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Compacti�cation of moduli of Higgs bundles
By Tama#s Hausel at Oxford

Abstract. In this paper we consider a canonical compacti�cation of M, the moduli
space of stable Higgs bundles with �xed determinant of odd degree over a Riemann surface
&, producing a projective varietyM
 ^M4Z. We give a detailed study of the spaces M
 , Z
andM. In doing so we reprove some assertions of Laumon and Thaddeus on the nilpotent
cone.

1. Introduction

Magnetic monopoles, the solutions of Bogomolny equations of mathematical physics,
can be interpreted as solutions of the self-dual Yang-Mills equations on R4 which are
translation invariant in one direction. Motivated by this interpretation, Hitchin in GHit1H
addressed the problem of �nding solutions to the SU(2) self-dual Yang-Mills equations
on R4, which are translation invariant in two directions. Although such solutions of �nite
energy do not exist, due to the conformal invariance of the equations, it was possible to
�nd solutions of the corresponding SU(2) self-duality equations over a Riemann surface
&. In the same paper Hitchin gave an extensive description of the space of these solutions.

One important result shows how to assign in a certain one-to-one manner an algebro-
geometric object to a solution of Hitchin's self-duality equations. This algebro-geometric
object is called a stable Higgs bundle, which consists of a pair of a rank 2 holomorphic
vector bundle E on & and a section ' ` H0(&, End

0
(E)� K

D
). The latter is called the

Higgs �eld, after the analogous object in the monopole case.

In GHit1H, in these algebro-geometric terms, Hitchin investigates the moduli space
M of stable Higgs bundles with �xed determinant of degree 1. This notion and the cor-
responding moduli space has become important from a purely algebro-geometric point of
view, too. The main reason is that the cotangent bundle of N, the moduli space of stable
rank 2 vector bundles with �xed determinant of odd degree, which is a well researched
object in the algebraic geometry of vector bundles, sits inside M as an open dense subset.
Namely, (T<

N
)
E
is canonically isomorphic to H0(&, End

0
(E)� K

D
) thus the points of T<

Nare Higgs bundles.

Among other results Hitchin proved that M is a non-compact complete hyperk{hler
manifold. De�ned as above, in purely algebro-geometric terms, it was not surprising that
M turned out to be quasi-projective as Nitsure has shown in GNitH.



The main aim of this paper is to investigate a canonical compacti�cation of M:
among other things we show that the compacti�cation is projective, calculate its Picard
group, and calculate the Poincare> polynomial for the cohomology.

In this paper we use a simple method to compactify non-compact K{hler manifolds
with a nice proper Hamiltonian S1 action via Lerman's construction of symplectic cutting
GLerH. We use this method to compactify M. Our approach is symplectic in nature and
eventually produces some fundamental results about the spaces occurring, using existing
techniques from the theory of symplectic quotients.

We show that the compacti�cation described in this paper is a good example of Yau's
problem of �nding a complete Ricci �at metric on the complement of a nef anticanonical
divisor in a projective variety.

Many of the results of this paper can be easily generalized to other Higgs bundle
moduli spaces, which have been extensively investigated (see e.g. GNitH and GSim1H). As
a matter of fact Simpson gave a de�nition of a similar compacti�cation for these more
generalHiggs bundlemoduli spaces in Theorems 11.2 and 11.1 of GSim2H and in Proposition
17 of GSim3H, without investigating it in detail. For example, the projectiveness of the
compacti�cation is not clear from these de�nitions. One novelty of our paper is the proof
of the projectiveness of the compacti�cation in our case.

Since the compacti�cation method used in this paper is fairly general it is possible
to apply it to other K{hler manifolds with the above properties. It could be interesting
for instance to see how this method works for the toric hyperk{hler manifolds of Goto
GGotoH and Bielawski and Dancer GBi,DaH.

Finally, as a conclusion, we note that the compacti�cation of this paper solves one
half of the problem of compactifying the moduli space M, namely the "outer' half, i.e.
shows what the resulting spaces look like; while the other half of the problem the "inner'
part, i.e. how this �ts into the moduli space description ofM, is treated in the recent paper
of Schmitt GSchmH. Schmitt's approach is algebro-geometric in nature, and concerns mainly
the construction of the right notion for moduli to produceM
 , thus complements the present
paper. The relation between the two approaches deserves further investigation.

Acknowledgements. First of all I would like to thank my supervisor Nigel Hitchin
for fruitful supervisions. The compatibility with Yau's problem was suggested by Michael
Atiyah, while Lerman's symplectic cutting was suggested by Michael Thaddeus. With both
of them I had very inspiring conversations. I also thank Bala> zs Szendro� i and the referee
for helpful comments. Finally, I thank Trinity College, Cambridge for �nancial support.

2. Statement of results

In this section we describe the structure of the paper and list the results.

In Section 3 we collect the existing results about C< actions on K{hler manifolds
and subsequently on K{hler quotients from the literature. We explain a general method
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of compactifying K{hler manifolds with a nice, proper, Hamiltonian S1 action. The rest
of the paper follows the structure of Section 3.

In Section 4 we de�ne the basic notions and restate some results of Hitchin about
M. Here we learn that the results of Section 3 apply to M. We describe here our toy
example M

toy
, the moduli space of parabolic Higgs bundles on P1

4
, which serves as an

example throughout the paper.

In Section 5 (following ideas of Subsection 3.1) we describe the nilpotent cone after
Thaddeus GTha1H and show that it coincides with the downward Morse �ow (Theorem
5.2). We reprove Laumon's theorem in our case, that the nilpotent cone is Lagrangian
(Corollary 5.3).

In Section 6 we describe Z, the highest level K{hler quotient of M, while in 7 we
analyseM
 ^M4Z. Here we follow the approaches of Subsection 3.2 and Subsection 3.3,
respectively. Among others, we prove the following statements:

. M
 is a compacti�cation of M, the moduli space of stable Higgs bundles with �xed
determinant and degree 1 (Theorem 7.2).

. Z is a symplectic quotient of M by the circle action (E,')) (E, eiH'). M
 is a
symplectic quotient of M^C with respect to the circle action, which is the usual one on
M and multiplication on C.

. While M is a smooth manifold, Z is an orbifold, with only Z
2
singularities corres-

ponding to the �xed point set of the map (E,')) (E,^') on M (Theorem 6.2), while
similarly M
 is an orbifold with only Z

2
singularities, and the singular locus of M
 coincides

with that of Z (Theorem 7.3).

. The Hitchin map

s :M 1 C3g+3

extends to a map

s� :M
 1 P3g+3

which when restricted to Z gives a map

s� : Z 1 P3g+4

whose generic �bre is a Kummer variety corresponding to the Prym variety of the generic
�bre of the Hitchin map (Theorem 6.10, Theorem 7.8).

. M
 is a projective variety (Theorem 7.11), with divisor Z such that

(3g^2)Z^^K
M�
,

the anticanonical divisor of M
 (Corollary 7.7).
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. Moreover, Z itself is a projective variety (Theorem 6.16) with an inherited holo-
morphic contact structure with contact line bundle L

Z
(Theorem 6.9) and a one-parameter

family of K{hler forms u
t
(Z) (Theorem 6.15). The Picard group of Z is described in

Corollary 6.7. Moreover, the normal bundle of Z inM
 is L
Z
which is nef by Corollary 6.14.

. Furthermore, M
 has a one-parameter family of K{hler forms u
t
(M
 ), which when

restricted Z gives the above u
t
(Z).

. Z is birationally equivalent to P (T<
N
) the projectivized cotangent bundle of the

moduli space of rank 2 stable bundles with �xed determinant and odd degree (Corollary
6.4). M
 is birationally equivalent to P (T<

N
� O

N
), the canonical compacti�cation of T<

N(Corollary 7.4).

. We calculate certain sheaf cohomology groups in Corollary 6.12 and Corollary
6.13 and interpret some of these results as the equality of certain in�nitesimal deformation
spaces.

. The Poincare> polynomial of Z is described inCorollary 6.5, the Poincare> polynomial
of M
 is described in Theorem 7.12.

. We �nish Section 7 by showing an interesting isomorphism between two vector
spaces: one contains information about the intersection of the components of the nilpotent
cone, the other says something about the contact line bundle L

Z
on Z.

3. Compacti�cation by symplectic cutting

In this section we collect the results from the literature concerning C< actions on
K{hler manifolds. At the same time we sketch the structure of the rest of the paper.

3.1. Strati�cations. Suppose that we are given a K{hler manifold (M, I,u) with
complex structure I and K{hler form u. Suppose also that C< acts on M biholomorphi-
cally with respect to I and such that the K{hler form is invariant under the induced action
of S1!C<. Suppose furthermore that this latter action is Hamiltonian with proper moment
map k : M 1 R, with �nitely many critical points and 0 being the absolute minimum of
k. Let JN

A
K
A `A

be the set of the components of the �xed point set of the C< action.

We list some results of GKirH extended to our case. Namely, Kirwan's results are
stated for compact K{hler manifolds, but one can alwaysmodify the proof for non-compact
manifolds as above (cf. Chapter 9 in GKirH).

There exist two strati�cations in such a situation. The �rst one is called the Morse
strati�cation and can be de�ned as follows. The stratum SM

A
is the set of points of M

whose path of steepest descent for the Morse function k and the K{hler metric have limit
points in N

A
. One can also de�ne the sets TM

A
as the points of M whose path of steepest

descent for the Morse function ^k and the K{hler metric have limit points in N
A
. SM

Agives a strati�cation even in the non-compact case, however the set T
A

TM
A

is not the whole

space but a deformation retract of it. The set T
A

TM
A

is called the downward Morse �ow.
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The other strati�cation is the Bialynicki-Birula strati�cation, where the stratum SB
Ais the set of points p ` M for which lim

tU0
t p ` N

A
. Similarly, as above, we can de�ne TB

A
as

the points p ` M for which lim
tU'

t p ` N
A
.

One of Kirwan's important results in GKirH, Theorem 6.16 asserts that the strati�-
cations SM

A
and SB

A
coincide, and similarly TM

A
^TB

A
^ T

A
. This result is important because

it shows that the strata S
A
^ SM

A
^ SB

A
of the strati�cations are total spaces of a�ine bundles

(so-called b-�brations) on N
A
(this follows from the Bialynicki-Birula picture) andmoreover

this strati�cation is responsible for the topology of the space M (this follows from the
Morse picture). Thus we have the following theorem (cf. Theorem 4.1 of GBiaH and also
Theorem 1.12 of GTha3H):

Theorem 3.1. S
A

and T
A

are complex submanifolds of M. They are isomorphic to total
spaces of some b-�brations over N

A
, such that the normal bundle of N

A
in these b-�brations

are E;
A

and E+
A
, respectively, where E;

A
is the positive and E+

A
is the negative subbundle of

T
M
�
Na

with respect to the S1 action.

Moreover, the downward Morse �ow T
A

T
A

is a deformation retract of M.

Recall that a b-�bration in our case is a �bration E 1 Bn with a C< action on the
total space which is locally like Cn^V, where V is the C< module b : C<1GL(V ). Note
that such a �bration is not a vector bundle in general, but it is if b is the sum of isomorphic,
one-dimensional non-trivial C< modules.

3.2. K{hler quotients. We de�ne an action to be semi-free if the stabilizer of any
point is �nite or the whole group itself.

Whenever we are given a Hamiltonian, proper, semi-free S1 action on a K{hler
manifold, we can form the K{hler quotients Q

t
^k+1(t)�S1, which are compact K{hler

orbifolds at a regular value t of k.

If this S1 action is induced from an action of C< on M as above, then we can relate
the K{hler quotients to the quotients M�C< as follows. First we de�ne Mmin

t
!M as the

set of points in M whose C< orbit intersects k+1(t). Now a theorem of Kirwan states (see
Theorem 7.4 in GKirH) that it is possible to de�ne a complex structure on the orbit space
Mmin
t

�C<, and she also proves that this space is homeomorphic to Q
t
, de�ning the complex

structure for the K{hler quotient Q
t
. (Here again we used the results of Kirwan for

non-compactmanifolds, but as above, these results can be easily modi�ed for our situation.)
It now simply follows that Mmin

t
only depends on that connected component of the regular

values of k in which t lies, and as a consequence of this we can see that the complex
structure on Q

t
is the same as on Q

tD
if the interval Gt, tFH does not contain any critical

value of k. We have as a conclusion the following theorem:

Theorem 3.2. At a regular level t ` R of the moment map k, we have the K{hler
quotient Q

t
^ k+1(t)�S1 which is a compact K{hler orbifold with Mmin

t
as a holomorphic C<

principal orbibundle on it. Moreover Mmin
t

and the complex structure on Q
t

only depend on
that connected component of the regular values of k where t lies.
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It follows from the above theorem that there is a discrete family of complex orbifolds
which arise from the above construction. Moreover, at each level we get a K{hler form
on the corresponding complex orbifold. The evolution of the di�erent K{hler quotients
has been well investigated (e.g. in the papers GDu,HeH, GGu,StH, cf. also GTha3H and
GBr,PrH). We can summarize these results in the following theorem:

Theorem 3.3. The K{hler quotients Q
t

and Q
tD

are biholomorphic if the interval Gt, tFH
does not contain a critical value of the moment map. They are related by a blowup followed
by a blow-down if the interval Gt, tFH contains exactly one critical point c di�erent from the
endpoints. To be more precise, Q

t
blown up along the union of submanifolds T

K(Na):c
P
w
(E+

A
)

is isomorphic to Q
tD

blown up along T
K(Na):c

P
w
(E;

A
) and in both cases the exceptional divisor

is T
K(Na):c

P
w
(E;

A
)^

Na
P
w
(E+
A
) the �bre product of weighted projective bundles over N

A
.

Moreover, in a connected component of the regular values of k the cohomology classes
of the K{hler forms u

t
(Q

t
) depend linearly on t according to the formula :

Gu
t
(Q

t
)H^Gu

tD
(Q

tD
)H^ (t^ tF)c

1
(Mmin

t
)^ (t^ tF)c

1
(Mmin

tD
) ,

where c
1

is the �rst Chern class of the C< principal bundle.

3.3. Symplectic cuts. Now let us recall the construction of the symplectic cut we
need (see GLerH and also GEd,GrH for the algebraic case), �rst in the symplectic and second
in the K{hler category.

If (M,u) is a symplectic manifold with a Hamiltonian and semi-free S1 action and
proper moment map k with absolute minimum 0, then we can de�ne the symplectic cut
of M at the regular t by a symplectic quotient construction as follows.

We let S1 act on the symplectic manifold M^C (where the symplectic structure is
the product of the symplectic structure on M and the standard symplectic structure on C)
by acting on the �rst factor according to the above S1 action and on the second factor
by the standard multiplication. This action is clearly Hamiltonian with proper moment
map k^k

C
, where k

C
is the standard moment map on C : k

C
(z)^ �z �2.

Now if t is a regular value of the moment map k^k
C
, such that S1 acts with �nite

stabilizers on M
t
^ k+1(t) (i.e. M

t
�S1 gives a symplectic orbifold), then the symplectic

quotient M

K"t

de�ned by

M

K"t

^ J(m,w) ` M^C : k (m)^ �w �2^ tK

will be a symplectic compacti�cation of the symplectic manifold M
K"t

in the sense that

M

K"t

^M
K"t

4Q
t
,

and the inherited symplectic structure on M

K"t

restricted to M
K"t

coincides with its original
symplectic structure. Moreover, if we restrict this structure onto Q

t
it coincides with its

quotient symplectic structure.
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Now suppose that we are given a K{hler manifold (M, I,u) and a holomorphic C<
action on it, such that the induced S1!C< action preserves theK{hler form and is semi-free
and Hamiltonian with proper moment map. With these extra structures the symplectic cut
construction will give us M


K"t
a compact K{hler orbifold with a C< action, such that

M

K"t

]Q
t
is symplectomorphic to M

K"t
as above and furthermore is biholomorphic to

C<(M
K"t

), the union of C<-orbits intersecting M
K"t

. (This is actually an important point,
as it shows that M

K"t
is not K{hler isomorphic to M


K"t
]Q

t
, cf. GLerH.) We can collect all

these results into the next theorem:

Theorem 3.4. The symplectic cut M

K"t

^M
K"t

4Q
t

as a symplectic manifold com-
pacti�es the symplectic manifold M

K"t
, such that the restricted symplectic structure on Q

t
coincides with the quotient symplectic structure.

Furthermore if M is a K{hler manifold with a C< action as above, then M

K"t

will be
a K{hler orbifold with a C< action, such that Q

t
with its quotient complex structure is a

codimension 1 complex suborbifold of M

K"t

whose complement is equivariantly biholomorphic
to C<(M

K"t
) with its canonical C< action.

Remark. Note that if t is higher than the highest critical value (this implies that
we have �nitely many of them), then C<(M

K"t
)^M is the whole space, therefore the

symplectic cutting in this case gives a holomorphic compacti�cation of M itself. The
compacti�cation is M


K"t
, which is equal to the quotient of (M^C^N^J0K) by the action

of C<, where N is the downward Morse �ow. This is the compacti�cation we shall examine
here for the case of M, the moduli space of stable Higgs bundles with �xed determinant
of degree 1.

4. The moduli of Higgs bundles M

Notation 4.1. Let

. & be a closed Riemann surface of genus g~1,

. + a �xed line bundle on & of degree 1,

. N the moduli space of rank 2 stable bundles with determinant +,

. M denote the moduli space of stable Higgs pairs (E,'), where E is a rank 2 vector
bundle on & with detE ^+ and ' ` H0(&, End

0
E � K

D
).

Remark. For the terms used above we refer the reader to GHit1H and GSim1H.

After introducing the space M, Hitchin gave its extensive description in GHit1H,
GHit2H. Here we restate some of his results.

. M is a noncompact, smooth manifold of dimension 12 g^12 containing T<
N

as a
dense open set.

. Furthermore M is canonically a Riemann manifold with a complete hyperk{hler
metric. ThusM has complex structures parameterized by S2. One of the complex structures,
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for which T<
N
is a complex submanifold, is distinguished, call it I. We will only be concerned

with this complex structure here. The others (apart from ^I ) are biholomorphic to each
other and give M the structure of a Stein manifold. From these K{hler forms one can
build up a holomorphic symplectic form u

h
on (M, I ).

. There is a map, called the Hitchin map

s :M 1 H0(&, K2
D
)^C3g+3

de�ned by

(E,') ) det' .

The Hitchin map is proper and an algebraically completely integrable Hamiltonian system
with respect to the holomorphic symplectic form u

h
, with generic �bre a Prym variety

corresponding to the spectral cover of & at the image point.

. Let u denote the K{hler form corresponding to the complex structure I. There is
a holomorphic C< action on M de�ned by (E,')) (E, z'). The restricted action of S1
de�ned by (E,')1 (E, e iH') is isometric and indeed Hamiltonian with proper moment
map k. The function k is a perfect Morse function, moreover:

k has g critical values: an absolute minimum c
0
^ 0 and c

d
^ �d^

1
2� n, where

d^1, . . . , g^1.

k+1(c
0
)^k+1(0)^ N

0
^N is a non-degenerate critical manifold of index 0.

k+1(c
d
)^N

d
is a non-degenerate critical manifold of index 2(g ^2d^2) and is

di�eomorphic to a 22g-fold cover of the (2g^2d^1)-fold symmetric product
S2g+2d+1(&).

. The �xed point set S of the involution p (E,')^ (E,^') is the union of g complex
submanifolds of M namely,

S ^N4
g+1
T
d:1

F
d
,

where F
d
is the total space of a vector bundle F

d
over Z

d
. Moreover F

d
is a complex

submanifold of dimension 3 g^3.

Using an algebraic point of view Nitsure in GNitH could prove:

Theorem 4.2 (Nitsure). M is a quasi-projective variety.

The main aim of this paper is to examine in certain sense the canonical compacti�-
cation of M.

Example. Unfortunately, even when g ^ 2 the moduli space M is already 6 dimen-
sional, too big to serve as an instructive example. We rather choose M

toy
, the moduli space

of stable parabolic Higgs bundles on P1, with four marked points, in order to show how
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our later constructions work. (These moduli spaces were considered by Yokogawa GYokoH.)
We choose this example because it is a complex surface, and can be constructed explicitly.

We �x four distinct points on P1 and denote by P1
4

the corresponding complex
orbifold. Let P be the elliptic curve corresponding to P1

4
. Let p

P
be the involution

p
P
(x)^^x on P. Thus, P�p

P
is just the complex orbifold P1

4
. The four �xed points of

the involution x
1
, x

2
, x

3
, x

4
` P correspond to the four marked points on P1

4
. Furthermore,

let q be the involution q (z)^^z on C.

Consider now the quotient space (P^C)�(p
P
^q). This is a complex orbifold of

dimension 2 with four isolated Z
2
quotient singularities at the points x

i
^0. Blowing up

these singularities we get a smooth complex surface M
toy

with four exceptional divisors
D
1
, D

2
, D

3
and D

4
. Moreover the map s : (P^C)1 C sending (z, x)) z2, descends to the

quotient (P^C)�(p
P
^q) and sending the exceptional divisors to zero one obtains a map

s
toy

:M
toy

1 C, with generic �bre P. The map s
toy

will serve as our toy Hitchin map.

Moreover there is a C< action on M
toy
, coming from the standard action on C. The

�xed point set of S1!C< has �ve components: one is N
toy

!M
toy

(the moduli space of
stable parabolic bundles on P1

4
) which is the proper transform of

(P^0)�(q^p
P
)^ P1

4
! (P^C)�(p

P
^q)

in M
toy
. The other four components consist of single points x�

i
` D

i
, i ^1, 2, 3, 4.

The �xed point set of the involution p :M
toy

1M
toy

has �ve components, one of
which is N

toy
, the other F

i
are the proper transforms of the sets

(x
i
^C)�(p

P
^q)! (P^C)�(p

P
^q) .

5. The nilpotent cone N

The results in the previous section show that theK{hler manifold (M, I,u) is equipped
with a C< action which restricts to an S1!C< action which is semi-free and Hamiltonian
with proper moment map k. Moreover, 0 is an absolute minimum for k. Therefore we
are in the situation described in Section 3. In the following sections we will apply the ideas
developed there to our situation and deduce important properties of the spacesM, Z andM
 .

We saw in Theorem 3.1 that the downward Morse �ow is a deformation retract of
M, so it is responsible for the topology, and as such it is an important object. On the other
hand we will prove that the downward Morse �ow coincides with the nilpotent cone.

De�nition 5.1. The nilpotent cone is the preimage of zero of the Hitchin map
N^ s+1(0).

The name "nilpotent cone' was given by Laumon, to emphasize the analogy with the
nilpotent cone in a Lie algebra.
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In our context this is the most important �bre of the Hitchin map, and the most
singular one at the same time. We will show below that the nilpotent cone is a central
notion in our considerations.

Laumon in GLauH investigated the nilpotent cone in a much more general context
and showed its importance in the Geometric Langlands Correspondence. Thaddeus in
GTha1H concentrated on our case, and gave the exact description of the nilpotent cone. In
what follows we will reprove some of their results.

The following assertion was already stated in GTha1H which will turn out to be crucial
in some of our considerations.

Theorem 5.2. The downward Morse �ow coincides with the nilpotent cone.

Proof. As we saw in Theorem 3.1 the downward Morse �ow can be identi�ed with
the set of points in M whose C< orbit is relatively compact in M.

Since the nilpotent cone is invariant under the C< action and compact (s is proper)
we immediately get that the nilpotent cone is a subset of the downward Morse �ow.

On the other hand if a point in M is not in the nilpotent cone then the image of its
C< orbit by the Hitchin map is a line in C3g+3, therefore cannot be relatively compact. ;

Laumon's main result is the following assertion (cf. Theorem 3.1 in GLauH), which
we prove in our case:

Corollary 5.3 (Laumon). The nilpotent cone is a Lagrangian subvariety of M with
respect to the holomorphic symplectic form u

h
.

Proof. The Hitchin map is a completely integrable Hamiltonian system, and the
nilpotent cone is a �bre of this map, so it is coisotropic. Therefore it is Lagrangian if and
only if its dimension is 3 g^3.

On the other hand the nilpotent cone is exactly the downward Morse �ow and we
can use Hitchin's description of the critical submanifolds in GHit1H, giving that the sum
of the index and the real dimension of any critical submanifold is 6 g^6. We therefore
conclude that the complex dimension of the downward Morse �ow (i.e. the nilpotent cone)
is 3g^3. ;

Remark. Nakajima's Proposition 7.1 in GNakH states that if X is a K{hler manifold
with a C< action and a holomorphic symplectic form u

h
of homogeneity 1 then the

downward Morse �ow of X is Lagrangian with respect to u
h
. Thus Nakajima's result and

Theorem 5.2 together give an alternative proof of the theorem. We prefered the one above
for it concentrates on the speci�c properties of M.
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From the above proof we can see that for higher rank Higgs bundles Laumon's
theorem is equivalent to the assertion that every critical submanifold contributes to the
middle dimensional cohomology, i.e. the sum of the index and the real dimension of any
critical submanifold should always be half of the real dimension of the corresponding
moduli space.

Using the results of GGoth1H one easily shows that the above statement also holds
for the rank 3 case. Gothen could show directly the above statement for any rank and
therefore gave an alternative proof of Laumon's theorem in these cases GGoth2H.

Corollary 5.4. The middle dimensional homology H
6g+6

(M) of M is freely generated
by the homology classes of components of the nilpotent cone and therefore has dimension g.

Proof. We know that each component of N is a projective variety of dimension
3 g^3. N is a deformation retract of M, therefore the middle dimensional homology of
M is generated by the homology classes of the components of N. Furthermore, from the
Morse picture, components of N are in a one-to-one correspondence with the critical
manifolds of M, so there are g of them. The result follows. ;

We �nish this section with Thaddeus's description of the nilpotent cone (see GTha1H,
cf. GLauH).

Theorem 5.5. The nilpotent cone is the union of N and the total spaces of vector
bundles E+

d
over N

d
, where E+

d
is the negative subbundle of T

M
�
Nd
.

Moreover, the restricted action of C< on N is just the inverse multiplication on the �bres.

Proof. This follows directly from Theorem 3.1 and Theorem 5.2, with noting that
by Hitchin's description of the weights of the circle action on T

M
�N
d
in the proof of

Proposition 7.1 of GHit1H, we have that there is only one negative weight. Therefore the
b-�bration of Theorem 3.1 is a vector bundle in this case. The result follows. ;

Remark. From the description of E+
d

in GTha1H and that of F
d
, a component of the

�xed point set of the involution p (E,')^ (E,^'), in GHit1H, one obtains the remarkable
fact that the vector bundle E+

d
is actually dual to F

d
.

Example. In our toy example we have the elliptic �bration s
toy

:M
toy

1 C, with the
only singular �bre N

toy
^ s+1

toy
(0), the toy nilpotent cone. We have now the decomposition

N
toy

^N
toy

4
4
T
i:1

D
i
,

where we think of D
i
as the closure of E

i
, the total space of the trivial line bundle on x�

i
.

The possible singular �bres of elliptic �brations have been classi�ed by Kodaira (cf.
GB,P,VH, p. 150). According to this classi�cation N

toy
is of type I<

0
(D�

4
).
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6. The highest level K{hler quotient Z

In this section we apply the ideas of Subsection 3.2 to our situation.

De�nition 6.1. De�ne for every non-negative t the K{hler quotient

Q
t
^k+1(t)�S1 .

As the complex structure of the K{hler quotient depends only on the connected component
of the regular values of k, we can de�ne Z

d
^Q

t
for c

d
~ t~c

d;1
as a complex orbifold

(we take c
g
^8). Similarly, we de�ne X

Zd
to be Mmin

t
for c

d
~ t~c

d;1
.

For simplicity let the highest level quotient Z
g+1

be denoted by Z and the corres-
ponding C< principal bundle X

Zg�1
by X

Z
.

In the spirit of Theorem 3.3 we have the following

Theorem 6.2. Z
d

is a complex orbifold with only Z
2

-singularities, where the singular
locus is di�eomorphic to some union of projectivized vector bundles P (F

i
):

sing(Z
d
)^ T

0"i�d
P (F

i
) ,

where F
i
!M is the total space of a vector bundle over N

i
and is a component of the �xed

point set of the involution p (E,')^ (E,^').

Proof. The induced action of S1 on C3g+3 by the Hitchin map is multiplication by
e2iH so an orbit of S1 on M ]N is a non trivial double cover of the image orbit on C3g+3.
On the other hand by Thaddeus' description of N (Theorem 5.5) it is clear that if a point
of N is not a �xed point of the circle action, then the stabilizer is trivial at that point.

Summarizing these two observations we obtain that if a point of M is not �xed by
S1, then its stabilizer is either trivial or Z

2
. The latter case occurs exactly at the �xed point

set of the involution p. The statement now follows from Theorem 3.3. ;

Proposition 6.3. Z
d

and Z
d;1

are related by a blowup following by a blowdown.

Namely, Z
d

blown up along P (E+
d
) is the same as the singular quotient Q

cd
blown up

along N
d
(its singular locus), which in turn gives Z

d;1
blown up at P (E;

d
).

Moreover, this birational equivalence is an isomorphism outside an analytic set of
codimension at least 3.

Proof. The �rst bit is just the restatement of Theorem 3.3 in our setting.

The second part follows because dim (P (E+
d
))^ 3 g^3^1~6 g^6^2 and

dim(P (E;
d
))^ 3 g^3^2 g^2 d^1^1~6 g^6^2 for g~1. ;
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Corollary 6.4. Z^Z
g+1

is birationally equivalent to P (T<
N
)^Z

0
. Moreover this

gives an isomorphism in codimension ~2.

Proof. Obviously X
Z0

is T<
N
, and therefore by Theorem 3.2, Z

0
is isomorphic to

the projectivized cotangent bundle P (T<
N
). The statement follows from the previous the-

orem. ;

Corollary 6.5. Z has Poincare! polynomial

P
t
(Z)^

t6g+6^1
t2^1

P
t
(N)^

g+1
\
i:1

t6g+6^ t2g+4;4i
t2^1

P
t
(N

i
) ,

where N
i

is a 22g-fold cover of S2i+1&.

Proof. One way to derive this formula is through Kirwan's formula in GKirH. We
use the above blowup, blowdown picture instead. This approach is due to Thaddeus, see
GTha2H.

Applying the formula in GGr,HaH, p. 605 twice we get that

P
t
(Z

d;1
)^P

t
(Z

d
)^P

t
(PE;

d
)^P

t
(PE+

d
) .

On the other hand for a projective bundle on a manifold P 1 M with �ber Pn one
has (cf. GGr,HaH, p. 606)

P
t
(P)^

t2n;2^1
t2^1

P
t
(M) .

Hence the formula follows. ;

Remark. All the Poincare> polynomials on the right hand side of the above formula
have been calculated. For P

t
(N) see e.g. GAt,BoH for P

t
(N
d
) see GHit1H.

We will determine the Picard group of Z exactly. First we de�ne some line bundles
on several spaces.

Notation 6.6. Let

. L
N

denote the ample generator of the Picard group of N (cf. GDr,NaH),

. L
PT�N

be its pullback to PT<
N
,

. L
Z
denote the corresponding line bundle on Z (cf. Corollary 6.4),

. L
PT�N

be the dual of the tautological line bundle on PT<
N
,

. L
Z
^X<

Z
^
C�

C denote the corresponding line orbibundle on Z.

H a u se l, Compacti�cation of moduli of Higgs bundles 181



Corollary 6.7. Pic(Z), the Picard group of Z, is of rank 2 over Z and is freely generated
by L

Z
and L

Z
.

Remark. The Picard group of Z is the group of invertible sheaves on Z. As the
singular locus of Z has codimension ~2, this group can be thought of as the group of
holomorphic line orbibundles on Z. Namely, in this case the restriction of a holomorphic
line orbibundle to Z ]sing(Z) gives a one-to-one correspondence between holomorphic
line orbibundles on Z and holomorphic line bundles on Z ]sing(Z), by the appropriate
version of Hartog's theorem.

Proof. It is well known that Pic(N) is freely generated by one ample line bundle
L
N
therefore is of rank 1 (cf. GDr,NaH). Thus Pic(P (T<

N
)) is of rank 2 and freely generated

by L
PT�N

the pullback of L
N

and the dual of the tautological line bundle L
PT�N

. From
Corollary 6.4, Pic (Z) is isomorphic with Pic(P (T<

N
)) therefore is of rank 2, and freely

generated by L
Z
and L

Z
, where L

Z
is isomorphic to L

PT�N
and L

Z
is isomorphic to L

PT�Noutside the codimension 2 subset of Corollary 6.4. ;

De�nition 6.8. A contact structure on a compact complex orbifold Z of complex
dimension 2n^1 is given by the following data:

1. a contact line orbibundle L
Z
such that Ln

Z
^K+1

Z
, where K

Z
is the line orbibundle

of the canonical divisor of Z,

2. a complex contact form h ` H0(Z,:1(Z)� L
Z
) a holomorphic L

Z
valued 1-form,

such that

(1) 0@ h) (dh)n+1 ` H0(Z,:2n+1(Z)� K+1
Z
)^ H0(Z, O

Z
)^C

is a nonzero constant.

Theorem 6.9. There is a canonical holomorphic contact structure on Z with contact
line orbibundle L

Z
.

Proof. This contact structure can be created by the construction of Lebrun as in
GLebH, Remark 2.2. We only have to note that the holomorphic symplectic form u

h
on

M is of homogeneity 1.

The construction goes as follows. If n : X<
Z
1 Z denotes the canonical projection of

the C< principal orbibundle X<
Z
the dual of X

Z
, then n<(L

Z
) is canonically trivial with the

canonical section having homogeneity 1. Thus in order to give a complex contact form
h ` H0(Z,:1(Z)� L

Z
) it is su�icient to give a 1-form n<h on X< of homogeneity 1. This

can be de�ned by n<h^ i (m)u
h
, where m ` H0(M, T

M
) is the holomorphic vector �eld

generated by the C< action. The non-degeneracy condition (1) is exactly equivalent to
requiring that the closed holomorphic 2 form u

h
satisfy un

h
@ 0. This is the case as u

h
is

a holomorphic symplectic form.

The result follows. ;
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We will be able to determine the line orbibundle L
Z
explicitly. For this, consider the

Hitchin map s :M1 C3g+3. As it is equivariant with respect to the C< action, s induces
a map

s� : Z 1 P3g+4

on Z. The generic �bre of this map is easily seen to be the Kummer variety corresponding
to the Prym variety (the Kummer variety of an Abelian variety is the quotient of the
Abelian variety by the involution x 1^x), the generic �bre of the Hitchin map. Thus we
have proved

Lemma 6.10. There exists a map s : Z 1 P3g+4 the reduction of the Hitchin map
onto Z, for which the generic �bre is a Kummer variety.

Remark. This observation was already implicit in Oxbury's thesis (cf. 2.17a of
GOxbH).

The following theorem determines the line bundle L
Z
in terms of the Hitchin map.

Theorem 6.11. L2
Z
^ s� <H

3g+4
where H

3g+4
is the hyperplane bundle on P3g+4.

Proof. We understand from Corollary 6.7 that s� <H
3g+4

^Lk
Z
� Ll

Z
for some in-

tegers k and l.

We show that k ^ 0. For this consider the pullback of L
Z
onto M ]N the total space

of the C< principal orbibundle X<
Z
. This line orbibundle extends to M as L

M
and restricts

to T<
N

as the pullback of L
PT�N

by construction. c
1
(L
M
) is not trivial when restricted to N

(namely it is c
1
(L
N
), since this bundle is ample) therefore is not trivial when restricted to

a generic �bre of the Hitchin map. We can deduce that c
1
(L

Z
) is not trivial on the generic

�bre of s� .

However L
Z
restricted to a generic �bre of s� can be described as follows. Let this

Kummer variety be denoted by K, the corresponding Prym variety by P. Form the space
P^C<, the trivial C< principal bundle on P and quotient it out by the involution
q (p, z)^ (^p,^z). The resulting space is easily seen to be the C< orbit of the Prym P
in M, therefore the total space of the C< principal orbibundle L<

Z
](L<

Z
)
0
on K. Hence L2

Zis the trivial line orbibundle on K. Thus c
1
(L

Z
�
K
)^ 0.

Now s� <H
3g+4

is trivial on the Kummer variety. Hence the assertion k^ 0.

The rest of the proof will follow the lines of Hitchin's proof of Theorem 6.2 in GHit2H.
We show that l ^ 2.

The sections of L
Z
can be identi�ed with holomorphic functions homogeneous of

degree 2 on the C< principal orbibundle X
Z
^L<

Z
](L<

Z
)
0
. As N is of codimension ~2 such

functions extend to M. Since the Hitchin map is proper, these functions are constant on
the �bers of the Hitchin map, therefore are the pullbacks of holomorphic functions on
C3g+3 of homogeneity 1 which can be identi�ed with the holomorphic sections of the
hyperplane bundle H

3g+4
on P (C3g+3)^P3g+4. ;
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Corollary 6.12. If n is odd, there are natural isomorphisms

H0(Z, Ln
Z
)� H0(N, S nT

N
)� 0 ,

whereas if n is even, then

H0(Z, Ln
Z
)�H0(N, S nT

N
)� H0(P3g+4,H n

23g+4
) .

Proof. We show that H0(Z, L
Z
)�H0(N, S n (T

N
)) for every n, the rest of the the-

orem will follow from Theorem 6.2 of GHit2H.

By Proposition 6.3 we get that H0(Z, Ln
Z
)� H0 (PT<

N
, Ln

PT�N
). Let n : PT<

N
1N de-

note the projection. It is well known that the Leray spectral sequence for n degenerates
at the E2 term. Moreover, we have that R in

<
(Ln

PT�N
)^ 0 if 0~ i~3 g^4 (cf. GHarH,

Theorem 5.1b). Therefore H0(PT<
N
, Ln

PT�N
)� H0(N, n

<
(Ln

PT�N
)). Finally the sheaf n

<
(Ln
PT�N

)
is S n (T

N
), which proves the statement. ;

We can moreover determine the �rst cohomology group corresponding to the in�-
nitesimal deformations of the holomorphic contact structure on Z and can interpret it in
a nice way.

Corollary 6.13. There are canonical isomorphisms

H1(Z, L
Z
)� (H1(M, O

M
))
1
�H1(N, T

N
)� H1(&, K+1

D
) ,

where (H1(M, O
M
))
1
!H1(M, O

M
) is the vector space of elements of H1(M, O

M
) homogeneous

of degree 1.

Proof. We may use the cohomological version of Hartog's theorem (cf. GScheH) to
show that H1(Z, L

Z
)�H1(PT<

N
, L

PT�N
), as Z and PT<

N
are isomorphic on an analytic set

of codimension ~3 (cf. Proposition 6.3).

The proof of the other isomorphisms can be found in GHit3H. ;

Remark. We can interpret this result as saying that the deformation of the complex
structure on & corresponds to the deformation of complex structure on N, to the defor-
mation of holomorphic contact structure on Z (cf. GLebH) and to the deformation of the
holomorphic symplectic structure of homogeneity 1 on M.

As an easy corollary of the above we note the following

Corollary 6.14. The line orbibundle L
Z

is nef but neither trivial nor ample.

Proof. L
Z
is certainly not ample since c

1
(L

Z
) is trivial on the Kummer variety.

On the other hand L2
Z
being the pullback of an ample bundle is not trivial and is nef

itself, hence the result. ;
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The next theorem will describe the inherited K{hler structures of Z. Considering the
one-parameter family of K{hler quotients Q

t
, t~c

g+1
we get a one-parameter family of

K{hler forms u
t
on Z. Theorem 1.1 from GDu,HeH gives the following result for our case

(cf. Theorem 3.3).

Theorem 6.15 (Duistermaat, Heckman). The complex orbifold Z has a one-parameter
family of K{hler forms u

t
, t~c

g+1
such that

Gu
t1
(Z)H^Gu

t2
(Z)H^ (t

1
^ t

2
)c
1
(L

Z
)

where t
1
, t
2
~c

g+1
and Gu

t
H ` H2 (Z, R) is the cohomology class of u

t
.

Many of the above results will help us to prove the following theorem.

Theorem 6.16. Z is a projective algebraic variety.

Proof. By the Kodaira embedding theorem for orbifolds (cf. GBaiH) we have only
to show that Z with a suitable K{hler form is a Hodge orbifold, i.e. the K{hler form is
integer. For this to see we show that the K{hler cone of Z contains a subcone, which is
open in H2 (Z, R). This is su�icient since such an open subcone should contain an integer
K{hler form i.e. a Hodge form.

Since Corollary 6.7 shows that Pic
0
(Z) is trivial, by Corollary 6.14 we see that

c
1
(L
Z
)@ 0. Therefore the previous theorem exhibited a half line in the K{hler cone of Z.

Thus to �nd an open subcone in the 2 dimensional vector space H2 (Z, R) (Corollary 6.7)
it is su�icient to show that this line does not go through the origin or in other words c

1
(L)

is not on the line. But this follows from Corollary 6.14, because L being not ample c
1
(L)

cannot contain a K{hler form. Hence the result. ;

Remark. We see from this proof that c
1
(L

Z
) lies on the closure of the K{hler cone,

thus L
Z
is nef. This reproves a statement of Corollary 6.14.

Example. In the case of the toy example the lowest level K{hler quotient Z
0
is the

projectivized cotangent bundle PT <
Ntoy

of N
toy

which is isomorphic to N
toy

^P1, and the
blowups and blowdowns add the four marked points to P1. Therefore Z

toy
is isomorphic

to the orbifold P1
4
, where the marked points correspond to the �xed point set of the

involution p, namely these are the projectivized bundles PF
i
, i.e. points.

Moreover the C< principal orbibundle X
Ztoy

on P1
4
has the form

X
Ztoy

^ (P^C<)�(p
P
^q) .

Thus in the toy example, not like in the ordinary Higgs case, we have c
1
(L

Ztoy
)^ 0.

This latter assertion can be seen using 6.11 and noting that the target of the reduced toy
Hitchin map s�

toy
: Z

toy
1 P0 is a point.
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There is an other di�erence, namely the Picard group of Z
toy

is of rank 1, because
L2
Ztoy

is the trivial bundle on Z
toy
.

In the next section we show how to compactify M by sewing in Z at in�nity.

7. The compacti�cation M


In this section we compactify M by adding to each non-relatively compact C< orbit
an extra point i.e. sewing in Z at in�nity. Another way of saying the same is to glue
togetherM and E total space ofL

Z
along theC< principal orbibundleX<

Z
^ E ]E

0
^M ]N.

To be more precise we use the construction of Lerman, called the symplectic cut (cf.
Subsection 3.3 and GLerH).

Since the complex structure on the K{hler quotients depends only on the connected
component of the level, we can make the following de�nition.

De�nition 7.1. Let M

d
denote the compact complex orbifold corresponding to the

K{hler quotients of M^C by the product S1 action

M

K"t

^ (k^k
C
)+1(t)�S1 ,

with c
d
~ t~c

d;1
.

Let X
M� d

denote the corresponding C< principal bundle on M

d
. For simplicity we let

M
 denote M

g+1

and X
M�

denote X
M� g�1

.

As a consequence of the construction of symplectic cutting we have the following
theorem (cf. Theorem 3.4):

Theorem 7.2. The compact orbifold M
 ^M4Z is a compacti�cation of M such that
M is an open complex submanifold and Z is a codimension one suborbifold, i.e. a divisor.

Moreover C< acts on M
 extending the action on M with the points of Z being �xed.

In addition to the above we see that we have another decomposition M
 ^N4E of
M
 into the nilpotent cone and the total space E of the contact line bundle L

Z
on Z. Thus

the compacti�cation by symplectic cutting produced the same orbifold as the two con-
structions we started this section with.

We start to list the properties ofM
 .Wewill mention properties analogous to properties
of Z (these correspond to the fact that both spaces were constructed by a K{hler quotient
procedure) and we will clarify the relation between Z and M
 .

Theorem 3.4 and Theorem 3.3 give the following result in our case.

Theorem 7.3. M

d

is a compact orbifold. It has a decomposition M

d
^M

d
4Z

d
into

an open complex suborbifold M
d
(which is actually a complex manifold ) and a codimension

one suborbifold Z
d
, i.e. a divisor. The singular locus of M


d
coincides with that of Z

d
:
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sing(M

d
)^ sing(Z

d
)^ T

0"i�d
P (F

i
)

where F
i

is a component of the �xed point set of the involution p (E,')^ (E,^').

Furthermore, the C< action on M
d

extends onto M

d

with an extra component Z
d

of the
�xed point set.

We have the corresponding statement of Theorem 6.4.

Theorem 7.4. M
 ^M

g+1

is birationally isomorphic to M

0
^P (T<

N
� O

N
). Moreover,

they are isomorphic outside an analytic subset of codimension at least 3.

Proof. In a similar manner to the proof of Corollary 6.4 we can argue by noting
that X

M� 0
is obviously isomorphic to T<

N
� O

N
with the standard action of C<. Hence indeed

M
0
^P (T<

N
� O

N
).

By Theorem 3.3 it is clear that M
 and M

0
are related by a sequence of blowups and

blowdowns. The codimensions of the submanifolds we apply the blowups are at least 3
by a calculation analogous to the one in the proof of Proposition 6.3. ;

Notation 7.5. Let

. L
P(T�N�ON)

denote the pull back of L
N

to P (T<
N
� O

N
),

. L
M�

be the corresponding line bundle on M
 ,

. L
P(T�N�ON)

be the dual of the tautological line bundle on the projective bundle
P (T<

N
� O

N
),

. L
M�
^ X

M�
^
C�

C be the correspondng line orbibundle on M
 .

Corollary 7.6. PicM
 is isomorphic to Pic(P (T<
N
� O

N
)) and therefore is of rank 2

and freely generated by L
M�

and L
M�
.

Proof. The previous theorem shows thatM
 and P (T<
N
� O

N
) are isomorphic outside

an analytic subset of codimension at least 2, thus their Picard groups are naturally iso-
morphic.

However, Pic(P (T<
N
� O

N
)) is freely generated by L

P(T�N�ON)
and L

P(T�N�ON)
. The

result follows. ;

Corollary 7.7. The canonical line orbibundle K
M�

of M
 coincides with L+(3g+2)
M�

. More-
over, L

M�
is the line bundle of the divisor Z, therefore (3g^2)Z is the anticanonical divisor

of M
 . Finally, L
M�

restricts to L
Z

on Z.

Proof. L
M�

by its construction clearly restricts to L
Z
on Z and it is the line bundle

of Z, as the corresponding statement is obviously true for P (T<
N
� O

N
).
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The restriction of K
M�

to M has a non-zero section, namely the holomorphic Liouville
form u3g+3

h
, thus trivial. Hence K

M�
^ Lk

M�
for some k ` Z.

By the second adjunction formula K
Z
^ (K

M�
� GZH) �

Z
. The right hand side equals

L+(3g+3)
Z

as L
Z
is a contact line bundle (cf. 6.9). The left hand side can be written as

(Lk
M�

� L
M�
) �
Z
^Lk;1

Z
, therefore k^^(3g^2). ;

Lemma 7.8. s has an extension to M
 ,

s� :M
 1 P3g+3

such that s� restricted to Z gives the map of Lemma 6.10.

Proof. We let C< act on C3g+3^C by j (x, z)^ (j2x, jz). With respect to this action
the map (s, id

C
) :M^C 1 C3g+3^C is equivariant. Therefore making the symplectic cut

it reduces to amap s� :M
 1 P3g+3 since the quotient space (C3g+3 ]0)^C�C< is isomorphic
to P3g+3.

The result follows. ;

Remark. In the higher rank case where C< acts on the target space of the Hitchin
map with di�erent weights the target space of the compacti�ed Hitchin map is a weighted
projective space.

Corollary 7.9. L2
M�
^ s� <H

3g+3
.

Proof. Obviously, s� <H
3g+3

�
M

is trivial, therefore s� <H
3g+3

is some power of L
M�
.

By 6.11 this power is 2. ;

Theorem 7.10 (Duistermaat, Heckman). M
 has a one-parameter family of K{hler
forms u

t
(M
 ), t ~c

g+1
such that

Gu
t1
(M
 )H^Gu

t2
(M
 )H^ (t

1
^ t

2
)c
1
(L
M�
) .

Furthermore this one-parameter family of K{hler forms restricts to Z as the one-
parameter family of K{hler forms of Theorem 6.15.

Proof. This is just the application of Theorem 3.3 and Theorem 3.4 to our situa-
tion. ;

Corollary 7.11. M
 is a projective algebraic variety.

Proof. The argument is the same as for Theorem 6.16, noting that by Corollary 7.6
H2(M
 , R) is two dimensional and L

M�
is neither trivial nor ample since L

M�
�Z^ L

Z
(by

Corollary 7.7) is neither trivial nor ample (by Corollary 6.14). ;

Remark. 1. The above proof yields that the cohomology class c
1
(L
M�
) sits in the

closure of the K{hler cone of M
 , hence L
M�

is nef.
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2. From the previous remark and Corollary 7.9 we can deduce that there is a complete
hyperk{hler (hence Ricci �at) metric onM^M
 ]Z, the complement of a nef anticanonical
divisor of a compact orbifold.

Therefore our compacti�cation of M is compatible with Yau's problem, which ad-
dresses the question: which non-compact complex manifolds possess a complete Ricci �at
metric? Tian and Yau in GTi,YaH could show that this is the case for the complement of
an ample anticanonical divisor in a compact complex manifold. (Such manifolds are called
Fano manifolds.)

The similar statement with ample replaced by nef is an unsolved problem.

Theorem 7.12. M
 has Poincare! polynomial

P
t
(M
 )^P

t
(M)^ t2P

t
(Z) .

Proof. We have three di�erent ways of calculating the Poincare> polynomial of M
 .
The �rst is through Kirwan's formula in GKirH, the second is due to Thaddeus in GTha3H,
which we used to calculate the Poincare> polynomial of Z.

For M
 there is a third method, namely direct Morse theory. All we have to note is
that the S1 action M
 is Hamiltonian with respect to any K{hler form of Theorem 7.10,
and the critical submanifolds and corresponding indices are the same as for M with one
extra critical submanifold Z of index 2. Hence the result. ;

Example. We can describe M

toy

^M
toy

4Z
toy

as follows. As we saw above
M
toy
]N

toy
^X

Ztoy
. Thus gluing togetherM

toy
and E

toy
, the total space of the line orbibundle

L
Ztoy

, along X
Ztoy

yields

M

toy

^M
toy

4
XZtoy

E
toy

.

One can constructM

toy

directly, as follows. Take P1^C48 extending the involution
q from C to P1. Consider the quotient (P^P1)�(p

P
^q). This is a compact orbifold with

eight Z
2
-quotient singularities. Blow up four of them corresponding to 0 ` C. The resulting

space will be isomorphic to M

toy
. The remained four isolated Z

2
quotient singularities will

just be the four marked points of Z
toy

!M

toy
, the singular locus of M


toy
.

We �nish this section with a result which gives an interesting relation between the
intersections of the component of the nilpotent cone N in M (equivalently the intersection
form on the middle compact cohomology H6g+6

cpt
(M), cf. Corollary 5.4) and the contact

structure of Z.

Theorem 7.13. There is a canonical isomorphism between the cokernel of j
M

and the
cokernel of L, where

j
M
: H6g+6

cpt
(M) 1 H6g+6(M)

is the canonical map and

L : H6g+8(Z) 1 H6g+6(Z)

is multiplication with c
1
(L

Z
).
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Proof. We will read o� the statement from the following diagram.

0

�

H6g+8(Z)

�

0 1 H6g+6
cpt

(M) 1 H6g+6(M
 ) 1 H6g+6(Z) 1 0

�

H6g+6(M)

�

0

L

j
M

We show that both the vertical and horizontal sequences are exact and the two
triangles commute.

From the Bialynicki-Birula decomposition of M
 we get the short exact sequence of
middle dimensional cohomology groups (recall that E!M
 denotes the total space of the
contact line bundle L

Z
on Z):

0 1 H6g+6
cpt

(E ) 1 H6g+6(M
 ) 1 H6g+6(M) 1 0 .

Applying the Thom isomorphism (which also exists in the orbifold category) we can
identify H6g+6

cpt
(E ) with H6g+8(Z), this gives the vertical short exact sequence of the

diagram. The horizontal one is just its dual short exact sequence.

Finally, the left triangle clearly commutes as all the maps are natural, while the right
triangle commutes because the original triangle commuted as above and the canonical
map j

E
: H6g+6

cpt
(E)1 H6g+6(E) transforms to L : H6g+8(Z)1 H6g+6(Z) by the Thom

isomorphism.

Now the theorem is the consequence of the Butter�y lemma (cf. GLanH, IV.4, p. 102),
or can be proved by an easy diagram chasing.

Hence the result follows. ;

Remark. 1. If the line bundle L
Z
was ample then the map L would just be the

Lefschetz isomorphism, and therefore the cokernel would be trivial. In our case we have
L
Z
being only nef and the map is not an isomorphism, the cohomology class of the Kummer

variety lying in the kernel. Therefore the cokernel measures how far is L
Z
from being ample.

2. The cokernel of j
M

measures the degeneracy of the intersection form on the
compactly supported middle dimensional cohomology of M. In this case also the cokernel
is not trivial as the compactly supported cohomology class of the Prym variety lies in the
kernel. This can be seen by thinking of the Hitchin map as a section of the trivial rank
3g^3 vector bundle on M and considering the ordinary cohomology class of the Prym
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variety as the Euler class of this trivial vector bundle, and as such, the ordinary cohomology
class of the Prym variety is trivial indeed.

3. Notice that the proof did not use any particular property of M therefore the
statement is true in the general setting of Section 3.

Example. 1. We determine the dimension of the cokernels of the above theorem in
the case when g^ 2, by showing that the intersection form on the compactly supported
middle dimensional cohomology is 0, i.e. the map j

M
is zero. In the previous remark we

saw that the compactly supported cohomology class of the Prym variety P is in the kernel
of j

M
. It follows from GTha1H that the compactly supported cohomology of N and that

of P generates the 2-dimensional compactly supported middle cohomology of M (cf.
Theorem 5.4).

On the other hand the Euler characteristic of N is 0 (this can be checked by substi-
tuting ^1 in the known Poincare> polynomial of N, see e.g. GAt,BoH), so the Euler class
of T<

N
vanishes. Therefore N has self intersection number 0 in T<

N
!M. This shows that

the intersection form is zero.

2. We can also calculate the dimension of the cokernels in our toy example. Namely,
the dimension of coker(L

toy
) is clearly 1, as the map L

toy
: H0(Z

toy
)1 H2(Z

toy
) is the

multiplication with c
1
(L

Ztoy
)^ 0 (cf. the example at the end of Section 6).

Thus, by the above theorem, we have that coker( j
Mtoy

) is 1-dimensional. It can be
seen directly, using Zariski's lemma (Lemma 8.2 in GB,P,VH, p. 90), that the kernel of the
map j

Mtoy
is generated by the cohomology class of the elliptic curve P, the generic �bre

of the toy Hitchin map, hence it is 1 dimensional, indeed.
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