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Here we announce the construction and properties of a big commutative subalgebra
of the Kirillov algebra attached to a finite dimensional irreducible representation
of a complex semisimple Lie group. They are commutative finite flat algebras over
the cohomology of the classifying space of the group. They are isomorphic with the
equivariant intersection cohomology of affine Schubert varieties, endowing the latter
with a new ring structure. Study of the finer aspects of the structure of the big algebras
will also furnish the stalks of the intersection cohomology with ring structure, thus
ringifying Lusztig’s q-weight multiplicity polynomials i.e., certain affine Kazhdan–
Lusztig polynomials.

representations of Lie groups | Hitchin integrable system | Higgs field | equivariant cohomology |
intersection cohomology

1. Kirillov and Medium Algebras

Let G be a connected complex semisimple Lie group with Lie algebra g, which we
identify with g ∼= g∗ using the Killing form. Let � ∈ Λ+(G) be a dominant weight,
and let �� : G → GL(V �) and %� := Lie(��) : g → gl(V �) ∼= End(V �) be the
corresponding complex highest weight representations of the group and its Lie algebra.
Using the natural action of G on the symmetric algebra S∗(g) and on the endomorphism
algebra End(V �) Kirillov (1) introduced

C�(g) = C� := (S∗(g)⊗ End(V �))G ∼= Maps(g ∼= g∗→ End(V �))G

which we call (classical) Kirillov algebra..
Kirillov’s motivation for the introduction of C� was to understand weight multiplicities

of a maximal torus T ⊂ G. For example, he proved in (1, Theorem S) that C� is
commutative if and only if V � is weight multiplicity free. This means that for all
� ∈ Λ = Hom(T,C×) the weight space V �

� is at most one dimensional. We will see
below, that the big commutative subalgebras of the Kirillov algebra we will introduce in
this paper will induce in Corollary 2.2 a graded ring structure on multiplicity spaces.

The Kirillov algebra C� is an associative, graded H2∗
G := S∗(g)G ∼= C[g∗]G ∼= C[g]G-

algebra. The grading is induced from the usual grading on S∗(g) and the commutative
graded C-algebra H2∗

G acts by scalar multiplication.
We fix a principal sl2-subalgebra 〈e, f, h〉 ⊂ g, so that we get a section of� : g→ g//G,

the Kostant section s := e + gf ⊂ greg, in particular s ∼= g//G. Moreover s ⊂ greg

contains only regular elements, i.e., ones with smallest dimensional centralizers, and s
intersects every G-orbit of greg in exactly one point. Because the codimension of g \ greg

in g is 3 we can identify

C� ∼= Maps(greg
→ End(V �))G

∼= Maps
(

f : s→ End(V �) | f (x) ∈ (End(V �))Gx
)

. [1.1]

We can restrict any subalgebra A ⊂ C� to x ∈ g to get the finite matrix algebra

Ax := {f (x) | f ∈ A} ⊂ (End(V �))Gx . [1.2]

We will denote the one-parameter subgroup Hz : C×→ Gad = G/Z(G) integrating
〈h〉 ⊂ g. Then, Ad(Hz)e = z−1e and so the C×-action

C× × g → g
(z, x) 7→ z · x := Ad(Hz)zx [1.3]

on g preserves e and gf and thus the Kostant section s, and induces the grading on C�
in Eq. 1.1.
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The most important element of C�, called the small operator
is given by

M1 : g → End(V �)
A 7→ %�(A) . [1.4]

More generally we will have an element of the Kirillov algebra
from any G-equivariant polynomial map F := g→ g by

MF : g → End(V �)
A 7→ %�(F (A)) . [1.5]

For an invariant polynomial p ∈ C[g]G we can define its
derivative dp : g→ g∗ ∼= g. As dp is automatically G-equivariant
we have the operator Mdp from Eq. 1.5, which we call a medium
operator. corresponding to p ∈ C[g]G. For example, we have
the small operator of Eq. 1.4 M1 = Md�/2, where �, the
Killing form, is thought of as a degree 2 invariant polynomial.
In general, we will fix a generating set C[g]G ∼= C[p1, . . . , pr ]
of homogeneous invariant polynomials pi ∈ C[g]G of degree di,
s.t. d1 ≤ · · · ≤ dr , where r = rank(G). Then, we also denote
Mi := Mdpi . We will arrange that p1 = �/2 so that M1 = Mdp1
is our small operator in Eq. 1.4. Using these medium operators
we define

M�(g) = M� := 〈1, M1, . . . , Mr〉H2∗
G
⊂ C�

the medium algebra.
In (1, Theorem M) it is proved that the medium operators are

central in C�. (2, Theorem 1.1) and the finite dimensional von
Neumann double centralizer theorem imply the following:
Theorem 1.1. 1. For x ∈ s the restriction Eq. 1.2 satisfiesM�

x =
%�(U (gx)).

2. M� = Maps(f : s → End(V �) | f (x) ∈ %�(U (gx)) ⊂
End(V �)) ⊂ C�. In particular, M� is independent of the
choice of generating set of C[g]G.

3. The medium algebra M� = Z(C�) is the center of the Kirillov
algebra.

1.1. Limits ofWeight Spaces fromCommonEigenspacesofM�.
Denote the maximal torus T = Gh+e ⊂ G corresponding to the
centralizer of the regular semisimple element h+e. For dominant
weights �, � ∈ Λ+ we denote by V �

� ⊂ V � the �-weight space
of T in V �. Motivated by Kostant’s study (3) of the zero weight
space V �

0 Brylinski (4) introduced a filtration

0 < F0 < · · · < Fp < Fp+1 < · · · < V �
� [1.6]

called the Brylinski–Kostant filtration. It is defined using our
regular nilpotent e ∈ g as

Fp := {x ∈ V �
� : e p+1x = 0}.

In turn, Brylinski considers the e-limit of V �
� as

limeV
�
� :=

∑
e p
· Fp ⊂ V �. [1.7]

The main result of ref. 4 is that∑
p

dim(Fp+1/Fp)qp

= q−(�,�)
∑

k

dim([lim
e

V �
� ])h=kq

k
2 = m�

�(q).

Here � is the half-sum of positive roots, (, ) is the basic
inner product and [lime V �

� ]h=k the k-eigenspace of h acting
on lime V �

� . While

m�
�(q) =

∑
w∈W

�(w)Pq(w(� + �)− �− �) [1.8]

is Lusztig’s (5) q-analogue of weight multiplicity. It is defined
using the q-analogue of Kostant’s partition function:

∏
�∈Δ+

(1− qe�)−1 =
∑

�∈Λ Pq(�)e� , where Δ+ ⊂ Λ denotes the set
of positive roots.

For z ∈ C×, using the C×-action Eq. 1.3, let

hz := e + zh = z · (e + h) ∈ g

a regular semisimple element. Define also the C×-action on
the Grassmannian Gr(k, V �) of k-planes in V � by z · U :=
��(H z)(U ) ∈ Gr(k, V �) for U ∈ Gr(k, V �). Then, we have
the following:

Theorem 1.2. Let � ≤ � ∈ Λ+, that is � a dominant weight in
V �, then we have

1. for z ∈ C× the subspace z · V �
� ⊂ V � is a weight space

for the maximal torus Ghz and thus a common eigenspace for
M�

hz
= %�(U (ghz )),

2. limeV
�
� = limz→0 z · V �

� , i.e., Brylinski’s limit agrees with an
actual limit,

3. lime V �
� = limz→0 z · V �

� is an eigenspace of M�
e =

%�(U (ge)) thus lime V �
� ⊂ (V �)Ge (4, Proposition 2.6),

4. lime V �
�min = (V �)Ge for �min the minuscule dominant weight

in V � [(4, Corollary 2.7) for �min = 0].

2. Definition and Basic Properties of Big
Algebras

Replacing the symmetric algebra S∗(g) with the universal
enveloping algebra U (g), Kirillov in ref. 1 also introduced

Q�(g) = Q� := (U (g)⊗ End(V �))G

the quantum Kirillov algebra, which is an algebra over the
center Z(g) = U (g)G of the enveloping algebra. The universal
enveloping algebra U (g) has a canonical filtration F0U (g)
⊂ · · · ⊂ FkU (g) ⊂ Fk+1U (g) ⊂ . . . such that the associated
graded algebra gr(U (g)) ∼= S∗(g). The Rees construction for the
filtered algebra R = U (g) then yields the graded C[ℏ]-algebra

Rℏ := ⊕∞i=0ℏ
iFiR. [2.1]

The so-obtained algebra Uℏ(g) interpolates between U1(g) ∼=
U (g) and U0(g) ∼= gr(U (g)) ∼= S∗(g). We will also consider
the ℏ-quantum Kirillov algebra

Q�
ℏ(g) = Q�

ℏ := (Uℏ(g)⊗ End(V �))G ,

which is naturally a Zℏ(g) := Uℏ(g)G-algebra. It interpolates
between the quantum and classical Kirillov algebras: Q�

1
∼=

Q�(g) over Z1(g) = Z(g) and Q�
0
∼= C�(g) over S∗(g)G ∼=

Z0(g).
Recall from refs. 6 and 7 and specifically from (8, §8.2) the

two-point Gaudin algebra G ⊂ Q(g) := (U (g)⊗U (g))G. This
is defined as a quotient of the Feigin–Frenkel center (9), and
thus it is a commutative subalgebra of the universal quantum
Kirillov algebra Q(g). We will also take the Rees construction
Eq. 2.1with respect to the filtration onQ and G coming from the
filtration on the first copy of U (g) and denote them Gℏ ⊂ Qℏ.
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These are graded C[ℏ]-algebras, with Gℏ commutative. For � ∈
Λ+(G) the image G�ℏ := ��(Gℏ) ⊂ Q�

ℏ under the projection
�� : Qℏ→ Q�

ℏ induced from the projection U (g)→ End(V �)
is called the ℏ-quantum big algebra, which interpolates between
G� := G�1 ⊂ Q� the quantum big algebra and B� := G�0 ⊂ C�
the (classical) big algebra.

The universal big algebras (G0)x for x ∈ s were denoted by
Ax ⊂ U (g) in ref. 10 and its action on a representation V � was
also studied in loc. cit.. Our finite-dimensional matrix algebras
B�x from Eq. 1.2 are just the images of Ax in End(V �). Using
their results we can deduce the following:

Theorem 2.1. Let � ∈ Λ+(G) be a dominant character. Then,

1. theℏ-quantum big algebraG�ℏ ⊂ Q
�
ℏ is a maximal commutative

subalgebra, finite-free over Zℏ(g), consequently it contains the
ℏ-quantum medium algebra M�

ℏ := Z(Q�
ℏ) ⊂ G

�
ℏ ,

2. the big algebra B� = G�0 ⊂ C� is a maximal commutative
subalgebra, finite-free over S∗(g)G, consequently, the medium
algebra M� ∼= M�

0
∼= Z(C�) ⊂ B�,

3. the Hilbert series of B� satisfies

∞∑
i=0

dim((B�)i)qi =

∏
�∈Δ+

(1−q(�+�,�))

(1−q(�,�))∏r
j=1(1− qdj )

,

4. for all x ∈ s the algebra B�x ⊂ End(V �) acts both with
1-dimensional common eigenspaces and cyclically.

It was already observed in ref. 10 that Theorem 2.1.4 implies
that the cyclic action of B�e on V � endows V � with a graded
ring structure. The whole big algebra B� however contains much
more information. For example it follows from Theorem 1.2.1
that B�hz

leaves z · V �
� , the common eigenspaces of M�

hz
=

%(U (ghz )) ⊂ End(V �)Ghz , invariant. Thus by Theorem 1.2.2
B�e leaves lime V �

� invariant and so we can define the multiplicity
algebra

Q�
� := B�e |lime V �

�
⊂ End(lim

e
V �
� ). [2.2]

Then Theorem 2.1.4 and Theorem 1.2 imply the following:

Corollary 2.2. Let � ≤ � ∈ Λ+(G) be dominant characters. The
big algebra B�e at e ∈ s induces Eq. 2.2 a graded algebra structure
Q�
� on (lime V �

� )∗ such that

1.
∑

dim(Q�
� )iq(�−�,�)−i = m�

�(q) Lusztig’s q-analogue of
multiplicity Eq. 1.8,

2. there are natural quotient maps B�e � Q�
�min � Q�

� ,
3. Q�

�min
∼= B�e /((M�

e )+) = B�e /((M1)e, . . . , (Mr)e).

2.1. Computing Big Algebras. Fix a basis {Xi} for g and a dual
basis {X i

} ⊂ g with respect to the Killing form of g. For A ∈
C�, following Kirillov (1), Wei (11) introduced the following
D-operator:

D(A) :=
1
2

∑
i

��(X i)
∂(A)
∂Xi

.

It is shown in ref. 11 that D(A) ∈ C� and that D(A) is
independent of the choice of the basis {Xi} ⊂ g. This D-operator
allows us to construct new operators from known ones. For

example for p ∈ C[g]G we have D(p) = Mdp/2 is the medium
operator of Eq. 1.5. It is not true that for any p ∈ C[g]G iterated
derivatives Dk(p) are still in the big algebraB�. However, starting
with a good generating set of C[g]G we can explicitly generate
the big algebra. Here is such an example in type A.

Theorem 2.3. For A ∈ sln let ci(A) = (−1)i(det(Λi(A)) be
the ith coefficient of the characteristic polynomial of A. Then,
C[sln]SLn ∼= C[c2, . . . , cn] and the big operators

Bi,k−i = Di(ck) ∈ C�

generate the big algebra

B� = C[sln]SLn〈Bi,k−i〉0<i<k≤n ⊂ C�.

Similar generating sets are known in types B, C, D, G and
conjectured to exist in all types (8).

3. Geometric Aspects

Let G be a connected semisimple complex Lie group, G∨ its
Langlands dual group. Their Lie algebras are g and g∨ and t ⊂ g
and t∨ ⊂ g∨ are Cartan subalgebras with t∗ ∼= t∨ naturally.
Identify g ∼= g∗ and t ∼= t∗ by the Killing form. Then, the Duflo
isomorphism (12, Lemme V.1) is

� := �−1
◦  : Z(g)→ S∗(t)W ∼= S∗(g)G, [3.1]

where � : S∗(g)G ∼= C[g]G → C[t]W ∼= S∗(t)W is the
Chevalley isomorphism and  : Z(g)→ S∗(t)W is the Harish-
Chandra isomorphism. On the Rees constructions Eq. 2.1 this
induces

�ℏ : Zℏ(g) ∼= C[ℏ][g]G ∼= C[g∨ × C]G
∨
×C× .

The following Theorem 3.1 shows that our algebras have natu-
ral meanings related to equivariant (intersection) cohomology of
affine Schubert varieties. All our cohomologies and intersection
cohomologies will be with C-coefficients and G-equivariant
(intersection) cohomology will be over H2∗(BG) ∼= C[g]G =
H2∗

G . From results in ref. 13, we can deduce the following:

Theorem 3.1. Let G be a connected semisimple group and g its
Lie algebra, with Langlands dual G∨ and corresponding affine
Grassmannian Gr := GrG∨ = G∨(C((z)))/G∨(C[[z]]). Let � ∈
Λ+(G) be a dominant character and let Gr� := G∨(C[[z]])z� be
the corresponding affine Schubert variety, with action of G∨ ⊂
G∨(C[[z]]) from the left and C× through loop rotation on z. For
� ≤ � ∈ Λ+(G) we let W�

� := G∨1 (C[[z−1]])z� ∩ Gr� be the
affine Grassmannian slice, where G∨1 (C[[z−1]]) is the kernel of the
evaluation map G∨(C[[z−1]])→ G∨ at z−1 = 0. Then,

1. H2∗
G∨×C×(Gr�) ∼= M�

ℏ as H2∗
G∨×C×

∼= C[ℏ][g]G-algebras,
2. EndH2∗

G∨×C× (Gr�)(IH
2∗
G∨×C×(Gr�)) ∼= Q�

ℏ as H2∗
G∨×C×

∼=

Zℏ(g)-algebras,
3. IH2∗

G∨×C×(Gr�) ∼= G�ℏ as H∗G∨×C×(Gr�) ∼= M�
ℏ-modules.

In particular, G�ℏ endows IH2∗
G∨×C×(Gr�) with a graded ring

structure compatible with the action of H2∗
G∨×C×(Gr�) ∼= M�

ℏ,
4. IH2∗(W�

� ) ∼= Q�
� as graded vector spaces, thus Q�

� endows
IH2∗(W�

� ) with a graded ring structure.

PNAS 2024 Vol. 121 No. 38 e2319341121 https://doi.org/10.1073/pnas.2319341121 3 of 7

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g 
by

 T
am

as
 H

au
se

l o
n 

Se
pt

em
be

r 
11

, 2
02

4 
fr

om
 I

P 
ad

dr
es

s 
18

5.
22

2.
1.

36
.



4. Examples–Problems

4.1. Minuscule and Weight Multiplicity Free Kirillov Algebras.
When V � is weight multiplicity free, for example when � is
minuscule, the Kirillov algebras are already commutative (14,
Theorem 4.1), thus M�

ℏ
∼= G�ℏ ∼= C�ℏ . First, we discuss the

classical case of B� = G�0 .
For any � ∈ Λ+ we have the unique closed G-orbit Gv� ∼=

G/P� ⊂ P(V�), a partial flag variety. We can form the big
zero schemeZ� := ∩B∈B�Z(YB) ⊂ s×P(V �) as the common
zeroes of the vector fields YB ∈ X(s×P(V �)) induced by the big
operators B ∈ B�, parameterizing their common eigenvectors.
By constructionC[Z�] ∼= B�. On the other hand we can see that
Z(YM1)∩Gv� ⊂ Z� ⊂ s×P(V �), because for a generic x ∈ s
the scheme Z((YM1)x) ∩ Gv� contains only isolated points of
Z((YM1)x). From (15, Theorem 1.3), we have that C[Z(YM1)∩
Gv�] ∼= H2∗

G (Gv�) and thus we always have a surjective map

B� � H2∗
G (G/P�). [4.1]

The ring homomorphism Eq. 4.1 can be thought of an upgrade
of a similar linear map f̂ in (16, Theorem 1), which was proved
(essentially) in ref. 17 to be a surjection. When � is minuscule,
the Hilbert series of the two graded rings of Eq. 4.1 agree and we
get that B� ∼= H2∗

G (G/P�). This result was deduced by algebraic
means in (18, §6).

When we use the ℏ = 0 specialization of Theorem 3.1.1 we
get that

B� ∼= M� ∼= H2∗
G∨(Gr�) ∼= H2∗

G∨(G
∨/P∨� ) [4.2]

the equivariant cohomology of the cominuscule flag variety.
The two descriptions above then agree because H2∗

G (G/P�) ∼=
C[t]W� ∼= C[t∗]W� ∼= C[t∨]W� ∼= H2∗

G∨(G
∨/P∨� ), where

W� := Stab(�) ⊂W in the Weyl group of G.
Similarly, for V � weight multiplicity free (18, Conjecture 6)

suggests G-invariant subvarieties X� ⊂ P(V �) such that B� ∼=
H2∗

G (X�). For example for the weight multiplicity free � =
k!1 ∈ Λ+(SLn) we have X� ∼= Sk(Pn−1), the kth symmetric
product with the diagonal action of SLn. With a similar technique
as above and straightforwardly extending (15, Theorem 1.3) to
the orbifold Sk(Pn−1) we can prove Panyushev’s conjecture:

Bk!1(sln) ∼= H2∗
SLn

(Sk(Pn−1)) ∼= Sk
H2∗

SLn
(H2∗

SLn
(Pn−1)). [4.3]

Note that Bk!1(sln) ∼= H2∗
PGLn

(Grk!1) from Theorem 3.1.2.
The varieties Grk!1 are different from Sk(Pn−1) for example
Sk(P1) ∼= Pk is smooth while Grk!1(PGL2) is singular for
k > 1. Still they have isomorphic equivariant cohomology
rings:

H2∗
SL2

(Pk) ∼= Bk!1(sl2) ∼= H2∗
PGL2

(Grk!1). [4.4]

For quantum Kirillov algebras Theorem 3.1.2 is useful when
� is minuscule. In that case the loop rotation action on Gr� is
trivial, which implies the surprising

Corollary 4.1. When � ∈ Λ+(G) is minuscule C�(g) ∼= Q�(g)

as Z(g)
�
∼= C[g]G-algebras, where � of Eq. 3.1 is the Duflo

isomorphism.

The isomorphism can be constructed as the combination of the
generalized Harish-Chandra isomorphisms in (19, §9), making it
the sought-after generalized Duflo isomorphism in this minuscule
case.

Applied to the standard representation Q!1(sln) ∼= C!1(sln)
Corollary 4.1 implies that the Capelli identity matches the classical
Cayley-Hamilton identity under the Duflo isomorphism, which
is (20, Theorem 7.1.1). In types C and D the case of N = 2n
in (20, Theorem 7.1.6) gives Q!1(g) ∼= C!1(g). Note that in
type B, the standard representation is not minuscule. Indeed the
case of N = 2n + 1 in (20, Theorem 7.1.6) shows that the
quantum Capelli identity does not map to the classical Cayley-
Hamilton equation, thus Q!1(so2n+1) � C!1(so2n+1), which
is compatible with the nontriviality of the loop rotation on
Gr!1(SO2n+1).

4.2. Visualization of Explicit Examples. As the big algebras B�
are commutative and finite-free over the polynomial ring H2∗

G ,
they correspond to affine schemes Spec(B�) finite flat over the
affine space Spec(H2∗

G ). With the exception of some small rank
examples the embedding dimension of Spec(B�) (the minimal
number of generators of B�) is larger than three, thus we cannot
directly depict them. For visualization purposes, the principal
subalgebras obtained by base changing to a principal SL2 → G
subgroup:B�SL2

:= B�⊗H2∗
G

H2∗
SL2

andM�
SL2

:= M�
⊗H2∗

G
H2∗

SL2

are better behaved. Their spectra Spec(B�SL2
) and Spec(M�

SL2
),

which we call the big and medium skeletons, are curves over
the line Spec(H2∗

SL2
). We call Spec(B�h ) and Spec(M�

h ), the
fibers over the principal semisimple element h ∈ sl2//SL2 ∼=
Spec(H2∗

SL2
), the big and medium principal spectra. Because of

Theorem 1.1 one can identify

Spec(M�
h ) ∼= Spec(V �) ⊂ t∗, [4.5]

where Spec(V �) is the reduced scheme of the set of weights in
V �, which appeared in a closely related context in (17, Theorem
1.3.2).
4.2.1. Big algebras for SL2. By Eq. 4.4, we have Bn!1(sl2) ∼=
H2∗

SL2
(Pn), which have been computed in (15, §4.4), yielding

Eq. 4.6.

Bn!1(sl2) ∼=
{
C[c2, M1]/

(
(M2

1 + n2c2)(M2
1 + (n− 2)2c2) . . . (M2

1 + 4c2)M1
)

for n even;
C[c2, M1]/

(
(M2

1 + n2c2)(M2
1 + (n− 2)2c2) . . . (M2

1 + 9c2)(M2
1 + c2)

)
for n odd.

[4.6]

In Fig. 1, the real points of the spectrum of the big algebras
for two SL2 examples are shown, with the black dots depicting
the principal spectrum, which by Eq. 4.5 can be identified with
the weights of the representation.
4.2.2. Big algebra for standard representation of SL3. Using the
Cayley-Hamilton identity one can explicitly compute the big
algebra for the standard representation of SL3 in terms of the
small operator M1 of Eq. 1.4 as

B!1(sl3) ∼= C[c2, c3, M1]/(M3
1 + c2M1 + c3).

Fig. 2 shows the real points of the spectrum of B!1(sl3)
together with its skeleton and principal spectrum.
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Fig. 1. Spec B4!1 (sl2) ∼= SpecH∗SL2(C)
(P4) and SpecB5!1 (sl2) ∼=

SpecH∗SL2(C)
(P5).

4.2.3. Big algebra for �3!1 of SL3—the decuplet. Using either
Eq. 4.3 or Theorem 2.3, we can compute the big algebra
B3!1(sl3) ∼= H2∗

SL3
(S3(P2)) explicitly in terms of the medium

operators M1 = D(c2) and M2 = D(c3):

B3!1(sl3) ∼= C[c2, c3, M1, M2]/ M4
1 − 6M2

1 M2 + 4M2
1 c2 − 18M1c3 + 3M2

2 − 6M2c2,
M3

1 M2 + M3
1 c2 + 3M2

1 c3 − 3M1M2
2

+M1M2c2 + 4M1c2
2 − 9M2c3


[4.7]

From this we obtain B3!1
SL2

by setting c3 = 0 and B3!1
h by further

setting c2 = −4. The first picture of Fig. 3 shows the resulting
picture of the real points of the skeleton and the principal
spectrum.

The principal spectrum can be identified with the set of weights
in V 3!1 by Eq. 4.5, which in turn corresponds to the particles
appearing in the baryon decuplet of Gell-Mann (21, pp. 87, Fig. 1
pp.88); see the second picture in Fig. 3. There are two quantum
numbers, the isospin I3 and hypercharge Y which distinguish the
particles in the multiplet. They correspond to our operators as
(M1)h = 4I3 and (M2)h = 4Y . Thus our two relations in our big

Fig. 2. SpecB!1 (sl3), its skeleton SpecB!1
SL2

(sl3) and principal spectrum

SpecB!1
h (sl3).

Fig. 3. Spec(B3!1
SL2

(sl3)) over Spec(B3!1
h (sl3)), baryon decuplet and skele-

ton over decuplet.

algebra Eq. 4.7 give the following generating set of polynomial
relationships between these two quantum numbers in the baryon
decuplet:

I3(Y − 1)(4I 2
3 − 3Y − 4) = 0

16I 4
3 − 24I 2

3 Y − 16I 2
3 + 3Y 2 + 6Y = 0 [4.8]

The third picture in Fig. 3 shows that we can obtain the
skeleton Spec(B3!1

SL2
) by connecting the particles in the decuplet

by parabolas when they correspond to each other under the
up–down quark symmetry. The two particles fixed by this
symmetry, the Σ∗0 and Ω−, are supporting lines in the skeleton
Spec(B3!1(sl3)). Ω− is the particle formed by three strange
quarks, whose existence was famously predicted by Gell-Mann
based on this baryon decuplet model (21, pp. 87).
4.2.4. Big algebra of adjoint representation of SL3—the octet. The
smallest dimensional nonweight multiplicity free representation
is the adjoint representation �!1+!2 of SL3. In this case
M!1+!2(sl3) ( B!1+!2(sl3), the medium and big algebras are
distinct. Using (14, Table III) or Theorem 2.3 one can compute
the big algebra, and in turn the medium subalgebra, explicitly, in
terms of the medium operators M1 = D(c2) and M2 = D(c3)
and big operator N1 = D2(c3):

B!1+!2(sl3) ∼= C[c2, c3, M1, N1]/(
3M2

1 + N 2
1 + 12c2,

M3
1 N1 + c2M1N1 − 9c3M1

)
[4.9]

M!1+!2(sl3) ∼= C[c2, c3, M1, M2]/ M2
1 M2 + c2M2 + 3c3M1,

M4
1 + 4c2M2

1 + 3M2
2 ,

3M1M2
2 + 9c3M2 − c2M3

1 − 4c2
2M1

 [4.10]

Setting c3 = 0 in these equations gives us the big and medium
skeletons, why further specializing c2 = −4 gives us the big and

PNAS 2024 Vol. 121 No. 38 e2319341121 https://doi.org/10.1073/pnas.2319341121 5 of 7
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Fig. 4. Skeletons B!1+!2
SL2

(sl3), M!1+!2
SL2

(sl3) over B!1+!2
h (sl3),

M!1+!2
h (sl3), baryon octet and big and medium skeletons over octet.

medium principal spectra. These are depicted (white for big and
green for medium) on the first picture of Fig. 4. We used the
coordinates c2, M1 and N1 for the big skeleton but c2, M1 and
M2 = 1

3 M1N1 for the medium skeleton.
Thus our relations in Eq. 4.10 imply the following generating

set of polynomial relations between the quantum numbers I3 and
Y in the baryon octet (see second picture in Fig. 4):

Y (2I3 − 1)(2I3 + 1) = 0
4I 3

3 + 3I3Y 2
− 4I3 = 0

16I 4
3 − 16I 2

3 + 3Y 2 = 0
[4.11]

We can also compute the multiplicity algebra of the 0 weight
from Eq. 4.9 and Corollary 2.2 to get

Q!1+!2
0 (sl3) ∼= B!1+!2/((M!1+!2)+) ∼= C[N1]/(N 2

1 ).

On the third picture of Fig. 4, we can see that the medium
skeleton can be built on the baryon octet by connecting the
particles corresponding by up–down quark symmetry—such as
the neutron n0 and proton p+—with parabolas. The big skeleton
is more complicated. It consists of four parabolas (one shared
with the medium skeleton) and has two points in its principal
spectrum over the origin in the baryon octet corresponding to
the multiplicity two 0 weight space containing the two particles
Σ0 and Λ0.

Remark 4.1: Using (22), where the Kirillov algebra is computed
for the adjoint representation of any simple complex Lie
group, one can work out the generators and relations for the
corresponding big algebras explicitly. In particular, one can also
compute explicitly B2!2(so5) ⊂ C2!2(so5) the big algebra of
the adjoint representation of SO5. We can obtain this adjoint
representation by restricting the representation �!2 of SL5 to
the subgroup SO5 ⊂ SL5. This way we also have a commutative

subalgebraB!2(sl5)⊗H2∗
SL5

H2∗
SO5
⊂ C2!2(so5). Both subalgebras

of C2!2(so5) satisfy properties 2., 3., and 4. in Theorem 2.1 but
can be shown to be nonisomorphic. This shows that the big
algebra B2!2(so5) ⊂ C2!2(so5) is not uniquely determined by
these properties.

4.3. Twining Big Algebras. For a connected semisimple complex
Lie group G let � : G → G be a distinguished automorphism,
i.e., one which fixes a pinning. In particular, it is induced from
an automorphism, also denoted �, of the Dynkin diagram.
Examples for the symmetric pair (G, G�) are (SL2n+1, SO2n+1),
(SL2n, Spn), (SO2n, SO2n−1), (PSO8, G2) or (E6, F4). Except
for the order three � in the case (PSO8, G2) the automorphism
� is an involution.

The Dynkin diagram automorphism � induces a distinguished
automorphism � : G∨→ G∨ of the Langlands dual. Define the
endoscopy group G� = ((G∨)�0)∨. Such a � will induce an
automorphism of the Feigin–Frenkel center, the Gaudin algebra
and the universal big algebra, and in turn for � ∈ Λ+(G)� on
the big algebra � : B� → B�. Decompose B� = ⊕�∈〈̂�〉(B�)�
according to characters of the cyclic group 〈�〉 ⊂ Aut(G). Define
the coinvariant algebra B�� := B�/(⊕1 6=�∈〈̂�〉(B�)�), which
computes the ring of functions of the fixed point scheme: B�� ∼=
C[Spec(B�)� ]. We have the following*.

Conjecture 4.1. For � ∈ Λ+(G�) also denote the corresponding
dominant weight by � ∈ Λ+(G)� . Then,

B�� (g) ∼= B�(g�). [4.12]

The main motivation for the conjecture was that it is
compatible with Jantzen’s twining character formula. Namely
take � ∈ Λ+(G�) and the corresponding � ∈ Λ+(G)� . The
weight space V �

� (G) of the G-representation will inherit an action
� : V �

� (G)→ V �
� (G), which combined with the induced action

in the big algebra � : B� → B� will yield an automorphism
of the multiplicity algebra Q�

� (g). Then, we expect Eq. 4.12
implies that Q�

� (g)� = Q�
� (g�) and dim(Q�

� (g)�) = tr(� :
Q�
� (g) → Q�

� (g)), when the trace is nonzero. In this case,
we get that tr(� : V �

� (G) → V �
� (G)) = tr(� : Q�

� (g) →
Q�
� (g)) = dim(Q�

� (g�)) = dim(V �
� (G�)), which is Jantzen’s

twining formula (24, Satz 9).
Geometrically the result should follow from the induced action

� : Gr�(G∨) → Gr�(G∨) for � ∈ Λ+(G)� . In fact, the
first check on the conjecture is when V �(G) is a �-invariant
minuscule representation. When � = !n ∈ Λ+(SL2n) then
�(�) = � and the corresponding cominuscule flag variety
Grn!1(PGL2n) ∼= Gr(n,C2n) is the Grassmannian of n-planes
in C2n. The action of � on Gr(n,C2n) is given by �(V ) :=
ann(!(V)), where ! : C2n

→ (C2n)∗ is a symplectic form.
Thus we see that Gr(n,C2n)� ∼= LGr(n,C2n) ∼= Gr!n(PSp2n)
is the Lagrangian Grassmannian. As Gr(n,C2n) is PGL2n-regular
and LGr(n,C2n) is PSp2n-regular, from (15, Theorem 1.3),
we can deduce that B!n(sl2n)� ∼= H2∗

PGL2n
(Gr(n,C2n))� ∼=

H2∗
PGL�2n

(Gr(n,C2n)�)
∼= H2∗

PSp2n
(LGr(n,C2n)) ∼= B!n(so2n+1).

Finally we note that in the example G = PGL3 and G� =
SL2 the weight !1 ∈ Λ+(SL2) corresponds to !1 + !2 ∈

*A proof of this conjecture appeared in ref. 23.
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Λ+(PGL3)� . Then, we have �(M1) = M1, �(N1) = −N1
and �(M2) = −M2 and so the corresponding B!1+!2(sl3)� ∼=
B!1(sl2) can be seen in the first picture of Fig. 4. Namely, the
fixed point scheme of � on Spec(B!1+!2(sl3)) is the common
parabola of the big skeleton shared with the medium skeleton,
where N1 = M2 = 0.

4.4. Mirror Symmetry and Big Spectral Curves. Big algebras first
appeared in ref. 25 in connection with mirror symmetry (26, 27).
They were needed to endow the universal G-Higgs bundle in
an irreducible representation with the structure of a bundle
of algebras along the Hitchin section. Turning the logic back,
one can use the big algebras B� to define a bundle of algebras
on the G-Higgs bundle in the irreducible representation V �

along the Hitchin section, yielding big spectral curves C�
⊂

⊕
rank(G)
k=1 ⊕0<i<k K dk−i living in the total space of direct sum

of line bundles K i for each degree i generator of the big algebra.
In turn, for any G-Higgs bundle one can construct a big algebra
of big Higgs fields in any irreducible representation V �, which
will yield a rank 1 sheaf on the corresponding big spectral curve
C�. We expect a full theory of BNR correspondences for each
big spectral curve, bridging the usual spectral curves in ref. 28
with the cameral covers in ref. 29.

Finally, we expect that the geometric description of the
quantum big algebrasG� in ref. 30 as rings of functions on certain

spaces of opers, and the description (25) of the big algebras B� as
rings of functions on upward flows in the Hitchin system could
be unified as a description of the ℏ-quantum big algebras G�ℏ on
upward flows in MHodge, the moduli space of ℏ-connections.

Details of the proofs of the results in this paper, and detailed
study of the examples mentioned above will appear elsewhere.
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