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1. Introduction

Let Py, Py, ..., P, be convex d-polytopes in d-dimensional Euclidean space with pairwise
disjoint interiors. We say that Py is coated by Py,..., P, if Py C int(U?:O Pi), where
int(-) stands for the interior of the corresponding set. Coating occurs very often in a very
natural way. For example, in each tiling every tile is coated by its neighbors. Thus, if we
take an arbitrary triangulation of E4, then the number of neighbors of any tile is at least
as large as the minimum number of d-simplices that can coat a d-simplex in E?. In this
connection the following problem is a rather very basic question.

Problem 1. Find the minimum number of d-simplices that can coat a d-simplex in E¢.

The answer to the above question is obviously three in E2. In general, we know only the
following.

Proposition. Every d-simplez can be coated by (2d — 1) d-simplices in B¢, where d > 2.

Since the number of facets of a d-cube in E¢ is 2d, the number of d-cubes that can coat a
fixed d—cube is at least 2d. The following theorem formulates a sharper statement under
some conditions.

Theorem. Let Py be a d—cube of edgelength A with edges parallel to the coordinate—azes

of E?. Moreover, let Py, ..., P, be a collection of unit d—cubes with edges parallel to the

coordinate—azes of EY such that Py is coated by P, ..., P,.

(1) If 0 < X\ < 1, then n > 2%, where equality can be achieved for any 0 < A < 1 and
d>1.

(2) If \ = k is a positive integer, then n > 2(k 4+ 1)? — 2k%, where equality can be achicved

for any k> 1 and d > 1.
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As a result we get the following:

Corollary. The minimum number of the translates of a d—cube that can coat a given d-
cube in E? is at least 2¢, where d > 1. If all d-cubes are translates of each other, then 2¢
can be replaced by 241 — 2.

Problem 2. Prove or disprove that the minimum number of d-cubes that can coat a
d-cube in E% is 24-1 2, where d > 2.

2. Proof of the Proposition

We prove the statement by induction on the dimension d. As the claim is obviously true for
d = 2 we may assume that it is true for any d' < d with d > 3. Thus, let S be a d—simplex
in E? with vertices vy,vs,...,v441. Moreover, let H be the hyperplane in E? spanned
by the vertices vy, va,...,vq and let Sy be the (d — 1)-simplex with vertices vy, vz, ..., vq.
By induction there are (d — 1)-simplices Sy, Sa,...,S24—3 that coat Sy in H. Let v be
a point in E¢ such that vg41 1is the relative interior point of the segment vyv and let v’
be a point in E? that is strictly separated from v by H. Then it is easy to see that the
d—simplices conv(S;U{v}), conv(S2U{v}),..., conv(S2q—sU{v}), conv{vy,vs, ... ,va41,0}
and conv(S) U {v'}) coat the d—simplex S, where S| is a simplex in H containing Sy in its
relative interior. This completes the proof of the Proposition.

3. Proof of the Theorem

Proof of (1). In the following proof we assume only that the edgelengths of the d—cubes
Py, ..., P, are larger than \.

At first, remove the d-cubes of the collection Py,..., P, that are disjoint from PFy.
Let Py,..., P, denote the system left. Obviously, Py,..., P, still coat Py. We are going to
show that n = 2¢. Recall that an orthant in E? is the closure of a connected component
of the complement of d pairwise orthogonal hyperplanes of E¢.

Lemma 1. Fach d—cube P;, 1 <1 < n can be replaced by an orthant O; with P; C O; such
that the edges of the orthants O1,..., O, are parallel to the coordinate—azes of E¢ and the
interiors of the orthants Oy,...,0y are pairwise disjoint.

Proof. Take a d cube P;, 1 <1 < n. Let v; be the vertex of P; that lies closest to the d—cube
Py. Then let O; be the orthant with apex v; and with edges parallel to the coordinate—axes
of E% and with P; C O;. We are going to show that each O; is disjoint from the interiors of
the d—cubes Py,..., P;_1, Pi4+1,..., P, and then we prove that the interiors of the orthants
O1,...,0, are pairwise disjoint indeed. In order to do so we need the following:

Lemma 2. Let H be the hyperplane of any facet of P; that does not contain v;. Then
HnP =0.

Proof. (Indirect) Assume that H N Py # (). Then take the orthogonal projection of v; onto
H. This is a vertex say v, of P;. Moreover, let w; be the point of Py that is closest to v;
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and let w! be the orthogonal projection of w; onto H. Obviously, as H N Py # () we have
w! € Py. Finally, as the edgelength of P, is smaller than the edgelength of P; we get that
dist(v;, w,) > dist(v}, w}). Thus, dist(v;, Py) > dist(v}, Py), a contradiction. O

Now imagine a d—cube P;, j # 1 with int P; N intO; # 0. Recall that int P; N
int P; = (). Then obviously, there exists a facet of P; the hyperplane H of which separates
int P; from int P;. As int P; Nint O; # () therefore v; ¢ H. Hence, Lemma 2 implies that
HNPy =0. Now, recall that P, Py # ) and P;NPy # (). Consequently, H (that separates
P; from P;) must intersect (the convex set) Py, a contradiction. Hence, we proved that
intO; Nint P; = 0 for any ¢ # j € {1,...,n}. In order to finish the proof of Lemma 1 we
proceed as follows. Take Oy and enlarge P; from vy by a very large factor obtaining the
cube P] the vertex vy of which is still the closest vertex to Py. As a result of the previous
arguments P{, Pa,..., P, coat Py. Then enlarge Py, Ps,..., P, after each other in order
to get a coating system of Py using rather large d—cubes. Keep doing this to see that the
orthants Oy, ..., O, have pairwise disjoint interiors. This completes the proof of Lemma 1.

O

Apply Lemma 1 to get a system {Oy, ..., 0, } of orthants with P; C O; and with edges
parallel to the coordinate-axes of E? such that the orthants Oy,...,0, have pairwise
disjoint interiors, where 1 < ¢ < n. Obviously, no two of the orthants O,...,0, are
translates of each other and they coat Py. Thus, n < 2¢. Take the 2¢ — 1 orthants with
edges parallel to the coordinate-axes of E¢ that share the same vertex of Py as an apex
and are disjoint from the interior of Py. Then it is easy to see that any O; intersects the
interior of 2! orthants out of 2¢ — 1. Hence, there must be an O; that intersects the interior
of one orthant out of 2¢ — 1 implying that its apex v; is a vertex of Py. Thus, n > 2% and
son =2¢.

We are left with the proof of showing the existence of 2¢ orthants Oy, ..., O, that
coat Py. As a result of the previous arguments we look for 2¢ orthants with the property
that the apex of each orthant is a vertex of Py and each vertex of Py is an apex of exactly
one orthant. We prove the existence of such orthants by induction on the dimension d.
They obviously exist in case d = 2. So assume that if Pj is a (d — 1)-cube of edgelength A
with edges parallel to the coordinate-axes of E4~!, then there are 2?~! orthants in E?~!
say, OY,...,0,,_, that coat Py in E4~!. Also, assume that E¢~! is a hyperplane of E¢,
Then for each orthant O}, 1 <7 < 2471 in E4~! we assign two orthants of E¢ say, +0; and
—0O; such that the distinct orthants +0; and —O; share the (d — 1)-dimensional orthant
O! as a facet in common. Let F] and Fj be two opposite (i.e., disjoint) facets of PJ.
Without loss of generality we may assume that the apexes of the orthants Of,...,0},_,
belong to F| and the apexes of the orthants Oy, ,,...,054_, belong to F;. Finally,
let e¢; be the vector of length A with ey + F| = Fj and let ¢4 be a vector of length A
orthogonal to E4~!. Without loss of generality we may assume that the d-dimensional
orthants 401, ..., +04-1 lie in that closed half-space of E¢ bounded by the E¢~! into
which eq points.

Then take the following 2¢ orthants in E%:

eq + (—01), eq + (—02), oo, €4+ (—Ozd—z);
er +eq+ (+01),e1 +eq+ (+02),...e1 + eq + (+032a-2);
— €1 ‘I‘ (_O2d—2+1), —€q ‘I‘ (_O2d—2+2), ey —€q ‘I‘ (_Ozd—l);
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+O2d—2+17 +02d—2+27 ey —I_Ozd—l .

If Py is the d—cube conv(Pj U (eq 4+ Pj)), then using the induction hypothesis that P is
coated by the (d — 1)-dimensional orthants O1,...,05,_, in E%~1 it is easy to see that the
above 2¢ d-dimensional orthants coat Py in E?. This completes the proof of (1). ]

Proof of (2). At first, we show that if Py has an integer edgelength say k > 1, then P
can be coated by 2(k+1)¢ — 2k? unit d-cubes with edges parallel to the coordinate axes of
E?, i.e., parallel to the edges of Py. We prove this by induction on the dimension d. The
claim is obviously true for the case d = 1. So assume that it is true for every d' < d and take
a d-cube Py of E¢ with integer edgelength k > 1. Let Hj be a supporting hyperplane of P,
that intersects Py in a facet Fy. Then let H; be the translate of Hy by the vector of length
[ orthogonal to Hy that intersects Py in a (d —1)—cube F; = H; N Py of edgelength k, where
I =1,..., k. By induction each Fj can be coated by 2(k+1)?7! — 2k~ unit (d — 1)-cubes
in H;, where [ = 0,1,..., k. Thus, if we place k(2(k+1)¢~! —2k4=1) unit d-cubes between
the consecutive hyperplanes H;, H;11, 0 < ¢ < k — 1 properly, then we are left with the
problem to coat Py along the facets Fy and Fj, only. This can be done easily by 2(k+1)4~1
unit d—cubes. Thus, P is coated by k(2(k + 1)d_1 — de_l) +2(k+ 1)d_1 =2(k+ l)d — 2k
unit d-cubes in E¢ finishing the construction.

At second, notice that each unit d—cube of the above construction has a (d — 1)-
dimensional intersection with Py. The following easy lemma is the key to prove the claim
(2) completely.

Lemma 3. Let Py be a d-cube of E? with integer vertices and with edges parallel to
the coordinate—azes of EY. We assign to Py each orthant of E? that has an integer apex
belonging to Py and the edges of which are parallel to the coordinate—azes of B¢ such that
the interior of the orthant is disjoint from Py. If P is a unit d—cube of E¢ with edges
parallel to the coordinate—azes of E? such that P N Py is (d — 1)-dimensional, then the
number of the orthants assigned to Py, each of whose interior intersects P and each of
whose apex belongs to P, is always 271,

Proof. We leave the rather easy proof to the reader. ]
To complete the proof of (2) assume that Py is coated by the unit d—cubes Py,..., P,

in EY. Without loss of generality we may assume that Py is a d-cube of E¢ with integer
vertices and with edges parallel to the coordinate-axes of E¢. Assign to Py all orthants
described in Lemma 3. As P; N Py is at most (d — 1)—dimensional (1 < ¢ < n) it is easy to
see (using Lemma 3) that the number of the orthants assigned to Py the interior of each
of which intersects P; and the apex of each of which belongs to P; is at most 2¥~!. Thus,
a very simple counting argument implies that n is at least as large as the number of unit
d—cubes in the above construction, i.e., 2(k 4+ 1)¢ — 2k%. This completes the proof of (2).
O

4. Proof of the Corollary

Without loss of generality we may assume that Py is a d—cube of edge length A with edges
parallel to the coordinate—axes of E? such that it is coated by the unit d—cubes P, ..., P,
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of E? the edges of which are par allel to the coordinate—axes of E4. If A < 1, then the claim
follows from the Theorem in a straight way. So, we are left with the case, when A > 1.
Then take two opposite facets say, F' and F' of Py. Obviously, F' (F', resp.) is a (d — 1)—
cube of edge length A that is covered by some d—cubes of the collection Pi,..., P, each
of which has edge length smaller than A\. Thus, the number of d—cubes of the collection
Py, ..., P, that cover F (F', resp.) is obviously at least 2471, Hence, n > 2471 424-1 = 24,

O
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