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ON A GALLAI-TYPE PROBLEM
FOR LATTICES

T. HAUSEL (Budapest)

1. Introduction

Motivated by the well-known Helly-theorem [2], Gallai [1] raised the
following problem in the Euclidean plane E2. Let D denote a finite collection
of closed disks in E? such that every two disks of D intersect. Find the
minimum integer n» with the property that for an arbitrary D there are n
points in E? such that every disk of D contains at least one of the points.
Independently from each other, Danzer (unpublished) and Staché [3] proved
that » £ 4 i.e. any D can be pinned down by 4 needles. An analogous
problem arises if the needles can be chosen from a rather regular subset of
E? only. Let L be the lattice of E2, i.e. the set of points of E? which have
integer coordinates.

It is easy to prove the following Helly-type theorem (see [4]). If F is a
finite collection of convex sets in E? such that any four of the sets of F have a
lattice point in common, then there exists a lattice point common to every set
of F. Moreover this theorem can be extended to the d-dimensional Euclidean
space E? replacing 4 by 2%. Thus it is very natural to ask the following Gallai-
type problem for planar lattices. Let F denote a finite collection of convex
sets in E? such that any three of the sets of F have a lattice point in common.
Find the least integer n such that for an arbitrary F there exist n lattice
points (i.e. n needles positioned at the lattice points) with the property that
every set of F contains (i.e. is pinned down) by at least one of the n lattice
points (i.e. needles).

We prove the following

THEOREM 1. If F is a finite family of convex sets in E? such that any
three of them have a lattice point in common, then there ezxist two lattice
points which pin down F.

REMARK. It is easy to see that 2, i.e. the number of needles cannot be
reduced to 1. Moreover, if we replace 3 (the number which guarantees that
so many convex sets always intersect in a common lattice point) by 2, then
the problem has a trivial negative answer.
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128 T. HAUSEL

2. Proof of Theorem 1

First we introduce some simple notations. The points of the plane will
be denoted by A, B,.... The segment with endpoints A and B is denoted
by AB, and the line passing through the points A and B is denoted by AB.
We fix a so-called negative orientation of the plane. A convex polygon will
be described with the sequence of its vertices according to the given negative
orientation.

The line AB splits the plane into two open half-planes F 4 g and Fp 4.
In this notation the order of the subscripts is important, namely, for any
point C (D, resp.) of F4 g (Fp, 4, resp.) the sequence ABC (BAD, resp.)
determines the negative orientation of the plane. For the closed half-plane
determined by the open half-plane F4 p we use the notation Fu4p (ie.
Fap= FA,B UXE)

To each convex pentagon ABCDE we assign the convex pentagon

ABCDE = -FA,C n F—BJ) N F_C',E N FD,A N FE,B-

(In other words ABCDE is enclosed by the diagonals of ABCDE.) The
following two concepts are basically important for our proof.

DEFINITION 1. Let L be the set of points of E* which have integer co-
ordinates. A point of L is called lattice point. A lattice point P is called
a fixed lattice point (shortly an fl-point) if there are three sets of F the
intersection of which contains P as the only lattice point.

DEFINITION 2. We define the following fixed lattice-point algorithm
(FLP-algorithm). For each K € F we proceed as follows. Let K(1) be the
convex hull of the lattice points which are points in common of K with two
more sets of F. Note that K(U) is a convex lattice-polygon. Let F () be the
family arising from F when we replace K in it by K1), In general, suppose
that K as well as F() have already been defined. Then take a vertex
of K which is not an fl-point with respect to a triplet of F() containing
K. Remove this vertex from the vertices of K(J). Obviously, this algorithm
terminates after finitely many steps, say n. Then it is easy to see that every
vertex of K(" is an fl-point with respect to a triplet of F(*) containing K.
Observe that F(*) satisfies the conditions of the theorem.

After this for the next K we use F(*) instead of . Finally (after finitely
many steps), the above FLP-algorithm yields a “new” F such that every
vertex of any K of F is an fl-point with respect to a triplet of F containing
K. Then we say that F is fixed.

We shall make use of the following

LEMMA 1. If ABCDE is a convez lattice-pentagon, then ABCDE con-
tains a lattice point.
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Fig. 1

Proor. (Indirect.) Let Py P, P3Py Ps be the convex lattice-pentagon with
minimum number of lattice points for which the claim is false. Let M, denote
the region F52 NF, 40N F3; (see Fig. 1).

Similarly we get M;, M3, My and M;. Furthermore, let Ny be the re-
gion F53NF14NFy5. In the same way we define the regions Ny, N3, Ny
and Ns. It is easy to see that the convex lattice-pentagon Py PoPsPyPs
contains a lattice point different from its vertices. Let Ps be one of these
lattice-points. By assumption, Ps ¢ Py P, P3PyPs. Suppose that Ps € Ms.
Then for the convex lattice-pentagon Py Ps P3Py Ps we have Py Pg P3Py Ps C
C P, P, P3P, Ps, a contradiction by the indirect assumption. This implies that
the regions My, My, M3, M4 and M5 do not contain a lattice point differ-
ent from Py, P, P5, Py and Ps. Thus we may suppose that Ps € N; for some
i € {1,2,3,4,5}. Let i = 2. As the convex lattice-pentagon Py P, P3Ps Ps con-
tains less lattice points than Py P, P3Py P5 the indirect assumption implies the
existence of a lattice-point Py € Py P, P3PsP;. Then it is easy to prove that
either P; € Ms or Py € P P,P3P4Ps. In both cases we get a contradiction.
This completes the proof of Lemma 1. Q.E.D.

THEOREM 2. Consider five conver sets in E? such that any three of them
have a point of L in common. Then for each conver set there are three others
such that the intersection of these four sets contains a point of L.

ProoF. Let the five convex sets be denoted by K;, K2, K3, K4 and K;.
We are going to prove our claim for the set K;. We shall make use of the
following special notation. P i, . (P 5,0 Tesp.) stands for a lattice-
point in Ky NK;, N ...NnK;, (E2\Ki)nK;n...nK;, resp.),2<i; <
<ip< ...< 1t S5,

The following rather technical lemma reduces the number of cases we
have to investigate in the proofs of many statements.
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130 T. HAUSEL

LeMMA 2. Let P53 be a fized lattice point with respect to the convex sets
K1, Ky, and K3, and let Py3 Py P3Py be a conver lattice-quadrangle where P,
and Py are distinct lattice-points in Ky NKy. Then P33 € Fyo3N Faz o N
N F35 NFys.

Proor. If P2*3 € F2,23 ﬂ-F-gﬁz then P, € P3P23P2*3 i.e. P, € K3, but P ,«i_
# Py in contradiction with the fl-point property of Pp3. Similarly, we get a
contradiction if Pj3 € Fsp o N Fyr 5 (Fig. 2.).

Frn aFpsnf,y

.

Fig. 2

If P33 € F33NFo32NF; 9, then Po3 Py Py P3Py is a convex lattice pen-
tagon. By Lemma 1 there exists a lattice point A such that

A€ P23P2P;3P3P2/ C P23P;3P21 N P23P2*3P3 N P23P2P3 C Kz NKsnN K1,

but A # P,3 in contradiction with the fl-point property of Py3. The case
P33 € For 3N Fy 93N Fy 3 can be disproved similarly.

If P;3 & F3,2 N F2173 then P; € P2/P2P3<3 C K3 but P3 ;7é Py3, a contradic-
tion.

H Pj; € Foas NFy3NFyos, then PPy Py P3Py is a convex lattice
pentagon. By Lemma 1 there exists a lattice point A such that

Ag P23P;3P2P3P21 C P3Py Py N P23P;3P3 CK,nK;nKs,

but A # Py3, a contradiction. Similarly, we get a contradiction if Pj; €
€ F23’2/ N F23’2 n F312. O
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Let C = {Ky,K3, K3, K4, K5} and apply the FLP-algorithm to C. Then
we take K; which is convex lattice-polygon with the property that each
vertex is an fl-point P;; for some ¢ and j with respect to K, furthermore we
take K; and K;. Obviously, two vertices cannot have the same “name” P;;.
As the number of sides of Ky is at most 6 we distinguish 5 cases. Each of
them has some further subcases depending on the positions of the P;;’s. We
prove Theorem 2 as well as the fact that K, is either a triangle or a point.
The rough idea of the proof is the following: we take a point P’y and show
that independently from its position the above claim is true. However, there
are some cases where we have to consider the positions of two P}, ’s.

L. K, is a convex hezagon. The vertices of K; are the points P;;. Suppose
that a vertex of K;, say Pa3, belongs to more than three convex sets, say
Py; € K1 NKyN K3 N Ky But then Pyy is not an fl-point with respect to
K, K; and K4, a contradiction. Thus every vertex of K; belongs to exactly
three convex sets. Next we prove that any two opposite vertices of K; cannot
be covered by K;, where i > 1. Namely, assume that K; = A1 A, 43444546
with Ay = Pz and Ay = Pyy. Without loss of generality we may assume
that Az = Pa5. First we consider the case Ay = Psq. As Py3P3yPosPayPys is
a convex pentagon, Lemma 1 implies that there exists a lattice point B such
that

B € Py3P34Py5 Pyg Pas C P3gPagPys N Pz PasPoy C K1 NKy NKy.

Finally, B # P34, a contradiction since P,4 must be an fl-point.
Now assume that Ay = Ps5. Since Po3 P35 Po5PoyPys is a convex lattice
pentagon, hence there exists a lattice point B such that

B € Py3Pas Pas PyyPys C PoaPasPay N Pys PosPys C Ky N Ky NKs,

but B # Pa4 so we get a contradiction since Py4 is an fl-point. Finally, if
Ay = P45, then a similar argument yields a contradiction.

Thus it is sufficient to consider the convex hexagon Po3PysPssPys P34 Poy
(see Fig. 3). _

If Psys exists, then Psys # Psq4 which we proved above, and this is
contradiction since P34 is an fl-point. Hence Pj,; exists. As Pss is an fl-
point and P35 Py5 P3Pos is a convex quadrangle, by Lemma 2 we get Pj,, €
€ Fu5,93. On the other hand Psy is an fl-point and Pay Py Py3 Pys is a convex
quadrangle so by Lemma 2 we get P3,; € Fa3 45, a contradiction. [

II. K, is a convex pentagon. We may assume that the vertices of K; are
Py3, Poy, Pys, P34 and Pss. It is easy to prove that we have to investigate four
cases only.

(a) K is the pentagon Py3P35Py5P34P,4. By Lemma 1 there is a lattice
point A such that

A € Py3P35Py5 P2 Pay C Py3PysPas N PasPss Py C Ky NKo N Ka.
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Fig. 3

Since A # Py, this contradicts the fl-point property of Ps.
(b) K1 is the pentagon P25P35P23P34.P24. I P45 € P23P24P25, then
Py € Ky, but Pys # Pyy4, a contradiction.
If Pys € Py3P3yPsy, then Py3PysPoyPosPss is a convex pentagon, so by
Lemma 1 we have a lattice point A, such that

A € Py3Pys Py Pys P35 C PazPas Pos N Pys Pos Pas C Ky N K2 N K,

but A # Pa5, a contradiction. Similarly we get a contradiction if Py €
€ Py5P35Pa3.

Notice that if K is a Po5 P34 Py3 P35 P24 pentagon we can proceed similarly.

(c) Ky is the pentagon PsyPssPs3Py5Pyy. We may assume that Pys €
€ Py3PoyPsy (Flg 4). Namely, if Pys € Py3P3y P35, then Pys € K3, As
Py5 # P34, this contradicts the fl-point property of Psy.

Since Py5 is an fl-point, Py5Ps4Py5Pe3 is a convex quadrangle. Then
Lemma 2 implies that Pjy; € Fys593. If Po3s exists, then Pps and Pos are
fl-points. As Ps5 is an fl-point and Py5 P34 P35 P23 is a convex quadrangle by
Lemma 2 we get Py, € Fa3 45, a contradiction.

(d) K1 is the pentagon P34P23P25P24P35. As P34 and P35 are ﬂ—points,

P, does exist (Fig. 5). Since Py is an fl-point and Psy Pa3 P2y P35 is a convex

quadrangle, we get by Lemma 2 that P3;; € Fay35 N F34,25 n F23,34 N Fa3.24.

If P € F25,34 ﬂf‘-34,35, then Psy4 € P34y PosPss C K, which contradicts

the fl-point property of P35. Hence we may suppose that Py € —F—23,34 n
N F34,25 N Fay 35.

If Py35 exists, then we get a contradiction since Po3 and Pas are fl-points.
Thus PJ55 exists.

Acta Mathematica Hungarica 66, 1995



ON A GALLAL-TYPE PROBLEM FOR LATTICES 133

Fig. 4

54,25 f‘F35,23 "‘Fzs,ss

Fig. 5

Since Pyj is an fl-point, Po5 P4 P35 Pa3 is a convex quadrangle thus Lemma
2 implies that

Pias € Fas5.93 N Fas 23 N Fog 25 N Fag 3s.

If P2*35 € F35,25 n F25’23, then Pps € P2*35P35P23 C K3 which contradicts the
fl-point property of P,3. Hence we may assume that Pj5; € Fog 25 N F35923 N
N Fas5,35. :

Since P§‘45 € F25’34 N F235~’25 N F235t,35 we get that Pg45P2”‘35P25P35 is a
convex quadrangle. As Py5 is an fl-point Pa3 € P35 Pygs Pas P35 C K cannot
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occur. Thus Pag & Piys Poys Pas Pss so
Pa3 € Fozs+ 25 N Fa5 345+« N Fozsx 345+

It follows from the foregoing that Pa3 P35 Pp5P35 P55 is a convex pentagon.
Hence by Lemma 1 there exists a lattice point A such that

Ae P23P;35P15P35P§45 C P23P25P35 n P§45P;35P35 C K] n K3 n K5.

Since A # P55 and P55 is an fl-point, this is a contradiction. O
III. K; is ¢ quadrangle. 1t is easy to prove that we have to investigate
four cases only.
(a) K1 is the quadmngle P23P24P45P35. If P34 € P23P24P25 C K2 or
Py, € Pys P35 Pys C K, then this contradicts the fl-point property of Po3 and
Py4 or P35 and Pys. Thus we may assume that Psy € PyqPys P25 (Fig. 6).

Fig. 6

Similarly we may assume that Pys € Pa3PogPss. Then Pi3PpsP3gPysPas

is a convex pentagon, and according to Lemma 1 there exists a lattice point
A such that

A € PagPasP3g Pys Pss C Py3PasPas N PasPys Pas C Ki N K3 N K

but A # P35, a contradiction.
(b) K, is the quadrangle Py3Pyy P3s Pys. If Pos € PasPas, then Py € Kg,
but this contradicts the fl-point property of P3 and P35 (Fig. 7).

If Py5 € Pa3P35Pys then Py3PyyP35Pos5 is a convex quadrangle and since
Py3 is an fl-point, applying Lemma 2 we get that Py, € Faz 25 N Fag 3. (If
Py34 exists we get a contradiction since P,3 and P4 are fl-points.) Then
Py3 € P5y, P2y Pys C Ky, but this contradicts the fl-point property of P23 and
P,,. Similarly, we get a contradiction if Pps € P35 Pa3Pay.
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Fig. 7
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Fig. 8

(C) K1 s the quadmngle P23P25P24P34. If P35 or P45 € P23P25P24 C
C K, then we have a contradiction since Po3 and Pys or Pyy and Pps are
fl-points. Thus we may assume that P35 and Pys € Pa3PyaPss (Fig. 8)

If Py35 exists, then we get a contradiction as P,3 and P5 are fl-points
Thus we may suppose that Py, exists
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If P235 € F25 23N F34 25, then Py € P235P34P23 C Ks, but Pas ";/' Pas, a
contradiction. Our proof is similar if Pyy; € F25 a4 N F24 25.

If P235 € F23 25 N F24 25 n F24,35, then P235P24P35P23P25 is a convex
pentagon. Applying Lemma 2 we have a lattice point A for which

A € Pjas Pas P35 Py3Pas C PayPy3Pos N Paas P3s Pas C Ky N Ky N K.

As A # Py3 this is a contradiction. We can settle the case Pjy5 € Fys523N
N Fa5 23 N Fys 94 similarly.

If P2*35 € F24’25 n F35’24, then Py, € P;35P35P25 C Ks;, a contradiction.
If Pys5 € Fy5.35 N Fas 24, then the reasoning is similar.

If P2*35 S F35,24 n F35,23F25’24, then P;35P35P23P25P24 is a convex pen-
tagon thus according to Lemma 1 we have a lattice point A such that

A € P33y P35 Py3 Pos Pay C Pyag PasPos N Pogs PazPas N P3sPysPoy €
e KiNK;NKs;.

As A # Py5 we get a contradiction. The reasoning in the case Py € Faq 95N
N Fa3,35 N Fa3 34 follows word for word the previous reasoning.

If P«;35 € F45,25 N F23’35, then P35 or Py € P;35P23P24 C Kq, but this is
a contradiction since Py3 and Py5 or Pyy and Py5 are fl-points.

(d) K1 is the quadmngle P23P34P25P24. If P35 or P45 € P25P24P23, then
we get a contradiction as in the case (¢). Hence we may assume that P35 and
Pys € P34 Pys Pz (Fig. 9).

Ps35 does exist. (The proof is the same as in the case (c).)

If P235 € F45 25 N F25 35 M F34 23, then P35 € P235P25P23 C Ko, but this
contradicts the fl- -point_property of Py3 and Pos.

If P235 € F45 23 N Fag A5, then Py € P235P25P23 C K3, but this is a
contradiction since Pag and Py5 are fl-points.

If P235 € F23 45 N Fas 345 then Pys5 € P235P23P34 C Ks. This is possible
only in case Pys = Ps4. But then this vertex is a P35 vertex and changing
K4 and K; we get case (c). (Notice that we have not utilized the fl-point
property of P34 in the reasoning of case (c).) Hence we get a contradiction
just like in case (c).

If P35 € Fago5 N Fag05 N Foy 03, then Pl PoyPosPys is a convex pen-
tagon. According to Lemma 1 we have a lattice point A such that

A € P;35P24P23P34P25 C P2*35P23P34 N P24P23P25 C K1 n K2 n K3.

Since A # Py3 this is a contradiction.

If P;35 € F23,34 N F24,35, then Py, € P;35P23P25 CKs. As Py ¢ P34 this
is a contradiction.

It P2*35 € F24,25 n F35’24, then Py € P;35P35P25 C Ks5. Since Py ié Pss
this is a contradiction.
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Fig. 9

If P;35 € F23724 M F23,45 N F25’24, then P;35P23P45P25P24 Is a convex
pentagon, hence by Lemma 1 we get a lattice point A such that

A € P33 Py Pys Pys Pag C PayPysPas N Poas Pas Pos C Ky N Ky N K.

As A # Py5 we get a contradiction.

If P;35 € F45’23 N F23’25, then Py3 € P;35P45P25 C K;. Since Py5 ¢ Po3
we get a contradiction.

Thus we may suppose that Py € Fo5 93 N F34 23 N Fas 95.

If Pyy5 exists, then we have a contradiction as Pyy and Py5 are fl-points.
Hence we may assume that Py, exists.

Since Pa4 is an fi-point and Po3Psg PosPay is a convex quadrangle hence
applying Lemma 2 we get that

. — —
P35 € Fos o5 NFos04 N Fay 95 N Faz 34.
Since P3ys € Fas.25 N Fassx 35 N Fagse 25, Poys Poas Pas Pas is a convex quad-

rangle.

If Ppy € P3Py PasPys C K, then since Pyy # Po5 we get a contradic-
tion.
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I Poy & Pjy5Poas PasPos, then Poy € Foase 35 N Faase 245% N Fagp 245+, thus
Py P} P35 Py Pyys is a convex pentagon. By Lemma 1 we get a lattice point
A such that

4e P24P{35P35P25P2*45 C P3Py Pos N P24P;35P25 N P;35P25P;45 C
CKiNK;NKs.

But this is a contradiction since A # Py5. O
IV. K is a triangle. It is easy to prove that we have to investigate three

cases only.

(a) K is the triangle Py3PyyPys. Then P34 € Ky N Ko, which is a con-
tradiction since Py3 and Pyq are fl-points.

{b) K; is the triangle Pr3Pa4Ps4. If Py34 exists, then we get a contra-
diction as Pj3 and Py4 are fl-points. Thus we may suppose that Pjs, exists
(Fig. 10).

B3, 360F52.08, 4,

(2]
&
b33
o

eyl
(257

(%)

>

420 3423 “53 45

Fig. 10
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It is easy to prove that we have to investigate the following two cases.
If P234 € F34 24NFoy ,235 then Poy € P2*34P34P23 C K3 but this contradicts
the fl-point property of P23
If P33, € Fa423 N Fag5 N Fag 4, then Poy € Py3yPaaPy3 C Kz le. Pys €
ceKinK;NK;snKs;. Thus in this case Theorem 2 is true.
(C) K is the triangle Py PosPsy. If Pys € P3Py Pos C K27 then Py €
€ K1 NKy N Ky N Kj which proves Theorem 2 in this case.
If Pos € PysP3sPoy C Ky, then Py € Ky NKyNK3zNK,. Hence we may
assume that P45 € F24123.
If Pys € Pog Py C Ks, then Py € K, NK3znNKyNKs and we are done.
We may assume that Py5 € Py3Psq.
It follows from the foregoing that we have to investigate the following
two cases:
() Pa3Pys P34 Py is a conver quadrangle. If Py34 exists, then we get a
contradiction since Py and Ps4 are fl-points. Thus P, exists (Fig. 11).

2%
\ ‘33
*fs
B 5 0 B3 R.
%

Fig. 11

Since P4 is an fl-point and Psq P4 Py3Pys is a convex quadrangle, ap-
plying Lemma 2 we get that Py, € Fay45 N F24 34. Then we have that
Pay € PyyPoyPos C Ky thus Pyy C K1 N K2 N K3 N K4 which is our claim.

(B) P34 Py5PasPas is a conver quadrangle. If Pyys exists we get a con-
tradiction since Pp4 and Pps are fl-points. Thus Py, exists (Fig. 12).

If P245 c F23 a5 0N F25 23, then Py € P245P25P45 C K5. Thus Py3 € Kin
NKs NKsnKs.

If Piys € Fas24 N Fas34 N Fys 23, then Py € PyyyP3yPoy C Ky. Thus
P23 c K]ﬂKzﬂK3ﬂK4

If P245 € F34 25 N F25 24, then Po5 € P245P34P24 C Ky4. Thus Pps e K4 N
NK;NKyNKs.

If Pjys € Faz 95 N F34 24, then we have two cases since F2325 N Fag24 =

= (F23,25NF35 24) U (F24,35N F34,24) wherever Pss is. If P, € F23 25N Fa5 245
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5,3406.5,23

Fig. 12

then P35 € Py P3aPay C Ky Thus P35 € Ky NK3NK;. If FPlys € Fog3s N
n F34’24, then P35 € P;45P24P25 C Kg. Thus P35 c K1 n K2 N K3 n K5.

If Pr;45 € F24,45 N F45,25, then Py € P;45P24P'15 CKs. Thus Pis e K1 N
NKsNKyNKs.

Thus we may assume that Py € F25,45 n F23725 N Fay34.

If Pp3s exists then Theorem 2 is true. Hence we may suppose that Py
exists.

If Py € Fag95 N Fas95, then the proof is similar to the previous one.

Iid P;35 € F25’45 n F23,25 n F24,34, then Pys € P;35P23P34 C K3. Thus
P45 € K1 n K_ﬁ N K4 D_Ks

If Py35 € Fa3 45 N Fs5 23, then the proof is similar to the proof of the case
F3ys.

If P3a5 € Fos,24 N Fas 34 N Fys 93, then Pys. Pag Pys Pyys is a convex quad-
rangle. Namely, Pék‘ls c F235,45 N F25,235 N F25145.

If Pse P;35P25P45P2*45, then Prpse KiNKy;NKsnNKs.

If Pos ¢ PyasPasPysPyy5, then Poy € Fas 235 N Fys 245 N Fazs245. Thus
P3P Pas Pys Py is a convex pentagon. By Lemma 1 we have a lattice
point A such that

Ac P23P;35P25P45P;45 C Py3Pos Pys N P;35P25P;45 CKinKzn K5,
a contradiction.
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If P2"‘35 € F34,25 NFos 23, then Pos € PiasPayPos C K. Thus Pos € K1 N
NKyNK3NKs.

If Py € Fay o5 N Fys 24 N Fos 05, then Pjys PosPos Piss is a convex quad-
rangle. Namely, P5; € Fo335 N Fas 235 N Fa3 935.

Py e P;45P23P25P;35, then Py € Ki N Ko N K4 N K;.

If Py ¢ PyysPy3PasPsss, then Pys € Fags 23 N Fas935 N Fags935. Thus
Py5 P}y PasPas Poo is a convex pentagon. By Lemma 1 we have a lattice
point A such that

Ac P45P;45P23P25P;35 C P45P23P25 n P;45P25P2*35 C K1 NK.nN K5,

a contradiction. O

V. K, is a segment. Then K; N K; N K; contains a lattice point in
common. Thus applying Helly’s theorem to the segment K; N K; we get
that they have a lattice point in common. Hence, we have proved that
in this case the convex sets have a lattice point in common, which proves
Theorem 2.

In fact, we have proved more. Namely, we have shown that the fixed
system of five convex sets of Theorem 2 either have a lattice point in common
or each of them is a triangle. O

Now we are able to prove Theorem 1, though we still need a few defini-
tions and several lemmas to do so.

We need the following

DEFINITION 3. Let F be a fixed system of at least four sets such that
any three of them have a lattice point in common. We say that F is good
if the convex hull of F possesses a vertex S which belongs to exactly three
sets. Let us denote these sets by K, K3 and K3 and call them the main
configurations of F. If a set of F is not a main configuration then we call it
an ordinary configuration.

THEOREM 3. Let F be a good system of conver sets. Then one of the
three main configurations of F is such that removing it from F the remaining
convex sets have a lattice point in common.

In the following proof step by step we discover more. We are going to
characterize the good systems of convex sets. Notice that applying the FLP-
algorithm we get lattice-polygons.

LEMMA 3. Fach vertex of a main configuration is included in another
one.

PROOF. Let A be a vertex of K;. Suppose that A ¢ K3 and A ¢ K.
This entails a contradiction. As A is a vertex of K; we can find K; and Kj;
such that A is an fl-point with respect to K, K4 and Ks. It follows from
the foregoing that K;,K4, K5 and K; K3, Ky, K5 and K3; Kq, K, K3 and
K4; K1, K2, K3 and K5 groups of four sets do not contain a lattice point in
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common. So we cannot choose further three sets from K,, K3, K4 and K;
to K1 such that this four sets have a lattice point in common. Thus it is a
contradiction with Theorem 2. 0O

Let us denote the convex hull of Ky, K5 and K3z by M. Let M be the
convex lattice-polygon AjA;...ArS, where S is an fl-point with respect to
K;,K; and K3. A; is naturally a vertex of some main configuration of F.
Hence according to Lemma 3 it is included in another one, too. Then we say
A; is a type By vertex, if A; € K3 and 4; € Ky N K;,. We define type Bi3
and type Bsg vertices similarly.

LEMMA 4. M has got type Big, B3 and B3 vertices.

Proor. Assume that there is no type Bj; vertex. Then A; € Kj for
each ¢. Since S € K3 we get that M C K3. But K3 C M thus K3 = M. We
show that there is only one lattice point in Ky N K;. Suppose that there is
a lattice point 57 such that S; # 5 and S; € Ky N K;. In this way we get
that 57 € Ky N Ky C K3, that is, §; € K; N Ky N K3 which contradicts the
fl-point property of S. Thus the only lattice point of Ky N K3 is §. Since any
three sets of F have a lattice point in common, hence any set of F contains
S, which is a contradiction. 0O

LeEMMA 5. M has got exzactly one type B2, B13 and Bas vertex.

Proor. (Indirect.) Let n be the least number with the following prop-
erty: There exists a system C of n convex sets such that any three sets of
C have a lattice point in common, moreover the claim is false for C. Let us
consider such a C. Then we may assume that there are two type B;q vertices,
say A; and A,.

It is trivial that n =2 5. We show that n 2 6. Namely, if » = 5 then
among the vertices of K; we have §, Ay, A3 and a type Bq3 vertex. But that
is impossible since we have already proved that K; is a triangle or a point.
Thus n 2 6.

We need the following

LEMMA 6. There exists at most one ordinary configuration of C with the
following property: Removing this configuration from C then Ay will not be
an fl-point with respect to any triplet of C containing a main configuration.

Proor. Suppose that this statement is false. Then there are two sets
K, and K5 with the previous property. It is easy to see that Ay is an fl-
point with respect to Ky, K, and Ks; and similarly with respect to Ko, K4
and Kj5. Then the sets of groups K, K4, K5 and K3; Ko, K4, K5 and Ksg;
Ki, K3, K3 and Ky; Ki,K,, K3 and K5 do not contain a lattice point in
common. But this contradicts Theorem 2. 0O

If there exists a convex set of C that satisfies the conditions of Lemma 6
then let us call it K4. Similarly we define K5 by replacing A; by A,. Since
n 2 6 there exists a convex set of C, say K;, different from K;, Ky, K3, K4
and K5. Removing K; from C we get a convex set system C', containing

Acta Mathematica Hungarica 66, 1995



ON A GALLALI-TYPE PROBLEM FOR LATTICES 143

n — 1 sets. Let us apply the FLP-algorithm to C’. Notice that C’ is good
with respect to 5. We prove that the claim is false for ’. By Lemma 6 we
get a triplet of C’ containing K, in which A, is an fl-point with respect to
it. According to Lemma 6 we have that A; or A is an fl-point with respect
to a triplet of C containing K; or K (all the variations are allowed).

In this way, applying the FLP-Algorithm we cannot eliminate A; or A,
from neither K; nor Ky. Thus for C’ the claim is false, a contradiction. 0O

In the following part of our proof we will describe all the good C systems
containing five sets. '

Let the five sets be denoted by K;, K3, K3, K, and K;. Let Ky, K, and
K3 be the main configuration of C with respect to §.

Let M’ be the convex hull of C. Then M = M'. Namely, each triplet of
C contains a main configuration. Let A;, A; and A3 be the type Bas, Bis
and By, vertex of M, resp. Let M be the convex quadrangle SA; A;A3. As
each set of C is a triangle, K; is the triangle S A3 A3, Ko the triangle 541 As
and K3 the triangle SA;A;. We prove that A; A3 Az is a member of C.

If each of the points Ay, Ay and Aj is covered by four sets of C, then K4
and K5 will contain Ay, A; and As. Since K4 and Kj are triangles we get
that A1 A2A3 = K4 = K.

If some A; is covered by exactly three sets of C, then C will also be good
with respect to A;. Thus it follows from this that A;A; A3 is a member of C.
Let us call it K4.

We show that SA; and A1 A3 do not contain any lattice point except the
endpoints.

Let N be the intersection of the diagonals of M. Notice that any three
sets of C have a point in common, hence it follows from the Helly-theorem
that there exists a point common to every set of C. As the intersection of
K;,K5, K3 and K, is a point N we get that N € Ks.

Let D beoneof S, Ay, Az and Az. If DN contains a lattice point different
from D, say F, then E is covered by all sets K; covering D. But D is an
fi-point with respect to some triplet of C, thus we are led to a contradiction.
Hence the diagonals of M do not contain a lattice point except the endpoints.
Since KiNKsNL=5UA; and Ko NKyNL = A; U A3, K; contains two
neighbouring vertices of M. Let these two neighbouring vertices be A; and
Ajz. As Kjs is a triangle, its third vertex is A; where As € K; N K,. This
way we described all good C containing five sets (see Fig. 13). O

Let C be a good system of convex sets, and let A;, A; and Az be the
type Bas, Bis and Bjs vertex of M, resp.

LEMMA 7. There erists an ordinary configuration of C, K, such that
Az € K; and Ay is an fl-point with respect to Ky, K3 and K;.

PRrROOF. Suppose that the claim is false. Ay is an fl-point with respect to
a triplet containing K;. Let this triplet be K, K4 and K5. Let us consider
G = {Ki1,K;,K3,K4,Ks}. Apply the FLP-algorithm to G as follows: Let
us consider K3. Aj is not an fl-point with respect to a triplet containing K3,
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Sza,
A
Ag
A A,
Fig. 13

otherwise A; would be an fl-point with respect to K3, K4 and K. Then we
could get a contradiction in the same way as in the proof of Lemma 6. Thus
applying the FLP-algorithm we can remove Ay from Kj3. Hence we get a
good G’ with the property that one of the main configurations of G, Ky, has
got a vertex A, which is not included in another main configuration, and
this contradicts Lemma 3. O

LEMMA 8. Ay is covered by all the ordinary configurations of C.

PROOF. According to Lemma 7 there exists an ordinary configuration of
C; K4 such that A is an fl-point with respect to K;, K3 and K4. Assume
that there exists an ordinary configuration K not containing A;. Let G =
= {Ki,K;, K3, K4, K5}. Applying the FLP-algorithm to G we get a good
G'. Let M be the convex hull of §’. Obviously, A; and § are vertices of M.
Let Af be a type Bjg vertex and A} be a type Bas vertex of M. We prove
that M is the quadrangle SA{A;AL. Consider C. If H is a type Ba3 lattice

point, then H € Fgy4; otherwise we get a contradiction since S is an fl-point
with respect to K;, K3 and Ks. Similarly if G is a type By, lattice point
of M, then G € Fas. Thus it follows that M is the quadrangle SA] A2A%.
Notice that A, is not covered by any set of C different from K, K3 and Kj.
Thus G has got two opposite vertices S and A; with the following property:
S and Ay are included in exactly three sets of C. But this is impossible.
Thus we get a contradiction. O

Notice that Theorem 3 follows from Lemma 8. O

Let us consider a convex set system F satisfying the conditions of The-
orem 1. Applying the FLP-algorithm to F we get a fixed F’. Let M be the
convex hull of . Let R be one of its vertices. Qbviously R is an fl-point.
Suppose that R is an fl-point with respect to Ky, K, and K3. Removing all
sets of F' containing R and different from K, K3 and K3 we get a convex
set system C. Applying the FLP-algorithm to C we get ¢’. Obviously C’ is
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good. According to Theorem 3 there exists a lattice point J covered by all
ordinary configurations of C’. It is easy to see that J and R pin down F.
The proof of Theorem 1 is complete. O
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