
Acta Math. Hungar. 
66 (19951, 127-145. 

O N  A G A L L A I - T Y P E  P R O B L E M  
F O R  L A T T I C E S  

T. HAUSEL (Budapest) 

1. Introduction 

Motivated by the well-known Helly-theorem [2], Gailai [1] raised the 
following problem in the Euclidean plane E 2. Let D denote a finite collection 
of closed disks in E 2 such that  every two disks of D intersect. Find the 
minimum integer n with the property that  for an arbitrary D there are n 
points in E 2 such that  every disk of D contains at least one of the points. 
Independently from each other, Danzer (unpublished) and Stach5 [3] proved 
that  n =< 4 i.e. any D can be pinned down by 4 needles. An analogous 
problem arises if the needles can be chosen from a rather regular subset of 
E 2 only. Let L be the lattice of E 2, i.e. the set of points of E 2 which have 
integer coordinates. 

It is easy to prove the following Helly-type theorem (see [4]). If ~" is a 
finite collection of convex sets in E 2 such that  any four of the sets of ~" have a 
lattice point in common, then there exists a lattice point common to every set 
of.T. Moreover this theorem can be extended to the d-dimensional Euclidean 
space E d replacing 4 by 2 d. Thus it is very natural  to ask the following Gallai- 
type problem for planar lattices. Let ~" denote a finite collection of convex 
sets in E 2 such that  any three of the sets of ~ have a lattice point in common. 
Find the least integer n such that  for an arbitrary Jr there exist n lattice 
points (i.e. n needles positioned at the lattice points) with the property that  
every set of .T contains (i.e. is pinned down) by at least one of the n lattice 
points (i.e. needles). 

We prove the following 

THEOREM 1. I f  U is a finite family of convex sets in E 2 such that any 
three of  them have a lattice point in common, then there exist two lattice 
points which pin down :F. 

REMARK. It is easy to see that  2, i.e. the number of needles cannot be 
reduced to 1. Moreover, if we replace 3 (the number which guarantees that  
so many convex sets always intersect in a common lattice point) by 2, then 
the problem has a trivial negative answer. 
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2. P r o o f  of  T h e o r e m  1 

First we introduce some simple notations. The points of the plane will 
be denoted by A, B, . . . .  The segment with endpoints A and B is denoted 
by AB, and the line passing through the points A and B is denoted by AB. 
We fix a so-caJ]ed negative orientation of the plane. A convex polygon will 
be described with the sequence of its vertices according to the given negative 
orientation. 

The line AB splits the plane into two open half-planes FA,B and FB,A. 
In this notation the order of the subscripts is important, namely, for any 
point C (D, resp.) of FA,B (FB,A, resp.) the sequence ABC (BAD, resp.) 
determines the negative orientation of the plane. For the closed h._alf-plane 
determined by the open half-plane FA,B we use the notation FA,B (i.e. 

FA,B = FA,B U AB). 
To each convex pentagon ABCDE we assign the convex pentagon 

ABCDE = F A,C N FB,D r] FC,E r] FD,A ['] FE,B. 

(In other words ABCDE is enclosed by the diagonals of ABCDE.) The 
following two concepts are basically important for our proof. 

DEFINITION 1. Let L be the set of points of E 2 which have integer co- 
ordinates. A point of L is called lattice point. A lattice point P is called 
a fixed lattice point (shortly an fl-point) if there are three sets of .F the 
intersection of which contains P as the only lattice point. 

DEFINITION 2. We define the following fixed lattice-point algorithm 
(FLP-algorithm). For each K E ~" we proceed as follows. Let K0)  be the 
convex hull of the lattice points which are points in common of K with two 
more sets of ~'. Note that K(1) is a convex lattice-polygon. Let F(1) be the 
family arising from 9 v when we replace K in it by K (1). In general, suppose 
that K(0 as well as 5 ~(i) have already been defined. Then take a vertex 
of K(i) which is not an fl-point with respect to a triplet of ~-(i) containing 
K(0. Remove this vertex from the vertices of K(0. Obviously, this algorithm 
terminates after finitely many steps, say n. Then it is easy to see that every 
vertex of K(~) is an fl-point with respect to a triplet of .%-(n) containing K(n). 
Observe that 5 r('n) satisfies the conditions of the theorem. 

After this for the next K we use ~(~) instead of f ' .  Finally (after finitely 
many steps), the above FLP-algorithm yields a "new" ~ such that every 
vertex of any K of jc is an fl-point with respect to a triplet of ~- containing 
K. Then we say Chat ~ is fixed. 

We shall make use of the following 

LEMMA 1. If ABCDE is a convex lattice-pentagon, then ABCDE con- 
tains a lattice point. 
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Fig. 1 

PROOF. (Indirect.) Let PIP2P3P4P5 be the convex lattice-pentagon with 
minimum number of lattice points for which the claim is false. Let M2 denote 
the region F5,2 f-) F2,4 f3 F3A (see Fig. 1). 

Similarly we get M1, M3, M4 and Ms.  Furthermore, let N2 be the re- 
gion F5,3 f) F1,4 fq F4,5. In the same way we define the regions N1, N3, N4 
and Ns. It is easy to see that the convex lattice-pentagon PIP2P3P4P5 
contains a lattice point different from its vertices. Let /~ be one of these 
lattice-points. By assumption, P6 r P1P2P3P4Ps. Suppose that P6 E M2. 
Then for the convex lattice-pentagon PIP6P3P4P5 we have P1P6P3P4P5 C 
C P1P2P3P4Ps, a contradiction by the indirect assumption. This implies that 
the regions M1, M2, M3, M4 and M5 do not contain a lattice point differ- 
ent from P1,P2, P3, P4 and Ps. Thus we may suppose that P6 E Ni for some 
i E {1,2,3,4,5}. Let i = 2. As the convexlattice-pentagon P1P2P3P6P5 con- 
tains less lattice points than PIP2P3P4P5 the indirect assumption implies the 
existence of a lattice-point P7 C P1P2P3P6P5. Then it is easy to prove that 
either P7 E M5 or/~ C PIP2P3P4Ps. In both cases we get a contradiction. 
This completes the proof of Lemma 1. Q.E.D. 

THEOREM 2. Consider five convex sets in E ~ such that any three of them 
have a point of L in common. Then for each convex set there are three others 
such that the intersection of these four sets contains a point of L. 

PRoof .  Let the five convex sets be denoted by K1, K2, K3, K4 and Ks. 
We are going to prove our claim for the set K1. We shall make use of the 
following special notation. Pil,i2,...,ik(Pil,i~,...,ik resp.) stands for a lattice- 
point in K1 f) Kil N . . .  fq Ki k ((E 2 \ K1) f) Ki~ fq . . .  fq Kik resp.), 2 < il < 
< i 2 <  . . . <  ik_-<5. 

The following rather technical lemma reduces the number of cases we 
have to investigate in the proofs of many statements. 
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LEMMA 2. Let P23 be a fixed lattice point with respect to the convex sets 
K1, K2, and K3, and let P23P2P3P2, be a convex lattice-quadrangle wh_ere P2 
and P2' are distinct lattice-points in K1 N Ks. Then P~3 C F2,23 N F23,2, M 
M F3,2, N F2,3. 

PROOF. If P~*3 E F2,23 N F3,2 then P2 E P3P23P~a i.e. P2 E K3, but/)2 
P23 in contradiction with theft-point property of/>23. Similarly, we get a 

contradiction if P~*3 E F32,2, N F2,,3 (Fig. 2.). 

\ ~'23, 2' n ~2; 3 / 

\ 

223 I'~F3 2 

Fig. 2 

If P~  E F3,2 M F23,2 M F3,2, , then P23P2P~*aP3P2, is a convex lattice pen- 
tagon. By Lemma 1 there exists a lattice point A such that 

* p * A E P23P2P~3P3P2, C P23P~3P2, N 23P~3P3 N P23P2P3 C K2 N K3 N K1, 

but A ~ />23 in contradiction with the fl-point property of P23- The case 
P~*3 E F2,,3 M F2,,23 M F2,3 can be disproved similarly. 

I * If P~3 E F3,2 M F2,,3 then/>3 C/>2 P2P~3 C K2 but P3 ~ P23, a contradic- 
tion. 

If P~3 E F2,,23 M F2,3 N F2,23, then P23P~*3P2P3P2, is a convex lattice 
pentagon. By Lemma 1 there exists a lattice point A such that 

A E P23P~*aP2P3P~, C P23P2P2, M P23P~3P3 C K1 N Ks M K3, 

but A ~ P23, a contradiction. Similarly, we get a contradiction if P~*3 C 
E F23,2' r'] F23,2 M F3,2. [] 
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Let C = {K1, K2, K3, K4, Ks} and apply the FLP-algorithm to C. Then 
we take K1 which is convex lattice-polygon with the property that  each 
vertex is an fl-point P{j for some i and j with respect to K1, furthermore we 
take Ki and Kj .  Obviously, two vertices cannot have the same "name" Pij. 
As the number of sides of K1 is at most 6 we distinguish 5 cases. Each of 
them has some further subcases depending on the positions of the Pij's. We 
prove Theorem 2 as well as the fact that  K1 is either a triangle or a point. 
The rough idea of the proof is the following: we take a point P~k and show 
that independently from its position the above claim is true. However, there 
are some cases where we have to consider the positions of two P~k'S" 

I. K1 is a convex hexagon. The vertices of K1 are the points Pij. Suppose 
that  a vertex of K1, say P23, belongs to more than three convex sets, say 
P23 E K1 n K2 n K3 n K4. But then P24 is not an fl-point with respect to 
K1, K2 and K4, a contradiction. Thus every vertex of K1 belongs to exactly 
three convex sets. Next we prove that  any two opposite vertices of K1 cannot 
be covered by Ki,  where i > 1. Namely, assume that  K1 = A1A2A3A4AsA6 
with A1 = P23 and A4 = P24. Without  loss of generality we may assume 
that  A3 = P25. First we consider the case A2 = P34. As P23P34P25P24P45 is 
a convex pentagon, Lemma 1 implies that  there exists a lattice point B such 
that  

B E P23P34P25P24P45 C P34P24P4~ N P23P25P24 ~ K1 n K2 n K4. 

Finally, B ~ P24,  a contradiction since P24 must be an fl-point. 
Now assume that  A2 = P35. Since P23P35P25P24P45 is a convex lattice 

pentagon, hence there exists a lattice point B such that  

B C P23P35P25P24P45 C P23P25P24 n PBSP25P45 C KI N K2 N Ks, 

but B ~ P24 so we get a contradiction since P24 is an fl-point. Finally, if 
A2 -- P45, then a similar argument yields a contradiction. 

Thus it is sufficient to consider the convex hexagon P23P25P35P45P34P24 
(see Fig. 3). 

If P345 exists, then P345 ~ P34 which we proved above, and this is 
contradiction since P34 is an fl-point. Hence P~4s exists. As P3s is an fl- 
point and P35P45P23P25 is a convex quadrangle, by Lemma 2 we get P~45 E 
e F45,23. On the other hand P34 is an fl-point and P34P24P23P4~ is a convex 
quadrangle so by Lemma 2 we get P~45 E F23,4~, a contradiction. [] 

II. K1 is a convex pentagon. We may assume that  the vertices of K1 are 
P23, P24, P25, P34 and P35. it is easy to prove that  we have to investigate four 
cases only. 

(a) K1 is the pentagon P23P35P2~P34P24. By Lemma 1 there is a lattice 
point A such that  

A E P23P35P25P34P24 C P23P25P24 n P23P35P34 C K1 n K2 n K3. 
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P25 P3s 

Fig. 3 

Since A ~ P~3, this contradicts the fl-point property of P23. 
(b) K1 is the pentagon P25P35P23P34P24. If P45 E P~3P24P25, then 

P45 E K2, but P4s ~ P24, a contradiction. 
If P45 E P23P34P24, then P23P45P24P25P35 is a convex pentagon, so by 

Lemma 1 we have a lattice point A, such that 

A ~ P23P45P24P25P35 C P23P24P25 f"l P45P25P35 ~ K1 N K2 ['1 Ks, 

but A ~ P25, a contradiction. Similarly we get a contradiction if P45 E 
P sPzsP2z. 

Notice that if K1 is a P25P34P23P35P24 pentagon we can proceed similarly. 
(c) K1 is the pentagon P34P35P23P25P24. We may assume that P45 E 

E P23P24P34 (Fig. 4). Namely, if P45 E P23P34P35, then P45 E K3. As 
P45 ~ P34, this contradicts the fl-point property of P34. 

Since P2s is an fl-point, P?sP~4P4sP23 is a convex quadrangle. Then 
Lemma 2 implies that P~35 E F45,23. If P235 exists, then P23 and P25 are 
fl-points. As P35 is an fl-point and P45P34P35P23 is a convex quadrangle by 
Lemma 2 we get P~35 E F23,45, a contradiction. 

(d) g l  is the pentagon Pz4P23P25P24P35. As P3a and P35 are fl-points, 
P~45 does exist(Fig. 5). Since P34 is an fl-point and P34P23P24P35 is a convex 
quadrangle, we get by Lemma 2 that P~'45 E F24,35 n F34,25 [3 F23,34 f-1 F23,24. 

If P~45 E F25,34 n F34 35, then P34 C P~45P25P35 C Ks, which contradicts 
the fl-point property of P35. Hence we may suppose that P~45 E F23,34. f'l 

F34,25 f-I F24,3s. 
If P235 exists, then we get a contradiction since P23 and P25 are fl-points. 

Thus P~35 exists. 
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~5,23 

Fig. 4 

_ _ / /  

r2s ,3~n r3~,3s P'3 ' ' ' 

/ 

Fig. 5 

Since/)25 is an fl-point, P25P24P35P23 is a convex quadrangle thus Lemma 
2 implies that  

P~'35 E F35,23 N F25,23 f3 F~4,~5 f3 F24,35. 
i 

If P~35 E F35,25 f3 F25,23, then/)25 E P~35P35P23 C K3 which contradicts the 
fl-point property of/)23. Hence we may assume that  P~'35 E F24,25 f/F35,23 [1 
f-I F25,35. 

Since P~'45 E F25,34 f3 F235.,25 f3 F235-,35 we get that  P~45P~35P25P35 is a 
convex quadrangle. As P25 is an fl-point/)23 E P~45P~35P2~P35 C K5 cannot 
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occur. Thus P23 r P~45P~35P25P35 so 

P23 E F235.,25 f-1 F35,345. n F235.,345.. 

It follows from the foregoing that  P23P235P25P35P~45 is a convex pentagon. 
Hence by Lemma 1 there exists a lattice point A such that  

A E P23P~35P15P35P~45 C P23P25P35 n P~45P~35P35 C K1 n K3 n Ks. 

Since A ~ P35 and P35 is an fl-point, this is a contradiction. [] 
III. K1 is a quadrangle. It is easy to prove that  we have to investigate 

four cases only. 
(a) KI is the quadrangle P23P24P45P3s. If P34 E P23P24P25 C K2 or 

P34 E P25P35P45 C Ks, then this contradicts the fl-point property of P23 and 
/)24 or P35 and P45. Thus we may assume that  P34 E P24P45P25 (Fig. 6). 

F/g. 6 

Similarly we may assume that  P2~ E P 2 3 P 2 4 P 3 4  �9 Then P23P2sP34P4sP3s 
is a convex pentagon, and according to Lemma 1 there exists a lattice point 
A such that  

A E P23P2~P34P45P35 C P23P34P3s n P25P45Pas C K1 n Ka n K5 

but A ~ P35, a contradiction. 
(b) K1 is the quadrangle P 2 3 P 2 4 P 3 5 P 4 5  . If/)25 E P23P35, then P25 E K3, 

but this contradicts the fl-point property of P23 and P35 (Fig. 7). 
If P25 E P23P35P45 then P23P24P35P25 is a convex quadrangle__and since 

/)23 is an fl-point, applying Lemma 2 we get that  P~34 C F23,2s n F24,23. (If 
P234 exists we get a contradiction since P23 and P24 are fl-points.) Then 
P23 E P~34P24P45 C K4, but this contradicts the fl-point property of P23 and 
P24. Similarly, we get a contradiction if P25 E P35P23P24. 
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~~- !~ 
~5 

Fig. 7 

F2~4S nF~35 n~3.34 

F~s " 24 n F n 3s 

~3 F45'23 n F25' 23nF25'24 

' \F3~, 2,, ~F3s,23 rGs,~ 
\ 

F34,25 
P2s 

~3.25 nF~,25 n~4.3s 

Fig. 8 

(c) K1 is the quadrangle P23P25P24P34. If/)35 or P45 C P23P25P24 C 
C K2, then we have a contradiction since /)23 and P25 or /)24 and P25 are 
fl-points. Thus we may assume that  P35 and P45 C P23P24P34 (Fig. 8). 

If P235 exists, then we get a contradiction as P23 and /)25 are fl-points. 
Thus we may suppose that  P~35 exists. 
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n 

If P~'35 E F25,23 N F34,25, then P25 E P,~'35P34P23 C K3, but P25 ~ P23, a 
contradiction. Our proof is similar if P~'3s E F25,34 N F24,2s. 

If P~'35 E F23,25 N F24,2~ N F24,35~ then P~3sP24P35P23P25 is a convex 
pentagon. Applying Lemma 2 we have a lattice point A for which 

A E P;35P24P35P23P25 [ P24P23P25 ['1 P,;35P35P23 [ K1 ['I K2 N K3. 

As A ~ P23 this is a contradiction. We can settle the case P~35 E 1045,23 ['1 
N F25,~3 N F25,24 similarly. 

If P~'35 E F24,25 VI 1035,24, then P24 E P~35P35P25 C Ks, a contradiction. 
If P~'35 E F25,35 N F35,24, then the reasoning is similar. 

If P~'35 E F35,24 V1 F35,23F25,24, then P~35P35P23P25P24 is a convex pen- 
tagon thus according to Lemma 1 we have a lattice point A such that 

A E P;35P35P23P25P24 C P;35P35P25 n P;35P23P25 ['I P35P25P24 E 

E K1 N K2 N Ks. 

As A ~ P25 we get a contradiction. The reasoning in the case P~'35 E F24,25 N 
C1 F23,35 [-I F23,34 follows word for word the previous reasoning. 

If P~'35 E F45,25 N F23,35, then/)35 or P45 E P~35P23P24 C K2, but this is 
a contradiction since P23 and P25 or P24 and P25 are fl-points. 

(d) K1 is the quadrangle P23P34P25P24. If P35 or P45 E P25P24P23, then 
'we get a contradiction as in the case (c). Hence we may assume that P35 and 
P45 E P34P25P23 (Fig. 9). 

P~35 does exist. (The proof is the same as in the case (c).) 
* p .  If P235 E F45,25 N F25,35 N F34,23, then P35 E 235P25P23 C K2, but this 

contradicts the__fl-point__property of/)23 and P25. 
If P~35 E F45,23 N F25,45, then P45 E P~35P25P23 C K2, but this is a 

contradiction_since P24and P25 are fl-points. 
If P~35 E F23,45 N F25,34, then P45 E P~35P23P34 C K3. This is possible 

only in case P45 - /~ But then this vertex is a P35 vertex and changing 
K4 and K5 we get case (c). (Notice that we have not utilized the fl-point 
property of P34 in the reasoning of case (c).) Hence we get a contradiction 
just like in case (c). 

If P~35 E F24,25 M F34,25 M F24,23, then P~35P24P23P25 is a convex pen- 
tagon. According to Lemma 1 we have a lattice point A such that 

A E P~35P24P23P34P25 C P,~35P23P34 N P24P23P25 C K, M K2 N K3. 

Since A ~ P23_this is _a contradiction. 
If P~'35 E F23,34 N F24,35, then/'24 E P,~'35P23P25 C K2. As/)24 ~ P34 this 

is a contradiction. 
If P~'35 E F24,25 M F35,24, then/)24 E P,~*35P35P25 C Ks. Since P24 ~ P25 

this is a contradiction. 
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~s 23 r r'2s,s / r F, ' R ' / 23,z, s n  2s34  

~ s . .  . .. 5,~,2snr3,.,2~ n ~ 2 3  

23,2z-., CI F24.35 

Fig, 9 

If P~*3s C F23,24 N F23,45 fq F25,24, then  P;35P23P45P25P24 is a convex 
pentagon,  hence by Lemma  1 we get a lattice point  A such tha t  

A C P~35P23P45P25P24 C P24P23P25 ~ P;35P45P25 C Ka rq K2 rq Ks. 

As A ~ P2s we get a contradiction._ 
If P~*3s E F4s,23 n F23,25, then/ )23 E P~35P45P25 C K5. Since 1'25 ~ P23 

we get a contradict ion.  
Thus  we may suppose tha t  P~*3s C F25,23 n F34,23 f-1 F35,25. 
If P24s exists, then we have a contradict ion a s  P 2 4  and P25 are fl-points. 

Hence we may  assume tha t  P~*4s exists. 
Since/)24 is an fl-point and P23P34P25P24 is a convex quadrangle hence 

applying Lemma 2 we get tha t  

P~*4s E F24,25 71 F23,24 71 F34,25 A F23,34. 

* z:)* z:)* p. p, Since P~45 E F35,25 VI F235.,35 V1F235.25 , i 2 4 5 x 2 3 5  35 25 is a convex quad- 
ra,ngle. 

If/)24 C P~*45P~*35P3sP2s C Ks,  then since /'24 ~ P2s we get a contradic- 
tion. 

Acta Mathematica Hungarica 66, 1995 



138 T. }tAUSEL 

If P24 r P~45P~3sP3sP25, then P24 E F235.,35 C1 F235.,245" C1 F25,245", thus 
P24P~35P35P25P24s is a convex pentagon. By Lemma 1 we get a lattice point 
A such that 

A E P24P~35P35P25P~45 C P34P35P25 n P24P~351P25 A P~35P25P~45 C 
C K1 f'l K2 n Ks. 

But this is a contradiction since A ~ P25. [] 
IV. K1 is a triangle, tt is easy to prove that we have to investigate three 

cases only-. 
(a) K1 is the triangle P23P24P25. Then P34 E K 1 0  K~, which is a con- 

tradiction since P~3 and P24 are fl-points. 
(b) K1 is the triangle Pz3P24P34. If P234 exists, then we get a contra- 

diction as P23 and P24 are fl-points. Thus we may suppose that P~34 exists 
(Fig, 10). 

S 

,34 
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It is easy to  provethat  we have to investigate the following two cases. 
If P~34 E F34,24 ["1 F24,23, then P24 E P~4Pa4P2a C K.3 but this contradicts 

the fl-point property of P2a. 
If P~34 E F24,23 M F34,2s M F24,34, then/)24 E P~*34P34P23 C K3 i.e. P2s E 

E K1 M K2 M K3 CI Ks. Thus in this case Theorem 2 is true. 
(c) K1 is the triangle P24P2sP34. If P45 E P:3P24P2s C K2, then P4s E 

E K1 N K2 N K4 N Ks which proves Theorem 2 in this case. 
If P23 E P45P34P24 C K4, then P23 E K1 N K2 N K3 N K4. Hence we may 

assume that P4s E F24,23. 
If/)45 E P23P34 C K3, then P4s E K1 N K3 N K4 fl K5 and we are done. 

We may assume that P4s ~- P23Pa4. 
It follows from the foregoing that we have to investigate the following 

tWO cases: 

(c~) P23P45P34P24 is a convex quadrangle. If P234 exists, then we get a 
contradiction since P24 and P34 are fl-points. Thus P~34 exists (Fig. 11). 

Fig. 11 

Since /)34 is an fl-point and P34P24P23P45 is a convex quadrangle, ap- 
plying Lemma 2 we get that P~'34 E F34,45 N F24,34. Then we have that 
P34 E P,2*34P24P25 C K2 thus P34 C K1 r-I K2 M K3 M K4 which is our claim. 

(/3) P34P45P2aP25 is a convex quadrangle. If P245 exists we get a con- 
tradiction since/)24 and/)25 are fl-points. Thus P~'45 exists (Fig. 12). 

If P~'45 E F23,45 M F2s,23, then P23 E P~4sP25P45 C Ks. Thus /~ C K1 N 
n K2 [3 K3 M K5. 

If P~*4s E F25,24 n F25,34 n F45,23, then P23 E P~*45P34P24 C K4. Thus 
/~ E K1 N K 2 f~ K3 f7 K4. 

If P~45 E F34,25 M F25,24, then P2s E P~*4sP34P24 C U4'. Thus P25 E K1 N 
N K2 N K4 N Ks. 

If P~*4s E F23,25 N F34,24, then we have two cases since F23,25 N F34,24 = 
= (F23,25 VI F35,24) U (F24,35 M F34,24) wherever t~ is. If Pi*45 E F23,25 M F35,24, 
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2:- / 

Fig. 12 

If 
P45 E 

If 
P~45. 

then P35 E P~45P34P24 C K4. Thus P3.5 ~- K1 N K3 N Ks. If P~'45 C F24,35 N 
�9 p, N F34,24, then P35 E P~45 24P25 C K2. Thus P35 E K1 M Ks N K3 N Ks. 

If P~'45 E F24,45 N Fa5,25, then/)45 C P~sP24P.z5 C K2. Thus/>45 E K1 N 
N K2 N K4 N K~. 

Thus we may assume that P~a5 E F~5,4~ N F23,25 N F24,3a. 
If P235 exists then Theorem 2 is true. Hence we may suppose that P~5 

exists. 
If P~5 E F2a,~5 M F45,~5, then the proof is similar to the previous one. 

P~'35 @ F25,45 M F23,2s n F24,34, then /)45 E P~35P23P34 C K3. Thus 
K1 FI K~ N Ka N K~. 
P~'35 E F~3,45 N F25,23, then the proof is similar to the proof of the case 

If P~35 E F25,24 M F25,34 M F45,23, then P~35P25P45P~45 is a convex quad- 
rangle. Namely, P~45 C F235,45 M F2z,~35 N F25,45. 

If P23 E P~35P25P45P~4s, then/)23 E K1 M K2 M K3 N Ks. 
If P23 ti~ P~3sP25P45P~45, then P23 E F25,235 M F~5,245 M F235,245. Thus 

P23P~35P25P4sP~45 is ~ convex pentagon. By Lemma 1 we have a lattice 
point A such that 

p,  p , .  ID 12~ l:)* A E 23 235~, 25~ 45~ 24s C P23P25P45 N P,* ~ ~* 2351 251245 C g l  ~ K 2  ~ g 5 ~  

a contradiction. 
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. * p ,  If P~35 E F34,25 N F25,23, then P25 E P~35 34P23 C K3. Thus P25 E K1 [3 
n K2 M K3 n Ks. 

If P~35 E F34,25 N F45,24 f'l F23,25, then P~45P23P25P~35 is a convex quad- 
rangle. Namely, P~45 E F23,35 N F25,235 f3 F23~235. 

o .  p, o p .  If P45 E .1245 23~25 235, then P45 E K1 N K2 N K4 N Ks. 
D .  p, ~ p .  If P45 ~ ~ 245 2~ 25 235, then P45 E F245,23 N F25,235 N F245,235. Thus 

�9 p,* P45P~45P23P25 235 is a convex pentagon. By Lemma 1 we have a lattice 
point A such that  

A E P45P~45P23P25P~3~ C P45P23P25 N P~45P25P~35 C K1 N K2 N Ks, 

a contradiction. [] 
V. K1 is a segment. Then Ki N Kj  N K1 contains a lattice point in 

common. Thus applying Helly's theorem to the segment Ki N K1 we get 
that  they have a lattice point in common. Hence, we have proved that  
in this case the convex sets have a lattice point in common, which proves 
Theorem 2. 

In fact, we have proved more. Namely, we have shown that  the fixed 
system of five convex sets of Theorem 2 either have a lattice point in common 
or each of them is a triangle. [] 

Now we are able to prove Theorem 1, though we still need a few defini- 
tions and several lemmas to do so. 

We need the following 

DEFINITION 3. Let ~ be a fixed system of at least four sets such that  
any three of them have a lattice point in common. We say that  9 ~ is good 
if the convex hull of ~ possesses a vertex S which belongs to exactly three 
sets. Let us denote these sets by K1,K2 and K3 and call them the main 
configurations of T .  If a set of ~" is not a main configuration then we call it 
an ordinary configuration. 

TtIEOREM 3. Let F be a good system of convex sets. Then one of the 
three main configurations of :F is such that removing it from .,~ the remaining 
convex sets have a lattice point in common. 

In the following proof step by step we discover more. We are going to 
characterize the good systems of convex sets. Notice that  applying the FLP- 
algorithm we get lattice-polygons. 

LEMMA 3. Each vertex of a main configuration is included in another 
o ~ e .  

PROOF. Let A be a vertex of K1. Suppose that  A ~ K2 and A ~ K3. 
This entails a contradiction. As A is a vertex of K1 we can find K4 and Ks 
such that  A is an fl-point with respect to K1, K4 and Ks. It follows from 
the foregoing that  K1, K4, K5 and K2; K1, K4, Ks and K3; K1, K2, K3 and 
K4; K1, K2, K3 and K5 groups of four sets do not contain a lattice point in 
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common. So we cannot choose further three sets from K2, K3, K4 and K5 
to K1 such that  this four sets have a lattice point in common. Thus it is a 
contradiction with Theorem 2. [] 

Let us denote the convex hull of K1, K2 and K3 by M.  Let M be the 
convex lattice-polygon AIA2. . .  AkS, where S is an fl-point with respect to 
K1, K2 and K3. Ai is naturally a vertex of some main configuration of ~'. 
Hence according to Lemma 3 it is included in another one, too. Then we say 
Ai is a type B12 vertex, if Ai ~ K3 and Ai C K1 n K2. We define type B13 
and type B23 vertices similarly. 

LEMMA 4. M has got type B12, B13 and B23 vertices. 

PROOF. Assume that  there is no type B12 vertex. Then Ai E K3 for 
each i. Since S E K3 we get that  M C K3. But K3 C M thus K3 - M. We 
show that  there is only one lattice point in K1 n g2 .  Suppose that  there is 
a lattice point $1 such that  $1 ~ S and $1 E K1 V1 K2. In this way we get 
that  $1 E K1 V) K2 C K3, that  is, $1 E K1 V1 K2 V1 K3 which contradicts the 
fl-point property of S. Thus the only lattice point of K1 n K2 is S. Since any 
three sets of ~ have a lattice point in common, hence any set of ~" contains 
S, which is a contradiction. [] 

LEMMA 5. M has got exactly one type B12, B13 and B23 vertex. 

PROOF. (Indirect.) Let n be the least number with the following prop- 
erty: There exists a system C of n convex sets such that  any three sets of 
C have a lattice point in common, moreover the claim is false for C. Let us 
consider such a C. Then we may assume that  there are two type B12 vertices, 
say A1 and A2. 

It is trivial that  n > 5. We show that n > 6 .  Namely, if n =  5 t h e n  
among the vertices of K1 we have S, A1, A2 and a type B13 vertex. But that  
is impossible since we have already proved that  E l  is a triangle or a point. 
Thus n _> 6. 

We need the following 

LEMMA 6. There exists at most one ordinary configuration of C with the 
following property: Removing this configuration from C then A1 will not be 
an ]t-point with respect to any triplet of C containing a main configuration. 

PROOF. Suppose that  this statement is false. Then there are two sets 
K4 and K5 with the previous property. It is easy to see that  A1 is an fi- 
point with respect to K1, K4 and Ks; and similarly with respect to K2, K4 
and Ks. Then the sets of groups K1,K4,  K5 and K3; K2,K4,  K5 and K3; 
K1 ,K2 ,K3  and K4; K1,K2,  K3 and K5 do not contain a lattice point in 
common. But this contradicts Theorem 2. [] 

If there exists a convex set of C that  satisfies the conditions of Lemma 6 
then let us call it K4. Similarly we define K5 by replacing A1 by A2. Since 
n > 6 there exists a convex set of C, say Ki, different from K1, K2, K3, K4 
and Ks. Removing Ki from C we get a convex set system C r, containing 
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n - 1 sets. Let us apply the FLP-aigorithm to C'. Notice that C' is good 
with respect to S. We prove that the claim is false for C'. By Lemma 6 we 
get a triplet of C' containing K1, in which A1 is an fl-point with respect to 
it. According to Lemma 6 we have that A1 or A2 is an fl-point with respect 
to a triplet of C containing K1 or Ks (all the variations are allowed). 

In this way, applying the FLP-Algorithm we cannot eliminate A1 or A2 
from neither K1 nor K2. Thus for C r the claim is false, a contradiction. [] 

In the following part of our proof we will describe all the good C systems 
containing five sets. 

Let the five sets be denoted by K1, Ks, K3, K4 and Ks. Let K1, Ks and 
K3 be the main configuration of C with respect to S. 

Let M '  be the convex hull of C. Then M -- M'.  Namely, each triplet of 
C contains a main configuration. Let A1, A2 and A3 be the type B23, B13 
and B12 vertex of M,  resp. Let M be the convex quadrangle SA1A2A3. As 
each set of C is a triangle, .K1 is the triangle SA2A3, K2 the triangle SA1A3 
and K3 the triangle SA1As. We prove that A1A2A3 is a member of C. 

If each of the points A1, A2 and A3 is covered by four sets of C, then K4 
and K5 will contain A1, As and A3. Since K4 and K5 are triangles we get 
that A1AsA3 - K4 - Ks. 

If some Ai is covered by exactly three sets of C, then C will also be good 
with respect to Ai. Thus it follows from this that A1A2A3 is a member of C. 
Let us call it K4. 

We show that SA2 and A1A3 do not contain any lattice point except the 
endpoints. 

Let N be the intersection of the diagonals of M. Notice that any three 
sets of C have a point in common, hence it follows from the Helly-theorem 
that there exists a point common to every set of C. As the intersection of 
K1 ,Ks ,  K3 and K4 is a point N we get that N E Ks. 

Let D be one of S, A1, As and A3. If DN contains a lattice point different 
from D, say E,  then E is covered by all sets Ki covering D. But D is an 
fl-point with respect to some triplet of C, thus we are led to a contradiction. 
Hence the diagonals of M do not contain a lattice point except the endpoints. 
Since K1 n K3 n L = S U A2 and Ks ffl K4 n L = AI U A3, Ks contains two 
neighbouring vertices of M. Let these two neighbouring vertices be AI and 
A2. As K5 is a triangle, its third vertex is A5 where As E K1 n Ks. This 
way we described all good C containing five sets (see Fig. 13). [] 

Let C be a good system of convex sets, and let A1, A2 and A3 be the 
type B23, B13 and Bls vertex of M,  resp. 

LEMMA 7. There exists an ordinary configuration of C, Kj  such that 
A2 E Kj  and A2 is an fl-point with respect to K1, K3 and Kj.  

PROOF. Suppose that the claim is false. A2 is an fl-point with respect to 
a triplet containing K1. Let this triplet be K1, K4 and K5. Let us consider 

= {K1 ,Ks ,K3 ,  K4, K5}. Apply the FLP-aigorithm to ~ as follows: Let 
us consider K3. As is not an fl-point with respect to a~ triplet containing K3, 
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S =_A 4 

A3 A 2 

Fig. 13 

otherwise As would be an fl-point with respect to K3, K4 and Ks. Then we 
could get a contradiction in the same way as in the proof of Lemma 6. Thus 
applying the FLP-algorithm we can remove As from K3. Hence we get a 
good G ~ with the property that  one of the main configurations of ~ ,  K1, has 
got a vertex As which is not included in another main configuration, and 
this contradicts Lemma 3. [] 

LEMMA 8. A2 is covered by all the ordinary configurations of C. 

PROOF. According to Lemma 7 there exists an ordinary configuration of 
C; K4 such that  A2 is an fi-point with respect to K1,K3 and K4. Assume 
that  there exists an ordinary configuration K5 not containing A2. Let G = 
= {K1,Ks,  K3, K4, K5}. Applying the FLP-algorithm to G we get a good 
~ .  Let M be the convex hull of G I. Obviously, A2 and S are vertices of M. 
Let A~ be a type B12 vertex and A t be a type Bs3 vertex of M. We prove 
that  M is the quadrangle SA~A2AI3. Consider C. If H is a type B23 lattice 
point, then H E FSA; otherwise we get a contradiction since 5: is an ft-point 
with respect to K_j, Ks and K3. Similarly if G is a type B12 lattice point 
of M, then G E FAS. Thus it follows that  M is the quadrangle SA~AsA~. 
Notice that  A2 is not covered by any set of C different from K1, K3 and K4. 
Thus G h~s got two opposite vertices S and As with the following property: 
S and A2 are included in exactly three sets of C. But this is impossible. 
Thus we get a contradiction. [] 

Notice that  Theorem 3 follows from Lemma 8. [] 
Let us consider a convex set system ~" satisfying the conditions of The- 

orem 1. Applying the FLP-algorithm to ~" we get a fixed 5 ~ .  Let M be the 
convex hull of ~-t. Let R be one of its vertices. Obviously R is an fl-point. 
Suppose that  R is an fi-point with respect to K1, K2 and K3. Removing all 
sets of ~-r containing R and different from El, K2 and K3 we get a convex 
set system C. Applying the FLP-algorithm to C we get C ~. Obviously C ~ is 
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good. According to Theorem 3 there exists a lattice point J covered by all 
ordinary configurations of C'. It is easy to see that J and R pin down I .  
The proof of Theorem 1 is complete. [] 
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