Contributions to Algebra and Geometry Volume 35 (1994), No. 1, 119-123. # Coating by Cubes $K. Bezdek^1 \text{ and } T. Hausel^1$ Department of Geometry, Eötvös L. University 1088 Budapest, Rákóczi út 5, Hungary ## 1. Introduction Let P_0, P_1, \ldots, P_n be convex d-polytopes in d-dimensional Euclidean space with pairwise disjoint interiors. We say that P_0 is coated by P_1, \ldots, P_n if $P_0 \subset \operatorname{int}(\bigcup_{i=0}^n P_i)$, where $\operatorname{int}(\cdot)$ stands for the interior of the corresponding set. Coating occurs very often in a very natural way. For example, in each tiling every tile is coated by its neighbors. Thus, if we take an arbitrary triangulation of \mathbf{E}^d , then the number of neighbors of any tile is at least as large as the minimum number of d-simplices that can coat a d-simplex in \mathbf{E}^d . In this connection the following problem is a rather very basic question. **Problem 1.** Find the minimum number of d-simplices that can coat a d-simplex in \mathbf{E}^d . The answer to the above question is obviously three in \mathbf{E}^2 . In general, we know only the following. **Proposition.** Every d-simplex can be coated by (2d-1) d-simplices in \mathbf{E}^d , where $d \geq 2$. Since the number of facets of a d-cube in \mathbf{E}^d is 2d, the number of d-cubes that can coat a fixed d-cube is at least 2d. The following theorem formulates a sharper statement under some conditions. **Theorem.** Let P_0 be a d-cube of edgelength λ with edges parallel to the coordinate-axes of \mathbf{E}^d . Moreover, let P_1, \ldots, P_n be a collection of unit d-cubes with edges parallel to the coordinate-axes of \mathbf{E}^d such that P_0 is coated by P_1, \ldots, P_n . - (1) If $0 < \lambda < 1$, then $n \ge 2^d$, where equality can be achieved for any $0 < \lambda < 1$ and $d \ge 1$. - (2) If $\lambda = k$ is a positive integer, then $n \geq 2(k+1)^d 2k^d$, where equality can be achieved for any $k \geq 1$ and $d \geq 1$. 0138-4821/93 \$ 2.50 © 1994 Heldermann Verlag, Berlin $^{^{1}}$ The work was partially supported by the Hung. Nat. Foundation for Sci. Research number 326-0413. As a result we get the following: **Corollary.** The minimum number of the translates of a d-cube that can coat a given d-cube in \mathbf{E}^d is at least 2^d , where $d \geq 1$. If all d-cubes are translates of each other, then 2^d can be replaced by $2^{d+1} - 2$. **Problem 2.** Prove or disprove that the minimum number of d-cubes that can coat a d-cube in \mathbf{E}^d is $2^{d-1} + 2$, where $d \geq 2$. ### 2. Proof of the Proposition We prove the statement by induction on the dimension d. As the claim is obviously true for d=2 we may assume that it is true for any d'< d with $d\geq 3$. Thus, let S be a d-simplex in \mathbf{E}^d with vertices v_1,v_2,\ldots,v_{d+1} . Moreover, let H be the hyperplane in \mathbf{E}^d spanned by the vertices v_1,v_2,\ldots,v_d and let S_0 be the (d-1)-simplex with vertices v_1,v_2,\ldots,v_d . By induction there are (d-1)-simplices S_1,S_2,\ldots,S_{2d-3} that coat S_0 in H. Let v be a point in \mathbf{E}^d such that v_{d+1} is the relative interior point of the segment v_1v and let v' be a point in \mathbf{E}^d that is strictly separated from v by H. Then it is easy to see that the d-simplices $\operatorname{conv}(S_1 \cup \{v\}), \operatorname{conv}(S_2 \cup \{v\}), \ldots, \operatorname{conv}(S_{2d-3} \cup \{v\}), \operatorname{conv}\{v_2,v_3,\ldots,v_{d+1},v\}$ and $\operatorname{conv}(S_0' \cup \{v'\})$ coat the d-simplex S, where S_0' is a simplex in H containing S_0 in its relative interior. This completes the proof of the Proposition. ## 3. Proof of the Theorem *Proof of (1).* In the following proof we assume only that the edgelengths of the d-cubes P_1, \ldots, P_n are larger than λ . At first, remove the d-cubes of the collection P_1, \ldots, P_n that are disjoint from P_0 . Let P_1, \ldots, P_n denote the system left. Obviously, P_1, \ldots, P_n still coat P_0 . We are going to show that $n = 2^d$. Recall that an orthant in \mathbf{E}^d is the closure of a connected component of the complement of d pairwise orthogonal hyperplanes of \mathbf{E}^d . **Lemma 1.** Each d-cube P_i , $1 \le i \le n$ can be replaced by an orthant O_i with $P_i \subset O_i$ such that the edges of the orthants O_1, \ldots, O_n are parallel to the coordinate-axes of \mathbf{E}^d and the interiors of the orthants O_1, \ldots, O_n are pairwise disjoint. Proof. Take a d cube P_i , $1 \le i \le n$. Let v_i be the vertex of P_i that lies closest to the d-cube P_0 . Then let O_i be the orthant with apex v_i and with edges parallel to the coordinate-axes of \mathbf{E}^d and with $P_i \subset O_i$. We are going to show that each O_i is disjoint from the interiors of the d-cubes $P_1, \ldots, P_{i-1}, P_{i+1}, \ldots, P_n$ and then we prove that the interiors of the orthants O_1, \ldots, O_n are pairwise disjoint indeed. In order to do so we need the following: **Lemma 2.** Let H be the hyperplane of any facet of P_i that does not contain v_i . Then $H \cap P_0 = \emptyset$. *Proof.* (Indirect) Assume that $H \cap P_0 \neq \emptyset$. Then take the orthogonal projection of v_i onto H. This is a vertex say v_i' of P_i . Moreover, let w_i be the point of P_0 that is closest to v_i and let w_i' be the orthogonal projection of w_i onto H. Obviously, as $H \cap P_0 \neq \emptyset$ we have $w_i' \in P_0$. Finally, as the edgelength of P_0 is smaller than the edgelength of P_i we get that $\operatorname{dist}(v_i, w_i) > \operatorname{dist}(v_i', w_i')$. Thus, $\operatorname{dist}(v_i, P_0) > \operatorname{dist}(v_i', P_0)$, a contradiction. Now imagine a d-cube P_j , $j \neq i$ with int $P_j \cap \text{int } O_i \neq \emptyset$. Recall that int $P_j \cap \text{int } P_i = \emptyset$. Then obviously, there exists a facet of P_i the hyperplane H of which separates int P_j from int P_i . As int $P_j \cap \text{int } O_i \neq \emptyset$ therefore $v_i \notin H$. Hence, Lemma 2 implies that $H \cap P_0 = \emptyset$. Now, recall that $P_i \cap P_0 \neq \emptyset$ and $P_j \cap P_0 \neq \emptyset$. Consequently, H (that separates P_i from P_j) must intersect (the convex set) P_0 , a contradiction. Hence, we proved that int $O_i \cap \text{int } P_j = \emptyset$ for any $i \neq j \in \{1, \ldots, n\}$. In order to finish the proof of Lemma 1 we proceed as follows. Take O_1 and enlarge P_1 from v_1 by a very large factor obtaining the cube P'_1 the vertex v_1 of which is still the closest vertex to P_0 . As a result of the previous arguments P'_1, P_2, \ldots, P_n coat P_0 . Then enlarge P_2, P_3, \ldots, P_n after each other in order to get a coating system of P_0 using rather large d-cubes. Keep doing this to see that the orthants O_1, \ldots, O_n have pairwise disjoint interiors. This completes the proof of Lemma 1. Apply Lemma 1 to get a system $\{O_1, \ldots, O_n\}$ of orthants with $P_i \subset O_i$ and with edges parallel to the coordinate-axes of \mathbf{E}^d such that the orthants O_1, \ldots, O_n have pairwise disjoint interiors, where $1 \leq i \leq n$. Obviously, no two of the orthants O_1, \ldots, O_n are translates of each other and they coat P_0 . Thus, $n \leq 2^d$. Take the $2^d - 1$ orthants with edges parallel to the coordinate-axes of \mathbf{E}^d that share the same vertex of P_0 as an apex and are disjoint from the interior of P_0 . Then it is easy to see that any P_0 intersects the interior of P_0 orthants out of P_0 . Hence, there must be an P_0 that intersects the interior of one orthant out of P_0 implying that its apex P_0 is a vertex of P_0 . Thus, P_0 and so P_0 is a vertex of P_0 . Thus, P_0 and so P_0 is a vertex of P_0 . We are left with the proof of showing the existence of 2^d orthants O_1, \ldots, O_{2^d} that coat P_0 . As a result of the previous arguments we look for 2^d orthants with the property that the apex of each orthant is a vertex of P_0 and each vertex of P_0 is an apex of exactly one orthant. We prove the existence of such orthants by induction on the dimension d. They obviously exist in case d=2. So assume that if P'_0 is a (d-1)-cube of edgelength λ with edges parallel to the coordinate-axes of \mathbf{E}^{d-1} , then there are 2^{d-1} orthants in \mathbf{E}^{d-1} say, $O'_1, \ldots, O'_{2^{d-1}}$ that coat P'_0 in \mathbf{E}^{d-1} . Also, assume that \mathbf{E}^{d-1} is a hyperplane of \mathbf{E}^d . Then for each orthant O'_i , $1 \leq i \leq 2^{d-1}$ in \mathbf{E}^{d-1} we assign two orthants of \mathbf{E}^d say, $+O_i$ and $-O_i$ such that the distinct orthants $+O_i$ and $+O_i$ share the $+O_i$ dimensional orthant $+O_i$ as a facet in common. Let $+O_i$ and $+O_i$ share the $+O_i$ disjoint facets of $+O_i$. Without loss of generality we may assume that the apexes of the orthants $+O_i$ and the apexes of the orthants $+O_i$ and the apexes of length $+O_i$ with $+O_i$ and $+O_i$ belong to $+O_i$ belong to $+O_i$ share that $+O_i$ and the apexes of length $+O_i$ without loss of generality we may assume that the $+O_i$ belong to $+O_i$ belong to $+O_i$. Without loss of generality we may assume that the $+O_i$ belong to $+O_i$ belong to $+O_i$ belong to $+O_i$. Without loss of generality we may assume that the $+O_i$ belong to $+O_i$ belong to $+O_i$ belong to $+O_i$. Without loss of generality we may assume that the $+O_i$ belong to $+O_i$ belong to $+O_i$ belong to $+O_i$. Without loss of generality we may assume that the $+O_i$ belong to Then take the following 2^d orthants in \mathbf{E}^d : $$e_d + (-O_1), e_d + (-O_2), \dots, e_d + (-O_{2^{d-2}});$$ $e_1 + e_d + (+O_1), e_1 + e_d + (+O_2), \dots, e_1 + e_d + (+O_{2^{d-2}});$ $-e_1 + (-O_{2^{d-2}+1}), -e_1 + (-O_{2^{d-2}+2}), \dots, -e_1 + (-O_{2^{d-1}});$ $$+O_{2^{d-2}+1},+O_{2^{d-2}+2},\ldots,+O_{2^{d-1}}.$$ If P_0 is the d-cube $\operatorname{conv}(P_0' \cup (e_d + P_0'))$, then using the induction hypothesis that P_0' is coated by the (d-1)-dimensional orthants $O_1', \ldots, O_{2^{d-1}}'$ in \mathbf{E}^{d-1} it is easy to see that the above 2^d d-dimensional orthants $\operatorname{coat} P_0$ in \mathbf{E}^d . This completes the proof of (1). Proof of (2). At first, we show that if P_0 has an integer edgelength say $k \geq 1$, then P_0 can be coated by $2(k+1)^d-2k^d$ unit d-cubes with edges parallel to the coordinate axes of \mathbf{E}^d , i.e., parallel to the edges of P_0 . We prove this by induction on the dimension d. The claim is obviously true for the case d=1. So assume that it is true for every d' < d and take a d-cube P_0 of \mathbf{E}^d with integer edgelength $k \geq 1$. Let H_0 be a supporting hyperplane of P_0 that intersects P_0 in a facet F_0 . Then let H_l be the translate of H_0 by the vector of length l orthogonal to H_0 that intersects P_0 in a (d-1)-cube $F_l = H_l \cap P_0$ of edgelength k, where $l=1,\ldots,k$. By induction each F_l can be coated by $2(k+1)^{d-1}-2k^{d-1}$ unit (d-1)-cubes in H_l , where $l=0,1,\ldots,k$. Thus, if we place $k(2(k+1)^{d-1}-2k^{d-1})$ unit d-cubes between the consecutive hyperplanes $H_i, H_{i+1}, 0 \leq i \leq k-1$ properly, then we are left with the problem to coat P_0 along the facets F_0 and F_k only. This can be done easily by $2(k+1)^{d-1}$ unit d-cubes. Thus, P_0 is coated by $k(2(k+1)^{d-1}-2k^{d-1})+2(k+1)^{d-1}=2(k+1)^d-2k^d$ unit d-cubes in \mathbf{E}^d finishing the construction. At second, notice that each unit d-cube of the above construction has a (d-1)-dimensional intersection with P_0 . The following easy lemma is the key to prove the claim (2) completely. **Lemma 3.** Let P_0 be a d-cube of \mathbf{E}^d with integer vertices and with edges parallel to the coordinate-axes of \mathbf{E}^d . We assign to P_0 each orthant of \mathbf{E}^d that has an integer apex belonging to P_0 and the edges of which are parallel to the coordinate-axes of \mathbf{E}^d such that the interior of the orthant is disjoint from P_0 . If P is a unit d-cube of \mathbf{E}^d with edges parallel to the coordinate-axes of \mathbf{E}^d such that $P \cap P_0$ is (d-1)-dimensional, then the number of the orthants assigned to P_0 , each of whose interior intersects P and each of whose apex belongs to P, is always 2^{d-1} . *Proof.* We leave the rather easy proof to the reader. To complete the proof of (2) assume that P_0 is coated by the unit d-cubes P_1, \ldots, P_n in \mathbf{E}^d . Without loss of generality we may assume that P_0 is a d-cube of \mathbf{E}^d with integer vertices and with edges parallel to the coordinate-axes of \mathbf{E}^d . Assign to P_0 all orthants described in Lemma 3. As $P_i \cap P_0$ is at most (d-1)-dimensional $(1 \le i \le n)$ it is easy to see (using Lemma 3) that the number of the orthants assigned to P_0 the interior of each of which intersects P_i and the apex of each of which belongs to P_i is at most 2^{k-1} . Thus, a very simple counting argument implies that n is at least as large as the number of unit d-cubes in the above construction, i.e., $2(k+1)^d - 2k^d$. This completes the proof of (2). #### 4. Proof of the Corollary Without loss of generality we may assume that P_0 is a d-cube of edge length λ with edges parallel to the coordinate-axes of \mathbf{E}^d such that it is coated by the unit d-cubes P_1, \ldots, P_n of \mathbf{E}^d the edges of which are par allel to the coordinate-axes of \mathbf{E}^d . If $\lambda \leq 1$, then the claim follows from the Theorem in a straight way. So, we are left with the case, when $\lambda > 1$. Then take two opposite facets say, F and F' of P_0 . Obviously, F (F', resp.) is a (d-1)-cube of edge length λ that is covered by some d-cubes of the collection P_1, \ldots, P_n each of which has edge length smaller than λ . Thus, the number of d-cubes of the collection P_1, \ldots, P_n that cover F (F', resp.) is obviously at least 2^{d-1} . Hence, $n \geq 2^{d-1} + 2^{d-1} = 2^d$. **Acknowledgement.** We are indebted to the referee for the valuable remarks which made the presentation more clear. Received 14.10.93