ON A GALLAI-TYPE PROBLEM FOR LATTICES

T. HAUSEL (Budapest)

1. **Introduction**

Motivated by the well-known Helly-theorem [2], Gailai [1] raised the following problem in the Euclidean plane \mathbf{E}^2 . Let \mathcal{D} denote a finite collection of closed disks in E^2 such that every two disks of D intersect. Find the minimum integer *n* with the property that for an arbitrary D there are *n* points in \mathbf{E}^2 such that every disk of $\mathcal D$ contains at least one of the points. Independently from each other, Danzer (unpublished) and Stachó [3] proved that $n \leq 4$ i.e. any D can be pinned down by 4 needles. An analogous problem arises if the needles can be chosen from a rather regular subset of \mathbf{E}^2 only. Let **L** be the lattice of \mathbf{E}^2 , i.e. the set of points of \mathbf{E}^2 which have integer coordinates.

It is easy to prove the following Helly-type theorem (see [4]). If $\mathcal F$ is a finite collection of convex sets in \mathbf{E}^2 such that any four of the sets of $\mathcal F$ have a lattice point in common, then there exists a lattice point common to every set of F . Moreover this theorem can be extended to the d -dimensional Euclidean space \mathbf{E}^d replacing 4 by 2^d . Thus it is very natural to ask the following Gallaitype problem for planar lattices. Let \tilde{f} denote a finite collection of convex sets in \mathbf{E}^2 such that any three of the sets of $\mathcal F$ have a lattice point in common. Find the least integer n such that for an arbitrary $\mathcal F$ there exist n lattice points (i.e. n needles positioned at the lattice points) with the property that every set of F contains (i.e. is pinned down) by at least one of the n lattice points (i.e. needles).

We prove the following

THEOREM 1. If F is a finite family of convex sets in $E²$ such that any *three of them have a lattice point in common, then there exist two lattice points which pin down F.*

REMARK. It is easy to see that 2, i.e. the number of needles cannot be reduced to 1. Moreover, if we replace 3 (the number which guarantees that so many convex sets always intersect in a common lattice point) by 2, then the problem has a trivial negative answer.

0236-5294/95/\$4.00 © 1995 Akadémiai Kiadó, Budapest

2. Proof of Theorem 1

First we introduce some simple notations. The points of the plane will be denoted by A, B, \ldots . The segment with endpoints A and B is denoted by AB , and the line passing through the points A and B is denoted by \overline{AB} . We fix a so-called negative orientation of the plane. A convex polygon will be described with the sequence of its vertices according to the given negative orientation.

The line \overline{AB} splits the plane into two open half-planes \mathbf{F}_{AB} and \mathbf{F}_{BA} . In this notation the order of the subscripts is important, namely, for any point C $(D, \text{resp.})$ of $\mathbf{F}_{A,B}$ ($\mathbf{F}_{B,A}$, resp.) the sequence *ABC* (*BAD*, resp.) d etermines the negative orientation of the plane. For the closed half-plane determined by the open half-plane $F_{A,B}$ we use the notation $\overline{F}_{A,B}$ (i.e. $\overline{F}_{A,B} = \mathbf{F}_{A,B} \cup \overline{AB}$.

To each convex pentagon *ABCDE* we assign the convex pentagon

$$
\overline{ABCDE}=\overline{\mathbf{F}}_{A,C}\cap \overline{\mathbf{F}}_{B,D}\cap \overline{\mathbf{F}}_{C,E}\cap \overline{\mathbf{F}}_{D,A}\cap \overline{\mathbf{F}}_{E,B}.
$$

(In other words *ABCDE* is enclosed by the diagonals of *ABCDE.)* The following two concepts are basically important for our proof.

DEFINITION 1. Let **L** be the set of points of E^2 which have integer coordinates. A point of L is called lattice point. A lattice point P is called a fixed lattice point (shortly an fl-point) if there are three sets of $\mathcal F$ the intersection of which contains P as the only lattice point.

DEFINITION 2. We define the following fixed lattice-point algorithm (FLP-algorithm). For each $K \in \mathcal{F}$ we proceed as follows. Let $K^{(1)}$ be the convex hull of the lattice points which are points in common of K with two more sets of F. Note that $\mathbf{K}^{(1)}$ is a convex lattice-polygon. Let $\mathcal{F}^{(1)}$ be the family arising from $\mathcal F$ when we replace **K** in it by $\mathbf{\hat{K}}^{(1)}$. In general, suppose that $K^{(i)}$ as well as $\mathcal{F}^{(i)}$ have already been defined. Then take a vertex of $K^{(i)}$ which is not an fl-point with respect to a triplet of $\mathcal{F}^{(i)}$ containing $\mathbf{K}^{(i)}$. Remove this vertex from the vertices of $\mathbf{K}^{(i)}$. Obviously, this algorithm terminates after finitely many steps, say n . Then it is easy to see that every vertex of $\mathbf{K}^{(n)}$ is an fl-point with respect to a triplet of $\mathcal{F}^{(n)}$ containing $\mathbf{K}^{(n)}$. Observe that $\mathcal{F}^{(n)}$ satisfies the conditions of the theorem.

After this for the next K we use $\mathcal{F}^{(n)}$ instead of F. Finally (after finitely many steps), the above FLP-algorithm yields a "new" $\mathcal F$ such that every vertex of any K of $\mathcal F$ is an fl-point with respect to a triplet of $\mathcal F$ containing **K**. Then we say that F is fixed.

We shall make use of the following

LEMMA 1. *If ABCDE is a convex lattice-pentagon, then ABCDE contains a lattice point.*

Fig. 1

PROOF. (Indirect.) Let $P_1P_2P_3P_4P_5$ be the convex lattice-pentagon with minimum number of lattice points for which the claim is false. Let M_2 denote the region $\overline{\mathbf{F}}_{5,2} \cap \overline{\mathbf{F}}_{2,4} \cap \mathbf{F}_{3,1}$ (see Fig. 1).

Similarly we get M_1, M_3, M_4 and M_5 . Furthermore, let N_2 be the region $\mathbf{F}_{5,3} \cap \mathbf{F}_{1,4} \cap \overline{\mathbf{F}}_{4,5}$. In the same way we define the regions N_1, N_3, N_4 and N_5 . It is easy to see that the convex lattice-pentagon $P_1P_2P_3P_4P_5$ contains a lattice point different from its vertices. Let P_6 be one of these lattice-points. By assumption, $P_6 \notin \overline{P_1P_2P_3P_4P_5}$. Suppose that $P_6 \in M_2$. Then for the convex lattice-pentagon $P_1P_6P_3P_4P_5$ we have $\overline{P_1P_6P_3P_4P_5}$ \overline{C} $\overline{P_1P_2P_3P_4P_5}$, a contradiction by the indirect assumption. This implies that the regions M_1, M_2, M_3, M_4 and M_5 do not contain a lattice point different from P_1, P_2, P_3, P_4 and P_5 . Thus we may suppose that $P_6 \in N_i$ for some $i \in \{1,2,3,4,5\}$. Let $i = 2$. As the convex lattice-pentagon $P_1P_2P_3P_6P_5$ contains less lattice points than $P_1P_2P_3P_4P_5$ the indirect assumption implies the existence of a lattice-point $P_7 \n\in \overline{P_1P_2P_3P_6P_5}$. Then it is easy to prove that either $P_7 \in M_5$ or $P_7 \in \overline{P_1P_2P_3P_4P_5}$. In both cases we get a contradiction. This completes the proof of Lemma 1. Q.E.D.

THEOREM 2. *Consider five convex sets in* E^2 such that any three of them *have a point of L in common. Then for each convex set there are three others such that the intersection of these four sets contains a point of L.*

PROOF. Let the five convex sets be denoted by K_1, K_2, K_3, K_4 and K_5 . We are going to prove our claim for the set K_1 . We shall make use of the following special notation. $P_{i_1,i_2,...,i_k}(P_{i_1,i_2,...,i_k})$ resp.) stands for a latticepoint in ${\bf K_1} \cap {\bf K}_{i_1} \cap \ldots \cap {\bf K}_{i_k}$ $((\mathbf{E}^{\mathbf{Z}} \setminus {\bf K_1}) \cap {\bf K}_{i_1} \cap \ldots \cap {\bf K}_{i_k}$ resp.), $2 \leqq i_1 <$ $$

The following rather technical lemma reduces the number of cases we have to investigate in the proofs of many statements.

LEMMA 2. *Let P23 be a fixed lattice point with respect to the convex sets* $\mathbf{K}_1, \mathbf{K}_2$, and \mathbf{K}_3 , and let $P_{23}P_2P_3P_{2'}$ be a convex lattice-quadrangle where P_2 and $P_{2'}$ are distinct lattice-points in $\mathbf{K}_1 \cap \mathbf{K}_2$. Then $P_{23}^* \in \overline{\mathbf{F}}_{2,23} \cap \overline{F}_{23,2'} \cap$ \cap $\mathbf{F}_{3,2'}$ \cap $\mathbf{F}_{2,3}$.

PROOF. If $P_{23}^* \in \overline{\mathbf{F}}_{2,23} \cap \overline{\mathbf{F}}_{3,2}$ then $P_2 \in P_3P_{23}P_{23}^*$ i.e. $P_2 \in \mathbf{K}_3$, but $P_2 \neq$ $\neq P_{23}$ in contradiction with the fl-point property of P_{23} . Similarly, we get a contradiction if $P_{23}^* \in \overline{\mathbf{F}}_{32,2'} \cap \overline{\mathbf{F}}_{2',3}$ (Fig. 2.).

Fig. 2

If $P_{23}^* \in \mathbf{F}_{3,2} \cap \mathbf{F}_{23,2} \cap \mathbf{F}_{3,2'}$, then $P_{23}P_2P_{23}^*P_3P_{2'}$ is a convex lattice pentagon. By Lemma 1 there exists a lattice point A such that

$$
A\in \overline{P_{23}P_2P_{23}^*P_3P_{2'}}\subset P_{23}P_{23}^*P_{2'}\cap P_{23}P_{23}^*P_3\cap P_{23}P_2P_3\subset \mathbf K_2\cap \mathbf K_3\cap \mathbf K_1,
$$

but $A \neq P_{23}$ in contradiction with the fl-point property of P_{23} . The case $P_{23}^* \in \mathbf{F}_{2',3} \cap \mathbf{F}_{2',23} \cap \mathbf{F}_{2,3}$ can be disproved similarly.

If $P_{23}^* \in \overline{\mathbf{F}}_{3,2} \cap \overline{\mathbf{F}}_{2',3}$ then $P_3 \in P_{2'}P_2P_{23}^* \subset \mathbf{K}_2$ but $P_3 \not\equiv P_{23}$, a contradiction.

If $P_{23}^* \in \mathbf{F}_{2',23} \cap \mathbf{F}_{2,3} \cap \mathbf{F}_{2,23}$, then $P_{23}P_{23}^*P_2P_3P_2P_4$ is a convex lattice pentagon. By Lemma 1 there exists a lattice point A such that

$$
A \in \overline{P_{23}P_{23}^*P_2P_3P_{2'}} \subset P_{23}P_2P_{2'} \cap P_{23}P_{23}^*P_3 \subset \mathbf{K}_1 \cap \mathbf{K}_2 \cap \mathbf{K}_3,
$$

but $A \neq P_{23}$, a contradiction. Similarly, we get a contradiction if $P_{23}^* \in$ $\in \mathbf{F}_{23.2'} \cap \mathbf{F}_{23.2} \cap \mathbf{F}_{3.2}.$ \Box

Acta Mathematica Hungarica 66, 1995

Let $C = {\bf K}_1, {\bf K}_2, {\bf K}_3, {\bf K}_4, {\bf K}_5$ and apply the FLP-algorithm to C. Then we take K_1 which is convex lattice-polygon with the property that each vertex is an fl-point P_{ij} for some i and j with respect to K_1 , furthermore we take \mathbf{K}_i and \mathbf{K}_j . Obviously, two vertices cannot have the same "name" P_{ij} . As the number of sides of K_1 is at most 6 we distinguish 5 cases. Each of them has some further subcases depending on the positions of the P_{ij} 's. We prove Theorem 2 as well as the fact that K_1 is either a triangle or a point. The rough idea of the proof is the following: we take a point P_{ijk}^* and show that independently from its position the above claim is true. However, there are some cases where we have to consider the positions of two P_{ijk}^* 's.

I. K_1 *is a convex hexagon.* The vertices of K_1 are the points P_i . Suppose that a vertex of K_1 , say P_{23} , belongs to more than three convex sets, say $P_{23} \in \mathbf{K}_1 \cap \mathbf{K}_2 \cap K_3 \cap \mathbf{K}_4$. But then P_{24} is not an fl-point with respect to K_1, K_2 and K_4 , a contradiction. Thus every vertex of K_1 belongs to exactly three convex sets. Next we prove that any two opposite vertices of K_1 cannot be covered by \mathbf{K}_i , where $i > 1$. Namely, assume that $\mathbf{K}_1 = A_1 A_2 A_3 A_4 A_5 A_6$ with $A_1 = P_{23}$ and $A_4 = P_{24}$. Without loss of generality we may assume that $A_3 = P_{25}$. First we consider the case $A_2 = P_{34}$. As $P_{23}P_{34}P_{25}P_{24}P_{45}$ is a convex pentagon, Lemma 1 implies that there exists a lattice point B such that

$$
B \in \overline{P_{23}P_{34}P_{25}P_{24}P_{45}} \subset P_{34}P_{24}P_{45} \cap P_{23}P_{25}P_{24} \subset \mathbf{K}_1 \cap \mathbf{K}_2 \cap \mathbf{K}_4.
$$

Finally, $B \neq P_{24}$, a contradiction since P_{24} must be an fl-point.

Now assume that $A_2 = P_{35}$. Since $P_{23}P_{35}P_{25}P_{24}P_{45}$ is a convex lattice pentagon, hence there exists a lattice point B such that

$$
B \in \overline{P_{23}P_{35}P_{25}P_{24}P_{45}} \subset P_{23}P_{25}P_{24} \cap P_{35}P_{25}P_{45} \subset \mathbf{K}_1 \cap \mathbf{K}_2 \cap \mathbf{K}_5,
$$

but $B \neq P_{24}$ so we get a contradiction since P_{24} is an fl-point. Finally, if $A_2 \equiv P_{45}$, then a similar argument yields a contradiction.

Thus it is sufficient to consider the convex hexagon *P23P25P35P45P34P24* (see Fig. 3).

If P_{345} exists, then $P_{345} \neq P_{34}$ which we proved above, and this is contradiction since P_{34} is an fl-point. Hence P_{345}^* exists. As P_{35} is an flpoint and $P_{35}P_{45}P_{23}P_{25}$ is a convex quadrangle, by Lemma 2 we get $P_{345}^* \in$ $\epsilon \in \mathbf{F}_{45,23}$. On the other hand P_{34} is an fl-point and $P_{34}P_{24}P_{23}P_{45}$ is a convex quadrangle so by Lemma 2 we get $P_{345}^* \in \mathbf{F}_{23,45}$, a contradiction. \Box

II. K_1 is a convex pentagon. We may assume that the vertices of K_1 are P_{23} , P_{24} , P_{25} , P_{34} and P_{35} . It is easy to prove that we have to investigate four cases only.

(a) \mathbf{K}_1 *is the pentagon* $P_{23}P_{35}P_{25}P_{34}P_{24}$ *.* By Lemma 1 there is a lattice point A such that

$$
A \in \overline{P_{23}P_{35}P_{25}P_{34}P_{24}} \subset P_{23}P_{25}P_{24} \cap P_{23}P_{35}P_{34} \subset \mathbf{K}_1 \cap \mathbf{K}_2 \cap \mathbf{K}_3.
$$

Since $A \neq P_{23}$, this contradicts the fl-point property of P_{23} .

(b) \mathbf{K}_1 *is the pentagon P*₂₅*P*₃₅*P*₂₃*P*₂₄*P*₂₄*.* If *P*₄₅ \in *P*₂₃*P*₂₄*P*₂₅*,* then $P_{45} \in \mathbf{K}_2$, but $P_{45} \neq P_{24}$, a contradiction.

If $P_{45} \in P_{23}P_{34}P_{24}$, then $P_{23}P_{45}P_{24}P_{25}P_{35}$ is a convex pentagon, so by Lemma 1 we have a lattice point A , such that

 $A \in \overline{P_{23}P_{45}P_{24}P_{25}P_{35}} \subset P_{23}P_{24}P_{25} \cap P_{45}P_{25}P_{35} \subset \mathbf{K}_1 \cap \mathbf{K}_2 \cap \mathbf{K}_5,$

but $A \neq P_{25}$, a contradiction. Similarly we get a contradiction if $P_{45} \in$ $P_{25}P_{35}P_{23}$.

Notice that if K_1 is a $P_{25}P_{34}P_{23}P_{35}P_{24}$ pentagon we can proceed similarly. (c) **K**₁ *is the pentagon* $P_{34}P_{35}P_{23}P_{25}P_{24}$. We may assume that $P_{45} \in$ $\in P_{23}P_{24}P_{34}$ (Fig. 4). Namely, if $P_{45} \in P_{23}P_{34}P_{35}$, then $P_{45} \in \mathbf{K}_3$. As $P_{45} \neq P_{34}$, this contradicts the fl-point property of P_{34} .

Since P_{25} is an fl-point, $P_{25}P_{24}P_{45}P_{23}$ is a convex quadrangle. Then Lemma 2 implies that $P_{235}^* \in \mathbf{F}_{45,23}$. If P_{235} exists, then P_{23} and P_{25} are fl-points. As P_{35} is an fl-point and $P_{45}P_{34}P_{35}P_{23}$ is a convex quadrangle by Lemma 2 we get $P_{235}^* \in \mathbf{F}_{23,45}$, a contradiction.

(d) ${\bf K}_1$ *is the pentagon P₃₄P₂₃P₂₅P₂₄P₃₅. As P₃₄ and P₃₅ are fl-points,* P_{345}^* does exist (Fig. 5). Since P_{34} is an fl-point and $P_{34}P_{23}P_{24}P_{35}$ is a convex quadrangle, we get by Lemma 2 that $P_{345}^* \in \mathbf{F}_{24,35} \cap \overline{\mathbf{F}}_{34,25} \cap \overline{\mathbf{F}}_{23,34} \cap \mathbf{F}_{23,24}.$

If $P_{345}^* \in \overline{F}_{25,34} \cap \overline{F}_{34,35}$, then $P_{34} \in P_{345}^* P_{25} P_{35} \subset K_5$, which contradicts the fl-point property of P_{35} . Hence we may suppose that $P_{345}^* \in \overline{F}_{23,34} \cap$ \cap $\mathbf{F}_{34,25}$ \cap $\mathbf{F}_{24,35}$.

If P_{235} exists, then we get a contradiction since P_{23} and P_{25} are fl-points. Thus P_{235}^* exists.

Fig. 4

Since P_{25} is an fl-point, $P_{25}P_{24}P_{35}P_{23}$ is a convex quadrangle thus Lemma 2 implies that

$$
P_{235}^* \in \mathbf{F}_{35,23} \cap \overline{\mathbf{F}}_{25,23} \cap \overline{\mathbf{F}}_{24,25} \cap \mathbf{F}_{24,35}.
$$

If $P_{235}^* \in \overline{\mathbf{F}}_{35,25} \cap \overline{\mathbf{F}}_{25,23}$, then $P_{25} \in P_{235}^* P_{35} P_{23} \subset \mathbf{K}_3$ which contradicts the fl-point property of P_{23} . Hence we may assume that $P_{235}^* \in {\bf F}_{24,25} \cap {\bf F}_{35,23} \cap$ \cap $\mathbf{F}_{25,35}$.

Since $P_{345}^* \in \mathbf{F}_{25,34} \cap \mathbf{F}_{235^*,25} \cap \mathbf{F}_{235^*,35}$ we get that $P_{345}^*P_{235}^*P_{25}P_{35}$ is a convex quadrangle. As P_{25} is an fl-point $P_{23} \in P_{345}^*P_{235}^*P_{25}P_{35} \subset \mathbf{K}_5$ cannot occur. Thus $P_{23} \notin P_{345}^* P_{235}^* P_{25} P_{35}$ so

$$
P_{23} \in \mathbf{F}_{235^*, 25} \cap \mathbf{F}_{35, 345^*} \cap \mathbf{F}_{235^*, 345^*}.
$$

It follows from the foregoing that $P_{23}P_{235}P_{25}P_{35}P_{345}^*$ is a convex pentagon. Hence by Lemma 1 there exists a lattice point A such that

$$
A \in \overline{P_{23}P_{235}^*P_{15}P_{35}P_{345}^*} \subset P_{23}P_{25}P_{35} \cap P_{345}^*P_{235}^*P_{35} \subset \mathbf{K}_1 \cap \mathbf{K}_3 \cap \mathbf{K}_5.
$$

Since $A \neq P_{35}$ and P_{35} is an fl-point, this is a contradiction. \Box

III. K_1 *is a quadrangle.* It is easy to prove that we have to investigate four cases only.

(a) K_1 *is the quadrangle* $P_{23}P_{24}P_{45}P_{35}$. If $P_{34} \in P_{23}P_{24}P_{25} \subset K_2$ or $P_{34} \in P_{25}P_{35}P_{45} \subset \mathbf{K}_5$, then this contradicts the fl-point property of P_{23} and P_{24} or P_{35} and P_{45} . Thus we may assume that $P_{34} \in P_{24}P_{45}P_{25}$ (Fig. 6).

Fig. 6

Similarly we may assume that $P_{25} \in P_{23}P_{24}P_{34}$. Then $P_{23}P_{25}P_{34}P_{45}P_{35}$ is a convex pentagon, and according to Lemma 1 there exists a lattice point A such that

$$
A \in \overline{P_{23}P_{25}P_{34}P_{45}P_{35}} \subset P_{23}P_{34}P_{35} \cap P_{25}P_{45}P_{35} \subset \mathbf{K}_1 \cap \mathbf{K}_3 \cap \mathbf{K}_5
$$

but $A \neq P_{35}$, a contradiction.

(b) K_1 *is the quadrangle* $P_{23}P_{24}P_{35}P_{45}$. If $P_{25} \in P_{23}P_{35}$, then $P_{25} \in K_3$, but this contradicts the fl-point property of P_{23} and P_{35} (Fig. 7).

If $P_{25} \in P_{23}P_{35}P_{45}$ then $P_{23}P_{24}P_{35}P_{25}$ is a convex quadrangle and since P_{23} is an fl-point, applying Lemma 2 we get that $P_{234}^* \in \overline{\mathbf{F}}_{23,25} \cap \overline{\mathbf{F}}_{24,23}$. (If P_{234} exists we get a contradiction since P_{23} and P_{24} are fl-points.) Then $P_{23} \in P_{234}^*P_{24}P_{45} \subset \mathbf{K}_4$, but this contradicts the fl-point property of P_{23} and P_{24} . Similarly, we get a contradiction if $P_{25} \in P_{35}P_{23}P_{24}$.

Acta Mathematica Hungarica 66, 1995

Fig. 7

Fig. 8

(c) \mathbf{K}_1 *is the quadrangle* $P_{23}P_{25}P_{24}P_{34}$. If P_{35} or $P_{45} \in P_{23}P_{25}P_{24}$ \subset \subset K₂, then we have a contradiction since P_{23} and P_{25} or P_{24} and P_{25} are fl-points. Thus we may assume that P_{35} and $P_{45} \in P_{23}P_{24}P_{34}$ (Fig. 8).

If P_{235} exists, then we get a contradiction as P_{23} and P_{25} are fl-points. Thus we may suppose that P_{235}^* exists.

If $P_{235}^* \in \overline{F}_{25,23} \cap \overline{F}_{34,25}$, then $P_{25} \in P_{235}^* P_{34} P_{23} \subset \mathbf{K}_3$, but $P_{25} \not\equiv P_{23}$, a contradiction. Our proof is similar if $P_{235}^* \in \overline{F}_{25,34} \cap \overline{F}_{24,25}$.

If $P_{235}^* \in \mathbf{F}_{23,25} \cap \mathbf{F}_{24,25} \cap \mathbf{F}_{24,35}$, then $P_{235}^*P_{24}P_{35}P_{23}P_{25}$ is a convex pentagon. Applying Lemma 2 we have a lattice point A for which

$$
A \in \overline{P_{235}^* P_{24} P_{35} P_{23} P_{25}} \subset P_{24} P_{23} P_{25} \cap P_{235}^* P_{35} P_{23} \subset \mathbf{K}_1 \cap \mathbf{K}_2 \cap \mathbf{K}_3.
$$

As $A \neq P_{23}$ this is a contradiction. We can settle the case $P_{235}^* \in \mathbf{F}_{45,23} \cap$ $\bigcap \mathbf{F}_{25,23} \bigcap \mathbf{F}_{25,24}$ similarly.

If $P_{235}^* \in \mathbf{F}_{24,25} \cap \mathbf{F}_{35,24}$, then $P_{24} \in P_{235}^* P_{35} P_{25} \subset \mathbf{K}_5$, a contradiction. If $P_{235}^* \in \overline{\mathbf{F}}_{25,35} \cap \overline{\mathbf{F}}_{35,24}$, then the reasoning is similar.

If $P_{235}^* \in \mathbf{F}_{35,24} \cap \mathbf{F}_{35,23}^* \mathbf{F}_{25,24}$, then $P_{235}^* P_{35} P_{23} P_{25} P_{24}$ is a convex pentagon thus according to Lemma 1 we have a lattice point A such that

$$
A \in \overline{P_{235}^* P_{35} P_{23} P_{25} P_{24}} \subset P_{235}^* P_{35} P_{25} \cap P_{235}^* P_{23} P_{25} \cap P_{35} P_{25} P_{24} \in K_1 \cap K_2 \cap K_5.
$$

As $A \neq P_{25}$ we get a contradiction. The reasoning in the case $P_{235}^* \in \mathbf{F}_{24,25} \cap$ \cap F_{23,35} \cap F_{23,34} follows word for word the previous reasoning.

If $P_{235}^* \in \overline{\mathbf{F}}_{45,25} \cap \overline{\mathbf{F}}_{23,35}$, then P_{35} or $P_{45} \in P_{235}^*P_{23}P_{24} \subset \mathbf{K}_2$, but this is a contradiction since P_{23} and P_{25} or P_{24} and P_{25} are fl-points.

(d) \mathbf{K}_1 *is the quadrangle* $P_{23}P_{34}P_{25}P_{24}$. If P_{35} or $P_{45} \in P_{25}P_{24}P_{23}$, then we get a contradiction as in the case (c). Hence we may assume that P_{35} and $P_{45} \in P_{34}P_{25}P_{23}$ (Fig. 9).

 P_{235}^* does exist. (The proof is the same as in the case (c).)

If $P_{235}^* \in \mathbf{F}_{45,25} \cap \mathbf{F}_{25,35} \cap \mathbf{F}_{34,23}$, then $P_{35} \in P_{235}^* P_{25} P_{23} \subset \mathbf{K}_2$, but this contradicts the fl-point property of P_{23} and P_{25} .

If $P_{235}^* \in \mathbf{F}_{45,23} \cap \mathbf{F}_{25,45}$, then $P_{45} \in P_{235}^* P_{25} P_{23} \subset K_2$, but this is a contradiction since P_{24} and P_{25} are fl-points.

If $P_{235}^* \in \overline{\mathbf{F}}_{23,45} \cap \overline{\mathbf{F}}_{25,34}$, then $P_{45} \in P_{235}^* P_{23} P_{34} \subset \mathbf{K}_3$. This is possible only in case $P_{45} \equiv P_{34}$. But then this vertex is a P_{35} vertex and changing K_4 and K_5 we get case (c). (Notice that we have not utilized the fl-point property of P_{34} in the reasoning of case (c).) Hence we get a contradiction just like in case (c).

If $P_{235}^* \in \mathbf{F}_{24,25} \cap \mathbf{F}_{34,25} \cap \mathbf{F}_{24,23}$, then $P_{235}^* P_{24} P_{23} P_{25}$ is a convex pentagon. According to Lemma 1 we have a lattice point A such that

$$
A \in \overline{P_{235}^* P_{24} P_{23} P_{34} P_{25}} \subset P_{235}^* P_{23} P_{34} \cap P_{24} P_{23} P_{25} \subset \mathbf{K}_1 \cap \mathbf{K}_2 \cap \mathbf{K}_3.
$$

Since $A \neq P_{23}$ this is a contradiction.

If $P_{235}^* \in \overline{\mathbf{F}}_{23,34} \cap \overline{\mathbf{F}}_{24,35}$, then $P_{24} \in P_{235}^*P_{23}P_{25} \subset \mathbf{K}_2$. As $P_{24} \not\equiv P_{34}$ this is a contradiction.

If $P_{235}^* \in \overline{F}_{24,25} \cap \overline{F}_{35,24}$, then $P_{24} \in P_{235}^*P_{35}P_{25} \subset K_5$. Since $P_{24} \not\equiv P_{25}$ this is a contradiction.

Ac~a Matheraatica Hungarica 66, 1995

Fig, 9

If $P_{235}^* \in \mathbf{F}_{23,24} \cap \mathbf{F}_{23,45} \cap \mathbf{F}_{25,24}$, then $P_{235}^*P_{23}P_{45}P_{25}P_{24}$ is a convex pentagon, hence by Lemma 1 we get a lattice point A such that

$$
A\in \overline{P_{235}^*P_{23}P_{45}P_{25}P_{24}}\subset P_{24}P_{23}P_{25}\cap P_{235}^*P_{45}P_{25}\subset \mathbf K_1\cap \mathbf K_2\cap \mathbf K_5.
$$

As $A \neq P_{25}$ we get a contradiction.

If $P_{235}^* \in \overline{\mathbf{F}}_{45,23} \cap \overline{\mathbf{F}}_{23,25}$, then $P_{23} \in P_{235}^*P_{45}P_{25} \subset \mathbf{K}_5$. Since $P_{25} \not\equiv P_{23}$ we get a contradiction.

Thus we may suppose that $P_{235}^* \in \mathbf{F}_{25,23} \cap \mathbf{F}_{34,23} \cap \mathbf{F}_{35,25}$.

If P_{245} exists, then we have a contradiction as P_{24} and P_{25} are fl-points. Hence we may assume that P_{245}^* exists.

Since P_{24} is an fl-point and $P_{23}P_{34}P_{25}P_{24}$ is a convex quadrangle hence applying Lemma 2 we get that

$$
P_{245}^* \in \mathbf{F}_{24,25} \cap \mathbf{F}_{23,24} \cap \mathbf{F}_{34,25} \cap \mathbf{F}_{23,34}.
$$

Since $P_{245}^* \in \mathbf{F}_{35,25} \cap \mathbf{F}_{235^*,35} \cap \mathbf{F}_{235^*,25}$, $P_{245}^* P_{235}^* P_{35} P_{25}$ is a convex quadrangle.

If $P_{24} \in P_{245}^*P_{235}^*P_{35}P_{25} \subset \mathbf{K}_5$, then since $P_{24} \not\equiv P_{25}$ we get a contradiction.

If $P_{24} \notin P_{245}^*P_{235}^*P_{35}P_{25}$, then $P_{24} \in \mathbf{F}_{235^*,35} \cap \mathbf{F}_{235^*,245^*} \cap \mathbf{F}_{25,245^*}$, thus $P_{24}P_{235}^*P_{35}P_{25}P_{245}$ is a convex pentagon. By Lemma 1 we get a lattice point A such that

$$
A \in \overline{P_{24}P_{235}^*P_{35}P_{25}P_{245}} \subset P_{34}P_{35}P_{25} \cap P_{24}P_{235}^*P_{25} \cap P_{235}^*P_{25}P_{245}^* \subset \subset \mathbf{K}_1 \cap \mathbf{K}_2 \cap \mathbf{K}_5.
$$

But this is a contradiction since $A \neq P_{25}$. \Box

IV. K_1 *is a triangle.* It is easy to prove that we have to investigate three cases only.

(a) \mathbf{K}_1 *is the triangle P*₂₃*P*₂₄*P*₂₅. Then $P_{34} \in \mathbf{K}_1 \cap \mathbf{K}_2$, which is a contradiction since P_{23} and P_{24} are fl-points.

(b) K_1 *is the triangle P₂₃P₂₄P₃₄. If P₂₃₄ exists, then we get a contra*diction as P_{23} and P_{24} are fl-points. Thus we may suppose that P_{234}^* exists (Fig, 10).

Fig. 10

It is easy to prove that we have to investigate the following two cases.

If $P_{234}^* \in \overline{\mathbf{F}}_{34,24} \cap \overline{\mathbf{F}}_{24,23}$, then $P_{24} \in P_{234}^* P_{24} P_{23} \subset \mathbf{K}_3$ but this contradicts the fl-point property of P_{23} .

If $P_{234}^* \in \mathbf{F}_{24,23} \cap \overline{\mathbf{F}}_{34,25} \cap \overline{\mathbf{F}}_{24,34}$, then $P_{24} \in P_{234}^*P_{34}P_{23} \subset \mathbf{K}_3$ i.e. $P_{25} \in$ $E \in \mathbf{K}_1 \cap \mathbf{K}_2 \cap \mathbf{K}_3 \cap \mathbf{K}_5$. Thus in this case Theorem 2 is true.

(c) K_1 *is the triangle P₂₄P₂₅P₃₄.* If $P_{45} \in P_{23}P_{24}P_{25} \subset K_2$, then $P_{45} \in$ $E \in K_1 \cap K_2 \cap K_4 \cap K_5$ which proves Theorem 2 in this case.

If $P_{23} \in P_{45}P_{34}P_{24} \subset \mathbf{K}_4$, then $P_{23} \in \mathbf{K}_1 \cap \mathbf{K}_2 \cap \mathbf{K}_3 \cap \mathbf{K}_4$. Hence we may assume that $P_{45} \in \mathbf{F}_{24.23}$.

If $P_{45} \in P_{23}P_{34} \subset \mathbf{K}_3$, then $P_{45} \in \mathbf{K}_1 \cap \mathbf{K}_3 \cap \mathbf{K}_4 \cap \mathbf{K}_5$ and we are done. We may assume that $P_{45} \notin P_{23}P_{34}$.

It follows from the foregoing that we have to investigate the following tWO cases:

(α) $P_{23}P_{45}P_{34}P_{24}$ *is a convex quadrangle.* If P_{234} exists, then we get a contradiction since P_{24} and P_{34} are fl-points. Thus P_{234}^* exists (Fig. 11).

Fig. 11

Since P_{34} is an fl-point and $P_{34}P_{24}P_{23}P_{45}$ is a convex quadrangle, applying Lemma 2 we get that $P_{234}^* \in \overline{\mathbf{F}}_{34,45} \cap \overline{\mathbf{F}}_{24,34}$. Then we have that $P_{34} \in P_{234}^* P_{24} P_{25} \subset \mathbf{K}_2$ thus $P_{34} \subset \mathbf{K}_1 \cap \mathbf{K}_2 \cap \mathbf{K}_3 \cap \mathbf{K}_4$ which is our claim.

 (β) $P_{34}P_{45}P_{23}P_{25}$ *is a convex quadrangle.* If P_{245} exists we get a contradiction since P_{24} and P_{25} are fl-points. Thus P_{245}^* exists (Fig. 12).

If $P_{245}^* \in \overline{\mathbf{F}}_{23,45} \cap \overline{\mathbf{F}}_{25,23}$, then $P_{23} \in P_{245}^* P_{25} P_{45} \subset \mathbf{K}_5$. Thus $P_{23} \in \mathbf{K}_1 \cap$ \bigcap **K**₂ \bigcap **K**₃ \bigcap **K**₅.

If $P_{245}^* \in \mathbf{F}_{25,24} \cap \mathbf{F}_{25,34} \cap \mathbf{F}_{45,23}$, then $P_{23} \in P_{245}^* P_{34} P_{24} \subset \mathbf{K}_4$. Thus $P_{23} \in \mathbf{K}_1 \cap \mathbf{K}_2 \cap \mathbf{K}_3 \cap \mathbf{K}_4.$

If $P_{245}^* \in \overline{\mathbf{F}}_{34,25} \cap \overline{\mathbf{F}}_{25,24}$, then $P_{25} \in P_{245}^* P_{34} P_{24} \subset \mathbf{K}_4$. Thus $P_{25} \in \mathbf{K}_1 \cap$ \cap **K**₂ \cap **K**₄ \cap **K**₅.

If $P_{245}^* \in \mathbf{F}_{23,25} \cap \mathbf{F}_{34,24}$, then we have two cases since $\mathbf{F}_{23,25} \cap \mathbf{F}_{34,24} =$ $=(\mathbf{F}_{23,25} \cap \mathbf{F}_{35,24}) \cup (\mathbf{F}_{24,35} \cap \mathbf{F}_{34,24})$ wherever P_{35} is. If $P_{245}^* \in \mathbf{F}_{23,25} \cap \mathbf{F}_{35,24}$,

Fig. *12*

then $P_{35} \in P_{245}^*P_{34}P_{24} \subset \mathbf{K}_4$. Thus $P_{35} \in \mathbf{K}_1 \cap \mathbf{K}_3 \cap \mathbf{K}_5$. If $P_{245}^* \in \mathbf{F}_{24,35} \cap \mathbf{K}_5$ $\bigcap \mathbf{F}_{34,24}$, then $P_{35} \in P_{245}^* P_{24} P_{25} \subset \mathbf{K}_2$. Thus $P_{35} \in \mathbf{K}_1 \cap \mathbf{K}_2 \cap \mathbf{K}_3$.

If $P_{245}^* \in \mathbf{F}_{24,45} \cap \mathbf{F}_{45,25}$, then $P_{45} \in P_{245}^* P_{24} P_{25} \subset \mathbf{K}_2$. Thus $P_{45} \in \mathbf{K}_1 \cap$ \cap \mathbf{K}_{2} \cap \mathbf{K}_{4} \cap $\mathbf{K}_{5}.$

Thus we may assume that $P_{245}^* \in \mathbf{F}_{25,45} \cap \mathbf{F}_{23,25} \cap \mathbf{F}_{24,34}$.

If P_{235} exists then Theorem 2 is true. Hence we may suppose that P_{235}^* exists.

If $P_{235}^* \in \mathbf{F}_{24,25} \cap \mathbf{F}_{45,25}$, then the proof is similar to the previous one.

If $P_{235}^* \in \mathbf{F}_{25,45} \cap \mathbf{F}_{23,25} \cap \mathbf{F}_{24,34}$, then $P_{45} \in P_{235}^* P_{23} P_{34} \subset \mathbf{K}_3$. Thus $P_{45} \in \mathbf{K}_1 \cap \mathbf{K}_3 \cap \mathbf{K}_4 \cap \mathbf{K}_5.$

If $P_{235}^* \in \mathbf{F}_{23,45} \cap \mathbf{F}_{25,23}$, then the proof is similar to the proof of the case P_{245}^* .

If $P_{235}^* \in \mathbf{F}_{25,24} \cap \mathbf{F}_{25,34} \cap \mathbf{F}_{45,23}$, then $P_{235}^* P_{25} P_{45} P_{245}^*$ is a convex quadrangle. Namely, $P_{245}^* \in \mathbf{F}_{235,45} \cap \mathbf{F}_{25,235} \cap \mathbf{F}_{25,45}$.

If $P_{23} \in P_{235}^*P_{25}P_{45}P_{245}^*$, then $P_{23} \in \mathbf{K}_1 \cap \mathbf{K}_2 \cap \mathbf{K}_3 \cap \mathbf{K}_5$.

If $P_{23} \notin P_{235}^*P_{25}P_{45}P_{245}^*$, then $P_{23} \in \mathbf{F}_{25,235} \cap \mathbf{F}_{45,245} \cap \mathbf{F}_{235,245}$. Thus $P_{23}P_{235}^*P_{25}P_{45}P_{245}^*$ is a convex pentagon. By Lemma 1 we have a lattice point A such that

$$
A \in \overline{P_{23}P_{235}^*P_{25}P_{45}P_{245}^*} \subset P_{23}P_{25}P_{45} \cap P_{235}^*P_{25}P_{245}^* \subset \mathbf{K}_1 \cap \mathbf{K}_2 \cap \mathbf{K}_5,
$$

a contradiction.

Acta Mathematica Hungarica 66, 1995

If $P_{235}^* \in \overline{\mathbf{F}}_{34,25} \cap \overline{\mathbf{F}}_{25,23}$, then $P_{25} \in P_{235}^* P_{34} P_{23} \subset \mathbf{K}_3$. Thus $P_{25} \in \mathbf{K}_1 \cap$ \cap **K**₂ \cap **K**₃ \cap **K**₅.

If $P_{235}^* \in \mathbf{F}_{34,25} \cap \mathbf{F}_{45,24} \cap \mathbf{F}_{23,25}$, then $P_{245}^* P_{23} P_{25} P_{235}^*$ is a convex quadrangle. Namely, $P_{245}^* \in \mathbf{F}_{23,35} \cap \mathbf{F}_{25,235} \cap \mathbf{F}_{23,235}$.

If $P_{45} \in P_{245}^* P_{23}^* P_{25} P_{235}^*$, then $P_{45} \in \mathbf{K}_1 \cap \mathbf{K}_2 \cap \mathbf{K}_4 \cap \mathbf{K}_5$.

If $P_{45} \notin \tilde{P}_{245}^* P_{23} P_{25} \tilde{P}_{235}^*$, then $P_{45} \in \mathbf{F}_{245,23} \cap \mathbf{F}_{25,235} \cap \mathbf{F}_{245,235}$. Thus $P_{45}P_{245}^*P_{23}P_{25}P_{235}^*$ is a convex pentagon. By Lemma 1 we have a lattice point A such that

 $A \in \overline{P_{45}P_{245}^*P_{23}P_{25}P_{235}^*} \subset P_{45}P_{23}P_{25} \cap P_{245}^*P_{25}P_{235}^* \subset \mathbf{K}_1 \cap \mathbf{K}_2 \cap \mathbf{K}_5$

a contradiction. \square

V. K_1 *is a segment.* Then $K_i \cap K_j \cap K_1$ contains a lattice point in common. Thus applying Helly's theorem to the segment $K_i \cap K_1$ we get that they have a lattice point in common. Hence, we have proved that in this case the convex sets have a lattice point in common, which proves Theorem 2.

In fact, we have proved more. Namely, we have shown that the fixed system of five convex sets of Theorem 2 either have a lattice point in common or each of them is a triangle. \Box

Now we are able to prove Theorem 1, though we still need a few definitions and several lemmas to do so.

We need the following

DEFINITION 3. Let $\mathcal F$ be a fixed system of at least four sets such that any three of them have a lattice point in common. We say that $\mathcal F$ is good if the convex hull of F possesses a vertex S which belongs to exactly three sets. Let us denote these sets by K_1, K_2 and K_3 and call them the main configurations of $\mathcal F$. If a set of $\mathcal F$ is not a main configuration then we call it an ordinary configuration.

THEOREM 3. Let F be a good system of convex sets. Then one of the *three main configurations of* F *is such that removing it from* F *the remaining convex sets have a lattice point in common.*

In the following proof step by step we discover more. We are going to characterize the good systems of convex sets. Notice that applying the FLPalgorithm we get lattice-polygons.

LEMMA 3. *Each vertex of a main configuration is included in another o~e.*

PROOF. Let A be a vertex of K_1 . Suppose that $A \notin K_2$ and $A \notin K_3$. This entails a contradiction. As A is a vertex of K_1 we can find K_4 and K_5 such that A is an fl-point with respect to K_1, K_4 and K_5 . It follows from the foregoing that $\mathbf{K}_1, \mathbf{K}_4, \mathbf{K}_5$ and \mathbf{K}_2 ; $\mathbf{K}_1, \mathbf{K}_4, \mathbf{K}_5$ and \mathbf{K}_3 ; $\mathbf{K}_1, \mathbf{K}_2, \mathbf{K}_3$ and K_4 ; K_1, K_2, K_3 and K_5 groups of four sets do not contain a lattice point in

common. So we cannot choose further three sets from K_2, K_3, K_4 and K_5 to K_1 such that this four sets have a lattice point in common. Thus it is a contradiction with Theorem 2. \Box

Let us denote the convex hull of K_1, K_2 and K_3 by M. Let M be the convex lattice-polygon $A_1A_2...A_kS$, where S is an fl-point with respect to $\mathbf{K}_1, \mathbf{K}_2$ and \mathbf{K}_3 . \ddot{A}_i is naturally a vertex of some main configuration of \mathcal{F} . Hence according to Lemma 3 it is included in another one, too. Then we say A_i is a type B_{12} vertex, if $A_i \notin \mathbf{K}_3$ and $A_i \in \mathbf{K}_1 \cap \mathbf{K}_2$. We define type B_{13} and type B_{23} vertices similarly.

LEMMA 4. M has got type B_{12} , B_{13} and B_{23} vertices.

PROOF. Assume that there is no type B_{12} vertex. Then $A_i \in \mathbf{K}_3$ for each *i*. Since $S \in \mathbf{K}_3$ we get that $\mathbf{M} \subset \mathbf{K}_3$. But $\mathbf{K}_3 \subset \mathbf{M}$ thus $\mathbf{K}_3 \equiv \mathbf{M}$. We show that there is only one lattice point in $\mathbf{K}_1 \cap \mathbf{K}_2$. Suppose that there is a lattice point S_1 such that $S_1 \neq S$ and $S_1 \in \mathbf{K}_1 \cap \mathbf{K}_2$. In this way we get that $S_1 \in \mathbf{K}_1 \cap \mathbf{K}_2 \subset \mathbf{K}_3$, that is, $S_1 \in \mathbf{K}_1 \cap \mathbf{K}_2 \cap \mathbf{K}_3$ which contradicts the fl-point property of S. Thus the only lattice point of $K_1 \cap K_2$ is S. Since any three sets of $\mathcal F$ have a lattice point in common, hence any set of $\mathcal F$ contains S, which is a contradiction. \square

LEMMA 5. M has got exactly one type B_{12} , B_{13} and B_{23} vertex.

PROOF. (Indirect.) Let n be the least number with the following property: There exists a system C of n convex sets such that any three sets of $\mathcal C$ have a lattice point in common, moreover the claim is false for $\mathcal C$. Let us consider such a C. Then we may assume that there are two type B_{12} vertices, say A_1 and A_2 .

It is trivial that $n \geq 5$. We show that $n \geq 6$. Namely, if $n=5$ then among the vertices of \mathbf{K}_1 we have S, A_1, A_2 and a type B_{13} vertex. But that is impossible since we have already proved that K_1 is a triangle or a point. Thus $n \geq 6$.

We need the following

LEMMA 6. *There exists at most one ordinary configuration of C with the following property: Removing this configuration from C then A1 will not be* an β -point with respect to any triplet of C containing a main configuration.

PROOF. Suppose that this statement is false. Then there are two sets \mathbf{K}_4 and \mathbf{K}_5 with the previous property. It is easy to see that A_1 is an fipoint with respect to $\mathbf{K}_1, \mathbf{K}_4$ and \mathbf{K}_5 ; and similarly with respect to $\mathbf{K}_2, \mathbf{K}_4$ and \mathbf{K}_5 . Then the sets of groups $\mathbf{K}_1, \mathbf{K}_4, \mathbf{K}_5$ and \mathbf{K}_3 ; $\mathbf{K}_2, \mathbf{K}_4, \mathbf{K}_5$ and \mathbf{K}_3 ; K_1, K_2, K_3 and K_4 ; K_1, K_2, K_3 and K_5 do not contain a lattice point in common. But this contradicts Theorem 2. \Box

If there exists a convex set of C that satisfies the conditions of Lemma 6 then let us call it \mathbf{K}_4 . Similarly we define \mathbf{K}_5 by replacing A_1 by A_2 . Since $n \geq 6$ there exists a convex set of C, say \mathbf{K}_i , different from $\mathbf{K}_1, \mathbf{K}_2, \mathbf{K}_3, \mathbf{K}_4$ and K_5 . Removing K_i from C we get a convex set system C', containing $n-1$ sets. Let us apply the FLP-algorithm to C'. Notice that C' is good with respect to S. We prove that the claim is false for \mathcal{C}' . By Lemma 6 we get a triplet of \mathcal{C}' containing \mathbf{K}_1 , in which A_1 is an fl-point with respect to it. According to Lemma 6 we have that A_1 or A_2 is an fl-point with respect to a triplet of C containing \mathbf{K}_1 or \mathbf{K}_2 (all the variations are allowed).

In this way, applying the FLP-Algorithm we cannot eliminate A_1 or A_2 from neither \mathbf{K}_1 nor \mathbf{K}_2 . Thus for C' the claim is false, a contradiction. \Box

In the following part of our proof we will describe all the good $\mathcal C$ systems containing five sets.

Let the five sets be denoted by K_1, K_2, K_3, K_4 and K_5 . Let K_1, K_2 and \mathbf{K}_3 be the main configuration of C with respect to S.

Let M' be the convex hull of C. Then $M \equiv M'$. Namely, each triplet of C contains a main configuration. Let A_1 , A_2 and A_3 be the type B_{23} , B_{13} and B_{12} vertex of M, resp. Let M be the convex quadrangle $SA_1A_2A_3$. As each set of C is a triangle, K_1 is the triangle SA_2A_3 , K_2 the triangle SA_1A_3 and \mathbf{K}_3 the triangle SA_1A_2 . We prove that $A_1A_2A_3$ is a member of C.

If each of the points A_1, A_2 and A_3 is covered by four sets of C, then \mathbf{K}_4 and K_5 will contain A_1, A_2 and A_3 . Since K_4 and K_5 are triangles we get that $A_1A_2A_3 \equiv \mathbf{K}_4 \equiv \mathbf{K}_5$.

If some A_i is covered by exactly three sets of C , then C will also be good with respect to A_i . Thus it follows from this that $A_1A_2A_3$ is a member of C. Let us call it K_4 .

We show that SA_2 and A_1A_3 do not contain any lattice point except the endpoints.

Let N be the intersection of the diagonals of M . Notice that any three sets of $\mathcal C$ have a point in common, hence it follows from the Helly-theorem that there exists a point common to every set of C . As the intersection of $\mathbf{K}_1, \mathbf{K}_2, \mathbf{K}_3$ and \mathbf{K}_4 is a point N we get that $N \in \mathbf{K}_5$.

Let D be one of S , A_1 , A_2 and A_3 . If DN contains a lattice point different from D, say E, then E is covered by all sets \mathbf{K}_i covering D. But D is an fl-point with respect to some triplet of \mathcal{C} , thus we are led to a contradiction. Hence the diagonals of M do not contain a lattice point except the endpoints. Since $\mathbf{K}_1 \cap \mathbf{K}_3 \cap \mathbf{L} \equiv S \cup A_2$ and $\mathbf{K}_2 \cap \mathbf{K}_4 \cap \mathbf{L} \equiv A_1 \cup A_3$, \mathbf{K}_5 contains two neighbouring vertices of M. Let these two neighbouring vertices be A_1 and A_2 . As \mathbf{K}_5 is a triangle, its third vertex is A_5 where $A_5 \in \mathbf{K}_1 \cap \mathbf{K}_2$. This way we described all good C containing five sets (see Fig. 13).

Let C be a good system of convex sets, and let A_1 , A_2 and A_3 be the type B_{23} , B_{13} and B_{12} vertex of **M**, resp.

LEMMA 7. There exists an ordinary configuration of C , K_j such that $A_2 \in \mathbf{K}_i$ and A_2 is an fl-point with respect to \mathbf{K}_1 , \mathbf{K}_3 and \mathbf{K}_i .

PROOF. Suppose that the claim is false. A_2 is an fl-point with respect to a triplet containing K_1 . Let this triplet be K_1 , K_4 and K_5 . Let us consider $\mathcal{G} = {\mathbf{K}_1, \mathbf{K}_2, \mathbf{K}_3, \mathbf{K}_4, \mathbf{K}_5}.$ Apply the FLP-algorithm to \mathcal{G} as follows: Let us consider K_3 . A_2 is not an fl-point with respect to a triplet containing K_3 ,

Fig. 13

otherwise A_2 would be an fl-point with respect to $\mathbf{K}_3, \mathbf{K}_4$ and \mathbf{K}_5 . Then we could get a contradiction in the same way as in the proof of Lemma 6. Thus applying the FLP-algorithm we can remove A_2 from \mathbf{K}_3 . Hence we get a good \mathcal{G}' with the property that one of the main configurations of $\mathcal{G}', \mathbf{K}_1$, has got a vertex *As* which is not included in another main configuration, and this contradicts Lemma 3. \Box

LEMMA 8. A_2 is covered by all the ordinary configurations of \mathcal{C} .

PROOF. According to Lemma 7 there exists an ordinary configuration of C; K_4 such that A_2 is an fl-point with respect to K_1, K_3 and K_4 . Assume that there exists an ordinary configuration \mathbf{K}_5 not containing A_2 . Let $\mathcal{G} =$ $= {\mathbf{K}_1, \mathbf{K}_2, \mathbf{K}_3, \mathbf{K}_4, \mathbf{K}_5}.$ Applying the FLP-algorithm to G we get a good \mathcal{G}' . Let M be the convex hull of \mathcal{G}' . Obviously, A_2 and S are vertices of M. Let A'_{3} be a type B_{12} vertex and A'_{1} be a type B_{23} vertex of M. We prove that M is the quadrangle $SA'_1A_2A'_3$. Consider C. If H is a type B_{23} lattice point, then $H \in \overline{\mathbf{F}}_{SA}$; otherwise we get a contradiction since S is an fl-point with respect to K_1 , K_2 and K_3 . Similarly if G is a type B_{12} lattice point of M, then $G \in \overline{\mathbf{F}}_{AS}$. Thus it follows that M is the quadrangle $SA'_1A_2A'_3$. Notice that A_2 is not covered by any set of C different from $\mathbf{K}_1, \mathbf{K}_3$ and \mathbf{K}_4 . Thus G has got two opposite vertices S and A_2 with the following property: S and A_2 are included in exactly three sets of C. But this is impossible. Thus we get a contradiction. \square

Notice that Theorem 3 follows from Lemma 8. \square

Let us consider a convex set system $\mathcal F$ satisfying the conditions of Theorem 1. Applying the FLP-algorithm to $\mathcal F$ we get a fixed $\mathcal F'$. Let M be the convex hull of \mathcal{F}' . Let R be one of its vertices. Obviously R is an fl-point. Suppose that R is an fi-point with respect to K_1, K_2 and K_3 . Removing all sets of \mathcal{F}' containing R and different from $\mathbf{K}_1, \mathbf{K}_2$ and \mathbf{K}_3 we get a convex set system C. Applying the FLP-algorithm to C we get \mathcal{C}' . Obviously \mathcal{C}' is **good. According to Theorem 3 there exists a lattice point J covered by all** ordinary configurations of C' . It is easy to see that \hat{J} and R pin down \mathcal{F} . **The proof of Theorem 1 is complete. []**

Acknowledgement. The author would like to thank Professor János Surányi for his helpful comments.

References

- [1] L. Fejes Tóth, *Lagerungen in der Ebene, auf der Kugel und in Raum,* Springer (Berlin, *1953).*
- [2] E. Helly, 15bet Mengen konvexer KSrper mit gemeinschaftlichen Punkten, *Jahresbericht d. Deutchen Math. Vet.,* 32 (1923), 175-176.
- [3] L. Stach6, A solution of Gallai's problem on pinning down circles, *Mat. Lapok,* 32 (1981-1984), 19-74 (in Hungarian).
- [4] J. P. Doignon, Convexity in cristallographica] lattices, *J. Geom.,* 3 (1973), 71-85.

(Received December 30, 1991; revised February 21, 1994)

H-1119 BUDAPEST SOLT U. 42.