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A central object of study in gauge theory is the moduli space of unitary +at

connections on a compact surface. Thanks to the e.orts of many people, a great

deal is understood about the ring structure of its cohomology. In particular, the

ring is known to be generated by the so-called universal classes [1, 32], and, in

rank 2, all the relations between these classes are also known [2, 23, 36, 48].

If instead of just unitary connections one allows all +at connections, one obtains

larger moduli spaces of equal importance and interest. However, these spaces are

not compact and so very little was known about the ring structure of

their cohomology.

This paper will show that, in the rank 2 case, the cohomology ring of this non-

compact space is again generated by universal classes. A companion paper [19]

gives a complete set of explicit relations between these generators.

The non-compact spaces studied here have signi7cance extending well beyond

gauge theory. They play an important role in 3-manifold topology: see for example

the work of Culler and Shalen [6]. And they are the setting for much of the

geometric Langlands program: see for example the work of Beilinson and Drinfeld

[3]. But they have received perhaps the most attention from algebraic geometers,

in the guise of moduli spaces of Higgs bundles. A Higgs bundle is a holomorphic

object, related to a +at connection by a correspondence theorem similar to that of

Narasimhan and Seshadri in the unitary case. This point of view has been

exploited to great e.ect, notably by Hitchin [20 --22] and Simpson [37 --40].

The Higgs point of view predominates in this paper also. Indeed, it is strongly

in+uenced by, and occasionally parallel to, the works of Hitchin [20] and Atiyah

and Bott [1]. It is true that the moduli spaces of Higgs bundles and of +at

connections carry di.erent complex structures, but thanks to the correspondence

theorem, they are di.eomorphic, and hence interchangeable topologically. What is

important for our purposes is that the Higgs moduli space carries a holomorphic

action of the complex torus C� . This allows the topology of the moduli space, in

some sense, to be determined from that of the 7xed-point set.

Most of the results in this paper are valid for bundles of arbitrary rank. We

state them this way in the hope that they may hold independent interest. We

especially have in mind the construction in x 9 of the classifying space of the gauge

group as a direct limit of spaces of Higgs bundles.
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We originally believed (and claimed in an early version of this paper) that the
entire argument extended to arbitrary rank. However, a key lemma, (10.5), is
de7nitely false for rank greater than 2. Nevertheless, the main theorem, (1.1),
turns out to hold true for rank greater than 2: this was established in a paper of
Markman [28] not long after this paper was originally written.

Outline of the paper. Section 1 gives statements of the main results, cast in
terms of +at connections. Section 2 reviews the correspondence theorem relating
+at connections to Higgs bundles. The next two sections give some necessary
background on Higgs bundles: x 3 is about their deformation theory, while x 4 is
about the existence and uniqueness of universal families. Section 5 then shows how
the statements of x 1 will follow from the corresponding (and more general)
statements for Higgs bundles. From then on Higgs bundles are used exclusively.

Section 6 re-states the main theorem, on the generation of the rational
cohomology ring by universal classes, in terms of Higgs bundles. The proof
occupies the remainder of the paper. It consists of four sections. Sections 7 and 8
describe how families of Higgs bundles can be decomposed into strata where the
Harder--Narasimhan 7ltrations have 7xed type. Section 7 is about 7nite-
dimensional algebraic families and is largely parallel to the work of Shatz [35].
Section 8 transfers this strati7cation to the setting of an in7nite-dimensional space
acted on by the gauge group: a story familiar to readers of Atiyah and Bott [1].

In x 9, however, our approach takes a di.erent turn. The moduli spaces under
examination are nested in one another, and their direct limit is shown to have the
homotopy type of the classifying space of the gauge group. This implies that the
cohomology of the direct limit is indeed generated by universal classes. It now
suJces to show that this surjects onto the cohomology of the original moduli
spaces. This is proved in x 10 by algebro-geometric methods. It is here that the
rank 2 hypothesis becomes necessary.

Notation and conventions. Throughout the paper, C denotes the compact
surface, or smooth projective curve, of genus g over which we work. Its cohomology
has the usual generators e1; . . . ; e2g 2 H1, and � ¼ ejejþg 2 H 2. The Jacobian of
degree d line bundles onC is denoted JacdC; if d ¼ 0, we write simply JacC. Likewise,

the dth symmetric product of C is denoted SymdC. The letters H and M denote
moduli spaces over C, respectively, of GLðr;CÞ-connections of central constant
curvature on a bundle of rank r and degree d, and of connections in H with 7xed
determinant. The expressions Hn andMn denote moduli spaces over C, respectively,
of Higgs bundles of rank r and degree d with values in KðnÞ ¼ K 
OðnpÞ, and of
Higgs bundles ðE; �Þ 2 Mn having KrE isomorphic to a 7xed line bundle L and
tr� ¼ 0. Groups are denoted T ¼ C� , M ¼ Spð2g;ZÞ, and N ¼ Z

2g
2 .

All cohomology is with rational coeJcients unless otherwise stated. Our
methods do not obviously produce any information on the integral cohomology of
the moduli spaces.

We do not assume g> 2: the moduli spaces M0 and H0 are trivial or empty if
g ¼ 0 or 1, but Mn and Hn for n > 0 are not so trivial, and they play an
important role even for understanding g> 2.
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1. Statement of results in terms of "at connections

In one respect the summary given in the introduction is slightly inaccurate. The
space we study is not exactly the moduli space of "at connections on a compact
surface. For that space is generally singular due to the presence of reducible
connections. This problem is circumvented by shifting attention to connections of
constant central curvature whose degrees are coprime to their ranks. The bait-
and-switch is perhaps regrettable, but it is standard practice in the subject.

So let C be a surface of genus g. The fundamental group of C has presentation

�1ðCÞ ¼
ha1; b1; . . . ; ag; bgiQg

j¼1 ajbja
�1
j b�1

j

:

Let G be the non-compact group GLðr;CÞ. A +at G-connection on C is
determined by a representation �1ðCÞ ! G. So if � : G2g ! G is de7ned by

�ðA1; B1; . . . ; Ag; BgÞ ¼
Yg
j¼1

AjBjA
�1
j B�1

j ;

then any element of ��1ðIÞ de7nes a +at G-connection. The quotient ��1ðIÞ=G,
where G acts by conjugation on all factors, therefore parametrizes all +at
G-connections modulo gauge equivalence. However, as mentioned above, this is
generally a singular space. An exception is when r ¼ 1, but then it is nothing but
the complex torus T ¼ ðC�Þ2g.

Instead of struggling with the singularities, choose any integer d coprime to r,
and consider the space H ¼ ��1ðe2�id=rIÞ=G. This is a non-compact complex
manifold, indeed, a smooth aJne variety [11, 13], and will be our main object of
study. It parametrizes gauge equivalence classes of G-connections on C of constant
central curvature di!I, where ! is a 2-form on C chosen so that

Ð
C ! ¼ 2�=r, and

I is the r � r identity matrix. Indeed, such a connection is again determined by its
holonomies ðAj;BjÞ around aj and bj, subject to the constraint that

Yg
j¼1

AjBjA
�1
j B�1

j ¼ exp

ð
C
di!I ¼ e2�di=rI:

Alternatively, H may be regarded as the space of +at G-connections on C n p
having holonomy e2�di=rI around p, modulo gauge. This has the advantage that no
choice of ! is necessary, but it is less compatible with the Higgs bundle
interpretation coming up.

The subject of this paper is the ring structure of the rational cohomology of H.
To begin this study, some sources of cohomology classes on H are needed.
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The simplest thing to do is pull back the generators of H �ðT Þ by the obvious
determinant map det : H ! T . This produces classes "1; . . . ; "2g 2 H1ðHÞ, but they
are not very interesting. In fact, the subring they generate can be split o. in the
following way.

Let M be the space constructed in the same way as H, but with SLðr;CÞ
substituted for GLðr;CÞ. Certainly M is a subspace of H; but also, scalar
multiplication induces a map T �M! H which is easily seen to be a free
quotient by the abelian group N ¼ Z

2g
r . According to a theorem of Grothendieck

[12, 26], the rational cohomology of such a quotient satis7es

H �ðHÞ ¼ H �ðT � MÞN;

where the right-hand side denotes the N-invariant part. Now N acts on T by
scalar multiplications, so it acts trivially on cohomology and hence as rings

H �ðHÞ ¼ H �ðT Þ 
H �ðMÞN:

Furthermore the composition of the N-quotient with the determinant is the
map T �M! T given simply by projecting to T =N ¼ T . The subring of H �ðHÞ
generated by "1; . . . ; "2g is therefore nothing but the 7rst factor of the
tensor product.

To de7ne more interesting cohomology classes on H, construct a principal
bundle over H � C as follows. Let G ¼ PGLðr;CÞ. Any � 2 ��1ðe2�di=rIÞ induces a

well-de7ned homomorphism �1ðCÞ ! G. Let eCC be the universal cover of C, which
is acted on by �1ðCÞ via deck transformations. There is then a free action of
�1ðCÞ � G on G � ��1ðe2�di=rIÞ � eCC given by

ðp; gÞ � ðh; �; xÞ ¼ ðg�ðpÞh; g�g�1; p � xÞ;

where g denotes the image of g in G. The quotient is the desired principal
G-bundle. Like any principal G-bundle, it has characteristic classes c2; . . . ; cr,
where ci 2 H 2iðH � CÞ. In terms of formal Chern roots "k, ci can be described as
the ith elementary symmetric polynomial in the "k � $, where $ is the average of
the "k.

Now let � 2 H 2ðCÞ be the fundamental cohomology class, and let e1; . . . ; e2g be
the basis of H1ðCÞ Poincar�ee dual to a1; . . . ; ag; b1; . . . ; bg. In terms of these, each of
the characteristic classes has a K€uunneth decomposition

ci ¼ %i �þ &i þ
X2g
j¼1

 i; j ej;

de7ning classes %i 2 H 2i�2ðHÞ, &i 2 H 2iðHÞ, and  i; j 2 H 2i�1ðHÞ. The pull-back of
these classes to T �M, by the way, is easily seen to come entirely from H �ðMÞN.

It is convenient to refer to the entire collection of classes %i, &i,  i; j, and "j as
the universal classes.

Now specialize, for the remainder of this section, to the case r ¼ 2. Then d must
be odd, so that H ¼ ��1ð�IÞ=G. The main result of this paper is then
the following.

(1.1) When r ¼ 2, the rational cohomology ring of H is generated by the
universal classes.
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Equivalently, H�ðMÞN is generated by the classes % ¼ 1
2%2 2 H 2ðMÞ,

&¼ � 1
4&2 2H 4ðMÞ, and  j¼ 2; j 2H3ðMÞ for j ¼ 1; . . . ; 2g. (These normalizations

are by now standard in the literature.) It is worth mentioning that H �ðMÞ is
generally not entirely N-invariant [20, 7.6], and hence is not generated by the
universal classes. However, by the aforementioned theorem of Grothendieck,
H �ðMÞN is the rational cohomology of M=N, which is a component of the
moduli space of +at G-connections on C.

For completeness, we recount here the main result of our companion paper [19]
giving all the relations between these generators. In the light of the discussion
earlier it suJces to work with H �ðMÞN. Let M ¼ Spð2g;ZÞ. The action of
di.eomorphisms on C will be shown to induce an action of M on H �ðMÞN, 7xing %
and & and acting as the standard representation on the span V ¼ H3ðMÞ of the
 j. Thus ) ¼ �2

Pg
j¼1  j jþg is a M-invariant element of H 6ðMÞ. Let Kn

0 ð Þ be
the kernel of the natural map KnV ! K2gþ2�nV given by the wedge product with
) gþ1�n, or equivalently, the M-invariant complement of )Kn�2V in KnV .

For any g; n> 0, let I gn be the ideal within the polynomial ring Q½%; &; )�
generated by ) gþ1 and the polynomials

�cr;s;t ¼
Xminðc;r;sÞ

i¼0

ðc� iÞ! %r�i

ðr� iÞ!
&s�i

ðs� iÞ!
ð2)Þtþi

i!
;

where

c ¼ rþ 3sþ 2t� 2gþ 2� n;

for all r; s; t> 0 such that rþ 3sþ 3t > 3g� 3þ n and rþ 2sþ 2t> 2g� 2þ n.
The main result of our companion paper is then the following.

(1.2) If the rank r ¼ 2, then as an algebra acted on by M,

H �ðMÞN ¼
Mg
n¼0

Kn
0 ð Þ 
Q½%; &; )�=Ig�nn :

Together, the two main theorems completely describe the ring structure of
H �ðHÞ when r ¼ 2. They do not completely describe H �ðMÞ because of the
classes that are not invariant under N. However, these form a relatively minor and
simple part of the cohomology, and can be dealt with by hand; this will be carried
out in a forthcoming paper [45].

The main theorems will be proved in the language not of +at connections but
rather of Higgs bundles. Indeed, it proved most convenient to deduce them from
more general results applying to an in7nite sequence of spaces of Higgs bundles, of
which H is only the 7rst. We shall next review the de7nition of Higgs bundles,
and the correspondence theorem relating them to +at connections.

2. Higgs bundles

A major advance in the study of these representation spaces was made by
Hitchin [20] and Simpson [39], who discovered that they can alternatively be
viewed as moduli spaces of holomorphic objects. So now, and for the remainder of
the paper, let C be a smooth complex projective curve of genus g.

A Higgs bundle or Higgs pair on C with values in a holomorphic line bundle L
is a pair ðE; �Þ, where E is a holomorphic vector bundle over C, and �, called a
Higgs �eld, is any element of H 0ðEndE 
 LÞ. Its slope is the rational number
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degE=rkE. A holomorphic subbundle F � E is �-invariant if �ðF Þ � F 
 L. A
Higgs bundle is semistable if slopeF 6 slopeE for all proper �-invariant
holomorphic subbundles F � E, and stable if this inequality is always strict.

For example, a pair of the form ðE; 0Þ is stable if and only if the bundle E
is stable.

We will be concerned entirely with the case when the line bundle L is
KðnÞ ¼ K 
OðnpÞ, where K is the canonical bundle of C, p is a distinguished
point in C, and n> 0.

The moduli space of Higgs bundles with values in K was constructed by Hitchin
[20] and Simpson [39], and generalized to an arbitrary line bundle by Nitsure [34].
Their work implies the following.

(2.1) For 7xed rank r, degree d coprime to r, and n> 0, there exists a moduli
space Hn of Higgs bundles with values in KðnÞ, which is a smooth quasi-projective
variety of dimension r2ð2g� 2þ nÞ þ 2. For a 7xed holomorphic line bundle L of
degree d, the locus Mn where KrE ffi L and tr� ¼ 0 is a smooth subvariety of
dimension ðr2 � 1Þð2g� 2þ nÞ.

In the case n ¼ 0, Higgs bundles are related to connections of constant central
curvature in the following way. Suppose that C is equipped with a K€aahler metric,
and let ! be the K€aahler form, again normalized so that

Ð
C ! ¼ 2�=r. Then Hitchin

showed the following.

(2.2) Suppose that r and d are coprime and that n ¼ 0. Then a Higgs bundle
ðE; �Þ is stable if and only if it admits a Hermitian metric so that the metric
connection A satis7es the equation FA þ ½�; ��� ¼ di!I. This metric is unique up
to rescaling and depends smoothly on ðE; �Þ.

Here FA 2 Q2ðEndEÞ is the curvature, the Higgs 7eld � is regarded as a section
of Q0;1ðEndEÞ, and I is the identity in EndE. For such a connection A, an easy
calculation shows that the GLðr;CÞ connection Aþ �þ �� has constant central
curvature di!I. Hence there is a natural smooth map from the space H0 of Higgs
bundles to the space H discussed in the previous section.

In fact, this map is a di.eomorphism, as is the restriction M0 !M. The
inverse map is provided by a result of Corlette [5] and Donaldson [8].

(2.3) Any GLðr;CÞ connection on C with constant central curvature di!I
is gauge equivalent to one of the form Aþ �þ ��, where @A� ¼ 0 and
FA þ ½�; ��� ¼ di!I.

Both H0 and H carry natural complex structures, but these are not identi7ed
by the di.eomorphism. Rather, they are di.erent members of the family of
complex structures which comprises a hyperk€aahler structure on the moduli space.

Our approach does not use this hyperk€aahler structure. Indeed, it will be shown
in (5.1) that the cohomology classes de7ned above in terms of +at connections can
also be obtained from the universal family of Higgs bundles. From then on the +at
connection point of view will vanish, and the moduli space will be regarded
exclusively as a Higgs space.

As pointed out by Simpson [37], the moduli space of Higgs bundles actually
retracts onto a highly singular Lagrangian subvariety, the nilpotent cone.
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Therefore our results could be viewed as describing the cohomology ring of the
nilpotent cone. However, this seems to be only a curiosity and is not relevant to
our approach.

The advantage of the Higgs moduli space is that it admits a holomorphic action
of the group T ¼ C� , given simply by / � ðE; �Þ ¼ ðE; /�Þ. This of course 7xes all
stable pairs of the form ðE; 0Þ, which are parametrized by the moduli space of
stable bundles of rank r and degree d. But the 7xed-point set has other
components as well, and they will play a crucial role in what follows.

3. Deformation theory of Higgs pairs

This section and the next summarize, mostly without proof, some basic facts
about Higgs pairs that will be needed later on. The omitted proofs are entirely
straightforward, along the lines of Markman [27, 7.3], Welters [46] or the second
author [44, 2.1]. In the rank 2 case, some details are worked out in the 7rst
author’s PhD thesis [16].

The deformation space of a holomorphic bundle E is well known to be
H1 EndE; that of a Higgs pair ðE; �Þ is similar, but involves hypercohomology.

Let ðE; �Þ be a Higgs pair, and let EndðE; �Þ denote the two-term complex
on C,

EndE !
½ ; ��

EndE 
KðnÞ:

(3.1) The space of in7nitesimal deformations of ðE; �Þ is the 7rst hypercoho-
mology group H1 EndðE; �Þ. The space of endomorphisms of E preserving � is
H0 EndðE; �Þ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A

Similarly, let HomððE 0; � 0Þ; ðE; �ÞÞ denote the complex

HomðE 0; EÞ �! HomðE 0; EÞ 
KðnÞ
given by  7! � 0 � � .

(3.2) The space of homomorphisms E 0 ! E intertwining � with � 0 is the
zeroth hypercohomology group H0 HomððE 0; � 0Þ; ðE; �ÞÞ. The space of extensions

of ðE 0; � 0Þ by ðE; �Þ is H1 HomððE 0; � 0Þ; ðE; �ÞÞ. . . . . . . . . . . . . . . . . . . . . A

Here an extension of one Higgs pair by another is a Higgs pair ðE 00; � 00Þ and a
short exact sequence

0�! E �! E 00 �! E 0 �! 0

such that � 00 restricts to � on E and projects to � 0 on E 0.
One more variation on the theme will be needed in x 7. Let ðE; �Þ be a Higgs

pair containing a +ag of �-invariant subbundles. (In practice this +ag will always
be the Harder --Narasimhan �ltration de7ned in x 7.) Let End 0 E be the subbundle
of EndE consisting of endomorphisms 7xing the +ag, and let End 0 ðE; �Þ be the
two-term complex

End 0E !
½ ; ��

End 0E 
KðnÞ:
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(3.3) The space of in7nitesimal deformations of the Higgs pair ðE; �Þ together
with the �-invariant +ag is H1 End 0ðE; �Þ. . . . . . . . . . . . . . . . . . . . . . . . A

4. Universal families of stable Higgs pairs

(4.1) Let ðE; �Þ and ðE 0; � 0Þ be stable Higgs pairs with slopeE 0
> slopeE.

Then the dimension of H0 HomððE 0; � 0Þ; ðE;�ÞÞ is 1 if ðE 0; � 0Þ and ðE; �Þ are
isomorphic, and 0 otherwise. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A

In particular, the space of endomorphisms H0 EndðE; �Þ consists only of
scalar multiplications.

(4.2) Let ðE;�Þ and ðE 0;� 0Þ ! X � C be families of stable Higgs pairs
parametrized by X such that for all x 2 X, ðE;�Þx ffi ðE 0;� 0Þx. Then there exists
a line bundle L! X such that ðE;�Þ ffi ðE 0 
 ��1L;�Þ. In particular, PE and
EndE are canonical.

Proof. By (4.1), H0 HomððE 0;� 0Þx; ðE;�ÞxÞ is 1-dimensional for all x. Hence
the hyperdirect image ðR0�1Þ�HomððE 0;� 0Þ; ðE;�ÞÞ is a line bundle L! X. It is
then easy to construct the desired isomorphism. �

It is clear from the proof that the above proposition holds true not only for
algebraic families of Higgs pairs, but even for smooth families, that is, C1 bundles
ðE;�Þ ! X � C for any smooth parameter space X, endowed with a partial
holomorphic structure in the C-directions.

(4.3) Let ðE;�Þ be a family of stable Higgs pairs parametrized by X, and let
C� act on X. If there are two liftings of the action to E so that the induced action
on � is Adð/Þ� ¼ /�1�, then one is the tensor product of the other with an
action of C� on a trivial line bundle. In particular, there are canonical C� -actions
on PE and EndE.

Proof. Compose one lifting with the inverse of the other. This gives a lifting of
the trivial action on Hn to E which preserves �. By (4.1), this acts on each 7ber
via scalar multiplications. �

(4.4) There exists a universal family ðE;�Þ over Hn � C, and a lifting of the
C� -action on Hn to E whose induced action on � is Adð/Þ� ¼ /�1�.

That is, Hn is a 7ne moduli space for the Higgs bundles of degree d and rank r
with values in KðnÞ.

Proof. This follows in a standard way (cf. Newstead [33]), from the
geometric invariant theory construction of Hn due to Nitsure [34]. Alternatively,
the universal pair can be constructed gauge-theoretically just as in the paper by
Atiyah and Bott [1, x 9]. In the rank 2 case, both methods are explained in detail
by the 7rst author [17, 5.3; 16, 5.2.3]. �
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5. Equivalence of the two sets of universal classes

The main results were stated in x 1 for the moduli space of +at connections H. But
what is actually proved are similar results for the Higgs moduli spaces Hn. To show
that these imply the statements of x 1 in the case n ¼ 0, it suJces to check that
the relevant cohomology classes correspond under the di.eomorphism H0 ! H.

Let ðE;�Þ be a universal family on Hn � C. There is a morphism Hn ! JacdC
given by ðE; �Þ 7!KrE, so the generators of H �ðJacdCÞ pull back to classes
"1; . . . ; "2g 2 H1ðHnÞ. Also, let c2; . . . ; cr be the characteristic classes of PE. These
are elements of rational cohomology; they can be regarded as the Chern classes of
the tensor product of E with a formal rth root of KrE�.

Each of these classes has a K€uunneth decomposition

ci ¼ %i �þ &i þ
X2g
j¼1

 i; j ej;

de7ning classes %i 2 H 2i�2ðHÞ, &i 2 H 2iðHÞ, and  i; j 2 H 2i�1ðHÞ. The entire
collection of classes %i, &i,  i; j, and "j will be referred to as the universal classes.
What requires proof is then the following.

(5.1) When n ¼ 0, these classes correspond under the di/eomorphism H0 !H
to their counterparts de�ned in x 1.

Proof. First, there is a diagram

H !det T
ffi
???y

???y
H0 !Kr

JacdC

relating the map det of x 1 to the map ðE; �Þ 7!KrE mentioned above. It is easy to
see from (2.3) that this commutes, and hence that the classes "j 2 H correspond
under the di.eomorphism.

To show that the higher-degree classes %i, &i, and  i; j correspond, it suJces to
show that the principal PGLðr;CÞ-bundle associated to PE corresponds under the
di.eomorphism H0 ! H to the principal bundle

G � S � eCC
�1ðCÞ � G

of x 1, where S ¼ ��1ðe2�id=rIÞ. (Recall that G ¼ GLðr;CÞ, G ¼ PGLðr;CÞ, and eCC
is the universal cover of C.) In fact, we will construct a principal G-bundle R over
H0 and show that the principal G-bundle U associated to the pull-back of PE to
R � C is G-equivariantly isomorphic to

V ¼ G � S � eCC
�1ðCÞ

:

Let R be the total space of the principal G-bundle over H0 associated to
PEjH0�fpg. Then R parametrizes stable pairs ðE;�Þ equipped with a frame for the
7ber Ep, up to rescaling. On the other hand, S parametrizes connections of
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constant central curvature, together with a frame for the 7ber at a base point, up
to rescaling. The di.eomorphism H0 ! H therefore lifts to a G-equivariant
di.eomorphism R! S.

Let F be the pull-back to R � C of E. Then PF admits a natural G-action
lifting that on R, and it is canonically trivialized on R � fpg. Moreover, by (2.2),
F admits a Hermitian metric so that the restriction of the metric connection A to
each slice fðE; �Þg � C satis7es the self-duality equation. Hence Aþ �þ ��

determines a G-connection on F whose restriction to each slice has constant
central curvature. In particular, the associated G-connection on the associated
G-bundle U is +at on each slice.

On the other hand, the bundle V over S � C de7ned above is trivial on
S � fpg, and carries a +at connection on each slice frg � C, which has the same
holonomy as the one just mentioned and is preserved by the action of G. These
+at connections can be used to extend the isomorphism U jR�fpg ffi V jS�fpg of
trivial bundles with G-action to a G-equivariant isomorphism U ffi V lifting the
G-equivariant di.eomorphism R! S. �

This marks the last appearance of +at connections in our story. From now on it
is all about Higgs bundles.

6. Statement of the generation theorem

Let "j, %i, &i,  i; j be the universal classes, de7ned in x 5, on the Higgs moduli
space Hn. The goal of the paper will be to prove this, its main result.

(6.1) The rational cohomology ring of Hn is generated by the universal classes.

The proof of this generation theorem has several parts, with quite
di.erent +avors.

First, we study the strati7cation of families of Higgs bundles according to their
Harder--Narasimhan type. Section 7 is devoted to 7nite-dimensional families, and
x 8 to an in7nite-dimensional family analogous to that of Atiyah and Bott [1]. The
aim is to show that the strata are smooth of the expected dimension, but this
turns out to be true only in a stable sense. We need to consider not only a single
Hn, but the chain of inclusions Hn ,!Hnþ1.

We are therefore led to consider in x 9 the direct limit H1 of the Hn, and to
show that its cohomology is generated by universal classes. Indeed, topological
arguments show that it has the homotopy type of the classifying space of the gauge
group, and the generation then follows from a theorem of Atiyah and Bott [1].

Having done this, we then show in x 10 that, when r ¼ 2, the cohomology of
H1 surjects on that of Hn for every n, and hence in particular on that of H itself.
This part of the proof is algebro-geometric in nature.

7. The �nite-dimensional strati�cation

We wish to adopt the point of view taken by Atiyah and Bott [1], in which
the objects of interest -- for us, Higgs pairs -- are parametrized by an
in7nite-dimensional, contractible space. The whole space will be divided into
strata on which the level of instability is in some sense constant. So we will 7rst
study the analogue of this strati7cation in 7nite-dimensional algebraic families,
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then transfer it to our in7nite-dimensional setting. Except for some subtleties
surrounding smoothness, the results of xx 7 and 8 are mostly analogous to those of
Shatz [35] and Atiyah and Bott [1]; readers familiar with those papers may be
willing to skip directly to x 9.

Let ðE; �Þ be a Higgs pair with values in a line bundle L. A 7ltration by
�-invariant subbundles

0 ¼ E 0 � E 1 � . . . � El ¼ E

is said to be a Harder --Narasimhan �ltration (hereinafter HN 7ltration) if the pairs
ðF i; �iÞ are semistable with slope strictly decreasing in i, where F i ¼ Ei=E i�1 and
�i is induced by �.

(7.1) Any Higgs pair de�ned over any �eld of characteristic 0 possesses a
unique HN �ltration.

Proof. The analogous statement for bundles without a Higgs 7eld is proved by
Harder and Narasimhan [14] and Shatz [35]. The proof for Higgs pairs is entirely
parallel: just substitute �-invariant subbundles for ordinary subbundles every-
where in either proof. Shatz assumes that the ground 7eld is algebraically closed,
but his proof of this theorem does not require it. �

For a given ðE; �Þ, the type � is the l-tuple ðr1; d1Þ; . . . ; ðrl; dlÞ of ranks and
degrees of the F i appearing in its HN 7ltration. For example, the type of a
semistable pair is the 1-tuple ðr; dÞ.

Since the slope di=ri is strictly decreasing, the pairs ð0; 0Þ; ðr1; d1Þ; ðr1 þ r2,
d1 þ d2Þ; . . . ; ðr; dÞ consisting of partial sums form the vertices of a convex polygon
Polð�Þ in R2, as shown in Figure 1.

Let S be a scheme of 7nite type over C, and ðE;�Þ ! S � C a family,
parametrized by S, of Higgs pairs on C with values in L.

(7.2) The set fs 2 S j ðE;�Þs is semistableg is open in S.

Proof. See [34] by Nitsure. �

For any �, let S� be the set of those s 2 S such that ðE;�Þs has type �. Recall
that a constructible subset is a 7nite union of locally closed sets in the
Zariski topology.

Figure 1.
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(7.3) For any family of Higgs pairs over S and any type �, S� is a
constructible set. Moreover, S� 6¼ ; for only �nitely many �, and each S� is
covered by constructible sets where the HN �ltration varies algebraically, that is,
it determines a �ltration of E by �-invariant subbundles.

Proof. Without loss of generality assume S is irreducible. Given a family
ðE;�Þ ! S � C, let ðE;�Þ" be the 7ber over the generic point " 2 S. This is a
Higgs pair de7ned over the function 7eld CðSÞ. It therefore has a HN 7ltration, of
some type �, by �"-invariant subbundles. By Lemma 5 of Shatz [35] there exists
an open U � S such that this 7ltration extends to a 7ltration of EjU�C by
subbundles Ei. They are �-invariant, since this is a closed condition and the
closure of " is all of S.

On the other hand, (7.2) implies that, since the quotient pairs ðFi;�iÞ" are
semistable, after restricting to a smaller U if necessary, ðFi;�iÞs are also
semistable for all s 2 U . Hence this is the HN 7ltration at every s 2 U, so U � S�.

Now pass to S nU and proceed by induction on the dimension of the
parameter space. �

Following Shatz [35], de7ne a partial ordering on the set of types by declaring
�6 6 if Polð�Þ � Polð6Þ. Then let S>� ¼

S
6>� S

6.

(7.4) For S and � as above, S>� � S is closed.

The proof requires the following lemma.

(7.5) Let ðE; �Þ be a Higgs pair of type �, and let F � E be a �-invariant
subbundle. Then ðrkF; degF Þ 2 Polð�Þ.

Proof. The analogous statement without a Higgs 7eld is Theorem 2 of Shatz
[35], and the proof of this is entirely parallel. One simply has to note that since
the 7ltration and the subbundle F are �-invariant, so are the subsheaves Ei \ F
and Ei _ F considered by Shatz. �

Proof of (7.4). If F � E is any inclusion of torsion-free sheaves, de7ne bFF � E
to be the inverse image under the projection E ! E=F of the torsion subsheaf.
Then bFF and E= bFF are torsion-free, F ¼ bFF on the locus where E=F is torsion-free,
and F 7! bFF preserves inclusions of subsheaves of E.

By (7.3) S>� can be regarded as a reduced subscheme of S. To show that it is
closed, by the valuative criterion [15, Chapter II, 4.7] it suJces to show that, if X
is any smooth curve, and f : X ! S any morphism taking a non-empty open set
into S�, then fðXÞ � S�.

The generic point of X maps to one of the constructible sets named in (7.3),
where the HN 7ltrations are parametrized by subbundles. Hence there is a non-
empty open set V � X such that the restriction of ðf�1Þ�E to V � C is 7ltered
by subbundles restricting over every point in V to the HN 7ltration.

Like any coherent subsheaf de7ned on an open set [15, Chapter II, Exercise
5.15(d)], these bundles extend to coherent subsheaves Ei of ðf�1Þ�E over all of
X � C. These can be chosen to remain nested, and as subsheaves of E they are of
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course torsion-free. Furthermore, they can be chosen so that E=Ei are torsion-free
also, by replacing Ei with bEEi.

Since torsion-free sheaves on a smooth surface such as X � C are locally free
except on a set of codimension 2 [10, Corollary 2.38], it follows that the Ei are
subbundles except at 7nitely many points in the 7bers over X nV .

Now on a smooth curve such as one of these 7bers, torsion-free sheaves are
locally free, and so the procedure of the 7rst paragraph implies the following:
every subsheaf of a locally free sheaf is contained in a subbundle having the same
rank and no less degree, with equality if and only if it was a subbundle to
begin with.

When restricted to fxg � C for any x 2 X nV , then, the nested subsheaves Ei
x

determine a sequence of subbundles, which only di.er from Ei
x at 7nitely many

points and hence remain nested and �x-invariant, and have the same rank. Since
the degrees may have risen, they determine a polygon which contains Polð�Þ. By
(7.5), if the type of ðE;�Þx is 6x, then Polð6xÞ contains this polygon. Hence 6x>�,
so fðxÞ 2 S>�. �

As in the paper by Atiyah and Bott [1], the last statement of (7.3) can
be re7ned.

(7.6) The HN �ltration varies algebraically on all of S�; that is, there exists a
�ltration of EjS ��C by subbundles restricting to the HN �ltration on each �ber.

The proof again requires a lemma.

(7.7) If E 1 is the �rst term in the HN �ltration of ðE; �Þ and F � E is
another �-invariant subbundle of the same rank and degree, then F ¼ E 1.

Proof. The corresponding statement for ordinary bundles is a special case of
Lemma 3 of Shatz [35]. The proof of this is again entirely parallel. �

Proof of (7.6). By (7.3), the HN 7ltrations determine a constructible subset of
the product of Grassmannian bundles �i GrassriEjS ��C . It must be shown that it
is closed. By the valuative criterion, it suJces to show that for any morphism
f : X ! S�, where X is a smooth curve, the HN 7ltrations determine a 7ltration
of ðf�1Þ�E by subbundles.

As in the proof of (7.4), a 7ltration by subbundles does exist over an open
V � X, and the subbundles extend to nested, �-invariant torsion-free sheaves Ei

over X � C.
The restrictions of these to the 7bers over x 2 X nV generate nested, �-invariant

subbundles whose ranks and degrees span a polygon containing Polð�Þ. But now
since ðE;�Þx also has type �, by (7.5) this polygon is contained in Polð�Þ as well.
Hence it equals Polð�Þ, so the subbundles have degrees equal to those of the
subsheaves which generated them. They therefore coincide with these subsheaves.

Consequently, the sections of the subsheaf Ei span an ri-dimensional subspace
of the 7ber of ðf�1Þ�E over every point in X � C. It follows that Ei is
a subbundle.

Finally, we claim that for any x 2 X nV , the HN 7ltration of Ex is the
restriction of the Ei. First, E1

x is a �x-invariant subbundle of rank and degree
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equal to that of the 7rst term in the HN 7ltration. By (7.7) these two subbundles
must coincide. Now pass to E=E1 and use induction on the length of the HN
7ltration to do the rest. �

Recall that End 0 refers to the two-term complex, de7ned in x 3, involving
endomorphisms 7xing a +ag of subbundles. In what follows, this +ag will always
be the HN 7ltration.

(7.8) There are deformation maps

TsS ! H1 EndðE;�Þs and TsS
� ! H1 End 0ðE;�Þs

so that the following diagram commutes:

TsS
� !H1 End 0ðE;�Þs???y

???y
TsS !H1 EndðE;�Þs

Proof. This follows immediately from (3.1), (3.3) and (7.6). �

(7.9) Let ðE; �Þ be a Higgs pair with values in L. Form large enough, ðE; �ðmÞÞ
belongs to a family, parametrized by a smooth base X, of Higgs pairs with
values in LðmÞ such that the deformation map TðE;�ðmÞÞX ! H1 EndðE; �ðmÞÞ is
an isomorphism.

Proof. It suJces to 7nd a smooth X so that the deformation map is
surjective, since then one may restrict to a smooth subvariety transverse to
the kernel.

Choose k large enough that EðkÞ is generated by its sections and has H1 ¼ 0.
There is then a surjection O9 ! EðkÞ, where 9 is the Euler characteristic of EðkÞ.
This represents a point q in the Quot scheme parametrizing quotients of O9 with
7xed rank and degree. Let F be the kernel of the map O9 ! EðkÞ. The tangent
space to the Quot scheme at q is then H 0 HomðF;EðkÞÞ, and the natural map to
the deformation space of EðkÞ is the connecting homomorphism in the long exact
sequence of

0�! EndE �! HomðO9; EðkÞÞ �!HomðF;EðkÞÞ �! 0:

This is surjective since H1 HomðO9; EðkÞÞ ¼ C9 
H1ðEðkÞÞ ¼ 0. For the same
reason, H1 HomðF;EðkÞÞ ¼ 0, so the Quot scheme is smooth at q.

Now choose m large enough that H1ðEndE 
 LðmÞÞ ¼ 0, and let X be the total
space of ��ðEndE
 LðmÞÞ, where E is the tautological quotient on Quot � C, and
� is projection to Quot. This is smooth near q since the push-forward is locally free
there. Moreover, there is a tautological section � 2 H 0ðX � C;EndE
 LðmÞÞ.
That the deformation map is surjective is easily seen from the diagram

H 0ðEndE 
 LðmÞÞ !TðE;�ðmÞÞX !H 0 HomðF;EðkÞÞ ! 0

¼
???y

???y
???y

???y
H 0ðEndE 
 LðmÞÞ !H1 EndðE; �ðmÞÞ !H1 EndE ! 0

�

�
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Now 7x a type �, and let ðE; �Þ be a pair of this type, with values in L.

(7.10) For m large enough, ðE; �ðmÞÞ belongs to a family, parametrized by a
smooth base Y , of Higgs pairs of type � with values in LðmÞ such that the
deformation map TðE;�ðmÞÞY ! H1End 0ðE; �ðmÞÞ is an isomorphism.

Proof. The proof is parallel to that of the previous theorem. Let

0 ¼ E 0 � . . . � E l ¼ E

be the HN 7ltration of ðE; �Þ, as usual, and let Ei ¼ E=E i. Choose k large
enough that every EiðkÞ is generated by its sections and every H1ðEiðkÞÞ ¼ 0.
Then H1ðEiðkÞÞ ¼ 0 as well, and H 0ðEðkÞÞ ! H 0ðEiðkÞÞ is surjective. If

9 ¼ dimH 0ðEðkÞÞ;

a choice of basis for H 0ðEðkÞÞ then determines a sequence of quotients

O9 !EðkÞ !
 1

E1ðkÞ !
 2

E2ðkÞ !
 3

. . . !
 l

ElðkÞ

determining a point q in the product of l di.erent Quot schemes. Let R be the
subspace of this product parametrizing +ags of bundles; then TqR is H0ðC �Þ,
where C � is the third row in an exact sequence of two-term complexes

0 0???y
???yM

i

HomðEi; EiÞ !
M
i

HomðEi; Eiþ1Þ???y
???yM

i

HomðO9; EiÞ !
M
i

HomðO9; Eiþ1Þ???y
???yM

i

HomðFi; EiÞ !
M
i

HomðFi; Eiþ1Þ???y
???y

0 0

and Fi is the kernel of the map O9 ! Ei. Now the second row B� is isomorphic to
9 copies of

L
i Ei !

L
i Eiþ1, with the map given by ðbiÞ 7! ð iþ1bi � biþ1Þ. Using

the long exact sequence

0 !H0 ðB �Þ !
M
i

H 0ðEiÞ !
M
i

H 0ðEiþ1Þ

!H1ðB�Þ !
M
i

H1ðEiÞ !
M
i

H1ðEiþ1Þ

!H2ðB�Þ ! 0

together with H1ðEiÞ ¼ 0 and the surjectivity of H 0ðEiÞ ! H 0ðEiþ1Þ, we see that
a descending induction on i shows that H1ðB �Þ ¼ H2ðB�Þ ¼ 0. Finally, if A� is the
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7rst row, from the short exact sequence

0 �! End 0E �!
M
i

HomðEi; EiÞ �!
M
i

HomðEi; Eiþ1Þ �! 0

we conclude that H�ðA�Þ ¼ H �ðEnd 0 EÞ and hence that H0ðC �Þ ¼ TqR surjects on
H1ðA�Þ ¼ H1ðEnd 0 EÞ. Moreover,

H2ðA�Þ ¼ H 2ðEnd 0 EÞ ¼ 0:

Hence H1ðC �Þ ¼ H2ðC �Þ ¼ 0, so R is smooth at q.
Now choose m large enough that H1ðEnd 0 E 
 LðmÞÞ ¼ 0, and let Y be the

total space of ��ðEnd 0 E
 LðmÞÞ, where E is the obvious tautological quotient on
R, End 0 E � EndE is the subbundle of endomorphisms preserving the +ag, and
� : R � C ! R is the projection. Then Y is smooth in a neighborhood over q,
contains a point representing ðE; �ðmÞÞ, and has a tautological Higgs 7eld
� 2 H 0ðY � C;End 0 E
 LðmÞÞ. The deformation map is surjective, as may be
seen from the diagram

H 0ðEnd 0E 
 LðmÞÞ !TðE;�ðmÞÞY !TqR ! 0

¼
???y

???y
???y

???y
H 0ðEnd 0E 
 LðmÞÞ !H1 End 0ðE; �ðmÞÞ !H1 End 0E ! 0

�

�

8. The in�nite-dimensional strati�cation

Let E be a Hermitian vector bundle over C of rank r and degree d. A rigorous
construction of Hn as an in7nite-dimensional quotient involves connections and
sections in Sobolev spaces associated to E. So choose any k> 2; Atiyah and Bott
prefer k ¼ 2, but for us, as for them, any greater k will also do. Then, for any
Hermitian bundle V over C, denote by Qp;qðVÞ the Banach space consisting of
sections, of Sobolev class L2

k�p�q, of the bundle of di.erential forms of types
p and q with values in V. Also let A be the space of holomorphic structures on E
di.ering from a 7xed C1 one by an element of the Sobolev space Q0;1ðEnd EÞ. We
hope the reader will pardon the unorthodox use of Q to refer to a Sobolev
completion, rather than just the space of smooth forms.

De7ne a map

@ : A � Q1;0ðEnd E 
KðnÞÞ �! Q1;1ðEnd E 
KðnÞÞ

by @ðE; �Þ ¼ @E�, and let Bn ¼ @�1ð0Þ. This parametrizes all pairs where �
is holomorphic.

Let G be the complex gauge group consisting of all complex automorphisms of
E of Sobolev class L2

k. Then G acts naturally and smoothly on A as shown by
Atiyah and Bott, and likewise on Q1;0ðEnd E 
KðnÞÞ since L2

k�1 is a topological
L2
k-module. The G-action on the product of these spaces preserves Bn.

(8.1) Every G-orbit in Bn has a C1 representative ðE; �Þ, and any two are
interchanged by a C1 gauge transformation. The stabilizer of ðE; �Þ is the group
of holomorphic automorphisms of E preserving �.
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Proof. According to Lemma 14.8 of Atiyah and Bott’s paper, every G-orbit in
A contains a C1 representative. If ðE; �Þ 2 Bn, so that � satis7es the elliptic
equation @E� ¼ 0, it follows from elliptic regularity that � is also C1. If ðE; �Þ
and ðE 0; � 0Þ are pairs in the same G-orbit, then by Lemma 14.9 of Atiyah and
Bott, any gauge transformation interchanging E and E 0 is C1; hence the same is
true for the pairs. Finally, if an element of G preserves ðE; �Þ, this means precisely
that it preserves @E , and hence is a holomorphic automorphism, and 7xes �. �

(8.2) Let ðE; �Þ 2 Bn be a C1 pair. Then the normal space to the G-orbit at
ðE; �Þ is canonically isomorphic to H1 EndðE; �Þ, and the cokernel of the derivative
of @ at ðE; �Þ is canonically isomorphic to H2 EndðE; �Þ.

Proof. The in7nitesimal action of the Lie algebra of G is the map f, and the
derivative of @ is the map g, in the complex

Q0;0ðEnd EÞ !
f

Q0;1ðEnd EÞ ' Q0;0ðEnd E 
KðnÞÞ !
g

Q0;1ðEnd E 
KðnÞÞ;

where fðaÞ ¼ ð�@EðaÞ; ½a; ��Þ and gðb; cÞ ¼ @EðcÞ þ ½b; ��. The symbol sequence of
this complex is the direct sum of those of the Dolbeault complexes of EndE and
EndE 
KðnÞ, so it is elliptic. By elliptic regularity the cohomology of the complex
is then the same as its counterpart where the Sobolev spaces are replaced by spaces
of smooth forms; this is precisely the Dolbeault hypercohomology of EndðE; �Þ. �

(8.3) For each ðE; �Þ 2 Bn, ðE; �ðmÞÞ is a smooth point of Bmþn for
su3ciently large m.

Proof. Choose m large enough that H1ðEndE 
Kðmþ nÞÞ ¼ 0. Then from
the long exact sequence

. . .�!H1ðEndEÞ �!H1ðEndE 
Kðmþ nÞÞ �!H2 EndðE; �ðmÞÞ �! 0

associated to the hypercohomology of a two-term complex, H2 EndðE; �ðmÞÞ ¼ 0.
Hence @ is a submersion at ðE; �ðmÞÞ, and the implicit function theorem for
Banach manifolds [9, A3] implies that Bmþn ¼ @�1ð0Þ is a smooth embedded
Banach submanifold in a neighborhood of ðE; �ðmÞÞ. �

Let us now 7nd a slice for the G-action, using the results of the previous section.

(8.4) Let ðE; �Þ be a C1 pair in Bn. Then for m large enough, there is a
G-equivariant submersion G � U ! Bmþn onto a neighborhood of ðE; �ðmÞÞ, where
U is an open neighborhood of x in the algebraic family of (7.9).

Proof. Result (7.9) provides a family ðE;�Þ of pairs over some smooth X 3 x
such that ðE;�Þx ¼ ðE;�ðmÞÞ and the natural map TxX ! H1 EndðE; �ðmÞÞ is an
isomorphism. Choose a Hermitian metric on E extending the given one on E. This
determines a smooth map X ! Bmþn, which by (8.2) is transverse to the G-orbit.
It extends to a G-equivariant map G � X ! Bmþn whose derivative is a surjection
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at G � fxg, and hence in some neighborhood G � U, thanks to the diagram

TeG !Tðe;xÞðG � XÞ !TxX ! 0

¼
???y

???y
???y

???y
Q0;0ðEndEÞ !TBn !H1 EndðE; �Þ ! 0

�

�

Let B�
n denote the union of all G-orbits in Bn whose C1 representatives have

type � in the sense of x 7. In particular, let Bsn denote the stable orbits.

(8.5) For any �,
S
6>� B6n is closed in Bn.

Proof. This follows immediately from (8.4) and the corresponding fact for
X, (7.4). �

Let G be the quotient of G by the central subgroup C� . Since by (4.1) the latter

is the stabilizer of all stable pairs, each stable orbit is isomorphic to G.

(8.6) The natural map Bsn ! Hn is a principal G-bundle.

Proof. The submersions of (8.4) descend to maps G � U ! Bn, whose

derivatives are isomorphisms on G � fxg, and which can be made injective by
shrinking U if necessary. By the inverse function theorem for Banach manifolds [9,
A1] these are G-equivariant di.eomorphisms onto their images. They therefore
constitute an atlas of local trivializations. �

Given a C1 pair ðE; �Þ 2 Bn, de7ne End 00 E by the short exact sequence

0�! End 0E �! EndE �! End 00 E �! 0;

where End 0 E, as before, is the subsheaf of EndE preserving the HN 7ltration of ðE; �Þ.
Also let End 00ðE; �Þ be the two-term complex on C de7ned analogously to EndðE; �Þ
and End 0ðE; �Þ. There is then a short exact sequence of two-term complexes

0�! End 0ðE; �Þ �! EndðE; �Þ �! End 00ðE; �Þ �! 0:

(8.7) For any ðE; �Þ 2 Bn of type �, and for m large enough, B�
mþn is an

embedded submanifold of Bmþn near ðE; �ðmÞÞ with normal space canonically
isomorphic to H1 End 00ðE; �ðmÞÞ.

Proof. By acting with an element of G if necessary we may assume that ðE; �Þ
is C1.

For m large, there was constructed in (7.10) a family of pairs ðE;�Þ of type � over
a smooth base Y 3 y, having ðE;�Þy ¼ ðE; �ðmÞÞ and TyY ! H1 End 0ðE; �ðmÞÞ an
isomorphism. Choose a metric on E extending the given one on E. This
determines a smooth map Y ! Bmþn, which by (8.2) is transverse to the G-orbit.

On an open neighborhood V of y in Y , choose a lifting of this map to the domain of
the submersion G � U ! Bmþn of (8.4). Projecting this lifting to U gives a map
V ! U whose image consists of pairs of type �, and hence is contained in X�.
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Its derivative at y is the natural map from TyY ¼ H1 End 0ðE; �ðmÞÞ to
TxX ¼ H1 EndðE; �ðmÞÞ.

This derivative is injective. Indeed, the kernel is the image of H0 End 00ðE; �ðmÞÞ.
But if 0 ¼ E 0 � . . . � E l ¼ E is the HN 7ltration of ðE; �Þ as usual, then there is
a short exact sequence

0�! End 00 E l�1 �! End 00E �!HomðE l�1; E=E l�1Þ �! 0

and hence a short exact sequence of the corresponding two-term complexes. The
7rst hypercohomology H0 of both of the outer complexes vanishes by an induction
on l using (4.1), so H0 End 00ðE; �ðmÞÞ ¼ 0 too.

Hence, in a neighborhood of x, X� contains an embedded submanifold
with tangent space H1 End 0ðE; �ðmÞÞ � H1 EndðE; �ðmÞÞ. But by (7.8), X� is a
subscheme of X with Zariski tangent space contained in H1 End 0ðE; �ðmÞÞ. It
therefore must be smooth near x.

The inverse image of B�
mþn under the submersion G � U ! Bmþn is G � ðU \X�Þ,

so this immediately implies that B�
mþn is a smoothly embedded submanifold in a

neighborhood of the orbit of ðE; �ðmÞÞ. Its normal space at ðE; �ðmÞÞ is the
quotient of H1EndðE; �ðmÞÞ by H1 End 0ðE; �ðmÞÞ; by choosing m large enough
we may arrange as in (8.3) that H2 End 0ðE; �ðmÞÞ ¼ 0, so that this quotient is
nothing but H1 End 00ðE; �ðmÞÞ. �

9. The direct limit of Higgs spaces

The inclusions Bn ,!Bnþ1 make the set of all Bn into a directed set. Let B1 be
the direct limit. It may be regarded as a set of pairs ðE; �Þ as before, but where �
may now have a pole of arbitrary 7nite order at p. Note that for each type �, the
direct limit of B�

n is a subset B�
1 of B1. Note also that G acts naturally on B1 and

that Bs1=G is H1, the direct limit of the Hn. In another context, Hn has appeared
in the work of Donagi and Markman [7].

Our aim in this section is to show that Bs1 is contractible. Essentially, the
reason is that B1 is contractible, and the complement of the stable set has
in7nite codimension.

Recall that a subspace of a topological space is a deformation neighborhood
retract (hereinafter DNR) if it is the image of a map de7ned on some open
neighborhood of itself and homotopic to the identity. It is equivariant if the
homotopy is equivariant for the action of some group.

(9.1) As a subspace of H1, each Hn is a DNR, and the open sets which
retract can be chosen to be nested.

Proof. Since Hn ,!Hnþ1 is an embedding of 7nite-dimensional manifolds, we
may choose a tubular neighborhood U1

n and a projection U1
n ! Hn. This tubular

neighborhood in turn has a tubular neighborhood U2
n in Hnþ2, namely its inverse

image in U1
nþ1, and so on. The direct limits U1

n of these tubular neighborhoods are
nested open subsets of H1. Each is homeomorphic to a vector bundle over Hn and
hence deformation retracts onto it. Indeed, the deformation retraction preserves
each U i

n. �
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(9.2) As a subspace of B1, each Bsn is a G-equivariant DNR, and the
G-invariant open sets which retract can be chosen to be nested.

Proof. Let � : Bs1 ! H1 be the quotient map, and let U i
n be the tubular

neighborhoods of the previous proof. By the de7nition of direct limit, it suJces to
construct a sequence of G-equivariant deformation retractions of ��1ðU i

nÞ onto
Bsn ¼ ��1ðHnÞ compatible with the inclusions ��1ðU i

nÞ � ��1ðUiþ1
n Þ. Obviously we

would like to lift the deformation retracts of the previous proof to the principal
G-bundle.

These liftings are guaranteed to exist by the 7rst covering homotopy theorem.
This asserts that if F : Y � ½0; 1� ! Z is a homotopy with any reasonable domain
(including manifolds, but unfortunately not their direct limits), and if E is a 7ber
bundle over Z, then F �E is isomorphic as a 7ber bundle to F �EjY �0 � ½0; 1�.
Actually, a slight re7nement of this result is needed, namely that the isomorphism
can be chosen so as to extend a given one over a closed DNR X � Y . We then
apply this re7ned result to the case where X ¼ U i

n, Y ¼ Uiþ1
n , and the homotopy is

the retraction of U i
n on Hn described above. It is easy to construct the desired

deformation retraction of ��1ðU i
nÞ from the resulting isomorphism.

The slight re7nement of the 7rst covering homotopy theorem can be proved by
the same argument as the theorem itself, given by Steenrod [42, x 11.3]. Just
choose the atlas for F �E so that its restriction to X � ½0; 1� is pulled back from an
atlas on X using the given isomorphism. The existence of such an atlas follows
easily from the fact that X is a closed DNR and the ordinary version of
the theorem. �

(9.3) The quotient map � : Bs1 ! H1 is a principal G-bundle.

Proof. This is immediate from (8.6) and (9.2). �

(9.4) For all k> 0, �kðBs1Þ ¼ 1.

Proof. The open subsets of B1 provided by (9.2), which retract onto Bsn, form
a nested open cover of Bs1. By compactness, any map Sk ! Bs1, and any
homotopy of such maps, has image contained in one such neighborhood. Hence
�kðBs1Þ ¼ limn!1 �kðBsnÞ.

So let f : Sk ! Bsn be any map. Now Bn is contractible just by retracting it 7rst
on A � f0g, so f certainly extends to a continuous map f : Dkþ1 ! Bn. Our task
is to perturb this so that it misses the unstable locus.

For each x 2 Dkþ1, by (8.3) and (8.7) there is some integer mx>n such that for
all m>mx, fðxÞ is a smooth point of Bm, and the stratum B�

m containing fðxÞ
is an embedded submanifold at fðxÞ. Passing to a 7nite subcover and taking

m ¼ maxmx, we 7nd that fðDkþ1Þ maps entirely into the smooth locus of Bm,
and that near its image each stratum B�

m is an embedded submanifold of
7nite codimension.

Yet another application of compactness shows that fðDkþ1Þ intersects only a
7nite number of strata B�

m. By increasing m again if necessary we may assume by
(8.7) that each of these strata has codimension greater than kþ 1. Then, starting
with the stratum of highest codimension and working our way up, we may perturb
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f so that it no longer touches that stratum, but so that its value on Sk remains
unchanged. After these perturbations, f will have image entirely within Bsm.

Thus for any f : Sk ! Bsn, the homotopy class of f is killed by the inclusion in
Bsm for some m>n, so limn!1 �kðBsnÞ ¼ 1. �

For an alternate proof in the rank 2 case, see the 7rst author’s thesis [16, 7.5.1].

(9.5) The space Bs1 is contractible.

Proof. A theorem of Whitehead [43, 10.28] asserts that if X is a CW-space
(that is, a space homotopy equivalent to a CW-complex) whose homotopy groups
all vanish, then it is contractible. In the light of (9.4) above, it therefore suJces to
show that Bs1 is a CW-space.

Consider the 7ber bundle

Bs1 �!Bs1 � EG
G �!BG:(9.6)

We will show that this is a 7bration whose total space and base space are
CW-spaces. It then follows from Corollary 13 of Stashe. [14] that the 7ber is a
CW-space.

Note that G acts on Bs1 with stabilizer C� and quotient H1. There is therefore
a 7ber bundle

BC� �! Bs1 � EG
G �!H1;

which is just the associated bundle to the principal G-bundle Bs1 ! H1. The base
of this 7ber bundle, being a direct limit of manifolds, is metrizable and hence
paracompact by Stone’s theorem [31, 6-4.3]; hence the 7ber bundle is a 7bration
[47, Chapter I, 7.13]. Moreover, the base is a CW-space, as is the 7ber.
Proposition 0 of Stashe. [41] then implies that the total space is a CW-space.

According to Proposition 2.4 of Atiyah and Bott [1], BG is a component of the
space of maps from C to BG, with the compact-open topology. Since the domain
is a compact metric space and the range is a CW-complex, by Corollary 2 of
Milnor [29] the space of maps is a CW-space. Moreover, since BG is metrizable
and C is compact, the space of maps BG is metrizable, and hence paracompact.
The 7ber bundle (9.6) is therefore a 7bration. �

(9.7) The space H1 is homotopy equivalent to BG.

Proof. By (9.3) and (9.5), there is a principal G-bundle on H1 with
contractible total space. �

Those who dislike the appearance of in7nite-dimensional, gauge-theoretic
methods in the last two sections may wish to re+ect that it is no doubt possible
to replace every in7nite-dimensional construction by a 7nite-dimensional, algebraic
approximation, in the style of Bifet et al. [4] or Kirwan [25]. In any case, algebraic
geometry will reappear on the scene shortly.
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10. Surjectivity of the restriction on cohomology

Let E be as in x 8. The pull-back of E ! C to the product Bs1 � C is acted on
by G, so the projective bundle PE is acted on by G. It therefore descends to a Pr-
bundle PE over H1 � C, whose characteristic classes can be decomposed as usual
into K€uunneth components:

ci ¼ %i �þ
X2g
j¼1

 i; j ej þ &i:

Likewise, the natural determinant maps Hn ! JacdC given by ðE; �Þ 7!KrE
extend to H1 ! JacdC. Let "1; . . . ; "2g be the pull-backs of the standard
generators of H1ðJacdCÞ.

It is straightforward to check that the universal classes %i, &i,  i; j, "j thus
de7ned restrict to their counterparts on Hn for n> 0.

(10.1) The rational cohomology ring H �ðH1Þ is generated by these
universal classes.

Proof. According to Atiyah and Bott, H �ðBGÞ is generated by universal
classes, which means the following. First of all, BG can be identi7ed with the
component of the space of maps C ! BUðrÞ such that the pull-back of the
universal bundle over BUðrÞ is isomorphic to E. Atiyah and Bott call this
component MapEðC;BUðrÞÞ. Then, the pull-back of the universal bundle by the
canonical map MapEðC;BUðrÞÞ � C ! BUðrÞ is a bundle whose Chern classes can
be decomposed into K€uunneth components as usual. Atiyah and Bott prove [1,
2.20] that these generate the ring H �ðBGÞ.

On the other hand, by (9.7), BG can also be identi7ed with H1. Hence BG is a
bundle over H1 with 7ber BC� ¼ CP1. As explained by Atiyah and Bott, the
rational cohomology of this bundle splits: H �ðBGÞ ¼ H �ðBGÞ½h�. By restricting to
a single CP1 7ber, it can be checked that &1 ¼ rh modulo elements of H 2ðBGÞ; it
may therefore be discarded since we seek only generators of H �ðBGÞ. Also %1 2
H 0ðBGÞ may be discarded since, by (9.4), BG is connected. Finally, it can be
checked that  1; j ¼ "j, and that for i > 1, the classes %i, &i and  i; j of Atiyah and
Bott agree with those de7ned above. (Strictly speaking, they may di.er by some
lower order terms, since the characteristic classes of a projective bundle are
evaluated by formally twisting so that c1 ¼ 0.) �

Now by (9.1), H�ðH1Þ is the direct limit of H�ðHnÞ, and hence H �ðH1Þ is the
inverse limit of H �ðHnÞ. Consequently, the surjectivity of the restriction map
H �ðH1Þ ! H �ðHnÞ for all k, and hence the generation theorem (6.1), is implied
by the following result, whose proof occupies the remainder of this section.

(10.2) When r ¼ 2, the restriction H �ðHnþ1Þ ! H �ðHnÞ is surjective.

Let T ¼ C� act on each Hn by / � ðE; �Þ ¼ ðE; /�Þ. This action is compatible
with the inclusion Hn ,!Hnþ1. Furthermore, since this is an algebraic action on a
smooth quasi-projective variety, the Uð1Þ-part of the action is Hamiltonian, and
the R� part of the action is the Morse +ow of the moment map.

(10.3) For any ðE; �Þ 2 Hn, there exists a limit lim/!0ðE; /�Þ 2 Hn.

PLMS 1461---1/4/2004---SHARON---91113

THE MODULI SPACE OF RANK 2 HIGGS BUNDLES 653



Proof. We may regard this as a limit of the downward Morse +ow in Hn. Note
that it need not be simply ðE; 0Þ as this may be unstable. Nevertheless, a stable
limit always exists; this may be seen in two ways.

First, one can regard Hn as a space of solutions ðA; �Þ to the self-duality
equations, as Hitchin [20] regards H; the moment map is then ðA; �Þ 7! k�k2, and
what we need to know is that this is proper and bounded below. The boundedness
is obvious, and the properness is proved by following Hitchin’s argument for H
[20, 7.1(i)].

Alternatively and more algebraically, one can observe, as does Simpson [37,
Proposition 3], that the Hitchin map de7ned by Nitsure [34 6.1], taking Hn

holomorphically to a vector space, is proper and intertwines the T -action on H
with a linear action on the vector space having positive weights. A limit must
therefore exist in the zero 7ber of the Hitchin map. �

Now any Uð1Þ moment map whose Morse +ows have lower limits is a perfect
Bott--Morse function: see, for example, Kirwan [24, 9.1]. This means that its Morse
inequalities are equalities. More explicitly, it means the following. Let y0; . . . ; yk be
the critical values of the moment map � : X ! R, and Fi the corresponding critical
submanifolds. Choose real numbers xi so that x0 < y0 < x1 < y1 < . . . < yk < xkþ1.
If Xi ¼ ��1ðx0; xiÞ, then, as for any Bott--Morse function, there is a homotopy
equivalence of pairs ðXiþ1; XiÞ ’ ðDi; SiÞ, where Di is the disc bundle, and Si the
sphere bundle, associated to the negative normal bundle of Fi, that is, the bundle of
downward Morse +ows; cf. Milnor [30]. For the function to be perfect means that,
moreover, the connecting homomorphism vanishes in each long exact sequence

. . .�!H �ðXiþ1; XiÞ �!H �ðXiþ1Þ �!H �ðXiÞ �! . . . ;

breaking it up into short exact sequences.
Suppose now that X contains a T -invariant submanifold Y on which the

moment map is again perfect. Then by induction on i, H �ðXÞ surjects on H �ðY Þ if
and only if H �ðXiþ1; XiÞ surjects on H �ðYiþ1; YiÞ for all i.

We 7nd ourselves in this situation, with X ¼ Hnþ1 and Y ¼ Hn. To prove
(10.2), it therefore suJces to show that the relative cohomology of the disc bundle
for the downward +ow from each critical submanifold in Hnþ1 surjects on that of
its intersection with Hn. This will be true in the case r ¼ 2. Indeed, the Thom
isomorphism identi7es this relative cohomology with the ordinary cohomology of
the critical submanifold itself. We will prove, 7rst, that this identi7cation is
compatible with the restriction to Hn, and second, that the latter restriction is
surjective. Both will follow from the description below of the critical set (cf.
Hitchin [20, 7.1]).

(10.4) The critical submanifolds of the moment map on Hn are a disjoint union

F n ¼
Ggþ½ðn�1Þ=2�

j¼0

F j
n ;

where:
(a) for j ¼ 0, the absolute minimum F 0

n of the moment map is the moduli
space of stable bundles of rank 2 and degree d, parametrizing Higgs bundles
ðE; �Þ with � ¼ 0;
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(b) for j > 0, F j
n ¼ Jacðdþ1Þ=2�jC � Sym2gþn�1�2jC, parametrizing Higgs bun-

dles ðE; �Þ with E ¼ L'M, degL ¼ 1
2 ðdþ 1Þ � j, and

� ¼
0 0

s 0

� �
;

where s 2 H 0ðKML�1ðnÞÞ vanishes on an e/ective divisor of degree
2gþ n� 1� 2j.

Proof. The critical points for the moment map of the action of Uð1Þ � T are
exactly the 7xed points of T . For any ðE; �Þ 2 Hn 7xed by T , by (4.4), T acts by
automorphisms on the universal bundle restricted to fðE; �Þg � C, which is
nothing but E itself, and / 2 T takes � to /�. If the weights of the action are
distinct, this splits E as a sum of line bundles L'M, and � is forced to be of the
stated form. If the weights are not distinct, then T acts by scalars, so � is
invariant and hence must be 0. �

(10.5) The downward "ow from F j
n ¼ F j

nþ1 \ Hn in Hnþ1 is wholly contained
in Hn.

Proof. The statement is vacuous for j ¼ 0, since at the absolute minimum
there is no downward +ow. Consider then a point ðE; �Þ 2 F j

n for j > 0; as
described in (10.4)(b). According to (3.1), the tangent space to Hnþ1 at ðE; �Þ is
the hypercohomology H1 EndðE; �Þ, where EndðE; �Þ is the two-term complex

EndE !
½ ; ��

EndE 
Kðnþ 1Þ:

Since E ¼ L'M and � is strictly lower-triangular, this breaks up as a direct sum
of complexes, which are the weight spaces for the T -action. The downward +ow
corresponds to H1 of the complex

HomðL;MÞ �! 0;

which is of course just H1ðML�1Þ. This is independent of n, and so the downward
+ow in Hnþ1 is wholly contained in Hn, as desired. �

Consequently, we may use the Thom isomorphisms to identify the map of
relative cohomology on the disc bundles with the ordinary restriction map
H �ðF nþ1Þ ! H �ðF nÞ. To prove (10.2), then, it remains to prove the
following statement.

(10.6) The restriction H �ðF nþ1Þ ! H �ðF nÞ is surjective.

Proof. Again, this is vacuous for j ¼ 0, since F 0
nþ1 ¼ F 0

n . It is not much harder
for j > 0, for F j

n is isomorphic to a product of a Jacobian and a symmetric
product, and the embedding F j

n ,! F j
nþ1 corresponds to the identity on the 7rst

factor and a map of e.ective divisors of the form D 7!Dþ p on the second. The
latter map is easily seen (for example, from the description of Macdonald [26]) to
induce a surjection on cohomology. �

This completes the proof of (10.2), and hence of the generation theorem (6.1).
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Note, by the way, that the theorem is false for the moduli space M0 consisting
of pairs with 7xed determinant line bundle KnE and trace-free �. One can see this
already from Hitchin’s description [20, 7.6] of its cohomology: the universal classes
are all invariant under the natural action of N ¼ Z

2g
2 , but there also exist classes

which are not N-invariant. (See also our companion paper [19, x 4].)
In the cases of ranks 2 and 3, the 7rst author has found an alternative proof of

the generation theorem, which will appear in a forthcoming paper [18]. It uses the
vector bundles over Hn whose Chern classes above their ranks furnish the
so-called ‘Mumford relations’; these are well known to have the appropriate
dimension in the GLðrÞ case, but not in the SLðrÞ case.

The generation theorem does, however, tell us the following about the
cohomology ring of the 7xed-determinant moduli space.

(10.7) Let L be a �xed line bundle of odd degree, and let Mn be the moduli
space of Higgs bundles ðE; �Þ 2 Hn with K2E ffi L and tr� ¼ 0. Then N ffi Z

2g
2 acts

naturally on Mn, and

H �ðHnÞ ¼ H �ðJacCÞ 
H �ðMnÞN;
where H �ðJacCÞ is generated by the "1; . . . ; "2g, and H �ðMnÞN by the remaining
universal classes.

Proof. In fact Hn is the quotient of T � JacC �Mn by the free action of N; the
quotient map is ðL;  Þ � ðE; �Þ 7! ðL
 E; idþ �Þ. A theorem of Grothendieck
referred to earlier [12] asserts that the rational cohomology of a quotient by a
7nite group is the invariant part of the rational cohomology. Hence

H �ðHnÞ ¼ H �ðT � JacC �MnÞN ¼ H �ðJacCÞ 
H �ðMnÞN;
since N acts on T � JacC only by translations. The determinant map Hn ! JacdC
lifts to the map T � JacC �Mn ! JacdC given by projection on the 7rst factor
followed by an isogeny of order r; hence "1; . . . ; "2g generate the rational
cohomology of the 7rst factor. A universal pair on Hn pulls back to the tensor
product of the Poincar�ee line bundle on JacC � C with a universal pair on
Mn � C; hence its projectivization, and consequently the remaining universal
classes, are pulled back from the second factor. �

References

1. M. F. ATIYAH and R. BOTT, ‘The Yang--Mills equations over Riemann surfaces’, Philos.
Trans. Roy. Soc. London Ser. A 308 (1982) 523--615.

2. V. YU. BARANOVSKIVII, ‘The cohomology ring of the moduli space of stable bundles with odd
determinant’, Izv. Ross. Akad. Nauk Ser. Mat. 58 (1994) 204--210 (Russian), Russian
Acad. Sci. Izv. Math. 45 (1995) 207--213 (English).

3. A. A. BEILINSON and V. G. DRINFELD, ‘Quantization of Hitchin’s 7bration and Langlands’
program’, Algebraic and geometric methods in mathematical physics, Kaciveli, 1993 (ed.
A. Boutet de Monvel and V. Marchenko), Mathematical Physics Studies 19 (Kluwer,
Dordrecht, 1996) 3--7.

4. E. BIFET, F. GHIONE and M. LETIZIA, ‘On the Abel--Jacobi map for divisors of higher rank
on a curve’, Math. Ann. 299 (1994) 641--672.

5. K. CORLETTE, ‘Flat G-bundles with canonical metrics’, J. Di/erential Geom. 28 (1988)
361--382.

6. M. CULLER and P. B. SHALEN, ‘Varieties of group representations and splittings of
3-manifolds’, Ann. of Math. (2) 117 (1983) 109--146.

PLMS 1461---1/4/2004---SHARON---91113

TAM �AAS HAUSEL AND MICHAEL THADDEUS656



7. R. DONAGI and E. MARKMAN, ‘Spectral covers, algebraically completely integrable
Hamiltonian systems, and moduli of bundles’, Integrable systems and quantum groups,
Montecatini Terme, 1993 (ed. B. Dubrovin), Lecture Notes in Mathematics 1620
(Springer, New York, 1996) 1--119.

8. S. K. DONALDSON, ‘Twisted harmonic maps and the self-duality equations’, Proc. London
Math. Soc. (3) 55 (1987) 127--131.

9. S. K. DONALDSON and P. B. KRONHEIMER, The geometry of four-manifolds (Oxford
University Press, 1990).

10. R. FRIEDMAN, Algebraic surfaces and holomorphic vector bundles (Springer, New York,
1998).

11. W. M. GOLDMAN, ‘The symplectic nature of fundamental groups of surfaces’, Adv. Math. 54
(1984) 200--225.

12. A. GROTHENDIECK, ‘Sur quelques points d’algWeebre homologique’, Tôohoku Math. J. 9 (1957)
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