(C,Zn), where C is our underlying curve. It follows that Poincaré duality gives
us a canonical pairing

w : Γ× Γ→ H2(C,Zn) = Zn,

the so-called Weil pairing. This allows us to identify w : Γ→ Γ̂. This identification
leads to the refined topological mirror symmetry test :

Conjecture 3.27. For κ ∈ Γ̂ we have

Eκ(M̌d;u, v) = E(M̌e
γ/Γ, LB̂d,γ ;u, v)(uv)F (γ)

where γ = w(κ).

This again holds for n = 2, 3 the case of n = 2 will be discussed in the next
section. As we will see in §5.4 this refined conjecture is closely related to Ngô’s
geometric approach to the fundamental lemma.

Here we point out the case of the trivial character κ = 1. In that case the
refined topological mirror symmetry test is:
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Conjecture 3.28. When (d, n) = (e, n) = 1

E1(M̌d;u, v) = E(M̌e/Γ;u, v)

or equivalently
E(M̂d;u, v) = E(M̂e;u, v).

Remark 3.29. This conjecture is in sharp contrast to the dependence on degree of
H∗(N̂ d). In fact another application of Harder–Narasimhan [HN, Theorem 3.3.2]
implies that the Betti numbers of N̂ d and N̂ e are different provided 0 < d < e <

n/2. The smallest such situation is when n = 5, d = 1 and e = 2.

Remark 3.30. As Theorem 3.11 holds for all d and e not necessarily coprime to
n it is concievable that something like Conjecture 3.28 should hold even when d

(and/or e) is not coprime to n. It is however unclear what cohomology theory
we should calculate on the singular moduli space M̌d, for (d, n) 6= 1, to produce
the agreement in Conjecture 3.28. For n = 2 Batyrev’s extension [Ba] of stringy
cohomology of M̌0 was calculated in [KY], while stacky cohomology of M̌0 was
calculated in [DWWW]. In either case the corresponding generating functions are
not polynomials; thus Conjecture 3.28 for n = 2, d = 0, e = 1, as it stands, cannot
hold for them.

3.8. Topological mirror symmetry for n = 2

Consider the circle action of C× on the Higgs moduli space by rescaling the
Higgs field. That is, λ · (E, φ) 7→ (E, λ ·φ). We can study the corresponding Morse
stratification and by Morse theory we obtain the decomposition

H∗(M̌) =
⊕

Fi⊂M̌C×

H∗−µi(Fi).(3.31)

Here the sum is over the connected components of the fixed point set M̌C× , and
µi denotes the Morse index of Fi with respect to the C×-action. Note that (3.31)
is a decomposition as Γ-modules.

The components Fi have been described for n = 2 by Hitchin [Hi1], and by
Gothen [Go] for n = 3. The case n = 4 seems quite hard; but for recent progress
see §6.

One obvious fixed point locus is F0
∼= Ň , consisting of stable bundles with

zero Higgs field. However this component doesn’t contribute to the variant part
as the Γ-action on H∗(Ň ) is trivial by Theorem 2.1.

From now on in this section we assume n = 2 and d = 1. Then the other
components can be labelled by i = 1, . . . , g− 1 and consist of isomorphism classes
of Higgs bundles of the form

Fi = {(E, φ) | E ∼= L1 ⊕ L2,deg(L1) = i, φ =

(
0 0
ϕ 0

)
, 0 6= ϕ ∈ H0(L−1

1 L2K)}.
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Now stability forces degL2 = 1 − i where i > 0, because L2 is a φ-invariant
subbundle. We can associate to (E, φ) ∈ Fi the divisor of ϕ in S2g−2i−1(C)
yielding a 22g : 1 covering

Fi → S2g−2i−1(C).

This covering is given by the free action of Γ on Fi.

Theorem 3.32 ([Hi1](7.13)). The Γ-action on H∗(Fi) is only non-trivial in the
middle degree 2g − 2i− 1. We have

dimH2g−2i−1
var (Fi) = (2g − 1)

(
2g − 2

2g − 2i− 1

)
Moreover, if κ ∈ Γ̂∗ then

dimH2g−2i−1
κ (Fi) =

(
2g − 2

2g − 2i− 1

)
.

We now consider the stringy side. Recall M̂ = M̌/Γ and let γ ∈ Γ∗ = Γ\{0}.
Then γ leads to a connected covering

πγ : Cγ → C

with Galois group Z2. Consider the commutative diagram

T ∗ Jacd(Cγ)
(πγ)∗ //

∼=
��

Md

det

��

⊃ M̌d = det−1(Λ, 0)

T ∗ Jacd(Cγ)
NmCγ/C// T ∗ Jacd(C) 3 (Λ, 0)

From this diagram [HT, Corollary 7.3] we have that M̌γ is a torsor for T ∗ Prym(Cγ/C)0;
where Prym(Cγ/C)0 := (Nm−1

Cγ/C
(OC))0 is the connected component of the Prym

variety. We can then calculate that

dimH2g−2i+1(M̌γ/Γ, LB̂d,γ) =
(

2g − 2
2g − 2i− 1

)
,

when i = 1, . . . , g − 1 and is zero otherwise. Note that the presence of the gerbe
means that we see only the odd degrees. It follows that in this case we indeed
have the refined topological mirror symmetry

Eκ(M̌;u, v) = E(M̌γ/Γ, LB̂,γ ;u, v)(uv)F (γ)(3.33)

when κ = w−1(γ).

Remark 3.34. What is surprising about the agreement in (3.33) is that the left
hand side comes from the fixed point components Fi for i > 0, because F0 = N
has no variant cohomology by Theorem 2.1. While the right hand side comes
solely F0, because the Γ action is free on Fi for i > 0. Thus in order for (3.33) to
hold there is a remarkable agreement of cohomological data coming on one hand
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from the symmetric products {Fi}i>0 of the curve and on the other hand from the
moduli space of stable bundles Ňγ ⊂ Ň = F0.

One may give a similar proof for (3.33), when n = 3 using Gothen’s work
[Go]. The proof along these lines for higher n remains incomplete.

We now introduce a more successful arithmetic technique to prove a different
version of topological mirror symmetry.

4. Topological mirror symmetry for character varieties

As mentioned above in another complex structure MDol can be identified
with MDR a certain moduli space of twisted flat GLn-connections on C. A point
inMDR represents a certain twisted flat connection on a rank n bundle. One can
take its monodromy yielding a twisted representation of the fundamental group of
C. This leads to the character variety of the Riemann surface C.

Definition 4.1. The character variety for GLn is defined as the affine GIT quo-
tient:

Md
B := {(A1, B1, . . . , Ag, Bg) ∈ GLn(C) | [A1, B1] . . . [Ag, Bg] = ζdnIn}//GLn

The character variety for SLn is the space

M̌d
B := {(A1, B1, . . . , Ag, Bg) ∈ SLn(C) | [A1, B1] . . . [Ag, Bg] = ζdnIn}//GLn

where the action is always by simultaneous conjugation on all factors, and ζn =
e2πi/n. The character variety for PGLn is defined as

M̂d
B := M̌d

B/Γ =Md
B/(C×)2g.

Here Γ := Z2g
n ⊂ (C×)2g and Γ ⊂ (C×)2g acts on M̌d

B ⊂ Md
B by multiplying the

matrices Ai, Bi by scalars.

Remark 4.2. For the PGLn-character variety we could have started to consider

M̂B := {(A1, B1, . . . , Ag, Bg) ∈ PGLn(C) | [A1, B1] . . . [Ag, Bg] = In}//PGLn.

This variety has n components, depending on which order n central element in
GLn will agree with the product of the commutators of the GLn-representatives
of the PGLn elements Ai, Bi. For M̂d

B we picked the component corresponding to
the central element ζdnIn.

One can prove [HV] that if d and n are coprime, Md
B and M̌d

B are non-
singular, and so M̂d

B is an orbifold.
Taking the monodromy will give a complex analytical isomorphism Md

DR
∼=

Md
B the so-called Riemann-Hilbert correspondence. We have the following more

general non-abelian Hodge theorem
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Theorem 4.3 ([Si, Co, Do]). There are canonical diffeomorphisms in all our cases
GLn, SLn and PGLn:

ˆ̌Md
Dol
∼= ˆ̌Md

DR
∼= ˆ̌Md

B

BecauseMDR andMB are analytically isomorphic it follows that the twisted
SYZ mirror symmetry proposal is satisfied by the pair M̌d

B and M̂e
B as well. We

may thus formulate the Betti-version of the topological mirror symmetry conjec-
ture [Ha2]:

Conjecture 4.4. For (d, n) = (e, n) = 1

E(M̌d
B;u, v) = EB̂

d

st (M̂e
B;u, v),

where B̂ is the Γ-equivariant gerbe on M̌e
B analogous to the one in §3.5.

Note that the mixed Hodge structures onH∗(Md
B) ∼= H∗(Md

DR) are different,
in particular unlike the MHS on H∗(Md

B), the MHS on H∗(Md
DR) is pure. Thus

Conjecture 4.4 is different from Conjecture 3.20 and the equivalent Conjecture 3.23.
We will also need the refined version:

Conjecture 4.5. For κ ∈ Γ̂ we have

Eκ(M̌d
B;u, v) = E(M̌e

γ/Γ, LB̂d,γ ;u, v)(uv)F (γ)

where γ = w(κ).

Interestingly, for (n, e) = (n, d) = 1 the character varieties M̂d
B and M̂e

B are
Galois conjugate via an automorphism of the complex numbers sending ζdn to ζen.
This Galois conjugation induces an isomorphism

H∗(M̂d
B) ∼= H∗(M̂e

B)(4.6)

preserving mixed Hodge structures. Therefore the κ = 1 case of refined topological
mirror symmetry for character varieties follows:

Theorem 4.7. When (d, n) = (e, n) = 1

E1(M̌d
B/;u, v) = E(M̌e

B/Γ;u, v)

or equivalently
E(M̂d

B;u, v) = E(M̂e
B;u, v).

Remark 4.8. In fact one can prove that the universal generators of H∗(M̂d
B) are

mapped to the corresponding ones of H∗(M̂e
B), and consequently one can prove

that the Galois conjugation (4.6) preserves even the mixed Hodge structure on
H∗(M̂d

Dol) ∼= H∗(M̂e
Dol); which implies Conjecture 3.28. Thus in the original

topological mirror symmetry Conjecture 3.23 we see that the first terms corre-
sponding to the trivial elements in Γ and Γ̂ at least agree; so we can concentrate
on proving Conjecture 3.27 for non-trivial characters κ. This is the first non-trivial
application of considering character varieties.
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Remark 4.9. One application in [HN, Theorem 3.3.2] was to show that for (d, n) =
(e, n) = 1 the Betti numbers of N̂ d and N̂ e agree only when d+e or d−e is divisible
by n. This is markedly different behaviour from Theorem 4.7 which shows that
the Betti numbers of M̂d and M̂e agree as long as (d, n) = (e, n) = 1.

In the next section we also offer an arithmetic technique which can be used
efficiently to check Conjecture 4.4 in all cases.

4.1. An arithmetic technique to calculate Serre polynomials

Recall the definition of the Serre polynomial of a complex variety X:

E(X;u, v) =
∑
i,p,q

(−1)ihp,q(GrWp+qH
i
c(X))upvq

where W0 ⊆ W1 ⊆ . . . ⊆ Wi ⊆ . . . ⊆ W2k = Hk(X) := Hk(X;Q) is the weight
filtration.

By [HV, Corollary 4.1.11]MB has a Hodge-Tate type MHS, that is, hp,q 6= 0
unless p = q in its MHS. In this case the Serre polynomial is a polynomial of uv,
i.e

(4.10) E(X;u, v) = E(X,uv) :=
∑
i,k

(−1)i dim(GrWk H
i
c(X))(uv)k,

but the MHS is not pure, i.e there is k 6= i such that h(k/2,k/2) 6= 0.
Roughly speaking a variety X can be defined over the integers if one can

arrange the defining equations to have integer coefficients. Then one can consider
those equations in finite fields Fq, and can count these solutions to get the number
|X(Fq)|. We say that such a variety X is polynomial count if |X(Fq)| is polynomial
in q. One can define polynomial count varieties even if they can only be defined
over more general finitely generated rings than Z. For more technical details and
precise statements see [HV]. Here we have

Theorem 4.11 ([HV, Appendix by Katz]). For a polynomial count variety X

E(X/C, q) = |X(Fq)|.

Example. Define C∗ = C\ {0} over Z as the subscheme {xy = 1} of A2. Then

E(C∗; q) = |F∗q | = q − 1.

Since H2
c (C∗) has weight 2 and H1

c (C∗) has weight 0, substitution to (4.10) gives
indeed q − 1 for E(C∗; q).

4.2. Arithmetic harmonic analysis on MB

By Fourier transform on a finite group G one gets the following Frobenius-
type formula:∣∣∣{a1, b1, . . . , ag, bg ∈ G|

∏
[ai, bi] = z

}∣∣∣ =
∑

χ∈Irr(G)

|G|2g−1

χ(1)2g−1
χ(z).
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Therefore assuming that ζn ∈ F∗q , i.e n|q − 1, we get

(4.12) |Md
B(Fq)| = (q − 1)

∑
χ∈Irr(GLn(Fq))

|GLn(Fq)|2g−2

χ(1)2g−2
· χ(ζdn · I)

χ(1)
.

Irreducible characters of GLn(Fq) have a combinatorial description by Green
[Gr] from 1955. Consequently |Md

B(Fq)| can be calculated explicitly [HV]. It turns
out to be a polynomial, so Katz’s Theorem 4.11 applies and (4.12) gives the Serre
polynomial.

The same Frobenius-type formula is valid in the SLn-case:

(4.13) |M̌d
B(Fq)| =

∑
χ∈Irr(GLn(Fq))

|SLn(Fq)|2g−2

χ(1)2g−2
· χ(ζdn · I)

χ(1)
,

Here the character table of SLn(Fq) is trickier. After much work of Lusztig, the
character table of Irr(SLn(Fq)) has only been completed by Bonnafé [Bo] and Shoji
[Sh] in 2006. However for χ ∈ Irr(GLn(Fq)) the splitting

χ|SLn(Fq) =
∑

χi

into irreducible characters χi of SLn(Fq) is evenly spread out on ζdn · I; meaning
that χi(ζdn · I) = χj(ζdn · I). This way the evaluation of (4.13) is possible and was
done by Mereb [Me] in 2010. He too obtained a polynomial for |M̌d

B(Fq)|, and by
Katz’s theorem Theorem 4.11 this gives a formula for E(M̌d

B(Fq); q). With similar
techniques one can also evaluate the κ-components Eκ(M̌d

B;u, v) in the LHS of
Conjecture 4.5.

In order to check the refined topological mirror symmetry Conjecture 4.5
we need also to determine E(M̂e

B,γ , LB̂d,γ ; q). It is simple to do when n is a
prime; leading to a proof of Conjecture 4.5 and so to Conjecture 4.4 in this case.
For composite n’s an ongoing work [HMV] evaluates these by similar (twisted)
arithmetic techniques. This seems to match with Mereb’s result, which is expected
to give the proof of Conjecture 4.4.

4.3. The case n = 2 for TMS-B

Here we show how the topological mirror symmetry works for M̌B when
n = 2. It is instructive to compare it to the arguments in §3.8.

The variant part of the Serre polynomial of M̌B is the difference of the full
Serre polynomial and the invariant part. This difference in turn can be evaluated
using the character tables of SL2(Fq) and GL2(Fq) respectively. We get that this
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difference

∑
16=κ∈Γ̂ Eκ(M̌B) = E(M̌B)− E1(M̌B) = E(M̌B)− E(MB)/(q − 1)2g

=
∑

χ∈Irr(SL2(Fq))

|SL2(Fq)|2g−2

χ(1)2g−2
· χ(−I)
χ(1)

−
∑

χ∈Irr(GL2(Fq))

|PGL2(Fq)|2g−2

(q − 1)χ(1)2g−2
· χ(−I)
χ(1)

= (22g − 1)q2g−2

(
(q − 1)2g−2 − (q + 1)2g−2

2

)
=

g−1∑
i=1

(22g − 1)
(

2g−2
2i−1

)
q2g−3+2i,

(4.14)

is exactly given by those 4 irreducible characters of SL2(Fq) which arise from
irreducible characters of GL2(Fq) which split into two irreducibles over SL2(Fq).

The mapping class group of C acts by automorphisms on Γ ∼= H1(C,Z2) so
that the induced action on the set Γ̂∗ = Γ̂\{1} with (22g−1) elements is transitive.
This way we can argue that Eκ1(M̌B) = Eκ2(M̌B) for any two κ1, κ2 ∈ Γ̂∗, thus
we can conclude

Eκ(M̌B) = q2g−2

(
(q − 1)2g−2 − (q + 1)2g−2

2

)
(4.15)

for κ ∈ Γ̂∗.
Now M̌γ

B can be identified with (C×)2g−2, which is the Betti version of M̌γ

from §3.8, which was isomorphic to the cotangent bundle of the identity component
of the Prym variety. Now the Γ-equivariant local system LB,γ kills exactly the
even cohomology and so we get

E(M̌γ
B/Γ, LB̂,γ) =

(q − 1)2g−2 − (q + 1)2g−2

2
.(4.16)

This proves:

Theorem 4.17. When n = 2 Conjecture 4.5 and so Conjecture 4.4 hold.

As the character tables of SL2(Fq) an d GL2(Fq) were already known to Schur
[Sc] and Jordan [Jo] in 1907; in principle the mirror symmetry pattern (4.14) above
could have been checked more than 100 years ago! Also the agreement of (4.15)
and (4.16) up to a q-power, that is Conjecture 4.5, when written in terms of
character sums has a somewhat similar form as the fundamental lemma. Indeed
in our last section §5.4 we will argue that Conjecture 4.5 and the fundamental
lemma have a common geometrical root.
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5. Solving our problems

Although the arithmetic technique discussed in the previous session [HMV]
is capable of proving the Betti version of the topological mirror symmetry Conjec-
ture 4.4, it still introduces a different set of conjectures. This raises the question:
which one is the ”right” one, that is the true consequence of mirror symmetry, the
De Rham Conjecture 3.20 and the equivalent Dolbeault Conjecture 3.23 or the
Betti version Conjecture 4.4 of the topological mirror symmetries?

In the next section we will see that in fact they have a common generalization
which at the same time also solves the earlier ”agreement of Hodge numbers”
problem discussed in Remark 3.21.

5.1. Hard Lefschetz for Weight and Perverse Filtrations

We start with the observation [HV, Corollary 3.5.3] for GLn and PGLn and
[Me] for SLn that

E( ˆ̌MB; 1/q) = qdim E( ˆ̌MB; q)(5.1)

i.e. that the Serre polynomials of our character viarieties are palindromic. (Here
dim is the dimension of the appropriate character variety.) It is interesting to note
that ultimately this is due to Alvis-Curtis duality in the character theory of finite
groups of Lie-type.

We recall the weight filtration:

W0 ⊂ · · · ⊂Wi ⊂ · · · ⊂W2k = Hk(MB)

on the ordinary cohomology H∗(MB). The palindromicity (5.1) then lead us to
the following Curious Hard Lefschetz Conjecture in [HV, Conjecture 4.2.7]:

Ll : GrWdim−2lH
i−l(MB)

∼=→ GrWdim +2lH
i+l(MB)

x 7→ x ∪ αl
,(5.2)

where dim = dim(MB) and α ∈ W4H
2(MB). For n = 2 this was proved in [HV,

§5.3]. The conjecture (5.2) is curious because because MB is an affine, thus non-
projective, variety and α is a weight 4 and type (2, 2) class, instead of the usual
weight 2 and type (1, 1) class of the Hard Lefschetz theorem. However there is a
situation where a similar Hard Lefschetz theorem was observed.

Namely, [CM1] introduce the perverse filtration:

P0 ⊂ · · · ⊂ Pi ⊂ . . . Pk(X) ∼= Hk(X)

for f : X → Y proper X and Y smooth, quasi-projective. Originally they define
it using the BBDG-decomposition theorem of f∗(Q) into perverse sheaves. But in
[CM2] they prove a more elementary equivalent definition in the case when Y is
additionally affine. Take Y0 ⊂ · · · ⊂ Yi ⊂ . . . Yd = Y s.t. Yi sufficiently generic
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with dim(Yi) = i then the perverse filtration is given by

Pk−i−1H
k(X) = ker(Hk(X)→ Hk(f−1(Yi))).

Now the Relative Hard Lefschetz Theorem [CM1, Theorem 2.3.3] holds:

Ll : GrPrdim−lH
∗(X)

∼=→ GrPrdim+lH
∗+2l(X)

x 7→ x ∪ αl

where rdim is the relative dimension of f and α ∈ W2H
2(X) is a relative ample

class.
Recall from Theorem 2.7 that the Hitchin map

χ : MDol → A
(E, φ) 7→ charpol(φ)

is proper, thus induces perverse filtration on H∗(MDol). A nice explanation for
the curious Hard Lefschetz conjecture (5.2) would be if the following conjecture
held.

Conjecture 5.3. We have P = W , more precisely, Pk(MDol) ∼= W2k(MB) under
the isomorphism H∗(MDol) ∼= H∗(MB) from non-Abelian Hodge theory.

In [CHM] it was proved that

Theorem 5.4. P = W when G = GL2,PGL2,SL2.

Remark 5.5. The proof of Theorem 5.4 was accomplished by a careful study of
the topology of the Hitchin map, which paralleled special cases of results of Ngô
in his proof [Ng] of the fundamental lemma. Additionally we had to use all the
previously established results [Ha1, HT1, HT2, HV] on the cohomology of these
n = 2 varieties. Interestingly for the proof for SL2 we had to use results which
were discussed here for the topological mirror symmetry presented in §3.8 and §4.3
in this paper. We will now explain why this connection to mirror symmetry is not
surprising.

5.2. Perverse topological mirror symmetry

We define the perverse Serre polynomial as

PE(MDol;u, v, q) :=
∑

qkE(GrPk (H∗c (MDol));u, v),

and the B̂d-twisted stringy perverse Serre polynomial as

PEB̂
d

st (M̂e
Dol;u, v, q) :=

∑
γ∈Γ

PE(M̌e
Dol,γ/Γ, LB̂d ;u, v, q)(uvq)F (γ).

By Definition 3.13 and Theorem 3.22 we have

PE(MDol;u, v, 1) = E(MDol;u, v) = E(MDR;u, v).(5.6)
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Conjecture 5.3 that P = W then would imply

PE(MDol; 1, 1, q) = E(MB; q)(5.7)

and Relative Hard Lefschetz [CM1, Theorem 2.3.3] shows

PE(MDol;u, v, q) = (uvq)dimPE

(
MDol;u, v;

1
quv

)
.(5.8)

Note that although the original Hodge numbers ofMDol did not possess any non-
trivial symmetry, this refined version with the perverse filtration does. So in fact
with this definition we can write down our most general form of the topological
mirror symmetry conjectures.

Conjecture 5.9. PE
(
M̌d

Dol;x, y, q
)

= (xyq)dimPEB̂
d

st

(
M̂e

Dol;x, y,
1
qxy

)
Remark 5.10. This most general form of our topological mirror symmetry conjec-
ture solves the two problems we encountered before.

First, we see that this version of the topological mirror symmetry conjecture
implies Conjecture 5.9 via (5.6) and Conjecture 4.4 if we assume Conjecture 5.4
and thus (5.7). Thus Conjecture 5.9 is a common generalization of Conjectures
3.20, 3.23 and 4.4.

Second, relative hard Lefschetz endows the perverse Hodge numbers with
the symmetry (5.8), and so one can formulate topological mirror symmetry as in
Conjecture 5.9. On the level of Hodge numbers this conjecture takes the form:

hi,jp (M̌d
Dol) = h

i+(p̂−p)/2,j+(p̂−p)/2
st,p̂ (M̂e

Dol, B̂
d),(5.11)

where p̂ = dim(M̌d
Dol)−p is the opposite perversity, the Hodge numbers are defined

as

hi,jp (M̌d
Dol) := dim(Hi,j(GrWp H

i+j(M̌d
Dol)))

and similarly for the stringy extension on the right hand side. This form (5.11) is
now more reminiscent of the original topological mirror symmetry (1.1). One can
also compare the functional equation forms (1.2) and Conjecture 5.9.

The last ingredient which is missing to completely justify our topological mir-
ror symmetry conjectures is to show that indeed these are cohomological shadows
of the S-duality in the work of Kapustin–Witten [KW]. Such an argument will be
sketched in the next section.

5.3. Topological mirror symmetry as cohomological shadow of S-duality

Recall that Kapustin and Witten [KW] suggest that the Geometrical Lang-
lands program is S-duality reduced to 2 dimensions. This simplifies to T -duality, as
first suggested by [BJSV]. In turn by the SYZ proposal we get to mirror symmetry
between M̌DR and M̂DR.
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Now Kontsevich’s [Ko1] homological mirror symmetry conjecture suggests
that

Db(Coh(M̌DR)) ∼ Db(Fuk(M̂DR))(5.12)

the derived category of coherent sheaves on M̌DR is equivalent with a certain
Fukaya category on M̂DR. This latter is not straightforward to define but recent
work of Nadler-Zaslow [NZ, Na1] relates a certain Fukaya category of T ∗X and
a category of D-modules on X, for a compact real analytical manifold X. Thus
we may imagine that this result might extend to give an equivalence of the right
hand side of (5.12) with some category of D-modules on the stack BunPGLn of
PGLn bundles on C. The mathematical content of [KW] maybe phrased that the
combination of this latter Nadler-Zaslow type equivalence with the homological
mirror symmetry in (5.12) leads to the proposed Geometric Langlands program of
[La1, BeD]. As explained in [DP2] in a certain semi-classical limit (5.12) should
become

Db(Coh(M̌Dol)) ∼ Db(Coh(M̂Dol)),

an equivalence of the derived categories of sheaves on Hitchin systems for Lang-
lands dual groups. By recent work of Arinkin [Ari] it is expected that there
is a geometrical fibrewise Fourier-Mukai transform at least for integral spectral
curves. It means that there should be a Poincaré bundle P on the fibered product
M̌Dol×A0 M̂Dol such that the associated fiberwise Fourier-Mukai transform would
identify

FM = π̂∗(P ⊗ π̌∗) : Db(Coh(M̌Dol))
∼→ Db(Coh(M̂Dol)).(5.13)

One can argue that the cohomological shadow of such a Fourier-Mukai transform
for orbifolds should be defined in stringy cohomology. Also if one twists the above
Fourier-Mukai transform by adding gerbes, as discussed e.g. in [Be], then we
should see stringy cohomology twisted with gerbes. Also we should expect the
cohomological shadow of (5.13) to be compatible with the perverse filtration. All
in all, the cohomological shadow of (5.13) should identify

S : Hr,s
p (M̌d

Dol) ∼= H
r+(p̂−p)/2,s+(p̂−p)/2
st,p̂ (M̂e

Dol; B̂
d).(5.14)

In fact, this statement over the regular locus Areg can be proved. Moreover com-
paring supports of (5.14) over A0 or also by a Fourier transform argument on Γ
one can deduce the refined version of (5.14). Namely for κ ∈ Γ̂ and γ = w(κ) ∈ Γ
we have:

S : Hr,s
p (M̌d

Dol)κ ∼= H
r+(p̂−p)/2−F (γ),s+(p̂−p)/2−F (γ)
p̂−F (γ) (M̌e

Dol,γ/Γ;LB̂d).(5.15)

This way we can argue that the cohomological shadow of S-duality reduced
to 2-dimensions and in the semi-classical limit should yield our Topological Mirror
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Symmetry Conjecture 5.9:

PE
(
M̌d

Dol;x, y, q
)

= (xyq)dimPEB̂
d

st

(
M̂e

Dol;x, y,
1
qxy

)
.

Remark 5.16. More delicate structures of the Kapustin–Witten reduced S-duality
[KW] have been mathematically implemented in recent works of Yun [Yu], where
Ngô’s techniques from [Ng] were havily used.

Finally, in the last section, we explain a connection between our topological
mirror symmetry conjectures and Ngô’s work [Ng] on the fundamental lemma in
the Langlands program.

5.4. From topological mirror symmetry to the fundamental lemma

Ngô’s celebrated3 proof [Ng] of the fundamental lemma is the culmination of
a series of geometrical advances in the understanding of orbital integrals including
[KL, GKM, La2, La3, LN]. The proof proceeds by studying the Hitchin fibration
over the so-called elliptic locus. In the case of SLn, which we will be only discussing
here, this means the locus Aell ⊂ A0 containg characteristics a ∈ A0 so that the
corresponding spectral curve Ca is integral, i.e. irreducible and reduced. In par-
ticular, it contains the locus we studied in this survey Areg where Ca is smooth.
He considers the degree 0 Hitchin fibration χ̌ell : M̌0

ell = χ̌−1(Aell)→ Aell over the
elliptic locus. An important ingredient in Ngô’s proof is the BBDG decomposition
theorem of the derived push forward χ̌ell∗(Q) of the constant sheaf on M̌ell into
perverse sheaves. He proves the so-called support theorem, that in certain cases,
including the Hitchin fibration, the perverse components of χ̌ell∗(Q) are deter-
mined by a small open subset of Aell. The proof then is achieved by checking the
geometrical formula (5.17) below over this small open subset of Aell; yielding the
statement over the whole Aell.

An important further geometrical insight of the paper [Ng] is that χ̌ell∗(Q)
should be understood with respect to a certain symmetry of the Hitchin fibration,
which we already studied in §2.3 over Areg. Similarly to our definition of the
Prym variety P̌a for a smooth spectral curve Ca in (3.6), we can define the norm
map NmCa/C : Pic0(Ca) → Pic0(C) and Prym variety P̌a := ker(NmCa/C) for
an integral spectral curve πa : Ca → C as well. Again similarly to the smooth
case one can construct an action of P̌a on M̌a := χ̌−1(a) when a ∈ Aell. This
way we get an action of the group scheme P̌ell on M̌ell. This symmetry of the
Hitchin fibration will induce an action of P̌ell on χ̌ell∗(Q). As the group scheme
P̌ 0

ell, the connected component of the identity in P̌ell, acts trivially on cohomology;
this action of P̌ell on χ̌ell∗(Q) will factor through an action of the group scheme of
components Γ := P̌ell/P̌

0
ell. This turns out to be a finite group scheme with stalk

at a agreeing with Γa the group of components of P̌a.

3A detailed survey of the statement and some of the proof of the fundamental lemma could

be found in [Na2].
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The finite group scheme Γ also connects nicely with our finite group Γ =
Pic0(C)[n]. Namely one can easily show that for γ ∈ Γ the pull back π∗a(γ) ∈ P̌a.
This way we get a map

f : Γ→ Γa,

which is shown to be surjective in [HP], where the kernel is also explicitly described.
If we now consider a character κ ∈ Γ̂a, then we get a character κf ∈ Γ̂ and a
corresponding γ = w(κf) ∈ Γ. Then the stalk of a sheaf version of the refined
S-duality in (5.15) for the d = 0 case over Aell followed by relative Hard Lefschetz
leads to the isomorphism

Hr,s
p (M̌a)κ ∼= H

r−F (γ),s−F (γ)
p−F (γ) (M̌a,γ/Γ)(5.17)

This formula, which we derived here from the cohomological shadow of Kapustin–
Witten’s reduced S-duality, can be identified with the stalk of Ngô’s main geomet-
ric stabilization formula [Ng, Theorem 6.4.2] in the case of SLn. As Ngô argues in
[Ng], when (5.17) is proved in positive characteristic, and one takes the alternating
trace of the Frobenius automorphism on both sides of (5.17), then the resulting
formula can be seen to imply the fundamental lemma in the Langlands program
in the function field case and in turn by Waldspurger’s work [Wa] in the number
field case.

As explained in §5.3 the hope is that one can push (5.17) or more precisely
a sheaf version underlying (5.15) from Aell over the whole of the SLn-Hitchin
base A0. The SLn-case of the work of Chaudouard and Laumon [CL1, CL2]
managed, by extending Ngô’s techniques, to do this over Ared that is managed
to prove (5.17) for reduced, but possibly reducible, spectral curves Ca. This way
[CL1, CL2] lead to a proof of the so-called weighted fundamental lemma, which
again by earlier results of Waldspurger and others completed the proof of the
full endoscopic functoriality principle of Langlands. For us however it remains to
extend (5.15) over the whole of A0, including non-reduced and reducible spectral
curves, which will yield our topological mirror symmetry Conjecture 5.9.

Details of the arguments in the last two sections §5.3 and §5.4 will appear
elsewhere.

6. Conclusion

In this paper we surveyed some techniques to obtain cohomological infor-
mation on the topology of the total space of the Hitchin system. We painted a
picture where ideas from physics and number theory were combined into a dy-
namic mix. Although these techniques are fairly powerful, still they have not yet
lead to complete understanding. In particular, the most general conjectures are
still open.

More recently there have appeared work by physicists Diaconescu et al.
[CDP] about a new string theory framework for several conjectures relating to
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the topology of the total space of the GLn-Hitchin system. Besides the links to
the conjectured formulae in [HV, Ha2] a picture is emerging which relates the
main conjecture of [HV, Ha2] with a certain version of the Gopukamar-Vafa con-
jecture, which ultimately can be phrased as strong support of our pivotal P = W

Conjecture 5.3. This way [CDP] uncovers close connections of our conjectures
with Gromov-Witten, Donaldson-Thomas and Pandharipande-Thomas invariants
of certain local Calabi-Yau 3-folds. There have been considerable progress on the
latter invariants lately in the mathematics literature thus we can well hope that
with this new point of view we will be able to progress our understanding of the
problems surveyed in this paper.

We finish by mentioning another promising new work [GHS] where they man-
age to extend the original Morse theory method of Hitchin for n = 2 and Gothen
for n = 3 to higher n using a motivic view point - originating in the number theo-
retic approach of Harder–Narasimhan [HN]. In particular, their calculations have
been done for n = 4 which are in agreement with the conjectures in [HV, Ha2]
and this paper.

When we add these two very recent approaches, again one originating in
physics and one in number theory, to the mix of ideas surveyed in this paper, we
can be sure that new exciting results and ideas will be found on questions relating
to the global topology of the Hitchin system in the foreseeable future.

References

[Ari] Arinkin, D.:Autoduality of compactified Jacobians for curves with plane
singularities, (preprint arXiv:1001.3868v2) 32

[Arn] Arnold, V. I.: Mathematical methods of classical mechanics. Second edi-
tion. Graduate Texts in Mathematics, 60. Springer-Verlag, New York, 1989.
7, 8

[AB] Atiyah, M. F. and Bott, R.: The Yang-Mills equations over Riemann
surfaces. Philos. Trans. Roy. Soc. London Ser. A 308 (1983) 1, 2, 9

[ADK] Aravind, A.; Brent, D. and Frances, K.: Yang-Mills theory and
Tamagawa numbers: the fascination of unexpected links in mathematics. Bull.
Lond. Math. Soc. 40 (2008), no. 4, 533–567. arXiv:0801.4733 4

[Ba] Batyrev, V.: Stringy Hodge numbers of varieties with Gorenstein canonical
singularities. Integrable systems and algebraic geometry (Kobe/Kyoto, 1997),
1–32, World Sci. Publ., River Edge, NJ, 1998. arXiv:alg-geom/9711008 22

http://arxiv.org/abs/1001.3868
http://arxiv.org/abs/0801.4733
http://arxiv.org/abs/alg-geom/9711008


36 Global topology of the Hitchin system

[BaD] Batyrev, V.V. and Dais, D.: Strong McKay correspondence, string-
theoretic Hodge numbers and mirror symmetry, Topology 35 (1996) 901–929.
arXiv:alg-geom/9410001 18, 19

[BNR] Beauville, A., Narasimhan, M.S., and Ramanan, S.: Spectral
curves and the generalised theta divisor Jour. für die Reine und Ang. Math.
398(1989),169-179. 14

[Be] Ben-Bassat, O.: Twisting derived equivalences. Trans. Amer. Math. Soc.
361 (2009), no. 10, 5469–5504. arXiv:math/0606631 32

[BeD] Beilinson, A. and Drinfeld, V.: Quantization of Hitchin’s integrable
system and Hecke eigensheaves. (ca. 1995). http://www.math.uchicago.

edu/~mitya/langlands.html. 7, 32
[BJSV] Bershadsky M., Johansen A., Sadov V., and Vafa C.: Topological

reduction of 4D SYM to 2D σ-models, Nucl. Phys. B448 (1995) 166–186.
arXiv:hep-th/9501096 13, 31
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fonctions, Duke Math. J. 54 (1987) 309–359. 7, 32
[La2] Laumon, G.: Fibres de Springer et jacobiennes compactifiées. in Algebraic

geometry and number theory, 515–563, Progr. Math., 253, Birkhäuser Boston,
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