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1 Introduction

This dissertation consists of two main parts. The first part (sections 2-7) concerns sym-
plectic geometry. The second part (sections 8-11) is about toric geometry. The two parts
are linked by the following beautiful theorem of Kushnirenko [12].

Theorem 1.1 (Kushnirenko) Let S be a finite subset of Z". N(S) denotes the number
of solutions of the system of equations

Zciza:() 7=1,..,n

a€S
where z% denotes the monomial z* = z"z5%...20",
numbers and the coefficients ¢! are assumed to be ‘general’ complex numbers. Then

N(S) = nlV(C(S))

where the z;’s are nonzero complex

where S C 2" considered to be a subset of R™, C' stands for the convex hull operation and
V' for the standard Fuclidean volume in R™.

We will give two proofs of this theorem. The first one in section 7 approaches from
symplectic geometry. The second proof in subsection 11.3 uses ideas from toric geometry.

Our aim in this dissertation is to show the power of new ideas in modern geometry by
applying them to prove theorems which can be stated without using the terminology of
higher geometries.

2 Symplectic geometry

2.1 Introduction

Our approach in the first half of this dissertation will be group-theoretical: we will consider
group actions on various spaces. In this context there are three basic objects: the space,
the group and the action. In our case the space will be a symplectic manifold, the group
a Lie-group and later a torus, the action symplectic and later Hamiltonian.

Symplectic geometry is a natural framework for Hamiltonian mechanics. The need to
introduce symplectic geometry -from a purely mathematical point of view- comes from the
naturality of the construction, the great number of canonical examples and the usefulness
of the subject in other branches of mathematics.

In the first three sections we will follow the approach sketched above. The second
section will be on symplectic manifolds, the third on Lie-groups and smooth Lie-group
actions in general, and the fourth on symplectic actions. Here we will introduce the notion
of moment map. The fifth section will contain the description of some properties of the
moment map. In the sixth one we will describe the convexity theorem of Atiyah and
Guillemin-Sternberg. In the final section of the first part, using symplectic geometry, we
prove a theorem of Kushnirenko.

The first part of this dissertation is based on the book of Audin [3]. We also used ma-
terial here from Weinstein [14], Atiyah [1], [2] and the lecture notes and useful comments

of Hitchin [11].



2.2 Symplectic vector spaces

We will first examine geometrical structures on finite dimensional real or complex vector
spaces.

Let V' be an n-dimensional real vector space. In order to introduce a geometry, we
need something to measure: e.g. distances and angles. The notion of Euclidean scalar
product then naturally arises. This is a positive definite bilinear form (, )y on the vector
space V. Now we have the space V with a Euclidean vector space structure.

We need to introduce more geometrical concepts on a vector space. Let We be a com-
plex vector space of dimension n. Here we have the hermitian inner product (,)w. This
is a positive definite sesquilinear form on We. It gives the structured space (Wc; (, )w ).

Now consider W as a real vector space Wr. What kind of structures does Wgr inherit
from (W (,)w)? First look at the complex structure on We. We get a real linear mapping
I on Wr satisfying I? = —1lyy, (where 1y, stands for the identity in Wg) corresponding
to the multiplication by ¢ on We. Writing down the real and imaginary part of (, )y we
get

(. )w = Re(,)w +ilm(, )w,

where Re(, )w is a positive definite bilinear form on Wg called a Euclidean form, while
Im(,)w is an antisymmetric, non-degenerate bilinear form on Wg called a symplectic
form.

Definition 2.1 Let V' be a real n-dimensional vector space.
A positive definite bilinear form is called a Euclidean form.
An antisymmetric non-degenerate bilinear form is called a symplectic form.
A linear transformation I of V with I* = —1y is called a complex structure on V.
Furthermore, if we are given a Fuclidean form g, symplectic form w and a complex
structure 1 on V' such that w(IX, 1Y) = w(X,Y) and g(X,Y) = w(IX,Y) then V is

equipped with a calibrated complex structure.

Thus Wgr is equipped with a Fuclidean, symplectic, complex and calibrated complex
structure as well. In this section we will examine the relation between these structures.
We will see that any symplectic (complex, calibrated complex) stucture on a real vector
space V' comes from a complex vector space in the way described above. Thus any two
symplectic (complex, calibrated complex) vector spaces of the same dimension turn out
to be isomorphic. We already know this for Euclidean vector spaces.

Now consider the following canonical example of a symplectic vector space. V is a
real vector space of dimension n. Consider V' & V*. We define a symplectic form wy on
V & V™ by setting

wy (v1 B v],v2 G vy) = v](ve) — v3(v1).
Any symplectic vector space W is equivalent to one of these. Here to be equivalent means
that there exists a symplectic structure preserving isomorphism between the two spaces,
or symplectomorphism for short.

Proposition 2.1 For any symplectic vector space (W,w) there is a symplectomorphism

f=(Ww) = (V& V,5wy).



We need a few definitions to prove this proposition.
Definition 2.2 Let (W,w) be a symplectic vector space. If V. C W then
Vi={weW;whv,w)=0YveV}

V s called isotropic if V C V1, coisotropic if V' D V%, lagrangian if V = V1 and
symplectic if VN VL = 0.

Note that w restricted to V' is zero iff V' is isotropic and is symplecticiff V' is symplectic.
Since w is a non-degenerate bilinear form dim V' + dim Vi =dimW.

Proof of Proposition. We show that W = V@& U, where V and U are lagrangian. First
consider a highest element V' in the lattice of isotropic subspaces. If V' is not lagrangian
then we would be able to enlarge V' by an element from V1 \ V to get a larger isotropic
subspace. Therefore V is lagrangian. (Note that this immediately yields that dim W is
even, say 2n.) Similarly, consider that sublattice of the isotropic subspaces which contains
the isotropic subspaces having trivial intersection with V. This is clearly a non-empty
lattice. Consider a highest element U in this lattice. We show that U is lagrangian. Since
V is lagrangian and V N U = 0 we get that V + U+ = W. Thus if V + U # W then
we would enlarge U by an element from U+ \ (V + U) getting a larger element in our
sublattice. Thus V 4+ U = W hence U is langrangian and V U =W .

Now let a : U — V* be given by a(u)(v) = w(u,v), where u € U and v € V. Since U
is lagrangian and thus coisotropic, the kernel of « is trivial. dim U = dim(V') = n, hence
« is an isomorphism.

let =10a: VU =V EV* Then (is an isomorphism. Moreover, it is a
symplectomorphism between the symplectic vector spaces (W,w) and (V & V* wy). To
see this, let vy & vy and vy B uy be elements in V & U = W. Then

wy(B(v1 Bur), Bva @ ug)) = wy(vr & afur), vy ® afug))
= a(u1)(v2) — a(uz)(v1)

(u1,v2) — w(ug,vr)

(

v1 D Uy, v2 B ug)

= W

= w
since w(vy,vg) = w(u1,uz) =0, as V and U are lagrangian.

Corollary 2.1 One has a standard basis vy, ..., 5, U1, ..., Uy, for a2n-dimensional (W, w)
symplectic vector space with w(v;,v;) = w(ui,uj) = 0 and w(v;,u;) = & ; where 1 =
1,...,nand 5 =1,...,n. This is called a symplectic basis.

Proof. Let vy,...,v, be a basis for V, and let v}, ..., v’ be the corresponding basis for
the dual space V*. Then the vectors vy, ...,v, and u; = 7Hv}),...,u, = 7' (v}) will
do the job.



Theorem 2.1 Let W be a real vector space equipped with a symplectic (complex, cali-
brated complex) structure. Then there exists a complex hermitian vector space We and a
symplectomorphism (complex isomorphism, calibrated complex isomorphism) between W
and W with the inherited symplectic (complex, calibrated complex) structure from We.

Proof. We know that the symplectic vector space W has even dimension say, 2n. Let
We be an n-dimensional complex vector space and (, )w be a hermitian inner product on
Wc. Let e,..., e, be a unitary basis. Set f; = —ue;, then

Im<€j,fk>w = —Im<€j,i€k>w = —Im(—i<ej, ek>W) = 5]‘71“

and similarly Im(e;, ex)w = Im(f;, fx)w = 0. Now it is easy to construct a symplecto-
morphism between W and Wg.

For the complex case consider W with complex structure /. Then the definition
(a+18)v = av + Blv; o, € R, v € V makes V' a complex vector space so that the
theorem follows.

In the complex calibrated case for a lagrangian V' we can choose U = 'V such that U is
lagrangian and V & U = W since [ is symplectomorphism and for 0 # w € W w(lw,w) =
g(w,w) # 0. Then the above two isomorphisms fit together, giving the required isomor-
phism in this case. Note that ¢ 4+ [w is a hermitian metric on W¢.

2.3 Symplectic manifolds

Let M be a finite dimensional smooth connected manifold. In this case we say that M
is a manifold. We want to introduce a geometry on M, and generalize our geometrical
structures on vector spaces. The very first natural idea is to give a smoothly varying
geometrical structure on the tangent bundle T'M.

Definition 2.3 A smoothly varying Fuclidean (symplectic, complex, calibrated complex)
structure on the tangent bundle TM is called an almost Euclidean (almost symplectic,
almost complex, almost Kaehlerian) structure on M.

To give canonical examples consider R™ with the standard structures.

In the Euclidean case this is the standard Euclidean inner product (,).

In the remaining cases m = 2n and the standard structures are derived from the
standard hermitian form on C”. This vector space is canonically isomorphic to R?".

Now the tangent bundle of R™ is trivial so we can choose the constant standard
structure on every tangent space, which is clearly smoothly varying. These structured
spaces are called the flat models for the corresponding geometries.

What is a manifold? A topological space which looks like an open subset of the
standard m-dimensional real vector space R™ (’the flat model for the real vector space
geometry’) in a neighbourhood of every point of M. Thus the following definitions arise
naturally.



Definition 2.4 An almost Fuclidean (almost symplectic, almost complex, almost Kaehle-
rian) structure on a manifold M is said to be flat Euclidean (flat symplectic, flat complex,
flat Kaehlerian ) if for every point p of M there exists a neighbourhood U, and a local diffeo-
morphism between U, and the corresponding flat model preserving the almost geometrical
structure, where U, inherils the almost geometrical structure from M.

Thus an almost geometrical structure on a manifold M is flat if it looks like an open
subset of the flat model of the corresponding geometry in a neighbourhood of every point

of M.

Definition 2.5 An almost Fuclidean structure on the tangent bundle T'M is called a
Riemannian structure on M.

It is known that the manifold M is flat-Riemannian iff the curvature of the Levi-Civita
connection vanishes everywhere on M.

Definition 2.6 A flat symplectic structure on a manifold M is called a symplectic struc-
ture for short.

In the following theorem of Darboux we give the necessary and sufficient condition
for an almost symplectic manifold to be a symplectic manifold. Here note that an almost
symplectic structure on M is just an everywhere non-degenerate 2-form w € A*(T*M).

Definition 2.7 A flal complex structure on a manifold M is called a complex structure
for short.

It is easy to see that our definition of a complex manifold coincides with the old one.

Definition 2.8 An almost Kaehlerian stucture is called a Kaehlerian structure iff it is
complex and a symplectic structure as well.

Note that this is equivalent to say that a manifold M is Kaehlerian iff the manifold
M is complex with a hermitian metric on it, whose imaginary part defines a symplectic
structure. Notice that the real part of the hermitian structure automatically becomes a
Riemannian structure.

We remark that an almost Kaehlerian manifold is Kaehlerian iff VI = 0, where V is
the Levi-Civita connection corresponding to g.

A simple observation is that a Kaehlerian structure is flat Kaehlerian iff it is flat
Riemannian.

Theorem 2.2 (Darboux) Let the almost symplectic structure on M given by the non-
degenerate 2-form w € N*(T*M). Then M is symplectic iff dw = 0.



Proof. Suppose that M is a symplectic manifold. Since the condition to be closed is
local, it suffices to show that for the standard symplectic manifold R** the standard
symplectic 2-form wren is closed. Let zq1,...,2,,&,...,&, be a symplectic basis. Then
from Proposition 2.1 and Corollary 2.1 we can deduce that wgzn = 3" dz; A d§;. This
is obviously a closed form.

Now let w be a closed form. Let p € M and U a neighbourhood of p with a diffeo-
morphism ¢ : U — R?". Let wy be the restriction of w to U and w; = ¢*wrz» where wg2n
is the standard symplectic 2-form on R?". Therefore wg and w; are closed 2-forms on U.
Choosing ¢ more precisely (i.e. composing with a suitable linear automorphism of R**) we
can assume that wg and w; coincide at p. We will show that there exists a neighbourhood
V of p and a local diffeomorphism ¢ : V' — M fixing p such that ¥*w; = wy.

Consider the form w; = wg + t(w; — wp). This is closed for all real ¢ and coincides
at p with wy that is non-degenerate at p and so it is in a neighbourhood of p. From the
compactness of the interval [—3¢,1 + 3¢] (e > 0) we have a neighbourhood of p, say U,
diffeomorphic to R*", where w; is non-degenerate whenever ¢ € [—3¢, 1 + 3¢].

Now wg —w 1s a closed 2-form on Uy, therefore from Poincare’s lemma this is an exact
form as well, i.e. there is a 1-form ¢ € T*U; on U; such that dp = wyg — w;. Adding a
suitable constant 1-form to ¢ we can suppose that ¢ vanishes at p.

Since w; is non-degenerate the formula i(X;)w; = ¢ defines a unique vector field X,
on U; vanishing at p. Moreover, we have that

Etht = d(z(Xt)wt) + Z(Xt)dwt = d(z(Xt)wt) = dg@ =Wy —Wq.

Since T'(M x (—2¢,1 4 2¢)) = T(M) & R the definition X(p,t) = (X¢(p),1) gives a local
vector field on M x (—2¢,1 4 2¢).

Since [—¢, 1 ¢ is compact we can uniformly integrate this vector field on V x (—¢, 14¢€)
where V' is a neighbourhood of p. This means that there exists a § > 0 and a local one-
parameter group of local diffeomorphisms

Q:(—0,40) x V x(—e1+€) = M x (—2¢1+ 2¢)

such that
d
dv
In particular ®,(p,0) = p. Now it is clear that for the local diffeomorphisms f,(m) =
®,(m,0) one has the formula %fv(m)|vzt = Xi(fi(m)) and obviously f,(p) = p. In the

next calculation we use Lemma 2.1 (proved at the end of this section).

dw
d—tt +£tht] = ft*(wl —wo t+ wo —w1) = 0.

(@, (1)) om0 = X(m, 1),

d * . [*
E(ft wt) - ft [

Therefore ffw; is constant, thus ffw, = fywo = wy. Hence for v = f;, which is a local
diffeomorphism on V', we have that ¢¥*w; = wy.
Thus, around p we have w = (¥ ¢)*wgr2» with the local diffeomorphism ¢¢: V' — R*™.

Corollary 2.2 Let p be a point in a symplectic manifold (M,w). There exists a system
of local coordinates (x1,...,2,,&,...&,) centered at p such that w =37, dx; A d§;.



Example. Now we show that the manifold 7*M has a canonical symplectic structure
for every manifold M (cf. Proposition 2.1). First we find a canonical 1-form a € T*(T*M)
on T*M called a Liouville form. Set

a(pw)(X) = p(T,m"(X)),

wherep € M, o € TyM, X € T, ,)(T*M) and 7* is the bundle projection 7* : T*M — M.
We show that the 2-form w = —da can be written locally as >°1 ; dx; A d€;, and therefore
w is a symplectic form.

Let (z1,...,2,): U — R” be a coordinate system on an open subset of M. Then we
have the basis sections dz; in 7" M that give us a coordinate system (:L’l, R N ST
on 7 1 (U). Clearly z;(¢) = z;(7*¢) and &(p) = c,o(az ), where ¢ € m* (U) .

Now O‘w(a%) = 90(8?:,') = {(p) and aw(%) = ¢(0) = 0 since T'w* (ai) = % and

T?T*(%) = 0. Thus a = Y7, &dz; hence w = Y7, dx; A dE; indeed.

Lemma 2.1 Let f; : M — M be a smooth one-parameter family of diffeomorphisms. Lel
Xy (fro(m)) = %ft(m) li=s, be vector fields on M and let oy be a smooth one-parameter
family of k-forms on M. Then

d da
dt(ft Ut) |t to— fto — |t to ‘|‘/:);t00t0 .

Proof. First we prove the formula when & = 0, i.e. when the forms o, = ¢, € C*(M)
are functions.

d, . L d
%(ft Gio(m)) li=s, = Z(Eft(m) |t=to )Gt
= Xy (fro(m)))dg,

= f3 [Lxi 0] (m),
and therefore
d d d
E(ft*gf(m)) li=ty = E(ftzgl‘(m)) 1=ty —I_%(ft*gto(m)) |i=to
dg; .
= 7 [ )+ 5 9] 0

Now if we are given k-forms o; (k > 0) then if we evalute the k-forms in both sides of
our equation with arbitrary vector fields Y7,..., Y%, then what remains to be proven is
exactly the case k = 0 with functions o4(Y7,..., Y%).

3 Smooth actions

In this section we list some properties of smooth Lie-group actions for later reference. At
the end of this section we will show a very important construction how to make symplectic
manifolds.



Definition 3.1 Let G be a Lie-group with Lie algebra g.

A smooth action (or simply an action) of a manifold M is a smooth map ¢ : GXx M —
M such that for fired g € G ¢, : M — M is a diffeomorphism of M and the map g — ¢,
is @ homomorphism from G to the group of diffeomorphisms of M. We will denote the
element ¢,(m) by gm.

If m is a point in M its orbit is denoted by Gm and its stabilizer by G,,.

The map fn : G — M with the definition f,,(g) = gm is called an orbit map.

If g is a Lie-algebra then a Lie-algebra homomorphism v : g — U'(TM) is called a
smooth infinitesimal action (or simply an infinitesimal action).

We can associate an infinitesimal action vy with the smooth Lie-group action ¢ by the
following definition. Let vy : g — I'(T'M) given by v4(X),, = T.fm(X) where X € g and
g is identified with T.G. v4(X) is a fundamental vector field. The term ’infinitesimal’
refers to the fact that exp(tX) is a flow of v4(X). This easily yields that vy is in fact a
Lie-algebra homomorphism.

The infinitesimal action contains a lot of information about the group action. We now
list some of these. vy is injective iff the action is effective, i.e. only the unit element of GG
acts as an identity of M. v4(X) vanishes at m iff the one-parameter subgroup exp(¢.X)
fixes the point p. Hence the Lie-algebra g, of the Lie-group G, consists of the vectors X
for which v4(X) vanishes at p. The vector fields in the image of v4 are tangent to the
orbits. Moreover vg4(X),,, X € g spans the tangent space of the orbit Gm at m.

Theorem 3.1 If G is compact, then every orbil is a submanifold of M.

Proof. Let m € M. GG,, is a closed subgroup of (G hence G/G,, is a compact manifold.
We show that G'm is a submanifold of M diffeomorphic to G/G,,. Trivially, we can lift
the orbit map to get f,, : G/G,, — M. Thus it suffices to prove that f,, is an embedding.
It is clearly injective.

fm 1s an immersion. To see this let us examine the kernel of the linear map 7T}, f,, :
T,G — T,,M. Now from a remark above

0="T,fm(X) =Tefom(Tg™ (X)) = v4(Tg™ (X)) gm & Tg™(X) € 8y,

so ker(T, fm) = Tg(gym). Therefore f,, : G/G,, — M is an immersion indeed.

Since the manifold G/G,, is compact f,, is closed and so is an embedding.

We give a useful description of T'(Gm). Consider the trivial bundle Gm x g over Gm.
Then it is easy to see that the subbundle over Gm which corresponds the subspace g, to
gm 1s smooth and the tangent bundle of Gm is the quotient of Gm x g by this subbundle.

Since we need it later and the proof is rather complicated we cite the following result
without proof from Audin [3].

Theorem 3.2 The set of fized points of G is a submanifold of M.

In the last part of this section we will study canonical smooth Lie-group actions,
namely, the adjoint and coadjoint actions.
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Definition 3.2 Lel p, : G — G be given by p,(h) = ghg™" and Ad, = T.(¢,): g — &.
Clearly, ¢ is an action on the Lie-group G and Ad is an action on the Lie-algebra g.
The latter is called the adjoint action.
The transpose of the adjoint action Ad is the coadjoint action Ad* on g* which is
therefore defined by
<Ad;§7X> = <£7Adg_1X>7

where X denotes an element in g, g in G, € in g* and (,) stands for the evaluation of a
vector in g with a function in g*.

Remark. One has the following formula for the Lie bracket on g

d
[X7 Y] = EAdexp(tX)Yh:O-

Lemma 3.1 In the situation described above the following holds
vaa(X)y = [X, Y],
i.e. vaq = ad and
(vaar(X)e, Y) = (& [V, X]) = (€ —vaa(X)y),

i.e. Upag+ 1S the transpose of vaq.

Proof. The first statement comes simply from the infinitesimality of v combined with
the above remark.
The second equation follows simply from the fact that

d

VAd* (X)g = Teff(X) = %Ad*exp(tX)£|t:07

where f¢(g) = Ad}(£) is the orbit map.

Now we give a very important canonical example for symplectic manifolds. (Although
we will only prove that they are almost symplectic.) Namely, the orbits of the coadjoint
action of a compact Lie-group.

Definition 3.3 For any £ € g* we define an alternating bilinear form we on g by
we(X,Y) = (£ [X,Y]) = —(vaa(X)e, Y).

Now we show that this w defines an almost symplectic structure on G¢. The kernel of
we 1s g¢ since

X €ker(wg) ©@we(X,)Y)=0 V(Y €g) ©rma(X)e=0& X € g

Thus using the descripton of T'(G¢) we gave above, we have a non-degenerate alternating
2-form w € A*(T(G¢)) on G. Thus we defined an almost symplectic structure on G¢.
It turns out that w is closed, i.e. it defines a symplectic structure on G€¢.

11



4 Symplectic actions

Clearly, for the definition of a symplectic Lie group action ¢ : G x M — M we demand
¢, to be a symplectomorphism. Turning to the inifinitesimal level one gets the result
that the flow of the vector field v4(X) the one-parameter group of symplectomorphisms
exp(tX), leaves w invariant, i.e. £,,x)w = 0.

Definition 4.1 Let G be a Lie group and (M,w) be a symplectic manifold. A smooth
Lie-group action ¢ : G x M — M s called symplectic if ¢, is a symplectlomorphism for
every g € .

Let g be a Lie-algebra. A smooth infinitesimal action v : g — U'(TM) is called
symplectic if L,xyw =0 for every X € g.

Let us examine the vector fields X € I'(T'M) for which Lxw = 0. Thus
0=Lxw=d(i(X)w)+ i(X)dw = d(i(X)w),

ie. Lyxyw = 0 iff i(X)w is closed. From Poincare’s lemma every closed form is locally
exact so locally we have a C*-function f for which df = i(X)w. If we have this property
globally, then we say that the vector field X € I'(T'M) is Hamiltonian and is associated
with the C*-function f € C>(M).

Definition 4.2 The vector field X € I'(T'(M)) is called Hamiltonian if the 1-form i( X )w

is exact and called locally Hamiltonian if it is closed.

Notice that if X is a Hamiltonian vector field associated with a C*-function f, then
Xsf =df(Xy) = w(Xy, Xf) = 0, which means that the flow generated by X; leaves f
invariant, i.e. the vector field X is tangent to the level surfaces of f.

Starting with an f € C*(M), the condition i(X;)w = df gives a unique Hamiltonian
vector field X; by w being non-degenerate. This defines a map « from C* (M) to H(M),
the set of Hamiltonian vector fields on M. Now examine this set H(M). It is clearly a
sub-vector space of I'(T'M). Moreover, we claim that this is a Lie subalgebra of I'(T'M).
We show more, namely that the larger vector space Hj,.(M), the vector space of locally
Hamiltonian vector fields on M, is a Lie subalgebra of I'(T'M) whose centralizer is in

H(M). To do this, let X,Y € H,o(M). Then

(X, Y]w = Lxi(Y)w—i(Y)Lxw
= (di(X) +i(X)d)i(Y)w — i(Y)(di(X) + i(X)d)w
— di(X)(i(Y)w)

since 'Lie differentiation is a derivation of any naturally defined bilinear operation on
tensors’ ! and from the assumption for X and Y, i(X)w and (Y )w as well as w are closed
forms. Thus indeed [X,Y] € H(M) and the spaces H(M) C Ho.(M) are Lie subalgebras
of I'(TM).

Now we give a Lie-algebra structure on C*(M) which makes o a Lie-algebra homo-
morphism.

'see Weinstein[3], page 17

12



Definition 4.3 The Poisson bracket of two C*-functions [ and g is defined by

{fvg} = w(Xga Xf)
From the calculation above one has that
X{fﬂ} = XW(ngXf) = [vaXg]'
Thus after the next theorem we will see that o is a Lie-algebra homomorphism indeed.

Theorem 4.1 The Poisson bracket defines a Lie-algebra structure on C*(M).

Proof. Using that w is closed and the previous formula X(; ;1 = [X}, X,] the calculation
is straightforward.

It is a nice way to summarize what we learned so far in a diagram :

C2(M) ¢~ g
oz\l, lli,
0— H(M) —5 Ho(M) 25 H(M,R) —0

Give the abelian Lie-algebra structure on H'(M,R) in order to have a diagram of Lie-
algebras. Now examine the maps. Let 3(X) = [{(X)w]. Then clearly «, v and ¢ (the
embedding) are Lie-algebra homeomorpisms. Then so is 3, as we saw that

(Hioe(M), Hioe(M)] C H(M) = ker(3).

Furthermore, the horizontal row is clearly a short exact sequence of Lie-algebras.
Examining the diagram carefully, we notice a new map f.

Definition 4.4 Let v be a symplectic infinitesimal action of g. If there is a Lie-algebra
homomorphism [i : g — C*(M) which makes the diagram commute, then we say that the
infinitesimal action is Hamiltonian.

Moreover, a symplectic Lie-group action ¢ is called Hamiltonian if its infinitesimal
action vy ts Hamiltonian.

The name of fi is comoment map, while the associated map p : M — g* with the
definiton (u(m), X) = fix(m) is the moment map.

5 Properties of the moment map

First we examine whether we can find a comoment map making the action Hamiltonian.
The first problem is to find a lift 4 : g — C>(M) of v which is a linear map (not
necessarily a Lie-algebra homomorphism) making the diagram commute. In other words,
we need a function i(X) € C*(M) with di(X) = i(v(X))w for each X € g. Therefore a
sufficient condition for the existence of such a i is that any closed form is an exact form

i.e. H'(M,R) = 0.
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The next step is to find out whether such a i is a Lie-algebra homomorphism. As we
saw d{a(X),a(Y)} = da([X,Y]) so {a(X),q(Y)} — a([X,Y]) is locally constant. Thus
the necessary condition now is that this constant vanishes for every X,V € g.

In our most important case the following theorem holds.

Theorem 5.1 If G is commutative and the manifold M is compact then any lift fi is a
Lie-algebra homomorphism.

Proof. In this case g is abelian so from the foregoing {/i(X), i(Y)} is locally constant.
But M is compact hence fi(Y') has a critical point m i.e., with di(Y),, = 0. At this
point [(X), (Y )}(m) = w(u(V), (X)) = dif(X)n(#(¥)) = 0. Therefore {ii(X),i(V)}

vanishes i.e. the result follows.

We have the following simple but very important theorem:

Theorem 5.2 [f u is the moment map of an infinitesimal action v : g — T'(M) and
t:h — g is a Lie algebra homomorphism then *y : M — h* is a moment map for the
induced infinitesimal action ve of h on M.

Examples. 1. Suppose that we are given a symplectic action of R on the manifold M
that is a one-parameter subgroup of symplectomorphisms. Let X be a generator of the
Lie algebra of R. Then the action is Hamiltonian if and only if v(X) is Hamiltonian.
Let f € C™®(M) such that df = v(X). Then we can identify f with a moment map
w: M — R

2. As we saw T*M was a symplectic manifold. Suppose that we are given a smooth
action ¢ : G x M — M. This naturally defines a smooth G-action ¢ on the cotangent
bundle, which, as we will see turns out to be Hamiltonian. Thus let

g(m, o) = (gm, o(Tymg™")),

where ge G, m e M and ¢ € TX M. If g,h € GG then

hi(m, @) = h(gm, (T,

(hgm, o(Tymg™ Tonmh™"))
(hgm, @(Tynm(hg)™))
= hg(m,¢).

gmg_1)>

Thus we get indeed a G-action on T5;. Now we show that o is G-invariant, i.e. g*a = « for
all g € G. Let X € T} y(IT*M), and let & = (my, ¢) € T*M such that %ft li=o= X.
Then

mo,¥o0

. _d
aﬁ(moMo)(TQX) = aﬁ(mmtpo)(Tg%gt |t:0)

d .
= O‘ﬁ(ﬂlowo)(%g(ft) |t:0)
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d
= 05 3(mo, kpo)(dt( (mf) Q‘Ql‘Tgmtg ))

) d
= 0t(Tymeg™ Tymom " (gme, o Tym,g™ Y o))

d
= @o(Tgmog‘l(%gmt li=0))
d
ol
= O(mg,e0)(X)-

my |t 0)

Hence w = —da is also G-invariant, because d commutes with the pull-back. Therefore
¢ is symplectic. Now we show that it is in fact a Hamiltonian action with comoment map
A(X) = —i(vz(X))a = —a(vg(X)). First, it is a lift of v; since di(X) = i(vz(X))w.

Second, it is a Lie-algebra homomorphism since

pX YD) = allvg(Y), v(X)])e
= d(i(vg(X)) )y (V) = d(i(vg(Y))a)vg(X) — dalvy(Y), v5(X))
= 2H{p(X),4(Y)} = w(vg(X),v(Y))
= {a(X),a(Y)}.

Let us describe now the tangent map Ty, p : T, M — T,(,,)g" = g~ of the moment map
p. Let Z = %g@t lt=0, ot € M and Y € g then

(T 2).Y) = (Tap ol V)

= LY i

= (e e
= w,(v(Y), 7).
Hence we conclude the following lemma.
Lemma 5.1 Let Z € T, M and Y € g then
(Tp(2),Y) = wn(v(Y), Z).

At the end of Section 3 we defined a canonical G-action on g* the coadjoint action.
In the next theorem we show that p is an equivariant map.

Theorem 5.3 The moment map is equivariant, i.e. ug = gu for all g € G.

Proof. First we show the infinitesimal version of this theorem, namely that

Trpp(ve(X)) = vaar Xym).
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Using the lemma,

(Tap(ve(X)),Y) = wnlve(X),ve(Y))
= —fxyy(m)
= (u(m),[Y, X])
= (vaa (X)ugm), Y-

Since (& is connected we can write any g € (G in the form g = expX; ...exp X, with some
Xi,..., X € g. Therefore it suffices to prove that y commutes with any ¢; in the form
g1 = exp(X). Let g: = exp(tX) and m € M. Note that g:(m) is an integral curve of v4(X)
while g;p1(m) is an integral curve of v44«(X). From the infinitesimal equivariance one gets
that T}, u(vs(X)) = vaa Xug,m). Thus both g,u(m) and p(gym) are integral curves of
vaar(X) with gou(m) = p(gom) = p(m), hence from the uniqueness gu(m) = u(gim)
and in particular gp(m) = pu(gim). The result follows.

6 The convexity theorem

In this section we examine Hamiltonian torus actions and prove the following theorem.

Theorem 6.1 Let T be a torus and let ¢ : T'x M — M be a Hamiltonian action with
moment map p: M — t*. Then u(M) is convez.
Furthermore, if my,...,my are the fix points of ¢ then u(M) is the convex hull of the

points p(ma), ..., u(mg).

Let us investigate the fixed points of T. Let X € t such that the closure of exp(tX)
is the whole torus T. Then the associated Hamiltonian * : M — (RX)* has the fixed
points of T as critical points.

Definition 6.1 A function h : M — R is an almost periodic Hamiltonian function if the
flow of the associated Hamiltonian vector field X, generates a subgroup of the group of all
symplectomorphisms of M the closure of which is a torus.

In this case we say that X is an almost periodic Hamiltonian vector field.

Remarks. Since the closure of the one-parameter subgroup generated by any vector field
is a commutative group the condition above is equivalent to require that the subgroup
generated by X}, is relatively compact in the group of symplectomorphisms of M.

Thus for any X € t, fi(X) is an almost periodic Hamiltonian function and v(X) is an
almost periodic Hamiltonian vector field.

Now we describe the behaviour of an almost periodic function A at one of its critical
points z. Let the corresponding symplectic torus action be ¢ : T' x M — M with X, et
such that I/(Xh) = X}.

We know from Theorem 3.2 that a connected component of the fixed points of a
smooth action is a submanifold M. Therefore the connected component Z containing z
in the set of all critical points of A is a submanifold of M.
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Theorem 6.2 7 is a symplectic submanifold of M.
In particular Z has even dimension, say 2r.

Theorem 6.3 There exists a basis Uy, ..., Uy, V1,...,0, of T.M where 1,7 is spanned by
ULy e nnyUp,V1,...,0,. for which the Hessian of h is the quadratic form in the form

n

Eh(z)= 3 Mk +42),

i=r+1
where © = Y (xy,u; + 4,0;) and A; # 0.
Before we prove the theorems we need the following lemma:

Lemma 6.1 Let ¢ : G x M — M be a symplectic action on the symplectic manifold M.
Then there exists an almost complex structure I € T'(End(T'M)) which makes (M,w) an
almost Kaehlerian manifold, that is to say that I preserves w and the symmetric bilinear
form w(IX,Y) is positive definite al each point. Furthermore G preserves I.

Sketch Proof. It is possible to find a Riemannian metric ¢ on M which is preserved
by G. This defines a skew-symmetric A € I'(End(TM)) with g(X, AY) =w(X,Y) for all
X,Y e I'(T(M)).

We know that A has polar decomposition, i.e. a A = Bl where B € I'(End(T'M)) is
symmetric positive definite and [ € I'(End(7'M)) is an isometry. We used the fact that
A~ B= (AA*)% is a smooth correspondence. Furthermore G preserves B and [.

Now an easy calculation shows that [ is an almost complex structure preserving w and
9(X,Y) =g(X, BY) is a Riemmanian metric.

Proofs of the Theorems. From Lemma 6.1 we know that we can find a calibrated
almost complex structure I on M and hermitian metric (,) whose imaginary part is w,
and for which T preserves [ and (,).

Since z is a fixed point T acts on the complex vector space T, preserving the hermitian
form, i.e. as a subgroup of U(n). Notice that any element in T commutes with /. Since
every element of u(n) (the skew-hermitian matrices) is diagonisable (i.e. there exists a
basis from eigenvectors) and exp : t — T is surjective we see that every element of T is
diagonisable (as complex transformations). Recall that if two complex transformations
A and B commute, then B leaves invariant any eigensubspace of A. T,7 is clearly the
intersection of the eigensubspaces of each element of T corresponding to the eigenvalue
1. Using the previous three remarks one can easily find a complex basis ey, ..., e, of T,M
such that every ¢; is an eigenvector of every element of T, furthermore T, 7 is spanned by
€1y nny Ep

Now Theorem 6.2 follows from the fact that I commutes with every element of T,
therefore leaves T, 7 invariant, i.e. w restricted to the submanifold Z is non-degenerate.

Let Vi, = span(e;). On each Vj expXy acts as multiplication by some scalar exp(i);)
where ); is real since X, is skew symmetric as an element of u(n) and is 0 exactly when
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7 < r as X} generates the whole torus T. Now from the action of X;, on T, M we have
just determined we can deduce Theorem 6.3 if we choose a real basis uy, ..., u,,v1,...,0,
corresponding to the complex basis ey, ..., €,.

Thus an almost periodic Hamiltonian function has very special properties.

Definition 6.2 A function f € C*(M) is a Morse function in the sense of Bott if its
critical points form a submanifold of M, and if at every critical point the Hessian is
non-degenarate on the normal bundle of the critical submanifold.

The connected components of the critical submanifold are the critical manifolds.

The negative normal bundle NN(Z) of a critical manifold 7 is the mazimal subbundle
of its normal bundle N(Z) on which the Hessian is negative definite.

The dimension of the negative normal bundle of a critical manifold 7 is the index

MZ) of the critical manifold.
Bott in [6] proved the following theorem:

Theorem 6.4 Let h € C*(M) be a Morse function in the sense of Botl. For a real
number a let M, ={m € M : h(m) < a}. If a is a reqular value then M, is a manifold
with boundary. Suppose that the interval [a,b] contains only one critical value ¢ which is
different from the endpoints. Let Z be the critical manifold corresponding to the critical
value ¢. Then My is homotopically equivalent to the space

M, U, B(NN(Z))
where B(NN(Z)) is the ball bundle of the negative normal bundle and ¢ is a gluing map
¢ : S(NN(Z)) — OM, where S(NN(Z)) is the sphere bundle of the negative normal
bundle.
With these notions Theorems 6.2 and 6.3 lead to the corollary:

Corollary 6.1 An almost periodic Hamiltonian function is in fact a Morse function in
the sense of Bolt with critical manifolds of even index.

Now we can prove the central theorem of this section.
Theorem 6.5 Let (M,w) be a compact connected manifold, and consider k almost peri-
odic Hamiltonian functions fi,..., fi such that any two of them Poisson commute. Then
f71(t) is emply or connected for every t € RE.

First we need the following two lemmas.

Lemma 6.2 Under the conditions described in Theorem 6.5, any linear combination of
the f;’s is an almost periodic Hamiltonian function.

18



Proof. All we have to notice is that if two functions Poisson commute then their Hamil-
tonian vector fields Lie commute, and therefore their flows commute. Now the lemma
follows from the fact that two commuting compact subgroups of the group of symplecto-
morphisms of M generate a compact subgroup.

Lemma 6.3 Let h : M — R be a Morse function in the sense of Bott on the compact
manifold M and assume that neither h nor —h has a critical manifold of index 1. Then
h='(a) is connected or empty for every a € R.

Proof. First we show that A has a unique local minimum and a unique local maximum.
Suppose h has a local minimum ¢ different from the global one. We use Theorem 6.4.
Homotopically M, change when we cross the critical level ¢ by attaching the ball bundle
of the negative normal bundle of the corresponding critical manifold, i.e. in this case
adding a new component. Now M, is not connected. However M is. Hence we must
connect the pieces later on. It is only possible when we attach along a non-connected
sphere bundle of the negative normal bundle, which necessitates that the index of the
corresponding critical manifold is 1. But in our case we do not have critical manifold with
index 1, therefore there exists no local minimum different from the global one. For the
local maximum the proof is similar, except h is replaced with —h.

By continuity, it suffices to prove the lemma only for regular values. Let a be a regular
value of h. Notice that the foregoing proves that M, is connected for every a > min(h).
Now i~ !(a) is the boundary of the manifold M,, so that if 2~! is not connected we get a
non-trivial (2n — 1)-cycle for M, from a boundary component.

We show that this is impossible, namely Hs,_1(M,) = 0 if min(h) < a < max(h).
The first observation is that Hy,_y (B(NN(Mmin(r)))) = 0 whenever h is not constant. In
fact if & is not constant then dim(Mmin(h)) < 2n — 2 using that M) is a symplectic
manifold, thus Hy,_1(Myinr)) = 0. But B(NN(Muyineny)) is homotopically equivalent to
M nin(ry which proves our observation.

If we denote the negative normal bundle of a critical manifold Z for the function A
by NN4(Z) and for —h by NN_(Z), then easily N(Z) = NN (Z) & NN_(Z). Thus if
min(h) < a < max(h) then from the foregoing A_(7Z) > 2, therefore the total dimension
of BINNL(Z)) is < 2n — 2. Now starting at min(h) we can never produce a non-trivial
(2n — 1)-cycle in M,.

Proof of Theorem 6.5. We proceed by induction on k. When k = 1 the function f; is
an almost periodic Hamiltonian which from Corollary 6.1 has critical manifolds only with
even index, therefore we can use Lemma 6.3 which establishes the proof in this case.
Suppose now that the theorem is true for £ > 1 and prove for & + 1.
Let fi,..., fra1 be functions on M satisfying the hypotheses of the theorem. We have
to show that if a = (ai,...,ary1) € R*! then

[ a) = fTHa) N0 fh (arg)

is empty or connected. We may suppose that fi,..., fry1 are linearly independent, other-
wise we can drop one of them and use the induction hypothesis. Furthermore, by continu-
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ity it suffices to consider only regular values a of f, i.e. values so that the df; are linearly
independent for all z € f~!(a). With this assumption

N:fl_l(al)ﬁ...ﬂfk_l(ak)

is a submanifold of M and by the induction hypothesis it is connected. Since

fHa) = N0 fify = (fe In) 7 (arr)

it suffices to show that fr41 |y satisfies the conditions of Lemma 6.3 and then the lemma
will yield the theorem.

Hence it is sufficient to prove that fry1 | has critical manifolds in NV with even index
only.

Let z € N be a critical point of fry; |n. It means that at z

k
dfpr + D _Nidfi =0,
=1

for some constants ;. If we choose

k
h = fexr + Y Aifi
=1

then z will be a critical point of & on M. From Lemma 6.1 & is an almost periodic
Hamiltonian function. Let Z be the critical manifold of & containing Z.

We show that Z and N intersect transversally, or equivalently that dfy,...,df; are
still independent when restricted to Z at z. Let Xi,..., X, be the Hamiltonian vector
fields associated to fi,..., fr. Since the Poisson brackets { f;, h} vanish, the independent
vectors Xi(2),..., Xi(z) lie in T,Z. From Theorem 6.2 Z is non-degenarate relative to
the symplectic structure w of M. Hence for any constant o = (o, ..., ax) # 0 there exists
a tangent vector Y € T,Z such that

k

0 #w(d_ aiXi(2),Y) = {Z a;dfi(2)}(Y),

=1

which proves our assertion.

Now the index of fr41 | at z concides with that of h |n at z since on N they differ only
by the constant S°% , A\;a;. The index of k |y at z is the dimension of the maximal subspace
where the Hessian is negative definite. But d?h vanishes on Z, which is transversal to
N, therefore the index of h |y at z coincides with the index of h at z. This is even from
Corollary 6.1.

Corollary 6.2 Let fi,..., fry1 be functions on M satisfying the hypotheses of Theorem
6.5. Then f(M) is convex.

Moreover if Zy,...,Z, are the connected components of the set of common critical
points of the f;’s then f(Z;) is a point ¢; and f(W) is the convex hull of the points c;.
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Proof. For the convexity it suffices to show that f(M) intersects every affine line [ of
R**! in a convex set, i.e. the intersection is empty or connected.

Let 7 : R¥! — R* be a linear map such that 7='(a) = [ with a t € R*. Let
fm =9 = (g1,...,9r). Trivially, the g¢;’s Poisson commute and are almost periodic
Hamiltonian functions from Lemma 6.1. Applying Theorem 6.5 we get that ¢~'(a) is
empty or connected and therefore

JM) =i (a) = f(g7'(a))

is empty or connected as required.

The set of common critical points of fi,..., fiy1 is also the set of fixed point of the
torus T generated by the Hamiltonian fields Xi,..., Xz41. From Theorem 3.2 7 is a
disjoint union of the submanifolds Z;. On each Z; we have df; = 0 for all  and so each
fi is constant. Thus f(Z;) = ¢; is a single point in R**1. Moreover, if h = 3"\ f; is a
generic linear combination, so that the corresponding Hamiltonian vector field generates
T, then the critical set of A is precisely Z, and in particular ~ takes its maximum on
7. Hence the linear form 3 \;x; considered as a function on f(M) C R*!, takes its
maximum at one of the points ¢y,. .., cxy1. Since this holds for almost all (A, ..., Ags1)
it follows that f(M) lies in the convex hull of ¢4, ..., ¢x41. But we have shown that f(M)
is convex hence the result follows.

Proof of Theorem 6.1. Choose a basis for t* to get coordinate functions py,. .., ux of
p. Then p; is an almost periodic Hamiltonian function and any two of the p;’s Poisson
commute since fi is a Lie-algebra homomorphism. Now use Corollary 6.2 and that the
common critical points of the p;’s are exactly the fixed points of the torus action. The
result follows.

7 An application of the convexity theorem

As an application in this section we sketch the proof of Theorem 1.1. We will not prove
every assertion we use. Qur aim is just to show how it is possible to prove the theorem
of Kushnirenko with the help of the convexity theorem.

First of all we cite two standard theorems from Hitchin [11] that we will need later.
Then we define the so called Fubiny-Study (or standard Kaehlerian) metric on PN=1(C)
and examine the diagonal action of T on PN=1(C).

Theorem 7.1 Let N C M be a submanifold of a Kaehler manifold M such that at each
point m € N I maps T,, N into ilself. Then the induced structure is a Kaehlerian struc-
ture.

Theorem 7.2 Let G be a compact Lie group of isometries of a Kaehler manifold pre-
serving I and therefore the symplectic form w.

Suppose p : M — g* is a moment map for G and suppose G acts freely on p=*(0).
Then the induced structure on p=(0)/G is a Kaehlerian structure.
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Example. Let V be a complex vector space of dimension N with suitable complex
coordinates zy,...,zy where z; = x; + 1y;. Then V can be considered a Kaehlerian
manifold. Then w = 37", dy; Adz;. Now consider the action of S1on V' by multiplication.
Then the vector field X associated with the unit generator of the Lie algebra of S* by the
infinitesimal action can be written in the form:

n 0
X=>( yya a—yj)-

=1

This is clearly a symplectic action. Moreover, it is a Hamiltonian action with a moment

map
n

”(‘Tlv"'vavylv"'vyN) =—1 —Z(l’? +y]2)
7=1
Now S acts freely on p~'(0). Note that x='(0)/S" is exactly P(V'). Thus from Theorem
7.2. we get a Kaehlerian structure on P(V'). This metric is called the Fubini-Study metric.
The following is a simple corollary:

Corollary 7.1 Any complex submanifold of P(V') is a Kaehlerian manifold.
Consider the following TV-action ¢ (which we call the diagonal action) on P(V):

tor, ..., on] = [Livr, .o Lava],

where ¢ = (t1,...,tx) € TN = S* x - x S1. This action is clearly symplectic. Moreover
it is Hamiltonian with moment map

1
vl
Z;‘V:I |W|2 ’

o, on]) = — L Jon]?).

Note that the image of this moment map is the standard (N — 1)-symplex.

Now we prove the theorem of Kushnirenko. The idea of the proof will be the following.
First we define an n-dimensional torus action on PY~!(C) which will turn out to be
Hamiltonian. Then using the convexity theorem we notice that the image of the moment
map g of this action is the convex hull of S. After that we find an algebraic submanifold
of PN=1(() for which we use a theorem of Atiyah, which will tell us that the image of the
algebraic submanifold under p is still the convex hull of S. Then we consider volumes,
and find that the volume of C(S) is the volume of the complex algebraic submanifold
regarding the standard Kaehlerian metric on PY=(C). Then we use theorems from the
theory of complex algebraic varieties and get that the volume of our complex algebraic
variety is its degree divided by n! and the degree will be equal to the solution of the given
system of equations.

22



Sketch Proof of Theorem 1.1 Let the multiindices oy, ..., ayn be the elements of S.
We denote by T the complex torus, the group of n-tuples of non-zero complex numbers.
We define an action . of T on an N-dimensional complex vector space V' by the formula

Hzryoooyen) = (™ 2y, ., 1%V 2N),
where (z1,...,2,) are the coordinates of a point z in V with respect to the fixed basis
Vays---,Vay Of Vand t € T?. Considering the inclusion of the compact torus 7" C T

we get a T-action 1) on V. The hermitian metric corresponding to the fixed basis of V
is clearly T"-invariant, since ﬂ(t) is a unitary transformation of V' for every ¢t € T™.

Now we pass our attention to the projective space P(V). From the actions on V we
get a T*-action ¢, a T"-action ¢ and a T"-invariant Kaehlerian form w on P(V) in the
way described above.

Let us examine the action . Clearly, this is just the action corresponding to the
representation S : 7™ — TV given by S(t) = (¢*1,...,4*") and the standard diagonal
action ¢ of TV on P(V). Therefore, our action ¢ is Hamiltonian and its moment map
py o P(V) — t% from Theorem 5.2 is the composition of the moment map py : P(V) — ti
and the dual map s* : {3y — t} of s : t, — tx corresponding to S. As we saw above,
the image of u; was the standard (N — 1)-simplex. The vertices of the simplex are the
generators of the integer lattice L* C t dual to the lattice L C t,, which is the kernel of
the exponential map t,, — 7. Under s* these vertices become the points of S C t. It
follows from the convexity theorem that the image py(P(V)) is the convex hull of S.

In fact, Atiyah [1] proved that the image under iy, of a generic T*-orbit X is the whole
interior of C'(5), and that uy : X — int(C(S5)) is a fibration with fibre T".

Let X be the orbit of the point [1,...,1] € P(V) at the T? action t.. Now from
Atiyah’s result we get that

VTV (C(9)) = V(X).

If we normalize so that V(7T™) = 1 then this determines the normalization of the Euclidean
volume on t*. B
Consider now the closure X of X.

and X is an algebraic submanifold of dimension n. Now from Wirtinger’s theorem (see

[9]) '
V(X) = /Xw”.

nl

An other theorem (see [13]) tells us that

/Xw” = deg(X).

This is the intersection number of X and a generic P(W) of codimension n. Since

dim(X — X) < n it follows that
nV(C(S)) = deg(X) = deg(X)
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is the intersection number of X and a generic P(W) of codimension n.

If the differences o — 3 (a, 8 € S) generate a lattice of rank < n then the system of
equations we are investigating has no solution and the volume of the convex hull of §
vanishes as well.

If the differences o — 8 (a, 8 € S) generate a lattice L of rank n but not the whole
Z", then changing Z" to L and choosing a basis for L to identify this lattice with Z",
we get a S C L with V(C(S))detL = V(C(S)) and clearly the system of equations with
respect to S has detL times more solutions than it does when we consider S instead of
S. Therefore, it suffices to investigate only the following case.

Thus we can assume that the differences o — 3 (o, 5 € S) generate the whole Z”.

Now let X’ be the orbit of the point (1,...,1) € V under the action ¥.. From
the assumption above X is equivalent to X', hence the intersection number of X and a
generic P(W) concides with the intersection number of X’ and a generic subspace W C V
of codimension n, that is to say

deg(X) = deg(X").

Using an argument similar to the one above, we can assume that S generates the
lattice Z". This means that X' is a faithful orbit, i.e. the group 77 acts freely on it.
From this we conclude that the intersection number of X’ and a generic W is N(S):

deg(X') = N(S)
if W is defined by the equations

Ecéva:() 7=1,...,n.
a€S

This means that
n!V(C(S)) = N(5),

as required.

Remark. Atiyah in [2] shows how his convexity results can be used for proving Bern-
stein’s generalization of Theorem 1.1. We will prove this by using toric varieties in sub-
section 11.3.
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8 Toric varieties

8.1 Introduction

In the second part of this dissertation we establish the theory of toric varieties.

In the literature one can find different ways of introducing toric varieties and indeed
the name of the main object could be altered. For example the expression toric embedding
can be used for toric variety or toric compactification for a special kind of toric variety
(see Chapter 27 of Khovanski in [5]). Both names indicate a description of toric variety as
an algebraic variety containing a dense open complex torus, where the variety is equipped
with an algebraic action of this complex torus extending the canonical action of the torus
on itself.

We will give a more theoretical way of introducing toric varieties, and prove the above
properties as consequences of the definitions.

Toric varieties are very special kind of algebraic varieties but their structure is rich
enough to use them for testing algebro-geometrical ideas.

Our final aim is to establish a fruitful link with convex geometry and give applications
of it.

In section 8 we establish the basic notions. In section 9 we discuss the theory of
divisors. In section 10 we collect the notions which are needed to state the Hirzebruch-
Riemann-Roch theorem. In the final section we create a useful connection between toric
and convex geometry and show a few applications of it, included the Alexander-Fenchel
inequality and the theorem of Bernstein which generalizes our central Theorem 1.1.

The second part of this work is based on the book of Fulton [7]. We used Hartshorne
[10] and Griffiths-Harris [9] for general results in algebraic geometry and the book of
Burago-Zalgaller [5] for convex geometry, especially chapter 27 of it which was written by

A.G. Khovanski.

8.2 Cones and fans

In this subsection we collect the elemantary information from the theory of convex poly-
hedral cones we need. We define the notion of convex polyhedral cones and that of fans
and give basic results about them.

Definition 8.1 A convex polyhedral cone o in an n-dimensional real vector space V' is
a set

o={rivi+...+rsvs €V:r; >0}

generated by any finite set of vectors vy,...,vs in V.

A convex polyhedral cone is called strictly convex if it contains no nontrivial linear
subspace.

The dimension dimo s the dimension of the vector subspace generated by o.

The dual o* of any sel o is the sel

c"={ue V" :(uv)>0V%veo}
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A face 7 of o is the intersection of o with any supporting hyperplane:
T={v€o:(uv)=0},
where u € o*.
The basic fact is the following

Proposition 8.1 (Separation theorem) If o is a convex polyhedral cone and v ¢ V
then there is some u € o* with (u,v) < 0.

We will make use of the well-known

Theorem 8.1 (Farkas’s theorem) The dual of a convex polyhedral cone is a convex
polyhedral cone.

Now we consider lattices and rational convex polyhedral cones in order to be able to
introduce fans.

Definition 8.2 A lattice of dimension n is a finilely generated free abelian group of rank
n, i.e. that is isomorphic to Z". Then Ng = N ®z R is an n-dimensional real vector
space. The dual of the lattice N is denoted by M.

A convex polyhedral cone in Ng is rational if it can be generated by vectors from the
lattice N.

If o is a rational convex polyhedral cone then S, stands for o* N M.

A cone in N is a rational, strictly convex cone in Ng.

In the next chapter we will need the following proposition.

Proposition 8.2 (Gordon’s Lemma) If o is a rational polyhedral cone then S, is a
finitely generated semigroup, a subsemigroup of the group M.

Proof. o* is a convex polyhedral cone from Farkas’s theorem. Hence we have that
Uy, ..., us € M generate the cone o*. Now

K = {Etzuz 0<t; < 1}
is a compact set so K N M is finite which clearly generates S, as a semigroup.
Now we are in a position to introduce the notion of fan.

Definition 8.3 A fan A in N is meant a setl of cones in N such thal each face of a cone
in A is also a cone in A and the intersection of two cones in A is a face of both.
The support | A | of the fan A is the union of the cones in the fan.

Remark. Note the similarities of fans and simplical complexes.
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Example. Now we give an example of a fan which will later link convex geometrical
objects with objects in torical geometry. We need some more definitions.

Definition 8.4 . A the convex hull of finitely many points in Mg is called a convex
polytope.

A face of a polytope is an intersection of it with a supporting hyperplane as in Definition
8.1.

If P is a convex polytope of maximal dimension with the origin in ils interior then the
polar polytope is defined by

P°={v € Ngr : (u,v) > —1 for all u € P}.
A convex polytope is rational if the cones over the faces of the polytope are rational.

Thus let P be an n dimensional convex rational polytope in Mg containing the origin
in its interior. Then we see that the set of cones in IV over the faces of P° which we
denote by Ap is a fan in NVg.

If P does not contain the origin then we can translate it by a vector u € Mg such
that P + u is rational and contains the origin in its interior. Now let us define Ap to be
the fan Ap,,. Clearly this is well-defined.

If P is of less dimension than n, then we can consider the subspace Mg which is
spanned by P. Construct Ap in Ng where N is the dual of M. Since N is a sublattice
of N we can consider Ap as a fan in V.

8.3 Affine toric varieties

Construction of affine varieties We will follow the standard commutative algebraic
way to construct affine toric varieties from cones in Ngy.

Thus let us given a cone ¢ in N. Consider the commutative semigroup S, = o* N
M which is finitely generated by Gordon’s lemma. Now we can form the group ring
A, = CI[S,], which is a commutative C-algebra. As a complex vector space it has a
basis x* where u € S, and the multiplication is determined by the addition in 5,, i.e.
. Therefore A, is a finitely generated commutative C-algebra.
Now we proceed as usual to get an affine variety from the finitely generated C-algebra

! !
xu . l,u — l,u—{—u

A,. We find a surjective C-algebra homomorphism
Jo : C[Xy,..., Xi] = A,

from a finitely generated free C-algebra to A,. Now the ideal I, = ker(j,) in C[ X1, ..., X]
determines the affine variety U, in the k-dimensinal complex affine space A* as the points
of A* which vanishes at each element of I,. Note that the coordinate ring of U, is A,.

Examples. 1. If 0 = {O} is the 0-dimensional cone in N then o* is the space Mr. Now
the semigroup Syg) is in fact the free abelian group M of rank n. Therefore we see that

A{O} = C[l/lal/l_la s 7Yn7Yn_1]
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the ring of Laurent polynomials in n variables. Now the map

jioy: CIX1, Zty ooy X, Zn] = CIYL, YL Yo, Y

n

is the obvious one, which sends X; to Y; and Z; to YZ»_I. Hence oy is generated by the
polynomials X;Z; — 1. Thus, we finally get that Usp, is isomorphic to the n-dimensional
complex torus T” the set of points in A" having nonzero coordinates. (This was denoted
by T in Section 7.)

2. Let vy,...,v, be a basis of N. Consider the cone ¢ in N which is generated by these
vectors. We show that the corresponding affine toric variety is A” itself. If wuy,..., u,
denotes the associated basis of M, then ¢* becomes the cone generated by uy,...,u,.
Therefore A, = C[Y1,...,Y,] and U, = A™ as stated.

3. Combining the preceding two examples we can produce plenty of affine toric vari-
eties. Indeed, if 7 is the cone generated by uy,...,u; a subset of a basis of N, then U, is
isomorphic with the affine variety A* x T *. Note that if £ = 0 then we get Example 1
and if £ = n we get Example 2 above. Note also that each of the affine varieties of this
kind are non-singular. In fact these are the only non-singular affine toric varieties.

Theorem 8.2 An affine toric variety is non-singular if and only if o is generated by a
part of a basis of N.

Proof. Observe that it is sufficient to prove that a cone ¢ in N which spans the whole
space Nr determines a non-singular affine toric variety if and only if ¢ is generated by a
basis of Ngr, in other words when U, is an affine space.

To see this we recall that an affine variety with coordinate ring A is non-singular? at a
point z if the cotangent space M,/ M? is of dimension n, where M., is the maximal ideal
of A corresponding to the point z (i.e. the maximal ideal of regular functions vanishing
at z) and n is the dimension of the affine variety, which is the transcendency degree of
K(A) over C, where K(A) is the field of fractions of A.

If there is given a cone ¢ in N which is of maximal dimension n, then we see that the
transcendency degree of K(A,) over C is n since now the dual cone o* is a strictly convex
polyhedral cone of maximal dimension n. Therefore the dimension of U, is n.

Now we can find a distinguished point in U, denoted by z, whose associated maximal
ideal is M,, where M, is generated by {z* : O # u € S,}. Thus M? is generated by
elements of the form z* where u € S, is the sum of two vectors in S, \ {O}. The cotangent
space M, /M2 therefore has a basis of images of elements z* for those u € S, \ {O} that
are not the sums of two such vectors. In particular it means that the first elements in M
lying along the edges of o* are vectors of this kind. Hence if the variety is non-singular at
zy, then we have that the dual cone ¢* has at most n edges, and since o* spans Mg we
see that in fact these minimal vectors along these edges must generate S, which means
that o* is generated by a basis of M i.e. U, is isomorphic to A" as required.

Definition 8.5 A cone in N is called non-singular if it is generated by a part of a basis.
A fan in N s called non-singular if it ts formed by non-singular cones.

Zsee Theorem 5 in Hartshorne [10] p. 32
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The next lemma follows from basic facts in commutative algebra, hence we omit the
proof>.

Lemma 8.1 [If 7 is a face of o then U, is a principal open subset of U,, i.e. is a set of
points of U, where a particular reqular function in A, does not vanish.

Remark. In particular, {O} is a face of every cone o, which means that U, contains the
complex torus Uypy = T" as a principal open subset. Thus we can conclude that every
affine toric variety contains a dense complex torus.

The torus action. We can now describe the T” action on an n-dimensional affine toric
variety U,, which was mentioned in the introduction. We need a morphism T" x U, — U,
which extends the canonical morhipsm T" x T” — T" given by the multiplication on T™.
This morphism of affine varieties corresponds to the morphism of C-algebras: CI[S,] —
C[S,] ® C[M] which sends z* to z* ® z*. This is well-defined since C[S?] C C[M] as we

have just seen.

8.4 Algebraic toric varieties

Construction of algebraic toric varieties An algebraic variety is obtained by ’glu-
ing’ together affine varieties (affine pieces) along its principal open subsets, where it is
demanded that these ’gluings’ are compatible with each other?.

We are going to construct an algebraic toric variety (or a toric variety for short) from
a given fan A in N by ’gluing’ together the affine toric varieties assiotiated with the cones
in the fan A. Two such affine pieces are glued together identifying the principal open
subsets in both corresponding to the intersection cone. These 'gluings’ are compatible
with each other which is a consequence of the simplical structure of the fan. The resulting
algebraic toric variety is denoted by X(A).

Example. To see this construction in a detailed example, we construct the complex
projective space P as a toric variety.

Thus we have to begin with a fan A in an n-dimensional lattice N. Let vy,..., v, be a
basis of NV, and consider the cones which are generated by any at most n vectors from the
set v1,...,0,, =1 — Vg — ... — v,. These cones form a fan A. (Note that this fan can be
constructed -as indicated at the end of the subsection 8.2- from the symplex in M with
vertices —uq,...,—Un,u; + ...+ u,.) Now applying the gluing procedure we claim that
finally we get the algebraic variety P”. The maximal dimensional cones in the fan A are
the ones which are generated by exactly n vectors from the above vector set. There are
n + 1 of them. Each of them is generated by a basis of N and so determines the affine
toric variety A" (as we saw in the preceding subsection) so we have to check only that

3see Fulton [7] p. 18
“for a more abstract but precise definition see Hartshorne [10] p. 74 and for the ’gluing’ method see
Example 2.3.5 on p. 75
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any two of them is glued together in the standard way eventually yielding the algebraic
variety P” with these affine spaces as canonical affine pieces.
Consider therefore two such affine spaces, for example the one constructed from the

cone oy generated by the vectors vy, ..., v, and the other one associated with the cone o,
generated by vy,..., —v, 1,01 — ... — V,.

The dual cone o} is generated by the dual basis uy, ..., u, while the dual cone ¢ has
generators uy — Uy, Uy — Up, ... Uy,_1 — Uy, —U,. Hence the corresponding coordinate rings
are

Ay = C[X1, ..., X,]

and

A, = CIX XL XX X X XL

The principal open subsets correspondig to the intersection cone oy N ¢, are determined
by X,, # 0 and X' # 0, respectively. This gives the usual gluing map of two affine pieces
of the projective space P™. Thus the resulting algebraic variety is P, indeed.

Remark. The actions of the torus T” on the varieties U, described in the preceding
section are compatible with the patching isomorphisms, giving an action of T™ on X (A).
This extends the product in T”.

We remark that in fact the converse is also true, i.e. any (separated, normal) variety
X containing a torus T” , with compatible action as above, can be realized as a toric
variety X(A) for a unique fan A in V.

The proof of the following fundamental theorem is rather algebraical hence we omit
the proof®.

Theorem 8.3 A toric variety X(A) is always Hausdorff.
It is compact if and only if the fan A is complete i.e. the maximal dimensional cones
cover the whole space Ng.

9 Divisors

After introducing the basic notions we have to understand the specific behaviour of divi-
sors on toric varieties since these objects have crucial importance in our point of view.

Therefore we go through the general theory of divisors and find the specific features
of divisors on toric varieties.

9.1 Divisors in general.

Definition 9.1 A Weil divisor on a variely X© is a finite formal sum 3" a;V; of irreducible
closed subvarieties V; of codimension 1.

—

®For the first statement see the lemma in Fulton [7] p. 21 and for the second one see p. 39.
Swhich is a #-variety (noetherian, integral, separated and regular in codimension one) see Hartshorne

[10] p. 130
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A Cartier divisor D is given by the data of a covering of X by affine open sets U,
and nonzero rational functions f, € K(A,) (where K(A,) is the field of fractions of A,)
called local equations such that the ratios f,/fs are nowhere zero reqular functions on
U, NUs.

A nonzero rational function f on a variely X determines a Cartier divisor div(f)
called a principal divisor by the rule f, = [ |u,.

Two Cartier divisors Dy and Dy are called linearly equivalent if Dy — Dy is principal.

A line bundle on a variety is determined by the data of a covering of X by affine
open sets U, and nowhere zero rational functions g,g on U, N Ug such that the cocyclic
condition

9as9prGra =1
holds on U, N Ug N U, for any o, and ~.

Remarks. 1. We remark that every algebraic toric variety is a #-variety. Therefore
Weil divisors are defined on them.

2. On a nice enough variety” (like for example non-singular varieties) Cartier divisors
and Weil divisors can be naturally identified.

If D is a Cartier divisor then it determines a Weil divisor denoted [D], by the rule

[D]= > ordy(D)-V,
cod(V,X)=1

where ordy (D) is the order of vanishing of an equation for D in the local ring along the
subvariety V, i.e. if fy € U, determines V (i.e. V = f;;'(0)) on an affine piece U, then
ordy (D) is the greatest non-negative integer k such that fir = gf* holds with a regular
function g € A,. This gives a well-defined finite sum if X is a *-variety in particular if it
is an algebraic toric variety.

If X is nice enough (see footnote 6) then a Weil divisor D = 3" a;V; gives a Cartier
divisor in the following way. We can find an affine open cover {U,} of X such that in
each U,, every V; appearing in D has a local defining function g,, € O(U,). We can then

set
Hg'“ € R*(U,)

to obtain the data which determines a Cartier divisor.

In particular if X is a non-singular variety then the notion of Weil divisor and Cartier
divisor can be identified. In this case we will speak of divisors.

3. The data which determines a Cartier divisor is nothing else but a section of the
sheaf R*/O*, where R* is the multiplicative sheaf of invertible (i.e. nonzero) rational
functions on X and O* is the multiplicative sheaf of invertible (i.e. nowhere zero) regular
functions on X. Thus Cartier divisors form the group H°(X,R*/O*).

3. Similarly, we see that the set of isomorphism classes of line bundles is just the first
cohomology H'(X,O*) of the sheaf O*. This forms a group, where the multiplication is
the tensor product of line bundles.

“integral, separeted noetherian and locally factorial (see Hartshorne [10] p. 141)
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4. The short exact sequence of sheaves

0— 0" 5 R L RO — 0
gives us, in part, the exact sequence
HOX,R*) -5 HO(X,R*/0%) 25 HY(X,0%)

of cohomology groups.

7% 1s the operation described in the above definition which corresponds to every nonzero
rational function a principal Cartier divisor.

0 is the line bundle operation which corresponds to every Cartier divisor D a line
bundle denoted by O(D).

The exactness means that two Cartier divisors have isomorphic line bundles if and
only if they are linearly equivalent.

5. If the variety X is non-singular it can be considered as a complex manifold. Let
O, denote the structure sheaf of X as a complex manifold, i.e. the sheaf of holomorphic
functions and O} be the multiplicative sheaf of nowhere zero holomorphic functions. Then
the obvious exponential map exp : OF — O, gives the short exact sequence of sheaves

0—Z7Z—0, B0 —0,

where Z is the constant sheaf, the sheaf of locally constant maps from X to Z. This yields
a long exact sequence and in particular a map

§: H'(X,07) = HY(X,Z),

which associates a second integer cohomology class with every holomorphic line bundle L
on X which is called the first Chern class denoted by ¢ (L) = 6(L).

Moreover, if L is an algebraic line bundle (a line bundle as defined above) on the
non-singular variety X, then in particular it is a holomorphic line bundle and therefore it
determines its first Chern class ¢;(L).

9.2 Divisors on toric varieties.

Our next goul is the characterization of divisors on toric varieties.
We start with remarking that any divisor on a toric variety is linearly equivalent with
a divisor which is invariant under the action of T".

Definition 9.2 A Weil-divisor on a toric variety is a T-Weil-divisor if il is invariant

under the canonical action of T™.
A Cartier-divisor on a toric variety is a T-Cartier-divisor tf it is equivariant by T".
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Remark. A T-Weil divisor is a formal linear combination of irreducible subvarieties of
codimension 1 which are invariant under the action of T”". These are clearly the closures
of certain orbits of the torus action. More profound arguments show that a T"-invariant
subvariety is the closure of the orbit of the point z, where 7 is a 1-dimensional face called
an edge of the fan A. (Recall that z, is the point in U, which corresponds to that maximal
ideal of A, which is generated by the standard generators of A, except z© = 1.) This
codimension 1 subvariety is denoted by V.

Number the edges 7y,...,7; in A and let v; be the first lattice point met along the
edge ;. We will denote by D; the codimension one 1 subvariety V.

We now give a charactarization of T-Cartier divisors on affine toric varieties.

Theorem 9.1 On an affine toric variety X a T-Cartier divisor is a principal divisor of
the form div(z*) for some unige u € M.
Moreover, as a T-Weil divisor it has the form:

[div(xu)] = Z<u7 Ui>Di7

7

Proof. The proof of the first claim uses lots of algebra and hence we omit it®.
For the second part it is sufficient to prove that if v is the first lattice point along an
edge 7 then
ordy () (div(z")) = (u,v).

The order can be calculated on the open set U; = A x T"™!, on which V(7) correponds
to {0} x T"~'. This reduces the calculation to the one-dimensional case, i.e., to the case
where N = Z, 7 is generated by v = 1, and v € M. Then z* is the monomial X*, whose
order of vanishing at the origin is w.

Remark. Now we see that a T-Cartier divisor on an algebraic toric variety X(A) is
given by the data of nonzero rational functions z“(°) on the affine open sets U,, where o
is a maximal cone of A such that if &y and o5 are maximal cones of A with intersection
cone 7 then the ratio z*(°1)=%(?2) is regular on U, which is equivalent with requiring that
(u(o1) — u(oz),v) = 0 for every v € 7. This means that the linear function )p on | A |
(which denotes the support of A) defined by the equation ¥p(v) = (u(o),v) on a maximal
cone o is well defined. Conversely, every such function comes from a unique T-Cartier
divisor.

If [D] = 3 a;D; then the function ¢p is determined by the property that ¢p(v;) = —a;
and equivalently

[D] =" —¢n(vi)Ds.

Moreover, a T-Weil divisor determines a convex rational polytope Pp in Mg by the

following definiton.

8see Fulton [7] p.61
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Definition 9.3 For a T-Weil divisor D =3 a;D; on X(A), we set

Pp = {ué€ Mg : (u,v;) > —a; for all i}
= {ueMg:u>vpon |Al}

The following lemma describes the sections of the line bundle O(D) in terms of the
lattice points in Pp.

Lemma 9.1 The global sections of the line bundle O(D) are

H(X,0D)= @ C-av

uePpnM

Proof. First note that it is sufficient to show the theorem for an affine toric variety U, .
In this case Theorem 9.1 yields that the T-Cartier divisor D has the form div(z*?) for a
unique up € Mg. The second part of Theorem 9.1 shows that Pp = 0* + (—up), where
the + is the Minkowski sum?. On the other hand H°(X,O(D)) is the fractional ideal

A, - 7%, The result follows.

The following lemma collects the very first properties of the rational convex polytope

Pp.

Lemma 9.2 [f D is a T-Cartier divisor on a toric variety X(A) then for a positive
integer
P\D = \Pp.
Ifue M, then
Ppyaiviewy = Pp + (—u).

Now we describe T-Cartier divisors whose line bundle O(D) is generated by its sec-
tions.

Theorem 9.2 Let D be a T-Cartier divisor on X(A), where all mazimal cones of A are
n-dimensional. Then O(D) is generated by its sections if and only if vp is conver.

The proof of this theorem is straightforward but rather technical hence we omit the
proof!?.

The following corollary gives a useful formula for the polytope of the sum of divisors
whose line bundle is generated by its sections.

Corollary 9.1 IfO(D) and O(E) are generated by their sections then
Ppyg = Pp + Pg,

where on the right hand side + means Minkowski sum.

%see Definition 11.1
0gee the proposition in Fulton [7] p. 68
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The divisor constructed from the rational convex polytope P. If P is a rational
convex polytope in Mg then we can construct a divisor Dp on the toric variety Ap
corresponding to P (see the example agter Definition 8.3) in the following way. As we
saw Dp is determined by ¢p,. Thus define

Yp, = géi}glw,v}.

By definition ¢p, is linear on each cone o in Ap. Moreover, ¢p is clearly convex hence
by Theorem 9.2 the T-Cartier divisor Dp is generated by its sections.

More generally we say that a fan A in N is compatible with a rational convex polytope
in P ifvp, = mingep(u,v) is linear on each cone o of A. Since ¢p,, is convex by definition,
the corresponding T-Cartier divisor Dp is generated by its sections.

Now if we have rational convex polytopes in Mg each containing the origin, then we
can consider the fans Ap ,...,Ap,. As we saw Ap, is compatible with F;. As it is easy
to see there exists a non-singular complete fan A(p, . p,) which is a refinement of every
Ap,, i.e. every edge in Ap, is an edge in A(p, . p,). Since Ap, . p,) is still compatible
with every Ap, we have the following

Theorem 9.3 Let P,..., P, be rational convexr polytopes in Mg each containing the
origin. There exisls a non-singular fan Ap, . p,) which is compalible with each of the
polytopes.

Moreover, there are unique divisors Dp,,... Dp,

on X(Ap,,...p,)) whose line bundle is

generated by its sections.

The line bundle of our divisors therefore will be generated by its sections. The following
theorem contains important cohomology information of such line bundles, however we will
not prove it since its proof is rather technicall!.

Theorem 9.4 If D is a T-Cartier divisor on a complete non-singular toric variely such
that O(D) is generated by its sections then the positive cohomologies of the line bundle
O(D) vanish: H?(X,0(D)) =0 for all p > 0.

9.3 Intersections
We need to develop intersection theory of divisors:

Definition 9.4 Let X be an algebraic variely of dimension n.

The k’th Chow group Ax(X) is the free abelian group on the k-dimensional irreducible
closed subvarieties of X, modulo the subgroup generated by the cycles of the form [div(f)],
where [ is a nonzero rational function on a (k+ 1)-dimensional subvariety of X. A finite
formal sum of irreducible closed subvarieties of X is called a k-cycle. An element in
Ar(X) is called a k-cycle class.

If D is a Cartier divisor on X, V' is an trreducible subvariety of X then we can find
a Cartier divisor E which is linearly equivalent with D and ordy(FE) = 0. Restricting
the local equations of K yields a Cartier divisor on V. This Cartier divisor gives a Weil
divisor on V which can be considered as an element D -V in Ap_1(X).

Hsee the corollary in Fulton [7] p. 74
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Remarks. 1. By definition A,_; is the group of Weil divisors modulo linear equivalence.
2. The name k-cycle class for an element in Ax(X) indicates the strong connection
between Ay(X) and Hy(X,Z). For example we remark that if X is a non-singular and
complete toric variety then these two groups coincide.
3. The definition of the intersection of a Weil divisor and an irreducible variety extends
by linearity to an intersection map:

HO(R*JO*) x Ay — Ap_y.

4. If X is non-singular then we have that Cartier and Weil divisors coincide so in this
case we have an intersection pairing

An—l X Ak — Ak—l-

Note also that we can define the intersection Dy - ... Dy of divisors Dy,..., Dy as an
element in A,,_;. This intersection operation by definition is multilinear.

The product of n divisors Dy - ... D, sits in Ag. Such a 0-cycle class is represented
by a formal sum of finitely many points and even if X is complete then the sum of the
coeflicients of these points does not depend on the representation of this 0-cycle class (as
we will see after Theorem 9.6). This integer number is called the intersection number of
the divisors Dy,..., D, and is denoted by (D -...- D,).

In particular if n = 2 the intersection number determines a bilinear form on A;(X).
The Hodge index theorem (see Theorem 10.2) describes this bilinear form.

The standard correspondence between the intersection defined above and the cup
product in cohomology is valid. To work this out we need the following:

Definition 9.5 Let X be a complele non-singular n-dimensional algebraic variety.
The cohomology class ny € H**(X,R) of a codimension k subvariely V is the Poincare
dual of the fundamental class [V] € Hyu_ox(M,R), where the fundamental class of V' is

given by the linear functional
b [ 0
v
for ¢ € H" (X, R).
In particular the cohomology class n, of a k-cycle o represented by a formal sum of
k-dimensional irreducible subvarieties o = 3" a;V; is given by n, = 3 a;nv,.

Remark. We will show that two different representations of a k-cycle class give the
same cohomology class. For this it is sufficient to show that any representation of the
k-cycle class 0 gives the cohomology class 0. As it is easy to see the k =n — 1 case yields
the rest. The next theorem proves this and shows more, namely, that the cohomology

class of a divisor sits in fact in H*(X, Z).
Theorem 9.5 If D is a divisor on an complete non-singular variety X then

np = a(O(D)) € HZ(Xv R),
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where ¢;(O(D)) is the first Chern class of the line bundle O(D))'

Our last theorem in this section gives the standard correspondence between intersec-
tion of divisors and cup product of cocycles. Since the proof of this theorem is topological
and rather standard we omit the proof!3.

Theorem 9.6 If D is a divisor on a non-singular variety X and V' is an irreducible
subvariety of X then

np-nNv =1D.v,

where - on the left hand side is the cup product.

10 Hirzebruch-Riemann-Roch

The basic tool in the link we are to establish between convex and toric geometry is the
Hirzebruch-Riemann-Roch (HRR) theorem for line bundles. HRR is one of the most fun-
damental theorem in the intersection theory in algebraic geometry. We have to introduce
the topological notions first to understand the content of the theorem.

Definition 10.1 Let L be a line bundle over an n-dimensional algebraic variety X.

The Chern character ch(L) of the line bundle L is an element in the cohomology ring
H*(X,Q) defined as follows:

ch(L) = exp(er(L i Zn:

=0 =0

1 1
e A

where ¢1(L) is the first Chern class of the line bundle L considered as an element of
H'(X,Q) and the first sum is in fact finile, using the vanishing of the q’th cohomology of
X when g > n.

The Todd class td(L) of the line bundle L is defined by the formula:

(L) -
= td;(L),
T expleD) 2"
where td;(L) € H'(X, L) is the i th part of td(L).
For general vector bundles the Todd class is determined by requiring it to be multi-
plicative, i.e., for any short exact sequence

td(L) =

00— F — FE,— FE3—0

of vector bundles over X the equation td(F1)td(F3) = td(FEy) holds.
The Euler characteristic of the vector bundle E is an integer number defined by the

formula
n

(X, E) =Y (-1)'dim(H' (X, E)).

=0

12for a proof see Proposition 1 in Griffiths-Harris [9] p. 141
13it can be deduced using Griffiths-Harris [9] pp. 58-59
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We can now state the theorem'*

Theorem 10.1 (Hirzebruch-Riemann-Roch) Let F be a vector bundle on an n-dimensional
non-singular, complete variety X. Then

(X, E) = /X ch(E) - td(Tx).

Remarks. (7Tx is the tangent bundle of X. The product on the right hand side is the
cup product in the cohomology ring H*(X, Q). The integration is meant to evaluate the
n’th part of the integrandum as a cohomology class in H"(X, Q) at the fundamental class
[X] € H,(X,Q) of X.)

1. Note that the right hand side concerns only topological properties of the vector
vector bundle E, while the left hand side contains analytic (holomorphic) information.

2. When the dimension of the variety is 2 and the bundle is the line bundle of a
divisor then HRR gives the well-known Riemann-Roch theorem for divisors on an algebraic
surfaces. This Riemann-Roch theorem can be used to prove the following:

Theorem 10.2 (Hodge index theorem.) Let X be a non-singular projective surface.
The intersection number determines hyperbolic form on the Q-vector space A1(X) ® Q,
i.e. a non-degenerate form with one positive eigenvalue.

Remark. We will use this theorem when X is a compact non-singular toric surface. We
remark that in this case X is automatically a projective surface.

11 Mixed volumes

Till now we have been working out the algebraic geometry we need. Our attention now is
focused on analytic convexity. We introduce the basic notions and, without saying much
about the standard methods, we establish the link with toric geometry.

11.1 Analytic convexity

Definition 11.1 Let R" denote the standard Fuclidean space, K C R"™ be a non-emply
convexr compact set, called a convex body. V(K) stands for the volume of K.
If L is another convex body then K + L denotes the Minkowski sum of K and L:

K+L={z+y;z€ K,ye L}

which is a convexr compact sel.
If X > 0 is a positive integer then AK stands for the Minkowski sum of A copies of K.

Minkowski introduced the notion of mixed volumes by proving the following theorem:

4for a proof see Corollary 15.2.1 Fulton [8] p. 288
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Theorem 11.1 The volume of the linear combination of convex bodies K1, Ks,..., K,
in R™ with non-negative coefficients A1, ..., s is a homogeneous polynomial of degree n
with respect to A1, ..., X!

V(E [(i) = Z Ce Z V([X/Z’l, ey I(in)/\il A /\inv
=1 11=1 in=1

where it 1s assumed that for products of the \; which differ only in the order of the factors
the coefficients have the same numerical value.

Definition 11.2 If K4, ..., K, are convex bodies in R™ then from the previous theorem
we have a well-defined real number V(Ky,..., K,) called the mixed volumes of the convex
bodies K1,..., K,.

Remark. 1. What very important for us is the continuity of mixed volumes. This
means that the mixed volume map is a continious map considering the topology (called
the Hausdorff topology) on the space of convex bodies in R” where two conves bodies are
close to each other if for any point of the first body there is a close point in the second one.
For example we will prove the Alexander-Fenchel inequality for rational convex polytopes
and claim that the statement follows by continuity for general convex bodies. The point
is that rational convex polytopes are dense in the Hausdorff topology on the space of
convex bodies.

2. The mixed volume is the central notion of analytic convexity. For an example the
well-known isoperimetric inequality can be formulated in terms of mixed volumes. To see
this we need one more definition.

Definition 11.3 Let B denote the unit ball in R™ and K be a convex body then the m’th
cross-sectional measure of K is defined by the formula:

Viu(K)=V(K,...,K,B,...,B).

m n—m

Remark. Clearly, V,(K) = V(K) is the volume of K.

For a convex polytope P it is relatively easy to see that
1
Vi1 (P) = ES(P)’

where S(P) is the (n — 1)-dimensional boundary area (which is the sum of the (n — 1)-
dimensional volumes of the hyperfaces of P), and by continuity this holds for general
convex bodies

Vi1 (K) = %S(K).
The classical isoperimetric inequality takes the form:
Theorem 11.2 (Isoperimetric inequality.) For a convex body K the following holds:
S™(K) > n"v, V" (K),

where v, is the volume of the unit ball B.
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Remark. We can reformulate this inequality by means of mixed volumes as follows:
V' (K) > V(B)V'"Y(K).

We will prove this inequality as a corollary of the Alexander-Fenchel inequality.

11.2 The Link

We can now establish the link between mixed volumes of rational convex polytopes and
intersections of divisors.

Thus let us given a non-singular toric variety X and a divisor D on it whose line bundle
is generated by its sections. Let P = Pp be the corresponding convex rational polytope
in M. Let A > 0 be a positive integer. We saw in Lemma 9.2 that P\p = APp = AP.

We want to use HRR for the line bundle O(AD). Since AD is generated by its sections
hence by Theorem 9.4 the positive cohomologies of O(AD) vanish: H?(X,O(AD)) =0 if
p > 0. Using Lemma 9.1 this gives that the left hand side of HRR takes the form:

X(X,0(AD)) = dimH°(X, O(AD)) = card(AP N M)

Using Theorem 9.5 the right hand side has the form:

oy ury) = f, 32 HORD) eI
- /Emp tdn i(Tx)
A - tdn i(Tx)
— Z/

- S,
1=0

where a; = [ M Since tdo(Tx) = 1 we get by using Theorem 9.6 that
i St (07
Aoo AR " Jx n! n!

Hence HRR gives the formula:
(D™) . card(AP N M)

= 11m
n! A—r00 A"

The following easy lemma gives a more simple form for the right hand side.

Lemma 11.1 [f the lattice M is unimodular (i.e. the unit cube generated by a basis of
M has volume 1 in M) then for a convex polyltope P:
dAPNM
lim SHAAPOM) oy

A—=00 A"
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Proof. The statement follows from the fact that the error term in estimating the volume
by using unit cubes centered at lattice points of a polytope is bounded by the (n — 1)-
dimensional area of the polytope, and this vanishes in the limit.

Therefore,

Proposition 11.1 If the line bundle of the divisor D on a non-singular and complete
toric variety X is generated by its sections and P is the corresponding polytope in the
unimodular lattice M then

()

n!

V(P) =

Remark. If we start with a rational convex polytope P in Mg, then we can construct
a non-singular and complete fan A(py in IV which is compatible with P. Now we have a
divisor D = Dp on the non-singular and complete toric variety X (Apy) which is generated
by its sections and whose corresponding polytope is P. Thus the Proposition tells us the
connection between the volume of P and the intersection number of n copies of D.

Now starting with n rational convex polytopes Py,..., P, in Mg and using Theorem
9.3 we consider the divisors Dq,..., D, on the toric variety X(A(p17...7pn)). Lemma 9.2
together with Corollary 9.1 yields that for positive integers Ay, ..., A, the rational convex
polytope M\ Py + ... + X\, P, corresponds to the divisor A\;Dy + ...+ A, D,. Hence by
Proposition 11.1

(MDi+ ...+ Do)

n!

VIMPL+ ...+ ...+ A P) =

Since the intersection number is multilinear we get the formula:
V(Pl,...,Pn) -

This is the formula we have intended so far.

11.3 Applications

In this subsection we give two applications of the preceding ideas. The first one is the
Alexander-Fenchel inequality the heart of analytic convexity. As a consequence we prove
the isoperimetric inequality. The second application is an alternative proof of the gener-
alization of Kushnirenko’s result (see section 7).

Theorem 11.3 (Alexander-Fenchel) For convex bodies Ki,..., K, in R" the follow-
ing holds:

V(Ki,...,K)2 > V(PP Ps,... P V(Py, Py, Ps,..., ).
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Proof. By Remark 1 after Definition 11.2 it is sufficies to prove the inequality for rational
convex polytopes P, ..., P, in Mg, where M is a unimodular lattice.

Thus let us given rational convex polytopes Pi,..., P, in Mg. Consider the divisors
Dy, ..., D, on the complete non-singular toric variety X = X(Ap, . p,)). By the corre-
spondence of the preceding section it is sufficient to show that if Dy,..., D, are divisors
whose line bundle is generated by its sections the following inequality is valid:

(Dy-...-D)>>(Dy-Dy-Dy-...-D)(Dy-Dy-Ds-...-D,).

It is possible to find'® effective divisors Hs, ..., H, which intersect transversally and whose
intersecion is a complete non-singular irreducible surface Y (and so is a projective surface)
and which are linearly equivalent with Ds, ..., D,, respectively. If we define F; and F,
to be the restrictions of Dy and D; to the surface Y the above inequality becomes:

(Dy - Dy)? > (D1 - Dy)(Dy - Dy).

We claim that this inequality is a consequence (and in fact an equivalent version) of the
Hodge index theorem.

To see this notice that (D7) > 0 and the inequality is obvious if (D?) = 0 so we can
suppose that (D7) > 0. Moreover, clearly

(D1 - ((Dy - Dy)Dy — (D - Dy)Dy) = 0.

According to the Hodge index theorem the intersection form on divisors has 1 positive
eigenvalue hence the divisor (D; - D1)Dy — (Dy - D) Dy has nonpositive selfintersection i.e.

(D1 - Dy)D3 — (Dy - Dy)Dy)? <0,

as required. The result follows.

Proof of the Isoperimetric inequality. Using the Alexander-Fenchel inequality an
easy induction argument shows that if Ky,..., K, are convex bodies in R” then

V(Ky,...,K,)" > V(Ky)-...- V(K,).

The isoperimetric inequality is a special case of this one.

Alternative proof of Theorem 1.1. We will prove a stronger result, which is due to
Bernstein:

Theorem 11.4 (Bernstein) Lel Sy,...,S, be finile subsels of the n-dimensional lattice
M. Then for the number N(S1,...,S,) of solutions of the system of n equations

Fj:Zaix”:() 7=1...,n
u€S;

15By a standard Bertini argument
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where the x;’s are nonzero complex numbers and the coefficienls al, are assumed lo be
‘general’ complex numbers, one gets the formula

N(Sl,...,Sn) = TL'V(Pl,,Pn)
where P; is the convex hull of S; (called the Newton polytope of F;).

The Laurent polynomials F; are defined on the complex torus T”. These are in fact
regular functions on T". Thus every Laurent polynomial F; determines a divisor div(F;)
on T” . The genericity of these polynomials means that the intersections of these divisors
are all isolated and transversal.

We cannot handle intersections on non-complete algebraic varieties therefore we are
going to 'compactificate’ the complex torus by constructing a complete non-singular toric
variety and consider the intersection of the ’closures’ (or rather 'continuations’ without
intersections outside the torus) of the divisors div(F;) and use Theorem ?.

We will make use of the following lemma.

Lemma 11.2 Let A be a complete fan compatible with the Newton polytope P of the
Laurent polynomial F' =Y, car ayz®, and let D be the T-Cartier divisor on X(A) corre-
sponding to P. Then D + div(F') is an effective divisor on X(A).

Proof. Firsnote that the Laurent polynomial /' can be considered as a rational function
on X(A) since A is a complete fan.

The assertion is that the order of D + div(F') along any codimension one subvariety
V of X(A) is nonnegative. This is clear if V' meets T", since F' is regular on T and V is
disjoint from T". Otherwise V is the subvariety corresponding to an edge of A (see the
remark after Definition 9.2). With v the generator of this edge, we have

ordy(F) > minordy(2*) = min (u,v) = v (v) = —ordy(D).

The result follows.

Proof of Theorem 11.4. Consider the divisors D; on the complete non-singular toric
variety X = X(A(p17...7pn)). As we saw at the end of the preceding section the right hand

side of Bernstein’s formula is equal to the intersection number (Dy - ... D,). Since the
effective divisor F; = D; 4+ div(F) is linearly equivalent to D;, this intersection number
is the same as (F; -...- F,). By the genericity of the polynomials F; we can suppose

that these effective divisors have no intersection on the complement of the torus T” since
this is an (n — 1)-dimensional subvariety of X. However, if we restrict the divisor D; to
the affine open subset T”, we get the divisor div(F') using that F; is T-Cartier and so
is disjoint from the torus. Therefore the intersection number of the divisors Fy,..., E,
coincides with the number of common points of the hypersurfaces F; = 0 in the torus T".
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