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Abstract
We propose a general conjecture for the mixed Hodge polynomial of the generic char-
acter varieties of representations of the fundamental group of a Riemann surface of
genus g to GLn.C/ with fixed generic semisimple conjugacy classes at k punctures.
This conjecture generalizes the Cauchy identity for Macdonald polynomials and is
a common generalization of two formulas that we prove in this paper. The first is a
formula for the E-polynomial of these character varieties which we obtain using the
character table of GLn.Fq/. We use this formula to compute the Euler characteristic
of character varieties. The second formula gives the Poincaré polynomial of certain
associated quiver varieties which we obtain using the character table of gln.Fq/.
In the last main result we prove that the Poincaré polynomials of the quiver vari-
eties equal certain multiplicities in the tensor product of irreducible characters of
GLn.Fq/. As a consequence we find a curious connection between Kac-Moody alge-
bras associated with comet-shaped, and typically wild, quivers and the representation
theory of GLn.Fq/.
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1. Introduction

1.1. Cauchy identity for Macdonald polynomials
Let x D ¹x1; x2; : : : º and y D ¹y1; y2; : : : º be two infinite sets of variables, and let
ƒ.x/ and ƒ.y/ be the corresponding rings of symmetric functions. For a partition
�, let QH�.xIq; t/ 2 ƒ.x/˝Z Q.q; t/ be the Macdonald symmetric function defined
in [14, I.11]. These functions satisfy the Cauchy identity (in a form equivalent to [14,
Theorem 3.3])

Exp
�m.1/.x/m.1/.y/
.q � 1/.1� t /

�
D
X
�2P

QH�.xIq; t/ QH�.yIq; t/Q
.qaC1 � t l/.qa � t lC1/

(1.1.1)

where Exp is the plethystic exponential (see, e.g., [22, Section 2.5]; we recall the
formalism of Exp and its inverse Log in Section 2.3.3), P is the set of all partitions,
m� 2ƒ are the monomial symmetric functions, and the product in the denominator
on the right-hand side is over the cells of � with a and l their arm and leg lengths,
respectively.

In this paper we will think of (1.1.1) as the special case g D 0; k D 2 of a for-
mula pertaining to a genus g Riemann surface with k punctures. Fix integers g � 0
and k > 0. Let x1 D ¹x1;1; x1;2; : : :º; : : : ;xk D ¹xk;1; xk;2; : : :º be k sets of infinitely
many independent variables, and let ƒ.x1; : : : ;xk/ be the ring of functions separately
symmetric in each of the set of variables. When there is no risk of confusion of what
variables are involved we will simply write ƒ for this ring.

Define the k-point genus g Cauchy function (throughout the paper k will denote
a positive integer)

�.z;w/ WD
X
�2P

H�.z;w/

kY
iD1

QH�.xi I z
2;w2/; (1.1.2)

with coefficients in Q.z;w/˝Z ƒ, where

H�.z;w/ WD
Y .z2aC1 �w2lC1/2g

.z2aC2 �w2l/.z2a �w2lC2/

is a .z;w/-deformation of the .2g � 2/th power of the standard hook polynomial.
Thus in particular �.

p
q;
p
t / equals the right-hand side of (1.1.1) for gD 0; k D 2.
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For �D .�1; : : : ;�k/ 2P k , let

H�.z;w/ WD .z
2 � 1/.1�w2/hLog �.z;w/;h�i: (1.1.3)

Here h� WD h�1.x1/ � � �h�k .xk/ 2ƒ are the complete symmetric functions and h�; �i
is the extended Hall pairing defined in (2.3.1). Recall that ¹m�º and ¹h�º are dual
bases with respect to the Hall pairing, and we may hence recover �.z;w/ from the
H�.z;w/’s by the formula

�.z;w/D Exp
� X
�2Pk

H�.z;w/

.z2 � 1/.1�w2/
m�

�
:

Note that H� D 0 unless j�1j D � � � D j�kj.
With this notation, (1.1.1) is equivalent to

H�.z;w/D

´
1 if �D ..1/; .1//;

0 otherwise,
(1.1.4)

when gD 0 and k D 2.

1.2. Character varieties
Fix�D .�1; : : : ;�k/ 2Pn

k for the rest of this introduction where �i D .�i1;�
i
2; : : : ;

�iri / and ri WD `.�i / is the length of �i . (Pn denotes the set of partitions of n.) Let
M� be a GLn.C/ character variety of a k-punctured genus g Riemann surface, with
generic semisimple conjugacy classes of type � at the punctures. In other words, fix
semisimple conjugacy classes C1; : : : ;Ck � GLn.C/, which are generic in the sense
of Definition 2.1.1 and have type �1; : : : ;�k ; that is, ¹�i1;�

i
2; : : :º are the multiplic-

ities of the eigenvalues of any matrix in Ci . (We prove in Lemma 2.1.2 that there
always exist generic semisimple conjugacy classes for every �.) The variety depends
on the actual choice of eigenvalues, but for simplicity we drop this choice from the
notation.

Concretely, we have

M� WD
®
A1;B1; : : : ;Ag ;Bg 2GLn.C/;X1 2 C1; : : : ;Xk 2 Ck

ˇ̌
.A1;B1/ � � � .Ag ;Bg/X1 � � �Xk D In

¯
==GLn.C/;

an affine geometric invariant theory (GIT) quotient by the conjugation action
of GLn.C/ where, for two matrices A;B 2 GLn.C/, we put .A;B/ D ABA�1B�1

and In is the identity matrix. We prove in Theorem 2.1.5 that M�, if nonempty, is a
nonsingular variety of dimension

d� WD n
2.2g � 2C k/�

X
i;j

.�ij /
2C 2: (1.2.1)
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For example, if k D 1 and �D ..n//, then M� is just the variety Mn of [22] and H�
is the polynomial NHn (see Section 1.5.2 for more details).

1.2.1. Mixed Hodge polynomial: The conjectures
As a natural continuation of [22] here we study the compactly supported mixed Hodge
polynomials

Hc.M�Ix;y; t/ WD
X

hi;j Ikc .M�/x
iyj tk ;

where hi;j Ikc .M�/ are the compactly supported mixed Hodge numbers of [6] and [7].
For any variety X=C the polynomial Hc.X Ix;y; t/ is a common deformation of its
compactly supported Poincaré polynomial Pc.X I t /DHc.X I1; 1; t/ and its so-called
E-polynomial E.X Ix;y/DHc.X Ix;y;�1/.

We define the pure part of Hc as the polynomial

PHc.X Ix;y/ WD
X
i;j

hi;j IiCjc .X/xiyj :

If hi;j Ikc .X/ D 0 unless i D j , we will simplify the notation and write Hc.X I
q; t/ WD Hc.X I

p
q;
p
q; t/, PHc.X Iq/ WD PHc.X I

p
q;
p
q /, and E.X Iq/ WD

E.X I
p
q;
p
q /.

CONJECTURE 1.2.1
We have the following.
(i) The rational function H�.z;w/ defined in (1.1.3) is a polynomial. It has de-

gree d� in each variable, and H�.�z;w/ has nonnegative integer coefficients.
(ii) The mixed Hodge polynomial Hc.M�Ix;y; t/ is a polynomial in xy and t

and is independent of the choice of generic eigenvalues of multiplicities �.
(iii) Moreover,�

Hc.M�Iq; t/D .t
p
q /d�H�

�
�
1
p
q
; t
p
q
�
:

(iv) In particular, the pure part of Hc.M�Iq; t/ is

PHc.M�Iq/D q
d�=2H�.0;

p
q /:

In this paper we will present several consistency checks and prove several implica-
tions of this conjecture. For example, we show in Section 5.1 that, although M� itself

�Warning: our use of the variables q; t in the Hodge polynomial context is different from the standard one in
the theory of Macdonald polynomials. It should always be clear from the context which is in use.
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depends on the choice of eigenvalues, Hc.M�Ix;y; t/ is constant on a dense subset
(in the analytic topology) of generic eigenvalues of multiplicities�. This is consistent
with (ii) of Conjecture 1.2.1.

Due to the known symmetry QH�.xi Iq; t/D QH�0.xi I t; q/ of Macdonald polyno-
mials (2.3.12), the right-hand side of (1.1.3) is invariant both under changing .z;w/ to
.w; z/ and under changing .z;w/ to .�z;�w/. Hence the same holds for H�.z;w/,
and Conjecture 1.2.1 implies the following.

CONJECTURE 1.2.2 (Curious Poincaré duality)
We have

Hc

�
M�I

1

qt2
; t
�
D .qt/�d�Hc.M�Iq; t/:

1.2.2. E-polynomial
THEOREM 1.2.3
The polynomial E.M�Ix;y/ depends only on xy and

E.M�Iq/D q
.1=2/d�H�

�p
q;

1
p
q

�
:

In other words, Conjecture 1.2.1 is true under the specialization .q; t/ 7! .q;�1/. We
prove this in Section 5.2.

The calculation of E.M�Iq/ follows the same route as in [22]. We prove that
M� is polynomial count, and hence by Katz’s theorem (see [22, Theorem 6.1.2.3]),
E.M�Iq/D #M�.Fq/. To count the points of M� over a finite field we use the mass
formula

#M�.Fq/D
X

X2Irr.GLn.Fq//

jGLn.Fq/j2g�2.q � 1/

X.1/2g�2

Y
i

X.Ci /

X.1/
jCi j (1.2.2)

originally due to Frobenius [12] for gD 0. The evaluation of the formula is facilitated
by the combinatorial understanding of the character table of GLn.Fq/ first obtained
in [16].

COROLLARY 1.2.4
The E-polynomial is palindromic; that is, it satisfies

E.M�Iq/D q
d�E.M�Iq

�1/:

In a forthcoming paper [21] we use our formula (1.2.3) for its E-polynomial to prove
that M� is connected (as announced in [20]).
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1.2.3. Euler characteristic
The 2g-dimensional torus .C�/2g acts on M� by scalar multiplication on the first
2g-coordinates. We let QM� WD M�==.C

�/2g . As a second application of Theo-
rem 1.2.3, we compute the Euler characteristic E. QM�/ WD E. QM�I1/ of QM� when
g > 0, using E. QM�/D E.M�/=.q � 1/

2g (see Section 5.3). We obtain the follow-
ing.

THEOREM 1.2.5
Assume that g > 1; then

E. QM�/D

´
�.n/n2g�3 if �D ..n/; : : : ; .n//;

0 otherwise,

where � is the ordinary Möbius function.

THEOREM 1.2.6
For gD 1,

E. QM�/D
1

n

X
d jgcd.�j

i
/

�.n=d/�.d/
..n=d/Š/kQ
i;j .�

j
i =d/Š

;

where �.m/D
P
d jm d .

For the proofs of these theorems see Section 5.3.

1.3. Quiver varieties
For i D 1; : : : ; k, let Oi � gln.C/ be a semisimple adjoint orbit in the Lie algebra
gln.C/ of type �i ; as before, this means that ¹�i1;�

i
2; : : :º are the multiplicities of the

eigenvalues of any matrix in Oi . We will call the collection .O1; : : : ;Ok/ generic if
certain linear equations among the eigenvalues of the conjugacy classes are not sat-
isfied (see Definition 2.2.1). There exists a generic collection of conjugacy classes of
type� if and only if� is indivisible (i.e., gcd.¹�ij º/D 1/. For a generic .O1; : : : ;Ok/
we define

Q� WD
®
A1;B1; : : : ;Ag ;Bg 2 gln.C/;C1 2O1; : : : ;Ck 2Ok

ˇ̌
ŒA1;B1�C � � � C ŒAg ;Bg �CC1 � � � CCk D 0

¯
==GLn.C/;

an affine GIT quotient by the conjugation action of GLn.C/, where Œ�; �� is the Lie
bracket in gln.C/. We prove in Theorem 2.2.4 that Q� is a smooth variety of dimen-
sion d�. It is a quiver variety in the sense of Nakajima and Crawley-Boevey associated
to the comet-shaped quiver � described in Section 2.2.
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THEOREM 1.3.1
For � indivisible the mixed Hodge structure on H�c .Q�/ is pure; in other words,
hi;j Ik.Q�/D 0 unless i C j D k, and E.Q�Ix;y/ only depends on the product xy.
Moreover,

Pc.Q�I
p
q /DE.Q�Iq/D q

.1=2/d�H�.0;
p
q /; (1.3.1)

where Pc.Q�; t / is the compactly supported Poincaré polynomial of Q�.

As in the multiplicative case, Katz’s theorem [22, Theorem 6.1.2.3] implies that
E.Q�Iq/ D #Q�.Fq/. The calculation of the number of points on the right is per-
formed using the mass formula

#Q�.Fq/D
jgln.Fq/j

g�1

jPGLn.Fq/j

X
x2gln.Fq/

jCgln.Fq/.x/j
g

kY
iD1

F g.1Oi /.x/; (1.3.2)

where Cgln.Fq/.x/ denotes the centralizer of x in gln.Fq/ and F g.1Oi / is the Fourier
transform (2.5.3) of the characteristic function of Oi . The evaluation of this sum is
based on a combinatorial understanding of the formulas in [35] in the case of gln.Fq/.
The proof of Theorem 1.3.1 is given in Section 6.2.

Remark 1.3.2
The purity conjecture of [19] claims that PHc.M�Iq/DE.Q�Iq/. Combined with
Conjecture 1.2.1 it implies that the right-hand side of (1.3.1) should equal PHc.M�I

q/. By extension, we call the pure part of a function of z;w its specialization z D
0;w D

p
q. For example, the pure part of the Macdonald polynomial is QH�.xIw/ WD

QH�.xI0;w/ a (transformed version of) the Hall-Littlewood polynomial (see
Section 2.3.4). In particular, Theorem 1.3.1 shows that the E-polynomials of the
quiver varieties Q� are closely related to the generalized Cauchy formula for Hall-
Littlewood functions.

Remark 1.3.3
Let Av.q/ be the number of absolutely indecomposable representations of a quiver of
dimension v over the finite field Fq (up to isomorphism). Kac [26] proved that Av.q/

is a polynomial in q with integer coefficients. He conjectured that these coefficients
are nonnegative [26, Conjecture 2]. Crawley-Boevey and Van den Bergh [5] proved
this conjecture for v indivisible by giving a cohomological interpretation for Av.q/.
In our case, writing A� for Av, their result says that for � indivisible,

E.Q�Iq/D #Q�.Fq/D q
.1=2/d�A�.q/: (1.3.3)
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In particular, for � indivisible, A� is the pure part of H�; that is,

A�.q/DH�.0;
p
q /: (1.3.4)

In fact, we give in [21] an independent proof of (1.3.4) for any � using Hua’s for-
mula [25]. Conjecture 1.2.1 would then give a cohomological interpretation of A�.q/
for a comet-shaped quiver, which, in particular, would imply Kac’s conjecture on the
nonnegativity of the coefficients of A�.q/ for such quivers for all dimension vectors
(see also Remark 1.4.3).

1.4. Multiplicities
For our third main theorem we need to introduce some complex irreducible charac-
ters of G WD GLn.Fq/. Pick distinct linear characters ˛i;1; : : : ; ˛i;ri of F�q for each i .
Consider the subgroup Li WD

Qri
jD1GL�i

j
.Fq/ of G and the linear character Q̨i WDQri

jD1.˛i;j ı det/ of Li . We get an irreducible character of G by taking the Harish-
Chandra induction RGLi . Q̨ i /. We assume now that the ˛i;j ’s are chosen such that the

k-tuple .RGL1. Q̨1/; : : : ;R
G
Lk
. Q̨k// is generic in the sense of Definition 4.2.2. (Such a

choice is always possible for every� assuming that char.Fq/ and q are large enough.)
To simplify the notation we let

R� WD

kO
iD1

RGLi . Q̨ i /:

Let ƒ WG! C be defined by x 7! qg dim CG.x/, where CG.x/ is the centralizer of x
in G. If g D 1, it is the character of the permutation representation where G acts on
the finite set gln.Fq/ by conjugation.

THEOREM 1.4.1
The identity

H�.0;
p
q /D hƒ˝R�; 1i (1.4.1)

holds where h�; �i is the usual scalar product of characters.

The proof of this theorem can be found in Section 6.1.
For a finite groupH , let R.H/ be the character ring ofH (i.e., the Grothendieck

ring of the category of CŒG�-modules). The irreducible characters X1; : : : ;Xk form a
natural basis B of RH . It is an important and difficult problem to compute the fusion
rules of R.H/ with respect to B, that is, to compute N r

i;j WD hXi ˝Xj ;Xri for all
i; j; r . The character ring of GLn.Fq/ does not seem to have been studied in the liter-
ature, although the character table of GLn.Fq/ was computed 50 years ago (see [16]).
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Our Theorem 1.4.1 (with gD 0 and k D 3) gives a formula for the multiplicities N r
i;j

when .Xi ;Xj ;Xr/ is a generic triple of semisimple irreducible characters. This sug-
gest an interesting connection between the character ring of GLn.Fq/, Kac-Moody
algebras, and quiver representations that we discuss further in Section 6.1.

By formulas (1.3.1) and (1.4.1) we have the following.

COROLLARY 1.4.2
For � indivisible the following are equivalent:
(a) hƒ˝R�; 1i D 0;
(b) The quiver variety Q� is empty.

In the genus g D 0 case, the problem of deciding whether Q� is empty was solved
by Kostov [29], [30]. Later on, Crawley-Boevey [3] reformulated Kostov’s answer in
terms of roots. Namely, he proved that Q� is nonempty if and only if v, the dimension
vector for � with dimension n�

Pl
jD1�

i
j at the l th vertex on the i th leg, is a root of

the Kac-Moody algebra associated to � .

Remark 1.4.3
Combining (1.3.3) with Theorems 1.3.1 and 1.4.1 we find that

A�.q/DH�.0;
p
q /D hƒ˝R�; 1i (1.4.2)

when � is indivisible. In [21] we prove the equality (1.4.2) for any �. Assuming
Conjecture 1.2.1, this gives a cohomological interpretation of hƒ˝R�; 1i (see also
Remark 1.3.3).

1.5. Examples
When the associated comet-shaped quiver (see Section 2.2 for a description) is finite
or tame, our main conjecture (Conjecture 1.2.1) reduces to purely combinatorial for-
mulas, some of which are known. We illustrate this in a few examples.

1.5.1. Cases related to Garsia-Haiman’s formulas
For gD 0 and k D 1 (resp., k D 2) we have

M� WD

´
point if �D .1/ (resp., �D ..1/; .1//),

; otherwise.

Hence for gD 0 and k D 1 the formula (cf. [14, Corollary 3.3])

Exp
� m.1/.x/
.q � 1/.1� t /

�
D
X
�

QH�.xIq; t/Q
.qaC1 � t l/.qa � t lC1/
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implies Conjecture 1.2.1, and for g D 0 and k D 2, the conjecture follows from the
Cauchy formula (1.1.1) or, equivalently, (1.1.4).

1.5.2. Comet-shaped quivers with k D 1 and l.�1/D 1
As mentioned at the end of Section 1.2, in this case we have M� DMn and H� D NHn
in the notation of [22]. The point is that if we are only interested in partitions �i of
length at most l we can, without loss of generality, set all variables xij with j > l to
zero (see Section 2.3.6). If l D 1 this means we may specialize to xi D .T; 0; : : :/ for
some variable T . Since QH�.T; 0; : : :/D T j�j, we see that �.z;w/ specializes to the
corresponding series (see left-hand side of (3.5.8)) in [22].

If in addition g D 1, then Conjecture 1.2.1 reduces to the following purely com-
binatorial identity of generating functions (see [22, Conjecture 4.3.2]).

CONJECTURE 1.5.1
We have

X
�

Y .z2aC1 �w2lC1/2

.z2aC2 �w2l/.z2a �w2lC2/
T j�j

D
Y
n�1

Y
r>0

Y
s�0

.1� z2sC1w�2rC1T n/2

.1� z2sw�2rC2T n/.1� z2sC2w�2rT n/
: (1.5.1)

The associated quiver is the Jordan quiver (one loop, one node), which is tame. We
know that the Euler specialization z D

p
q;w D 1=

p
q of (1.5.1) is true; after taking

Log’s it amounts to the following easy facts:X
�2P

T j�j D
Y
n�1

.1� T n/�1;
X
r>0

X
s�0

qrCs D .qC q�1 � 2/�1:

1.5.3. Star-shaped quiver with k legs and l.�i /� 2
Consider the quiver consisting of one central node with no loops (g D 0) and k legs
of length 1. It is enough (see Section 2.3.6) to consider partitions �i of length at
most 2 and restrict to these by specializing the variables xi D .xi;1; xi;2; : : :/ to, say,
u
1=k
0 .1;ui ; 0; 0; : : :/ for i D 1; : : : ; k for some new independent variables ui . The vari-

able u0, corresponding to the central node, keeps track of the degree of the sym-
metric functions. Multipartitions � D .�1; : : : ;�k/ 2 P k

n with l.�i / � 2 are of the
form �i D .n � ni ; ni / for some 0 � ni � n=2 for i D 1; : : : ; k. To simplify some-
what the notation, we extend by symmetry the definition of H� to arbitrary pairs
�i D .n � ni ; ni / with 0 � ni � n for i D 1; 2; : : : ; k. For v D .n;n1; : : : ; nk/ we
let Hv D H�, where � is the corresponding multipartition obtained by appropriate
permutation of the entries of each pair .n � ni ; ni /. It then follows easily from the
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definition thatX
v

Hv.z;w/u
v

D .z2 � 1/.1�w2/Log
�X
�2P

Qk
iD1
QH�.1;ui ; 0; : : : I z

2;w2/Q
.z2aC2 �w2l/.z2a �w2lC2/

u
j�j
0

�
; (1.5.2)

where the sum is over all nonzero v D .n;n1; : : : ; nk/ with 0 � ni � n and uv WD

un0u
n1
1 � � �u

nk
k

.

Remark 1.5.2
Note that since gD 0 (see Remark 2.3.7), the right-hand side and hence Hv.z;w/ are
actually functions of z2 and w2; we exploit this below without further comment.

By work of Crawley-Boevey [4] the character variety M� is empty unless v is a root
of the associated Kac-Moody root system. For 1 � k � 3 the corresponding quiver
is finite. In particular, the main conjecture implies that the sum on the left-hand side
of (1.5.2) is finite in this case. More precisely, we have the following. (For conve-
nience we reverted to the combinatorial variables q; t .)

CONJECTURE 1.5.3
We have

.q � 1/.1� t /Log
�X
�2P

Q3
iD1
QH�.1;ui ; 0; : : : Iq; t/Q

.qaC1 � t l/.qa � t lC1/
u
j�j
0

�

D .1C u1/.1C u2/.1C u3/u0C u1u2u3u
2
0: (1.5.3)

Indeed, for k D 3 our system is D4, and hence all roots are real and given by those
vectors v satisfying vtCvD 2, where C is the Cartan matrix

C WD

0
BB@
2 �1 �1 �1

�1 2 0 0

�1 0 2 0

�1 0 0 2

1
CCA :

The roots with positive first coordinate are precisely .1; n1; n2; n3/ with ni D 0; 1 and
.2; 1; 1; 1/. For � corresponding to a real root with positive n we actually know that
M� is a point (see [4]), and hence its mixed Hodge polynomial is just 1. The cases
k D 1; 2 can be obtained from (1.5.3) by setting u3 D u2 D 0 and u3 D 0, respec-
tively; a proof for these cases follows by specializing the Cauchy formula (1.1.1).
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For k D 4 the quiver is tame; it corresponds to the affine system QD4. Its Cartan
matrix is

C WD

0
BBBBB@

2 �1 �1 �1 �1

�1 2 0 0 0

�1 0 2 0 0

�1 0 0 2 0

�1 0 0 0 2

1
CCCCCA ;

where the first coordinate corresponds to the central vertex. The positive real roots are
the vectors v D .v0; v1; : : : ; v4/ with vi � 0 for i D 0; 1; : : : ; 4 such that vtCvD 2.
The positive imaginary roots are the vectors rv�, where v� WD .2; 1; 1; 1; 1/, with r a
positive integer.

The main conjecture now specializes to the following (again expressed in the
combinatorial variables q; t ).

CONJECTURE 1.5.4
For u0; : : : ; u4 independent variables we have

.q � 1/.1� t /Log
�X
�2P

Q4
iD1
QH�.1;ui ; 0; : : : Iq; t/Q

.qaC1 � t l/.qa � t lC1/
u
j�j
0

�

D
X

v

uvC .qC 4C t /
X
r�1

urv� ;

where the first sum is over all positive real roots v D .v0; : : : ; v4/ with v0 > 0 and
uv WD

Q4
jD0 u

vj
j .

To see this, note that for �D ..r; r/; .r; r/; .r; r/; .r; r//, corresponding to the imag-
inary root rv�, the variety M� is a smooth affine surface. (By (1.2.1) the dimen-
sion d� equals 2 for all r .) By a result of [10, Theorem 6.14], M� is isomorphic
to S0 D S n� � P3, where S is a smooth cubic surface and � is the union of the
coordinate axes. A calculation shows that the mixed Hodge polynomials of S0 are
H.S0Iq; t/ D .qt/2 C 4qt2 C 1 and Hc.S0Iq; t/ D t2 C 4t2q C t4q2. We should
then have H�.z;w/D z

2C 4Cw2.
In fact, for n D 2 the connection to cubic surfaces goes back to Fricke and

Klein [11, Section II.2, p. 285]. It boils down to the following Fricke relation (see [41,
p. 93]). Given three matrices Ai 2 SL2.C/ for i D 1; 2; 3, let ai WD Tr.Ai /; xi WD
Tr.AjAk/, where Tr denotes the trace and ¹i; j; kº D ¹1; 2; 3º. Then

0D x1x2x3C

3X
iD1

.x2i � 	ixi /C 	4; (1.5.4)
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where, with the same convention on indices,

a4 WD Tr.A1A2A3/; 	i WD aia4C ajak ;

	4 WD a1 � � �a4C a
2
1 C � � � C a

2
4 � 4:

(Viewed as a quadratic equation in a4 the other solution to (1.5.4) is Tr.A1A3A2/.)

Remark 1.5.5
A similar form of the conjecture occurs when the quiver is the Dynkin diagram of
the affine systems QE6; QE7, and QE8. The corresponding surfaces are now smooth del
Pezzo surfaces of degree 9 � s, where s D 6; 7, and 8, respectively, with a nodal P1

removed. The polynomial corresponding to any positive imaginary root should then
be H�.z;w/D z

2C sCw2.

For k � 5, the quiver is wild and the main conjecture does not take a particularly
simple form. For future reference we record here the first few values of H� for
� D ..n � 1; 1/; : : : ; .n � 1; 1// or, equivalently, v D .n; 1; : : : ; 1/, calculated on a
computer. For completeness we include also the case nD 1, where vD .1; 1; : : : ; 1/;
the relevant range so that v is a root is then 1� n� k � 1. We should stress the fact
that the computed H� turned out to be polynomials with nonnegative coefficients, as
predicted, something that is not clear a priori.

To simplify, below we write simply Hn;k for H� and display its coefficients as
an array. As mentioned above (see Remark 1.5.2), H� is a function of z2;w2, so we
record only the even powers. To be sure, for example,

H2;4 D
1

4 1

corresponds to the polynomial H�.z;w/D z
2 C 4Cw2 discussed above for k D 4.

We have the following:

H1;5 DH4;5 D 1; H2;5 DH3;5 D

1

5 1

11 5 1

H1;6 DH5;6 D 1; H2;6 DH4;6 D

1

6 1

16 6 1

26 16 6 1

H3;6 D

1

6 1

22 7 1

51 27 7 1

66 51 22 6 1
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H1;7 DH6;7 D 1; H2;7 DH5;7 D

1

7 1

22 7 1

42 22 7 1

57 42 22 7 1

H3;7 DH4;7 D

1

7 1

29 8 1

85 36 8 1

190 113 37 8 1

308 246 113 36 8 1

302 308 190 85 29 7 1

Remark 1.5.6
The observed symmetry Hn;k D Hk�n;n should be a consequence of the action of
the reflection associated to the central vertex (by [4], dimension vectors in the same
orbit of the Weyl group of the quiver yield isomorphic varities); at the level of the
generating functions, though, this symmetry is far from evident.

Remark 1.5.7
The attentive reader may have noticed that the constant terms of the Hn;k’s are the first
Eulerian numbers. Concretely, the polynomialsAk.t/ WD

Pk�1
nD0HnC1;kC1.0; 0/t

n are
the Eulerian polynomials:

A3.t/D 1C 4t C t
2; A4.t/D 1C 11t C 11t

2C t3;

A5.t/D 1C 6t C 26t
2C 6t3C t4; : : : :

This relation will be the subject of a future publication.

1.5.4. Tennis-racquet quiver
For our next example consider the tennis-racquet quiver, consisting of one vertex,
one loop, and one leg of length one. We specialize the variables as in the case (i):
xD u0.1;u1; 0; : : :/,

.z2 � 1/.1�w2/Log
�X
�2P

H�.z;w/ QH�.1;u; 0; : : : I z
2;w2/u

j�j
0

�
D
X

v

Hv.z;w/u
v;

where we recall

H�.z;w/D
Y .z2aC1 � 1/.1�w2lC1/

.z2aC2 �w2l/.z2a �w2lC2/
:
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In the sum v runs over all nonzero vectors .n;n1/ with 0� n1 � n and uv WD un0u
n1
1 .

(We extended the definition of H to all such v as in Conjecture 1.2.1(i).)
With a computer we calculated the first few terms of the right-hand side and

obtained the following. We list the coefficients of un0 for n D 1; 2; 3 divided by
.z � w/2 (as pointed out in Remark 5.3.1 below, the divisibility of H�.z;w/ by
.z �w/2g is predicted by the geometry):

1 1C u;

2 1C .1C z2Cw2/uC u2;

3 1C .1C z2Cw2C z4Cw4 � 2zwC z2w2/.1C u/C u3:

So concretely, for example, for g D k D 1 and � D ..12// we have H�.z;w/ D

.z �w/2.1C z2Cw2/. Again, note that the computations confirm that Hv.�z;w/ is
a polynomial with nonnegative coefficients.

1.5.5. GL3.C/-character varieties
Consider the comet-shaped quiver with k legs of length two and any g. We show how
to compute H�.z;w/ by hand using the tables of Macdonald polynomials when we
take the partition �i D .13/ at each leg. Similar calculations can be performed with
other partitions of 3. We use freely the notation and definitions of Section 2.3.

From formula (2.3.9) we find that

H�.z;w/D
X
!

H!
�.z;w/ (1.5.5)

with

H!
�.z;w/ WD .z

2 � 1/.1�w2/C o!H!.z;w/

kY
iD1

h QH!.xi ; z2;w2/; h.13/.xi /i;

where the sum is over all types of size 3. Since �D .�1; : : : ;�k/ with �i D .13/ for
all i , we have

H!
�.z;w/D .z

2 � 1/.1�w2/C o!H!.z;w/h QH!.x; z2;w2/; h.13/.x/i
k:

There are eight types of ! D .d1;!1/ � � � .dr ;!r/, with di 2 Z�0 and !i 2 P , of
size 3:

.1; 31/; .1; 13/; .1; 1121/; .3; 1/; .1; 21/.1; 1/;

.1; 12/.1; 1/; .2; 1/.1; 1/; .1; 1/3;

where we wrote .1; 1/3 for .1; 1/.1; 1/.1; 1/.
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PROPOSITION 1.5.8
We have H.3;1/

� .z;w/DH.2;1/.1;1/
� .z;w/D 0. The sum (1.5.5) reduces to

H�.z;w/D

6X
iD1

1

˛i
ˇ
2g
i 


k
i (1.5.6)

where ˛;ˇ, and 
 are the following polynomials in z;w:

˛ ˇ 


.z6 � 1/.z4 �w2/.z4 � 1/.z2 �w2/ .z5 �w/.z3 �w/.z �w/ 1C 2z2C 2z4C z6

.z2 �w4/.w6 � 1/.w4 � 1/.z2 �w2/ .z �w5/.z �w3/.z �w/ 1C 2w2C 2w4Cw6

.z4 �w2/.z2 �w4/.z2 � 1/.1�w2/ .z3 �w3/.z �w/2 1C 2z2C 2w2C z2w2

�.z4 � 1/.z2 �w2/.z2 � 1/.1�w2/ .z3 �w/.z �w/2 3.z2C 1/

�.z2 �w2/.1�w4/.z2 � 1/.1�w2/ .z �w3/.z �w/2 3.w2C 1/

3.z2 � 1/2.1�w2/2 .z �w/3 6

Proof

We only compute H.1;31/
� .z;w/ and H.1;1/3

� .z;w/, as the other cases are similar. We
start with

H.1;31/
� .z;w/D .z2 � 1/.1�w2/C o

31
H31.z;w/h QH31.xI z

2;w2/; h13.x/i
k:

From formula (2.3.10) we find that C o
.1;31/

D 1. From the Young diagram of the

partition 31 we find that

H31.z;w/D
..z5 � 1/.z3 � 1/.z �w//2g

.z6 � 1/.z4 �w2/.z4 � 1/.z2 �w2/.z2 � 1/.1�w2/
:

It remains to compute h QH31.xI z
2;w2/; h13.x/i. For any partition � we have

QH�.xIq; t/D
X
�

QK��.q; t/s�.x/

where s�.x/ is the Schur symmetric function and where QK��.q; t/ WD tn.�/K��.q;
t�1/ are the .q; t/-Kostka polynomials. From the tables in [40, p. 359] we find for
nD 3 the following table for ¹ QK��.q; t/º�;�:

31 1121 13

31 1 1 1

1121 qC q2 qC t t C t2

13 q3 qt t3

Hence

QH13.xI z
2;w2/D s31.x/C .z

2C z4/s1121.x/C z
6s13.x/:
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Since the set of monomial symmetric functions ¹m�.x/º� is the dual basis (with
respect to the Hall pairing) of the set of complete symmetric functions ¹h�.x/º, we
need to express the Schur functions in terms of monomial symmetric functions. Using
the tables in [40, pp. 101, 111] we find that s31.x/Dm31.x/Cm1121.x/Cm13.x/,
s1121.x/Dm1121.x/C 2m13.x/, and s13.x/Dm13.x/. We thus deduce that

h QH31.xI z
2;w2/; h13.x/i D 1C 2z

2C 2z4C z6:

Let us now compute the term

H.1;1/3

� .z;w/D .z2 � 1/.1�w2/C o
.1;1/3

H.1;1/3.z;w/h QH.1;1/3.xI z
2;w2/; h13.x/i

k:

We have C o
.1;1/3

D 1=3. By definition of H!.z;w/ and QH!.xIq; t/ for a type ! (see

Section 2.3.2), we have H.1;1/3.z;w/DH1.z;w/
3 and QH.1;1/3.xIq; t/D QH1.xIq; t/

3.
Hence

H.1;1/3.z;w/D
.z �w/6g

.z2 � 1/3.1�w2/3

and

QH.1;1/3.xIq; t/Dm.1/.x/m.1/.x/m.1/.x/:

With x D ¹x1; x2; : : : º, the monomial symmetric function m.1/.x/ is written x1 C
x2C x3C � � � . Hence m.1/.x/3 decomposes as m31.x/C 3m1121.x/C 6m13.x/, and
so

h QH.1;1/3.xI z
2;w2/; h13.x/i D 6:

COROLLARY 1.5.9
For �D ..13/; : : : ; .13// and g arbitrary, H�.z;w/ is a polynomial in z;w.

Proof
With the notation of Proposition 1.5.8 consider the following rational function of
z;w;u; v, where u;v are two new indeterminates:

R WD

6X
iD1


i

˛i .1� uˇ
2
i /.1� v
i /

: (1.5.7)

If we expandR as a power series in u;v, then by (1.5.6) the coefficient of ugvk equals
H�.z;w/. A calculation using Maple shows that RDA=B with A;B 2 ZŒz;w;u; v�

and B a product of polynomials in 1CuZŒz;w;u; v� or 1C vZŒz;w;u; v�. The claim
follows.
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Let us write H.M�Ix;y; t/ D
P
hi;j Ik.M�/x

iyj tk for the mixed Hodge polyno-
mial for ordinary cohomology. Since M� is nonsingular, Poincaré duality gives

H.M�Ix;y; t/D .xyt
2/d�Hc.M�Ix

�1; y�1; t�1/:

Hence Conjecture 1.2.1 and Proposition 1.5.8 imply the following.

CONJECTURE 1.5.10
The polynomial H.M�Ix;y; t/ depends only on xy and t . Moreover,

H.M�Iq; t/D .qt
2/3kC9g�8H�

�
�
p
q;

1
p
qt

�
:

That is,

H.M�Iq; t/

D
q6g�6t12g�12..q3t6/.1C 2qC 2q2C q3//k..q3t C 1/.q2t C 1/.qt C 1//2g

.q3t2 � 1/.q3 � 1/.q2t2 � 1/.q2 � 1/

C
..q3t5C 1/.q2t3C 1/.qt C 1//2g..qt2C 1/.q2t4C qt2C 1//k

.q3t6 � 1/.q3t4 � 1/.q2t4 � 1/.q2t2 � 1/

C
.qt2/4g�4..q3t3C 1/.qt C 1/2/2g.q2t4.2C qC qt2C 2q2t2//k

.q3t4 � 1/.q3t2 � 1/.qt2 � 1/.q � 1/

�
.qt2/6g�6..q2t C 1/.qt C 1/2/2g.3q3t6.qC 1//k

.q2t2 � 1/.q2 � 1/.qt2 � 1/.q � 1/

�
.qt2/4g�4..q2t3C 1/.qt C 1/2/2g.3q2t4.qt2C 1//k

.q2t4 � 1/.q2t2 � 1/.qt2 � 1/.q � 1/

C
.qt2/6g�6.qt C 1/6g6k.qt2/3k

3.qt2 � 1/2.q � 1/2
:

Note that by Corollary 1.5.9 the predicted H.M�Iq; t/ is indeed a polynomial
in q; t . Specializing it to .q; t/ 7! .1; t/ gives a conjectural formula for the Poincaré
polynomial P.M�I t / of M�. We have verified that our formula for P.M�I t / agrees
with those of [13] (cf. [13, Remark 11.3]) for small values of g and k giving support
to our main conjecture.

For example, for gD 0 and k < 3 we have H�.z;w/D 0. For k D 3 we have

z2C .w2C 6/;

and for k D 4,
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H�.z;w/D z
8C .w2C 8/z6C .w4C 9w2C 33/z4

C .w6C 9w4C 41w2C 93/z2

C .w8C 8w6C 33w4C 93w2C 136/:

Hence

t2H�.�1; 1=t/D 7t
2C 1

and

t8H�.�1; 1=t/D 271t
8C 144t6C 43t4C 9t2C 1;

respectively, matching the values of P.M�; t / calculated in [13, pp. 62–63]. Note
that the case k D 3 corresponds to the basic imaginary root of the affine QE6-quiver
that we already encountered (see Remark 1.5.5).

Incidentally, specializing R in (1.5.7) to z DwD 1 gives the rational function

4v3.72v2C 57vC 2/

.1� 6v/5
D 8v3C 468v4C 11448v5C 192240v6C � � � :

Hence Theorem 1.2.3 implies that the Euler characteristic E.M�/ D E.M�; 1/

of M� for gD 0 and �D ..13/; : : : ; .13// is

E.M�/D 2
�5 � 3�3 � .k � 1/.k � 2/.9k2 � 27kC 16/ � 6k (1.5.8)

(see Remark 5.3.4; for g D 1 and � D ..13/; : : : ; .13// a similar calculation yields
E. QM�/D 3

�1 � 4 � 6k , agreeing with Theorem 1.2.6).
We have also checked that the result of similar calculations for GL2-character

varieties matches those of [1].

1.6. Related work
The present paper has spawned some recent work on the A-polynomial. In [24], Hel-
leloid and Rodriguez-Villegas study A-polynomials of general quivers from a view-
point motivated by [22] and this paper. Hausel [18] proves a further conjecture of
Kac [26, Conjecture 1], claiming that the constant term of the A-polynomial of a
quiver is a certain multiplicity in the corresponding Kac-Moody algebra, for any loop-
free quiver using Nakajima quiver varieties and techniques closely related to the ones
in this paper.

In [36], the second author obtained a generalization of the results of Section 1.4
to arbitrary irreducible characters of GLn.Fq/ by computing the Poincaré polynomial
(for the intersection cohomology) of quiver varieties associated with the Zariski clo-
sure of k arbitrary adjoint orbits of gln.C/. As in the semisimple case, it is expected
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that this Poincaré polynomial coincides with the pure part of the mixed Hodge poly-
nomial (again, for the intersection cohomology) of character varieties with the Zariski
closure of conjugacy classes at the punctures. This will be the subject of a future pub-
lication.

2. Generalities

2.1. Character varieties
Fix integers g � 0, k;n > 0. We also fix a k-tuple of partitions of n which we denote
by �D .�1; : : : ;�k/ 2 .Pn/k , that is, �i D .�i1;�

i
2; : : : ;�

i
ri
/ such that �i1 � �

i
2 �

� � � are nonnegative integers and
P
j �

i
j D n. Let d be the gcd of ¹�ij ºi;j , and let K

be an algebraically closed field such that

char.K/d: (2.1.1)

We now construct a variety whose points parameterize representations of the fun-
damental group of a k-punctured Riemann surface of genus g into GLn.K/ with pre-
scribed images in semisimple conjugacy classes C1; : : : ;Ck at the punctures. Assume
that

kY
iD1

detCi D 1 (2.1.2)

and that .C1;C2; : : : ;Ck/ has type �D .�1;�2; : : : ;�k/; that is, Ci has type �i for
each i D 1; 2; : : : ; k, where the type of a semisimple conjugacy class C � GLn.K/
is defined as the partition �D .�1;�2; : : :/ 2 Pn describing the multiplicities of the
eigenvalues of (any matrix in) C .

Definition 2.1.1
The k-tuple .C1; : : : ;Ck/ is generic if the following holds. If V � Kn is a subspace
stable by some Xi 2 Ci for each i such that

kY
iD1

det.Xi jV /D 1; (2.1.3)

then either V D 0 or V DKn.

For example, if k D 1 and C1 is of type .n/—that is, consists of the diagonal matrix
of eigenvalue � (with �n D 1 so that (2.1.2) is satisfied)—then C is generic if and
only if � is a primitive nth root of 1.
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LEMMA 2.1.2
There exists a generic k-tuple of semisimple conjugacy classes .C1; : : : ;Ck/ of type
� over K.

Proof
Let ri be the length of the i th coordinate �i of �. Let A WDGr1

m � � � � �G
rk
m over K.

For any �D .�1; : : : ; �k/D .�ij / 2 Zr1 � � � � �Zrk define the homomorphism


� WA! Gm;

.aij / 7!
Y
i;j

.aij /
�i
j ;

and set A� WD ker 
� . By hypothesis, char.K/ � d and hence K contain a primitive
d th root of unity �d . Let A0 be defined by

A0 W
Y
i;j

.aij /
�i
j
=d D �d :

Observe that u WD .�ij =d/i;j is a primitive vector in Zr1 � � � � � Zrk . Hence we can
change coordinates in this lattice so that u is part of a basis. In the corresponding
new variables of A the equation defining A0 is simply a1 D �d , and therefore A0 Š
G
P
ri�1

m , showing it is irreducible. Thus A0 is a connected component of A�.
Now if A0 �A� , then A� �A� as A0 generates A�. But A� �A� implies l�D

� for some l 2 Z�0, since char.K/ does not divide d . So A0� WD A
0 \ A� � A

0 is a
proper Zariski-closed subset of the irreducible space A0 for every � D .�ij / with 0�
�ij � �

i
j different from � and 0. The same is true for all the subgroups B determined

by the equalities aij1 D a
i
j2

for j1 ¤ j2. Hence the union of all A0�’s and all B’s is
not equal to the irreducible A0, and the complement contains a K-point. Given such
a K-point .aij /, define Ci to be the semisimple conjugacy class with eigenvalues aij
with multiplicities �ij . Then .C1; : : : ;Ck/ is generic of type �.

For a k-tuple of conjugacy classes .C1; : : : ;Ck/ of type� define U� as the subvariety
of GLn.K/2gCk of elements .A1; : : : ;Ag ;B1; : : : ;Bg ;X1; : : : ;Xk/ which satisfy

.A1;B1/ � � � .Ag ;Bg/X1 � � �Xk D In; Xi 2 Ci : (2.1.4)

Remark 2.1.3
If †g is a compact Riemann surface of genus g with punctures S D ¹s1; : : : ; skº �
†g , then U� can be identified with the set®

� 2Hom.�1.†g n S/;GLn.K//
ˇ̌
�.
i / 2 Ci

¯
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(for some choice of base point, which we omit from the notation). Here we use the
standard presentation

�1.†g n S/D h˛1; : : : ; ˛g Iˇ1; : : : ; ˇg I
1; : : : ; 
k j .˛1; ˇ1/ � � � .˛g ; ˇg/
1 � � �
k D 1i

(
i is the class of a simple loop around si with orientation compatible with that of†g ).

We have GLn acting on GL2gCkn by conjugation. As the center acts trivially, this
induces an action of PGLn. The action also leaves (2.1.4), the defining equations of
U�, invariant and thus induces an action of PGLn on U�. We call the affine GIT
quotient

M� WDU�==PGLn D Spec.KŒU��
PGLn/

a generic character variety of type �. We denote by �� the quotient morphism

�� WM�!U�:

PROPOSITION 2.1.4
If .C1; : : : ;Ck/ is generic of type �, then the group PGLn.K/ acts set-theoretically
freely on U� and every point of U� corresponds to an irreducible representation of
�1.†g n S/.

Proof
Let A1;B1; : : : ;Ag ;Bg 2GLn.K/ and Xi 2 Ci satisfy

.A1;B1/ � � � .Ag ;Bg/X1 � � �Xk D In: (2.1.5)

Assume that all the matrices Ai ;Bi , and Xj preserve a subspace V �Kn. Let A0i D
Ai jV , B 0i DBi jV , and X 0i DXi jV . Then

.A01;B
0
1/ � � � .A

0
g ;B

0
g/X

0
1 � � �X

0
k D IV : (2.1.6)

Taking determinants of both sides we see that the product of the eigenvalues of the
matrices X 0i equals 1. Hence, by the genericity assumption, either V D 0 or V DKn

and the corresponding representation of �1.†g n S/ is irreducible.
Now suppose that g 2 GLn.K/ commutes with all the matrices Ai ;Bi , and Xj .

By the irreducibility of the action we just proved, it follows from Schur’s lemma that
g 2GLn.K/ is a scalar. Hence PGLn.K/ acts set-theoretically freely on U�.K/.

Recall (see (1.2.1)) that d� D .2gC k � 2/n2 �
P
i;j .�

i
j /
2C 2.
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THEOREM 2.1.5
If .C1; : : : ;Ck/ is a generic k-tuple of semisimple conjugacy classes in GLn.K/ of
type �, then the quotient �� WU�!M� is a geometric quotient and a principal
PGLn-bundle. Consequently, when nonempty, the variety M� is nonsingular of pure
dimension d�; that is, it is the disjoint union of its irreducible components all non-
singular of same dimension d�.

Proof
If k D 1 and C1 is a central matrix, then this is [22, Theorem 2.2.5]; if g D 0 and
KDC, then this is [9, Proposition 5.2.8]. Our proof will combine the proofs of these
two results.

Let

� WGLn.K/
2g �C1 � � � � �Ck! SLn.K/

be given by

.A1;B1;A2;B2; : : : ;Ag ;Bg ;X1; : : : ;Xk/ 7! .A1;B1/ � � � .Ak;Bk/X1 � � �Xk :

We have U� D �
�1.In/. Combining the calculations in [22, Theorem 2.2.5] and [9,

Proposition 5.2.8], it is straightforward, albeit lengthy, to calculate the differential
ds�; we leave it to the reader. Exactly as in [22, Theorem 2.2.5] and [9, Proposi-
tion 5.2.8] we can then argue that ds� is surjective for all s 2U�, and so the affine
variety U� is nonsingular of dimension

dim
�
GLn.K/

2g �C1� � � � �Ck
�
�dim SLn.K/D 2gn

2Ckn2�n2C1�
X
i;j

.�ij /
2:

Exactly as in [22, Corollaries 2.2.7, 2.2.8] we can argue that this is a geomet-
ric quotient as well as a PGLn principal bundle, proving that M� is nonsingular of
dimension d� given by (1.2.1).

2.2. Quiver varieties
As in Section 2.1 we fix g;k;n; �. But in this section we take an algebraically closed
field K, which satisfies

char.K/ �DŠ (2.2.1)

where D D mini maxj �ij . For i D 1; : : : ; k, let Oi � gln be a semisimple adjoint
orbit satisfying

kX
iD1

Tr Oi D 0: (2.2.2)
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Let ai1; : : : ; a
i
ri

be the distinct eigenvalues of Oi , and let �ij be the multiplicity of aij .
We assume that �i1 � � � � � �

i
ri

. As in Section 2.1, we assume that the multiplicities
¹�ij ºj determine our fixed partitions �i of n which is called the type of Oi , and

� WD .�1; : : : ;�k/ is called the type of .O1; : : : ;Ok/.

Definition 2.2.1
The k-tuple .O1; : : : ;Ok/ of semisimple adjoint orbits is generic if the following
holds. If V �Kn is a subspace stable by some Xi 2Oi for each i such that

kX
iD1

Tr.Xi jV /D 0; (2.2.3)

then either V D 0 or V DKn.

Let d WD gcd¹�ij º. We have the following.

LEMMA 2.2.2
Assume (2.2.1). If d > 1, then generic k-tuples of adjoint orbits of type � do not exist.
If d D 1, in which case we say that � is indivisible, they do.

Proof
In terms of eigenvalues, (2.2.2) is equivalent to

P
i;j a

i
j�

i
j D 0. If d > 1, then it is

easy to construct for a fixed basis in Kn diagonal matrices Xi 2 Oi and V � Kn of
dimension n=d such that

X
i

Tr.Xi jV /D
X
i;j

aij
�ij

d
D 0:

This shows the first part of our lemma.
Phrased in terms of the eigenvalues of a matrix in Oi , in the indivisible case we

are looking for a point in the complement of a hyperplane arrangement in K
P
ri�1.

(The hyperplanes do not degenerate due to the assumption (2.2.1).)As K
P
ri�1 is

irreducible, such a point exists. (In the present, additive case we do not have the
crutch of a d th torsion point as we did in Lemma 2.1.2.)

For a k-tuple of semisimple adjoint orbits .O1; : : : ;Ok/ of type � define V� as the
subvariety of gln.K/

2gCk of matrices .A1; : : : ;Ag ;B1; : : : ;Bg ;X1; : : : ;Xk/ which
satisfy

ŒA1;B1�C � � � C ŒAg ;Bg �CX1C � � � CXk D 0; Xi 2Oi ; (2.2.4)
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where Œ�; �� is the Lie bracket in gln.K/. As explained in Remark A.2 one can define
V� by equations showing that it is indeed an affine variety.

PROPOSITION 2.2.3
If .O1; : : : ;Ok/ is generic, then PGLn.K/ acts set-theoretically freely on V�, and
for any element .A1;B1; : : : ;Ag ;Bg ;X1; : : : ;Xk/ 2 V� there is no nonzero proper
subspace of Kn stable by A1;B1; : : : ;Ag ;Bg ;X1; : : : ;Xk .

Proof
The proof is similar to that of Proposition 2.1.4.

GLn acts on V� by simultaneously conjugating the matrices in the defining equa-
tion (2.2.4) of V�. We can thus construct an affine quiver variety of type � as the
affine GIT quotient

Q� WD V�==PGLn D Spec.KŒV��
PGLn/:

In Theorem 2.2.5 below we will prove that Q� is isomorphic to a quiver variety
associated to a certain comet-shaped quiver; hence its name.

THEOREM 2.2.4
If .O1; : : : ;Ok/ is generic, then the variety Q� is nonsingular of dimension d�. More-
over, V�==PGLn.K/ is a geometric quotient, and the quotient map V�! Q� is a
principal PGLn-bundle.

Proof
The proof is similar to that of Theorem 2.1.5.

We now review the connection between Q� and quiver representations due to
Crawley-Boevey [3]. Let sD .s1; : : : ; sk/ 2 Zk�0. Put I D ¹0º [ ¹Œi; j �º1�i�k;1�j�si ,
and let � be the quiver with g loops on the central vertex represented as in Figure 1.�

A dimension vector for � is a collection of nonnegative integers vD ¹viºi2I 2
ZI�0, and a representation of � of dimension v over K is a collection of K-linear maps

i;j W K

vi ! Kvj for each arrow i ! j of � that we identify with matrices (using
the canonical basis of Kr ). Let � be a set indexing the edges of � . For 
 2 �, let
h.
/; t.
/ 2 I denote, respectively, the head and the tail of 
 . The algebraic groupQ
i2I GLvi .K/ acts on the space

RepK.�;v/ WD
M
�2�

Matvh.�/;vt.�/.K/

�The picture is from [46].



348 HAUSEL, LETELLIER, and RODRIGUEZ-VILLEGAS

Figure 1.

of representations of dimension v in the obvious way. As the diagonal center
.�Ivi /i2I 2 .

Q
i2I GLvi .K// acts trivially, the action reduces to an action of

Gv.K/ WD
�Y
i2I

GLvi .K/
�ı

K�:

Clearly two elements of RepK.�;v/ are isomorphic if and only if they are Gv.K/-
conjugate.

Let � be the double quiver of � ; that is, � has the same vertices as � but the
edges are given by � WD ¹
; 
� j 
 2 �º where h.
�/ D t .
/ and t .
�/ D h.
/.
Then via the trace pairing we may identify RepK.�;v/ with the cotangent bundle
T�RepK.�;v/. Define the moment map

�v W RepK.�;v/!M.v;K/0; (2.2.5)

.x� /�2� 7!
X
�2�

Œx� ; x�� �; (2.2.6)

where

M.v;K/0 WD
°
.fi /i2I 2

M
i2I

glvi .K/
ˇ̌̌X
i2I

Tr.fi /D 0
±

is identified with the dual of the Lie algebra of Gv.K/. It is a Gv.K/-equivariant map.
We define a bilinear form on KI by a � bD

P
i aibi . For � D .�i /i 2 KI such that

� � vD 0, the element

.�i :Id/i 2
M
i

glvi .K/

is in fact in M.v;K/0. For such a � 2KI , the affine variety ��1v .�/ is endowed with
a Gv.K/-action. We call the affine GIT quotient

M�.v/ WD �
�1
v .�/==Gv.K/
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the affine quiver variety. These and related quiver varieties were considered by many
authors including Kronheimer, Lusztig, Nakajima, and Crawley-Boevey (see [31],
[38], [42], [2]).

Following [3], we now identify our Q�, constructed from a generic k-tuple
.O1; : : : ;Ok/ of type �, with a certain quiver variety. We define s as si D l.�i / � 1
where l.�/ denotes the length of a partition �. Then we define v 2 ZI�0 as v0 D n

and vŒi;j � D n �
Pj
rD1�

i
r for Œi; j � 2 I . Clearly n � vŒi;1� � � � � � vŒi;si �. We define

� 2KI as �0 D�
Pk
iD1 a

i
1 and �Œi;j � D aij � a

i
jC1. Observe that � � vD 0.

For convenience, the symbol Œi; 0�, with i 2 ¹1; : : : ; kº, will also denote the ver-
tex 0. For a representation ' 2 RepK.�;v/ and an arrow Œi; j �! Œi; j � 1� 2� with
1 � j � si , denote by 'Œi;j � (resp., '�

Œi;j �
) the corresponding linear map KvŒi;j � !

KvŒi;j�1� (resp., KvŒi;j�1�!KvŒi;j � ). If 
1; : : : ; 
g are the loops in �, then we denote
by 'i WKv0!Kv0 the linear map corresponding to 
i and by '�i the one correspond-
ing to 
�i . Following [3, Section 3], we construct a surjective algebraic morphism
! W ��1v .�/! V which is constant on

Q
i2I�¹0ºGLvi .K/ orbits. Let ' 2 ��1v .�/. For

each i 2 ¹1; : : : ; kº, define

Xi D 'Œi;1�'
�
Œi;1�C a

i
1Id 2Matv0.K/:

For j 2 ¹1; : : : ; gº, put Aj D 'j and Bj D '�j . We will set

!.
/ WD .A1;B1; : : : ;Ag ;Bg ;X1; : : : ;Xk/: (2.2.7)

To show that !.
/ 2 V , recall that � at the vertex 0 is given by

gX
jD1

Œ'j ; '
�
j �C

kX
iD1

'Œi;1�'
�
Œi;1� D �0Id

which gives

gX
jD1

ŒAi ;Bi �C

kX
iD1

Xi D 0:

It is straightforward to see from [3, Section 3] that we have Xi 2 Oi for all i 2
¹1; : : : ; kº, from which we deduce that indeed

.A1;B1; : : : ;Ag ;Bg ;X1; : : : ;Xk/ 2 V :

The map ! induces a bijection between isomorphic classes of simple representa-
tions in ��1v .�/ and the GLn.K/-conjugacy classes of the set of tuples .A1;B1; : : : ;
Ag ;Bg ;X1; : : : ;Xk/ 2 V ; thus we have the following (see [3]).
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THEOREM 2.2.5
If KDC, the bijective morphism M�.v/!Q� induced by the map ! in (2.2.7) is an
isomorphism.

We use this theorem in the proof of the following proposition.

PROPOSITION 2.2.6
Let KD C. If .O1; : : : ;Ok/ is generic, then the mixed Hodge structure of the coho-
mology H�.Q�/ of the quiver variety Q� is pure.

Proof
We will construct a nonsingular variety M with a smooth map f WM! C such that
for 0 ¤ � 2 C the preimage f �1.�/ 'M�.v/ ' Q�. Moreover, we will define an
action of C� on M covering the standard action on C such that MC� is projective and
the limit point lim�!0 �x exists for all x 2M. Then by Theorem B.1 in Appendix B,
H�.Q�/ has pure mixed Hodge structure.

Similarly to (2.2.5) we define

� W RepK.�;v/�C!M.v;K/0�
.x� /�2�; z

�
7!
X
�2�

Œx� ; x
�
� ��

X
i2I

z�i Id:

Now for nD .ni /i2I 2 ZI satisfying
P
i2I nivi D 0 we have a character �n of Gv

given by

�n
�
.gi /i2I

�
D
Y
i2I

det.gi /
ni :

We call

nD .ni /i2I 2 ZI generic if n � vD 0 and

for v0 2 ZI�0, 0 < v0 < v implies that n � v0 ¤ 0: (2.2.8)

Because � is indivisible we can take a generic n. Now the character �n will give
a linearization of the action of Gv on ��1.0/ � C, and so we can consider the GIT
quotient

M WD ��1.0/==	nGv:

We note that C� acts on ��1.0/ by

�
�
.x� /�2�; z

�
D
�
.�x� /�2�; �

2z
�

(2.2.9)
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commuting with the Gv-action thus descending to an action of C� on M. Finally, we
also have the map f WM!C given by f ..x� /�2�; z/D z. We have the following.

THEOREM 2.2.7
For a generic n the variety M is nonsingular, f is a smooth map (in other words a
submersion), MC� is complete, and lim�!0 �x exists for all x 2M.

Proof
The variety M is nonsingular because by the Hilbert-Mumford criterion for (semi)sta-
bility (see [27]), every semistable point on ��1.0/ will be stable due to (2.2.8). The
map f is a submersion because the derivative @z�D�

P
i2I �i Id is nonzero.

Construct the affine GIT quotient

M0 WD �
�1.0/==	0Gv

using the nongeneric 0 2 ZI weight. Then the natural map M!M0 is proper, the
C�-action (2.2.9) on M0 has one fixed point coming from the origin in RepK.�;v/�
C, and all C� orbits on M0 will have this origin in its closure. The remaining state-
ments of the theorem follow.

To conclude the proof of Proposition 2.2.6 it is enough to note that by the GIT con-
struction we have the natural map f �1.1/!M� , which, as a resolution of singular-
ities and M� being nonsingular, is an isomorphism. Therefore Theorem B.1 implies
the result.

2.3. Symmetric functions
2.3.1. Partitions and types
We denote by P the set of all partitions including the unique partition 0 of 0, by P�

the set of nonzero partitions, and by Pn the set of partitions of n. Partitions � are
denoted by �D .�1; �2; : : :/, where �1 � �2 � � � � � 0. We will also sometimes write
a partition as .1m1 ; 2m2 ; : : : ; nmn/, where mi denotes the multiplicity of i in �. The
size of � is j�j WD

P
i �i ; the length l.�/ of � is the maximum i with �i > 0.

For two partitions � and �, we define h�;�i as
P
i �
0
i�
0
i , where �0 denotes the

dual partition of �. We put n.�/ WD
P
i>0.i � 1/�i . Then h�;�i D 2n.�/C j�j. For

two partitions �D .1n1 ; 2n2 ; : : : / and �D .1m1 ; 2m2 ; : : : /, we denote by � [ � the
partition .1n1Cm1 ; 2n2Cm2 ; : : : /. For a nonnegative integer d and a partition �, we
denote by d � � the partition .d�1; d�2; : : : /. The dominance ordering for partitions
is defined as follows: ��� if and only if �1C� � �C�j � �1C� � �C�j for all j � 1.

For a partition �, let t� in the symmetric group of permutations of j�j letters Sj�j
be an element in the conjugacy class of type �. We denote by z� the cardinality of the
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centralizer of t� in Sj�j. For two partitions �;� such that j�j D j�j, we denote by ���
the value at t� of the irreducible character �� of Sj�j.

We choose once for all a total order � on the set of pairs .d;�/ where d 2 Z>0
and � 2 P� such that if d > d 0, then .d;�/ > .d 0;�/; if j�j > j�j, then .d;�/ >
.d;�/; and if j�j D j�j, then .d;�/ � .d;�/ if � is larger than � with respect to
the lexicographic order. We denote by T the set of nonincreasing sequences ! D
.d1;!

1/� .d2;!
2/� � � � � .dr ;!

r/, which we will call a type. To alleviate the nota-
tion we will then omit the symbol � and write simply ! D .d1;!

1/.d2;!
2/ � � �

.dr ;!
r/. The size of a type ! is j!j WD

P
i di j�

i j. We denote by Tn the set of types
of size n. For a type ! D .d1;!1/.d2;!2/ � � � .dr ;!r/, we put n.!/ WD

P
i din.!

i /

and Œ!� WD
S
i di �!

i , a partition of size j!j.
As with partitions it is sometimes convenient to consider a type in terms of mul-

tiplicities. Given a type !, let md;�.!/ be the multiplicity of .d;�/ in !, that is,
how many times the pair .d;�/ appears in !. The integers md;� � 0 indexed by pairs
.d;�/ 2 Z>0 �P� determine ! uniquely.

A partition � D .n1; : : : ; nr/ of n can be seen as the type �� WD .1; 1n1/ � � �

.1; 1nr / 2 Tn, which is the type of a semisimple conjugacy class in the sense of Sec-
tion 4.1. Similarly, when a multipartition � is considered as a multitype it is denoted
by ��.

2.3.2. Symmetric functions
Let ƒ.x1; : : : ;xk/ WD ƒ.x1/ ˝Z � � � ˝Z ƒ.xk/ be the ring of functions separately
symmetric in each set x1;x2; : : : ;xk of infinitely many variables. We will consider ele-
ments in ƒ.x1; : : : ;xk/˝Z Q.q; t/, where q and t are two indeterminates or similarly
ƒ.x1; : : : ;xk/˝Z Q.z;w/, depending on the situation. To ease the notation we will
simply write ƒ for the various rings ƒ.x/;ƒ.x1; : : : ;xk/;ƒ.x1; : : : ;xk/˝Z Q.q; t/;

ƒ.x1; : : : ;xk/˝Z Q.z;w/, and so on, as long as the context is clear. When consid-
ering elements a� 2 ƒ indexed by multipartitions �D .�1; : : : ;�r/ 2 P k , we will
always assume that they are homogeneous of degree .j�1j; : : : ; j�kj/. Given any fam-
ily of symmetric functions indexed by partitions � 2P and a multipartition � 2P k

as above, define

a� WD a�1.x1/ � � �a�k .xk/:

We will deal with elements of the ring ƒ.x/˝Z Q.z;w/ and their images under two
specializations: their pure part, z D 0;w D

p
q, and their Euler specialization, z D

p
q;wD 1=

p
q.

Let h�; �i be the Hall pairing on ƒ.x/, and extend its definition to ƒ.x1; : : : ;xk/
by setting

ha1.x1/ � � �ak.xk/; b1.x1/ � � �bk.xk/i D ha1; b1i � � � hak; bki; (2.3.1)
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for any a1; : : : ; ak Ib1; : : : ; bk 2ƒ.x/ and to formal series by linearity.
Given any family of symmetric functions A�.x1; : : : ;xkIq; t/ 2 ƒ indexed by

partitions with A0 D 1, we extend its definition to types ! D .d1;!1/.d2;!2/ � � �
.dr ;!

r/ 2 T by setting

A!.x1; : : : ;xkIq; t/ WD
Y
j

A!j .x
dj
1 ; : : : ;x

dj
k
Iqdj ; tdj /:

Here xd stands for all the variables x1; x2; : : : in x replaced by xd1 ; x
d
2 ; : : : : (Techni-

cally we are applying the Adams operation  d to A!j in the �-ring ƒ.)
We will need the following lemma; p� 2 ƒ.x/ are the power sums symmetric

functions.

LEMMA 2.3.1
Let � 2Pn, and let d be a positive integer such that d j n. Then

hp.dn=d /; h�i D

´
.n=d/ŠQ
i 
i Š

if �D d � � for some �D .�1; �2; : : :/ 2Pn=d ;

0 otherwise.

Proof
For a finite group G, let h�; �iG denote the standard inner product on class functions
of G. Using the Frobenius characteristic map [40, Chapter I, Part 7] we have, for any
two partitions �D .�1; �2; : : : ; �r/ and �D .�1;�2; : : : ;�s/ of size n,

hp�; h�i D z�hı�; IndSn
S�
.1/iSn ;

ı�.�/D 1, if � 2 Sn has cycle type � and ı�.�/D 0 otherwise, and S� WD S�1 �

S�2 � � � � � S�r � Sn.
Hence, by Frobenius reciprocity,

hp�; h�i D z�hResSn
S�
ı�; 1iS� :

The only nonzero terms contributing to the sum implicit in the right-hand side are
those elements of S� with cycle type .�1; : : : ;�r/ with j�i j D �i and

S
i �

i D �.
If �D .dn=d /, this forces d j �i and �i D .d
i /, where �i WD �i=d , and the claim
follows.

2.3.3. Exp and Log
We will use the maps Exp and Log of [22] extended to ƒ. The general context is that
of �-rings (see [15]), but the following discussion will suffice for us. For V 2 TƒŒŒT ��
let

Exp W TƒŒŒT ��! 1C TƒŒŒT ��; (2.3.2)
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V 7! exp
�X
d�1

1

d
V.xd1 ; : : : ;x

d
k ; q

d ; td ; T d /
�
: (2.3.3)

The map Exp is related to the Cauchy kernel

C.x/ WD
Y
i

.1� xi /
�1 (2.3.4)

by

Exp.X/D C.x/; X WD x1C x2C � � � Dm.1/.x/

(m�.x/ 2ƒ.x/ is the monomial symmetric function). It has an inverse Log defined as
follows. Given F 2 1C TƒŒŒT ��, let Un 2ƒ be the coefficients in the expansion

log.F /DW
X
n�1

Un.x1; : : : ;xkIq; t/
T n

n
:

Define

Vn.x1; : : : ;xkIq; t/ WD
1

n

X
d jn

�.d/Un=d .x
d
1 ; : : : ;x

d
k Iq

d ; td /; (2.3.5)

where � is the ordinary Möbius function; then

Log.F / WD
X
n�1

Vn.x1; : : : ;xkIq; t/T
n:

To simplify the discussion we now restrict to the case of k D 1, but everything
extends easily to the general case. Suppose that A�.xIq; t/ 2 ƒ is a sequence of
symmetric functions indexed by partitions with A0 D 1. We want an expression for
Vn 2ƒ in X

n�1

VnT
n WD Log

�X
�2P

A�T
j�j
�
:

We first compute

X
n�1

Un
T n

n
WD log

�X
�2P

A�T
j�j
�
;

where Un and Vn are related by (2.3.5). By the multinomial theorem we have

Un

n
D
X
m�

.�1/m�1.m� 1/Š
Y
�

A
m�
�

m�Š
; (2.3.6)



ARITHMETIC HARMONIC ANALYSIS ON CHARACTER AND QUIVER VARIETIES 355

where m WD
P
�m� and the sum is over all sequences ¹m�º�2P� of nonnegative

integers such that X
�

m�j�j D n:

We find then

Vn D
X �.d/

d
.�1/md�1.md � 1/Š

Y
�

A�.xd1 ; : : : ;x
d
k
Iqd ; td /md;�

md;�Š
;

where the sum is over all sequences of nonnegative integers md;� indexed by pairs
.d;�/ 2 Z>0 �P� satisfyingX

�

md;�d j�j D n; md WD
X
�

md;�:

Alternatively, we may consider not collecting equal terms when expanding the
logarithm to obtain

Vn D
X �.d/

d

.�1/r�1

r
A�1.q

d / � � �A�r .q
d /; (2.3.7)

where the sum is over �1; �2; : : : 2P� and d 2 Z>0 such that

nD d
X
j

j�j j:

Finally, we may also rewrite the expression for Vn as a sum over types !:

Vn D
X
j!jDn

C 0!A! ; (2.3.8)

so that

Log
�X
�2P

A�T
j�j
�
D
X
!

C 0!A!T
j!j; (2.3.9)

where C 0! D 0 unless ! is concentrated in some degree d ; that is, ! D .d;!1/.d;!2/
� � � .d;!r/, in which case,

C 0! D
�.d/

d
.�1/r�1

.r � 1/ŠQ
�md;�.!/Š

: (2.3.10)

Remark 2.3.2
The formal power series

P
n�0 anT

n with an 2ƒ that we will consider in what fol-
lows will all have an homogeneous of degree n. Hence we will typically scale the
variables of ƒ by 1=T and eliminate T altogether.
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Remark 2.3.3
Note also the following useful fact. If we write

log
�X
�2P

A�.x/T
j�j
�
D
X
�

U�.q; t/m�.x/;

Log
�X
�2P

A�.x/T
j�j
�
D
X
�

V�.q; t/m�.x/;

where m�.x/ are the monomial symmetric functions, then it is easy to check that

V�.q; t/ WD
1

n

X
d j�

�.d/U�=d .q
d ; td /; (2.3.11)

where d j � means that d divides every part �i of � and �=d WD .�1=d;�2=d; : : :/.
In particular, if � is indivisible, then the sum on the right-hand side consists of only
the d D 1 term and U� D V�=n. (This is particularly useful for computations.)

2.3.4. Macdonald and Hall-Littlewood symmetric functions: Green polynomials
For a partition �, let QH�.xIq; t/ 2ƒ.x/˝Z Q.q; t/ be the Macdonald symmetric func-
tion defined in [14, Chapter I.11]. We collect in this section some basic properties of
these functions that we will need.

We have the duality

QH�.xIq; t/D QH�0.xI t; q/ (2.3.12)

(see [14, Corollary 3.2]). We define the (transformed) Hall-Littlewood symmetric
function as

QH�.xIq/ WD QH�.xI0; q/: (2.3.13)

In the notation just introduced, QH�.xIq/ is then the pure part of QH�.xI z2;w2/.
Define the .q; t/-Kotska polynomials QK��.q; t/ by

QH�.xIq; t/D
X
�

QK��.q; t/s�.x/; (2.3.14)

where s� are the Schur symmetric functions. These are .q; t/-generalizations of the
QK��.q/Kostka-Foulkes polynomial (see [40, Chapter III, (7.11)]), which are obtained

as qn.�/K��.q�1/D QK��.q/D QK��.0; q/, that is, by taking their pure part. In partic-
ular,

QH�.xIq/D
X
�

QK��.q/s�.x/: (2.3.15)
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For partitions �; � we define the Green polynomial

Q�
�.q/D

X
�

���
QK�� .q/; (2.3.16)

where QK�� .q/ is the Kostka-Foulkes polynomial (2.3.14).
For two partitions �;� 2Pn, we have (see [40, p. 363]) the Euler specialization

QK��.q; q
�1/D q�n.�/K��.q; q/D q

�n.�/H�.q/
X



��
�
�



z

Q
i .1� q


i /
; (2.3.17)

where H�.q/ WD
Q
s2�.1� q

h.s// is the hook polynomial (see [40, Chapter I, Part 3,
Example 2]).

If yD ¹y1; y2; : : :º;xD ¹x1; x2; : : :º are two sets of infinitely many variables, we
denote by xy the set of variables ¹xiyj ºi;j .

LEMMA 2.3.4
Under the Euler specialization,

QH�.xIq; q
�1/D q�n.�/H�.q/s�.xy/;

where yi D qi�1.

Proof
With the specialization yi D qi�1 we get p
.y/D

Q
i .1� q


i /�1. Hence by (2.3.17)

QH�.xIq; q
�1/D q�n.�/H�.q/

X

;�

��
�
�



z

p
.y/s�.x/

D q�n.�/H�.q/
X



z�1
 ��
p
.y/
X
�

��
s�.x/

D q�n.�/H�.q/
X



z�1
 ��
p
.y/p
.x/

D q�n.�/H�.q/
X



z�1
 ��
p
.xy/

D q�n.�/H�.q/s�.xy/:

For two types ! D .d1;!1/ � � � .dr ;!r/ and � D .ı1; �1/ � � � .ıs; � s/, write ! 	 � if
r D s and for each i D 1; 2; : : : ; r , di D ıi and j!i j D j� i j.

For two types ! and � , put
�!� WD

Q
i �
!i

� i
if ! 	 � , and �!� D 0 otherwise,
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Q!
� .q/ WD

Q
iQ

!i

� i
.qdi / if ! 	 � , and Q!

� .q/D 0 otherwise,
QK�!.q/ WD

Q
i
QK� i!i .q

di / if ! 	 � , and QK�!.q/D 0 otherwise.
Note that formulas (2.3.16) and (2.3.15) extend to types, namely, Q!

� .q/ DP
� �

�
�
QK�!.q/ and QH!.xIq/D

P
�
QK�!.q/s� .x/, where �;!; � 2 T.

LEMMA 2.3.5
For ˛;ˇ 2 T, put

A.˛;ˇ/ WD
X
�

zŒ���
˛
�

z�

X
¹�jŒ��DŒ��º

Q
ˇ
� .q/

z�
;

where the sums are over types. Then

A.˛;ˇ/D hs˛.x/; QHˇ .xIq/i;

where for a partition �, s�.x/ 2ƒ.x/ is the Schur symmetric function and QH�.xIq/
the transformed Hall-Littlewood symmetric function (2.3.15).

Proof
For ! 2 T, define

a!.x/ WD
X
�

�!�
p� .x/
z�

and

b!.x/ WD
X
�

Q!
� .q/

p�.x/
z�

;

where ¹p�.x/º�2P is the family of power symmetric functions which satisfies for two
partitions �; � 2P ,

hp�.x/;p� .x/i D ı�;�z� :

For a type ! 2 T, we have p!.x/ WD
Q
i p!i .x

di /D pŒ!�.x/. Therefore, for ˛;ˇ 2 T,
we have hp˛.x/;pˇ .x/i D ıŒ˛�;Œˇ�zŒ˛�. Hence

ha˛.x/; bˇ .x/i D
X
�

X
�

�˛�Q
ˇ
� .q/
hp� .x/;p�.x/i

z�z�

D
X
�

X
�

�˛�Q
ˇ
� .q/ıŒ��;Œ��

zŒ��

z�z�

D A.˛;ˇ/:
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Recall that for a partition � 2P , we have

s�.x/D
X
�

���
p� .x/
z�

:

Hence for a type ! 2 T, we have

s!.x/D
X
�

�!�
p� .x/
z�
D a!.x/:

Hence we may write

b!.x/D
X
�

X
�

���
QK�!.q/

p�.x/
z�

D
X
�

X
�

���
QK�!.q/

p�.x/
z�

D
X
�

QK�!.q/s� .x/D QH!.xIq/:

LEMMA 2.3.6
Let � 2P . With the specialization yi D qi�1, we have

h�.xy/D .�1/j�jqn.��/H0
��
.0;
p
q / QH��.xIq/; (2.3.18)

where H0
�
.z;w/ is the genus 0 hook function.

Proof
We need to prove that for m 2 Z>0,

hm.xy/D .�1/mqn.1
m/H0

.1m/.0;
p
q / QH.1m/.xIq/:

In the language of plethystic substitution (we use the notation of [14]), the trans-
formed Hall-Littlewood (2.3.13) QH�.xIq/ equals

QH�.xIq/D qn.�/b�.q�1/P�
h X

1� q�1
Iq�1

i

where P�.xIq/ is the Hall-Littlewood symmetric function defined in [40]. Since
H0
�.0;
p
q /D q�h�;�ib�.q

�1/�1, we have

.�1/j�jqn.�/H0
�.0;
p
q / QH�.xIq/D .�1/j�jq�j�jP�

h X

1� q�1
Iq�1

i
(2.3.19)

D .�q�1/j�jP�

h
�
qX

1� q
Iq�1

i
: (2.3.20)
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On the other hand, from [40, Chapter VI, (4.8)] we have

.�q�1/mP.1m/Œ�qX Iq
�1�

D .�q�1/memŒ�qX�D .�q
�1/ms.1m/Œ�qX�D s.m1/.x/D hm.x/:

Since for any symmetric function u, we have u.xy/D uŒX=.1� q/�, we deduce that

hm.xy/D .�q�1/mP.1m/
h
�
qX

1� q
Iq�1

i
:

The lemma follows thus from formula (2.3.19).

2.3.5. Genus g hook function
Given a partition � 2Pn we define the genus g hook function H�.z;w/ by

H�.z;w/ WD
Y
s2�

.z2a.s/C1 �w2l.s/C1/2g

.z2a.s/C2 �w2l.s//.z2a.s/ �w2l.s/C2/
;

where the product is over all cells s of � with a.s/ and l.s/ its arm and leg length,
respectively. For details on the hook function we refer the reader to [22].

Remark 2.3.7
Note that H�.z;w/ is a rational function of z2 and w2 when gD 0.

We have

H�.z;w/DH�0.w; z/ and H�.�z;�w/DH�.z;w/: (2.3.21)

The pure part of H� is

H�.0;
p
q /D

Y
aD0

qg.2lC1/

ql.qlC1 � 1/

Y
a¤0

q.g�1/.2lC1/

D
q.g�1/.2n.�/Cj�j/Q

i�1.1� 1=q/.1� 1=q
2/ � � � .1� 1=qmi /

;

where mi is the multiplicity of i in �. Hence

H�.0;
p
q /D

qgh�;�i

a�.q/
; (2.3.22)

where a�.q/ is the cardinality of the centralizer of a unipotent element of GLn.Fq/
with Jordan form of type � (see [40, Chapter IV, (2.7)]). In particular, when g D 0,
we have H.1n/.0;

p
q /D 1=jGLn.Fq/j.
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It is also not difficult to verify that the Euler specialization of H� is

H�.
p
q; 1=
p
q /D

�
q�

1
2 h�;�iH�.q/

�2g�2
: (2.3.23)

2.3.6. Cauchy functions
As in the introduction let

�.z;w/ WD
X
�2P

H�.z;w/

kY
iD1

QH�.xi I z
2;w2/:

By (2.3.12) and (2.3.21), we have

�.z;w/D�.w;z/ and �.�z;�w/D�.z;w/: (2.3.24)

LEMMA 2.3.8
With the specialization yi D qi�1, we have

�
�p

q;
1
p
q

�
D
X
�2P

q.1�g/j�j
�
q�n.�/H�.q/

�2gCk�2 kY
iD1

s�.xiy/:

Proof
The proof follows from Lemma 2.3.4 and (2.3.23).

For �D .�1; : : : ;�k/ 2P k , we let

H�.z;w/ WD .z
2 � 1/.1�w2/hLog �.z;w/;h�i: (2.3.25)

By (2.3.24), we have

H�.z;w/DH�.w; z/ and H�.�z;�w/DH�.z;w/: (2.3.26)

We may recover �.z;w/ from the H�.z;w/’s by the formula

�.z;w/D Exp
� X
�2Pk

H�.z;w/

.z2 � 1/.1�w2/
m�

�
: (2.3.27)

If we want to work with partitions of length at most l1; : : : ; lk , we can specialize
the variables xi D .xi;1; xi;2; : : :/ in formula (2.3.27) to say .ui;1; ui;2; : : : ; ui;li ; 0; 0;
: : :/ for some new independent variables ui;j . Indeed, this specialization takes any
m� with l.�i / > li for some i to zero.
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For instance, if k D 1 the specialization xD .x1; x2; : : : / to .T; 0; 0; : : : / in for-
mula (2.3.27) gives

X
�

H�.z;w/T
j�j D Exp

�X
n�1

H.n/.z;w/

.z2 � 1/.1�w2/
T n
�
; (2.3.28)

since for a partition � of n, we have

m�.T; 0; 0; : : : /D

´
T n if �D .n/;

0 otherwise

and

QH�.T; 0; 0; : : : Iq; t/D QK.n/�.q; t/T
n D T n:

The identity QK.n/�.q; t/ D 1 follows from [14, formula (16)]. Comparing with the
left-hand side of [22, (3.5.8)] we see that, in the notation of that paper, H.n/ D NHn.

2.4. Mixed Hodge polynomials and polynomial count varieties
We refer the reader to [22] for details on this section. For a complex quasi-projective
algebraic varietyX we letH.X Ix;y; z/ andHc.X Ix;y; z/ be its mixed Hodge poly-
nomial and compactly supported mixed Hodge polynomial, respectively. They satisfy
the following properties. The specialization H.X I1; 1; z/ is the Poincaré polynomial
P.X I z/ WD

P
k dim H k.X;C/zk and similarly with Hc and Pc . The E-polynomial

of X is E.X Ix;y/ D Hc.X Ix;y;�1/ D
P
i;j;k.�1/

kh
i;j Ik
c .X/xiyj . The value

E.X I1; 1/ is the compact Euler characteristic
P
i .�1/

i dim H i
c .X;C/, which is equal

to the ordinary Euler characteristic by [32]. We denote it by E.X/.
If X is nonsingular of pure dimension d , that is, if X is the disjoint union of its

irreducible components all nonsingular of same dimension d , then Poincaré duality
implies that

hd�i;d�j I2d�kc .X/D hi;j Ik.X/; for all i; j; k;

or, equivalently,

Hc.X Ix;y; t/D .xyt
2/dH.X Ix�1; y�1; t�1/: (2.4.1)

We recall the result of Katz given in the appendix to [22].

THEOREM 2.4.1
Assume that X=C is polynomial-count with counting polynomial PX 2 ZŒt �. Then

E.X Ix;y/D PX .xy/:
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If X is polynomial-count, then we put E.X Iq/ WDE.X I
p
q;
p
q / and just call it the

E-polynomial of X to simplify. Note that, in this case,
P
k.�1/

kh
i;j Ik
c .X/ D 0 if

i ¤ j .

PROPOSITION 2.4.2
Assume that X is polynomial-count and that the mixed Hodge structure on the com-
pactly supported cohomology H�c .X/ is pure. Then

E.X Iq/D Pc.X I
p
q /:

Proof
By the above remark we have

P
k.�1/

kh
i;j Ik
c .X/D 0 if i ¤ j . Since the only nonzero

term of this sum is when k D i C j , by the purity assumption, we get that .�1/iCj �
h
i;j IiCj
c .X/ D 0 if i ¤ j . Hence the nonzero mixed Hodge numbers are all of the

form h
i;i I2i
c .X/ and E.X Iq/D

P
i h
i;i I2i
c .X/qi .

2.5. Complex characters of GLn.Fq/ and gln.Fq/

Here we recall how to construct the irreducible characters of GLn.Fq/ and gln.Fq/

using the Deligne-Lusztig theory. We choose a prime ` which is invertible in the
finite field Fq . Since Deligne-Lusztig theory uses `-adic cohomology it will be more
convenient to work with Q`-characters instead of complex characters. Note that there
is a noncanonical isomorphism over Q between the two fields C and Q`. The counting
formulas (1.2.2) and (1.3.2), which involve character values, do not depend on the
choice of such an isomorphism.

For a finite group H , we denote by Irr.H/ the set of irreducible complex charac-
ters of H .

2.5.1. Generalities
Let n 2 Z>0, and we put GLn D GLn.Fq/ and gln D gln.Fq/. Unless specified, here
the letter G will always denote a Levi subgroup of a parabolic subgroup of GLn,
that is, a subgroup of GLn which is GLn-conjugate to some H D

Qr
iD1GLni wherePr

iD1 ni D n. For short we will say that G is a Levi subgroup of GLn. If ni D 1 for
all i , then G is a maximal torus of GLn. The Lie algebra of G is isomorphic to the
Lie algebra H D

L
i glni of H . Let Ad W G! GL.g/ be the adjoint representation:

we have Ad.g/x D gxg�1 for g 2 G and x 2 g. For g 2 G, we denote by gs the
semisimple part of g and by gu the unipotent part of g; we have g D gsgu D gugs .
If x 2 g, we denote by xs and xn, respectively, the semisimple part of x and the
nilpotent part of x. We then have x D xs C xn with Œxs; xn�D 0. Let x 2 g, and let
K be a subgroup of G; we denote by CK.x/ the centralizer of x in K with respect to
the adjoint action. If k is a Lie subalgebra of g, we denote by Ck.x/ the centralizer of
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x in k; that is, Ck.x/D ¹y 2 kjŒx; y�D 0º. We denote by ZG the center of G and by
z.g/ the center of g, respectively. IfL is a Levi subgroup ofG (i.e., a Levi subgroup of
GLn which is contained in G), then we denote by WG.L/ the finite group NG.L/=L
where NG.L/ denotes the normalizer of L in G.

Finally, we denote by Guni (resp., gnil) the subvariety of unipotent elements of G
(resp., the subvariety of nilpotent elements of g).

2.5.2. Frobenius endomorphisms
We denote by F W GLn! GLn and by F W gln! gln the standard Frobenius endo-
morphisms .aij / 7! .a

q
ij /. Assume that G is F -stable. Then g� gln is F -stable, and

the restrictions F W G ! G, F W g! g are Frobenius endomorphisms on G and g.
We also have F.Ad.g/x/D Ad.F.g//F.x/; therefore, Ad induces an action of the
finite group GF on the finite Lie algebras gF . Since G is conjugate to H , the Frobe-
nius endomorphism F W G ! G corresponds to some F 0 W H ! H , for which we
write .G;F / ' .H;F 0/. We then have GF ' HF 0 . The Frobenius endomorphism
F 0 is of the form wF WH !H , h 7! wF.h/w�1 for some w 2 NGLn.H/. We say
that an F -stable maximal torus T � G of rank n is split if there exists an isomor-
phism T ' .F

�

q /
n defined over Fq . The Fq-rank of an F -stable maximal torus of G

is defined to be the rank of its maximal split subtori. An F -stable maximal torus of G
is said to be G-split if it is maximally split in G. The G-split F -stable maximal tori
of G are those which are contained in some F -stable Borel subgroup of G.

2.5.3. F -conjugacy classes
Let T be an F -stable maximal torus of G. The Frobenius F acts on the finite group
WG.T /, and we say that two elements w;v 2WG.T / are F -conjugate if there exists
h 2WG.T / such thatwD hv.F.h//�1. Then we can parameterize theGF -conjugacy
classes of the F -stable maximal tori of G by the F -conjugacy classes of WG.T / as
follows. Let T 0 be an F -stable maximal torus of G. Then there exists g 2 G such
that T 0 D gTg�1; that is, g�1F.g/ 2 NG.T /. There is a well-defined map which
sends the GF -conjugacy class of T 0 to the F -conjugacy class of the image w of
g�1F.g/ in WG.T /; moreover, this map is bijective. This parameterization depends
only on the GF -conjugacy class of T . If w 2 WG.T /, then we will denote by Tw
an arbitrary F -stable maximal torus of G which is in the GF -conjugacy class corre-
sponding to the F -conjugacy class of w in WG.T /, and we will denote by tw its Lie
algebra. Under the isomorphism T ! T 0, h 7! ghg�1, the Frobenius F W T 0! T 0

corresponds to F 0 DwF W T ! T;h 7! PwF.h/ Pw�1 where w is the image in WG.T /
of Pw WD g�1F.g/ 2NG.T /.

Unless specified, we will always consider parameterizations with respect to
G-split,F -stable maximal tori ofG, in which case we will writeWG instead ofWG.T /.
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Example
Let nD 2, let x 2 Fq2 � Fq , and let

T D

²�
a 0

0 b

� ˇ̌̌
ˇ a; b 2 F

�

q

³
;

T 0 D

²
1

xq � x

�
axq � bx �aC b

.a� b/xxq �axC bxq

� ˇ̌̌
ˇ a; b 2 F

�

q

³
:

Then T 0 is F -stable, T 0 D gTg�1 where g D . 1 1
x xq /, and g�1F.g/ D � WD . 0 11 0 /.

Therefore, .T 0;F /' .T; �F /, and we have T F ' F�q � F�q and T 0F ' T �F ' F�
q2

.

Since jWGL2.T /j D 2, any F -stable maximal torus of GL2 is GLF2 -conjugate either
to T or T 0.

2.5.4. Lusztig induction
Let ` � q be a prime. Let L be an F -stable Levi subgroup of a (possibly non-F -stable)
parabolic subgroup P of G. Following [8] and [37] we construct a virtual Q`ŒG

F �-
module RGL .M/ for any Q`ŒL

F �-module M as follows. Let UP be the unipotent
radical of P , and let LG W G ! G;g 7! g�1F.g/ be the Lang map. The variety
L�1G .UP / is endowed with a left action of GF by left multiplication and with a
right action of LF by right multiplication. These actions induce actions on the `-adic
cohomology H i

c .L
�1
G .UP /;Q`/. The virtual Q`-vector space H�c .L

�1
G .UP // WDP

i .�1/
iH i

c .L
�1
G .UP /;Q`/ is thus a virtual Q`ŒG

F �-module-Q`ŒL
F �. We put

RGL .M/ WDH�c .L
�1
G .UP //˝Q`ŒL

F �M .

Let C.GF / be the Q`-vector space of all functionsGF !Q` which are constant
on conjugacy classes of GF . If C is a conjugacy class of GF and x 2 C , we denote
either by 1C or 1Gx the characteristic function of C that takes the value 1 on C and 0
elsewhere.

The Lusztig functorRGL defines a Z-linear map Z.Irr.LF //! Z.Irr.GF //, which
by linearity extension leads to the Deligne-Lusztig inductionRGL W C.L

F /! C.GF /.
For an F -stable maximal torus T of G, let QG

T W G
F
uni ! Q` be the restriction

to GFuni of the function RGT .Id/. The function QG
T is called a Green function and

its values are products of the Green polynomials defined in [40, Chapter III, (7.8)]
(see (2.3.16)). The following formula (see [8, Theorem 4.2]) reduces the computation
of the values of RGT .	/ to the computation of Green polynomials:

RGT .	/.g/D jCG.gs/
F j�1

X
¹h2GF jgs2hTh�1º

Q
CG.gs/

hT h�1
.gu/	.h

�1gsh/ (2.5.1)

where 	 2 C.T F /, g 2GF .
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2.5.5. Characters of GLn.Fq/
The character table of GLn.Fq/ was first computed by Green [16]. Here we recall
how to construct it from the point of view of Deligne-Lusztig theory (see [39]).

Here we assume that G D GLn. Let L be an F -stable Levi subgroup of G, and
let ' be an F -stable irreducible character of WL. Then there is an extension Q' of ' to
the semidirect product WL � hF i such that the function XL

' WL
F !Q` defined by

XL
' D jWLj

�1
X
w2WL

Q'.wF /RLTw .IdTw /

is an irreducible character of LF . The characters XL
' are called the unipotent char-

acters of LF .
For g 2GF and 	 2 Irr.LF /, let g	 2 Irr.gLF g�1/ be defined by g	.glg�1/D

	.l/. We say that a linear character 	 W LF ! Q
�

` is regular if for n 2 NGF .L/,
we have n	 D 	 only if n 2 LF . We denote by Irrreg.L

F / the set of regular linear
characters of LF . Put �L D .�1/Fq�rank.L/. Then for 	L 2 Irrreg.L

F /, the virtual
character

X WD �G�LR
G
L .	

L �XL
' /D �G�LjWLj

�1
X
w2WL

Q'.wF /RGTw .	
Tw /; (2.5.2)

where 	Tw WD 	LjTw , is an irreducible true character of GF , and any irreducible
character of GF is obtained in this way (see [39]). An irreducible character of GF is
thus completely determined by the GF -conjugacy class of a datum .L; 	L; '/ with L
an F -stable Levi subgroup of G, 	L 2 Irrreg.L

F / and ' 2 Irr.WL/F . The irreducible
characters corresponding to the data .L; 	L; 1/ are called semisimple characters of
GF . This process of decomposing the irreducible characters is sometimes called
Lusztig-Jordan decomposition. By analogy with Jordan decomposition of conjugacy
classes, the semisimple part of X would be 	L and the unipotent part would be XL

' . It
is indeed well known that if C is a conjugacy class of GF , x 2 C , LD CG.xs/, then
RGL .1

L
xs

 1Lxu/D 1C where 
 is the usual convolution product on C.GF / defined by

.f 
 h/.g/D
P
y2GF f .y/h.gy

�1/.

2.5.6. Characters of gln.Fq/

The characters of gln.Fq/ were first studied by Springer [45].
We denote by Fun.gF / the Q`-vector space of all functions gF ! Q` and by

C.gF / the subspace of all functions f W gF ! Q` which are GF -invariant; that is,
for any h 2 GF and any x 2 gF , f .Ad.h/x/ D f .x/. If O is a GF -orbit of gF

and � 2 O, then we denote either by 1O or 1G� 2 C.gF / the characteristic function
of O; that is, 1G� .x/ D 1 if x 2 O, and 1G� .x/ D 0 otherwise. We are interested in
the characters (nonnecessarily irreducible) of the abelian group .gF ;C/ which are
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GF -invariant, that is, which are in C.gF /. We call them the invariant characters
of gF . We say that an invariant character of gF is irreducible if it can not be written
as a sum of two invariant characters. We denote by IrrGF .g

F / the set of irreducible
invariant characters of gF . We now describe them in terms of Fourier transforms.

We fix once for all a nontrivial additive character ‰ W Fq ! Q
�

` , and we denote
by� W g�g! Fq the trace map .a; b/ 7! Trace.ab/. It is a nondegenerateG-invariant
symmetric bilinear form defined over Fq . We define the Fourier transform F g W

Fun.gF /! Fun.gF / with respect to .‰;�/ by

F g.f /.x/D
X
y2gF

‰
�
�.x;y/

�
f .y/: (2.5.3)

Note that for �;x 2 gF ,

F g.1G� /.x/D
X

y2OG
F

�

‰
�
�.x;y/

�
:

For a fixed y 2 gF , the map gF ! Q`, x 7! ‰.hx;yi/ is an irreducible character
of the abelian finite group .gF ;C/. Therefore F g.1G� /, being a sum of characters of
.gF ;C/, is a character of .gF ;C/. Since the sum is over a single adjoint orbit it is
clearly an irreducible invariant character; that is, F g.1G� / 2 IrrGF .g

F /.
Let L be an F -stable Levi subgroup of G, and let l be its Lie algebra. We also

have a Deligne-Lusztig induction C.lF /! C.gF / defined in [34]. Let ! W gnil!Guni

be the G-equivariant isomorphism given by v 7! v C 1. For an F -stable maximal
torus T of G with t WD Lie.T /, the Deligne-Lusztig induction R

g

t is defined by the
following character formula:

R
g

t .	/.x/D jCG.xs/
F j�1

X
¹h2GF jxs2Ad.h/tº

Q
CG.xs/

hT h�1

�
!.xn/

�
	
�
Ad.h�1/xs

�
;

(2.5.4)

where 	 2 C.tF / and x 2 gF . Note that CG.xs/ is a Levi subgroup of G. For any
semisimple element � 2 gF , we have the following character formula (see [35,
(7.3.3)]):

F g.1G� /D �G�LjWLj
�1

X
w2WL

qdL=2R
g

tw

�
F tw .1Tw� /

�
; (2.5.5)

where LD CG.�/, dL D dim G � dim L.
Note that if X is a semisimple character of GLn.Fq/, then it is given by for-

mula (2.5.2) with Q' D 1. Hence the character formulas for semisimple characters of
GLn.Fq/ and gln.Fq/ are similar and can be computed in the same way.
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3. Counting with Fourier transforms
Let K be an algebraically closed field isomorphic to C. Fixing such an isomorphism
gives us an involutionK!K , x 7! x such that � D ��1 for any root of unity � in K .

3.1. Group Fourier transform
Let G be a finite group. We construct an analogue of the Fourier transform for class
functions of G. For convenience we introduce the following notation. Let G� be the
measure space consisting of G with its Haar measure, that is, such that the measure of
¹gº for g 2G is 1=jGj. Clearly, the total mass of G� is 1. Let C.G�/ be the K-vector
space of class functions on G. (A class function on G is a function which is constant
on conjugacy classes.)

Similarly, let G� be the measure space on the set of irreducible characters of
G with its Plancherel measure, that is, such that the measure of the set ¹�º for an
irreducible character � of G is �.1/2=jGj. Again, the total mass of G� is 1. Let
C.G�/ be the K-vector space of functions on G�.

We now define maps F� and F � which are analogues of the Fourier transform
for G. We describe some of their formal properties, leaving their proofs to the reader.

Define F� W C.G�/! C.G�/ by

F�.f /.�/ WD jGj

Z
G�

f .g/
�.g/

�.1/
dgD

X
g

f .g/
�.g/

�.1/
;

and define F � W C.G�/! C.G�/ by

F �.F /.g/ WD jGj

Z
G�
F.�/

��.g/
�.1/

�
d�D

X
	

F.�/�.1/�.g/:

Up to a factor of jGj these maps are mutual inverses of each other. More precisely,

F � ıF� D jGj � 1G� ; F� ıF � D jGj � 1G� : (3.1.1)

Consider the algebra structures on C.G�/ and C.G�/ defined by convolution and
pointwise multiplication, respectively; that is,

.f1 
 f2/.g/ WD
X

g1g2Dg

f1.g1/f2.g2/; f1; f2 2 C.G�/

and

.F1 �F2/.�/ WD F1.�/F2.�/; F1;F2 2 C.G
�/:

(It is easy to check that f1
f2 is indeed a class function and hence belongs toC.G�/.)



ARITHMETIC HARMONIC ANALYSIS ON CHARACTER AND QUIVER VARIETIES 369

The maps F� and F � preserve these operations:

F�.f1/ �F�.f2/D F�.f1 
 f2/; f1; f2 2 C.G�/

and

F �.F1/ 
F �.F2/D jGj �F
�.F1 �F2/; F1;F2 2 C.G

�/:

PROPOSITION 3.1.1
For f 2 C.G�/ we have

f .1/D

Z
G�

F�.f /.�/d�:

Proof
This is just a special case of Fourier inversion (3.1.1) as both sides equal 1=jGj �
F �.F�.f //.1/.

Given a word w 2 Fr , where Fr D hX1; : : : ;Xri is the free group in generators
X1; : : : ;Xr , we let n.w/ be the function on G defined by

n.w/.z/ WD #
®
.x1; : : : ; xr/ 2G

r
ˇ̌
w.x1; : : : ; xr/D z

¯
;

where w.x1; : : : ; xr/ is a shorthand for 
.w/ 2 G with 
 W Fr ! G the homomor-
phism mapping each Xi to xi .

Since w.x1; : : : ; xr/ D z implies w.ux1u�1; : : : ; uxru�1/ D uzu�1 for any
u 2G, it is clear that n.w/ is a class function. For convenience we define

N.w/ WD F�
�
n.w/

�
2 C.G�/:

The following lemma is straightforward, and we omit its proof.

LEMMA 3.1.2

(1) For a word w 2 Fr ,

n.w/.1/D

Z
G�
N.w/.�/d�:

(2) If w1;w2 are two words in separate sets of variables, then

n.w1w2/D n.w1/ 
 n.w2/:

(3) Let C1; : : : ;Ck be conjugacy classes in G, and let w 2 Fr . For z 2 G the
number of solutions to

w.x1; : : : ; xr/y1 � � �yk D z; xi 2G;yj 2 Cj ;
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is given by

n.w/ 
 1C1 
 � � � 
 1Ck .z/;

where for any conjugacy class C we denote by 1C 2 C.G�/ its characteristic
function.

A proof of the following result can be found in [22, Section 3.2].

LEMMA 3.1.3
For wDX1X2X�11 X�12 2 F2, we have

N.w/.�/D
� jGj
�.1/

�2
:

Finally, putting all the pieces together we have the following result.

PROPOSITION 3.1.4
Let C1; : : : ;Ck be conjugacy classes in G. The number of solutions to

Œx1; y1� � � � Œxg ; yg �z1 � � �zk D 1; xi ; yi 2G;zj 2 Cj ;

equals Z
G�

L.�/gf	.C1/ � � �f	.Ck/ d�; (3.1.2)

where

L.�/ WD
� jGj
�.1/

�2
and for any conjugacy class C ,

f	.C / WDF�.1C /.�/D
jC j�.C /

�.1/
:

Remark 3.1.5
The proposition, as well as the introduction of the functions f	, is due to Frobenius.
Proofs can be found in many places in the literature since then. The purpose of reprov-
ing it here is to draw as close a parallel as possible with the additive version of the
next section.
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3.2. Equivariant Fourier transform
If the group G of the previous section is abelian, then what we have is the usual
Fourier transform. Here we consider the situation of an abelian group, which we now
denote by A, together with an action of another group G. We will describe a Fourier
transform on A, which is equivariant with respect to the action of G and parallels the
one in Section 3.1. We will apply this to our main example: AD gln and G D GLn
acting via the adjoint action.

Let A� be as in Section 3.1, and let X WDHom.A;K�/. We have a natural action
of G on X as follows:

.g � 
/.a/ WD 
.g�1 � a/:

Given a G-orbit X in X we let

� WD
X

2X


:

It is a G-invariant character of the group A. We let A� be the measure space on the
set of such �’s where the measure of ¹�º is �.0/=jAj. The total measure of A� is 1 as
�.0/D #X.

In analogy with Section 3.1 we let C.A�/ be the K-vector space of functions on
A which are G-invariant and let C.A�/ be the K-vector space of functions on A�.

Define F� W C.A�/! C.A�/ by

F�.f /.�/ WD jAj

Z
A�

f .a/
�.a/

�.0/
da;

and define F � W C.A�/! C.A�/ by

F �.F /.a/ WD jAj

Z
A�
F.�/

��.a/
�.0/

�
d�:

Note that if f WA!K is constant on G-orbits and 
 2X , thenX
a2A

f .a/
.a/

is constant on the G-orbit X of 
. Hence we can write this sum as

X
a2A

f .a/
�.a/

�.0/
;

where � corresponds to X. In other words, F� is (up to scaling) just the usual Fourier
transform restricted to G-invariant functions on A. Similarly, F � is the usual inverse
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Fourier transform (up to scaling) restricted to G-stable characters of A. It follows that
all the formal properties of the previous section also hold here. In particular, we have
the following.

PROPOSITION 3.2.1
For f 2 C.A�/ we have

f .0/D

Z
A�

F�.f /.�/d�:

Now let AD gln.Fq/ and G D GLn.Fq/ acting via the adjoint action on A. We con-
sider the additive analogue of Proposition 3.1.4. For x;y 2 A, let Œx; y� WD xy � yx.
For fixed 
 2 X and y 2 A, the map x 7! 
.Œx; y�/ is in X . Let CA.
/ be the
subgroup of y 2 A for which this character is trivial. Its cardinality depends only
on the G-orbit X of 
, and the order of A=CA.
/ is a square since it carries the
nondegenerate pairing induced from 
.Œ�; ��/. Define c.�/ WD jA=CA.
/j1=2, where
�D

P

2X 
 2A

� is associated to X.

PROPOSITION 3.2.2
Let O1; : : : ;Ok be G-orbits in A. The number of solutions to

Œx1; y1�C � � � C Œxg ; yg �C z1C � � � C zk D 0; xi ; yi 2A;zj 2Oj ;

equals Z
A�

L.�/gf	.O1/ � � �f	.Ok/ d�;

where

L.�/ WD
� jAj
c.�/

�2
and

f	.O/ WDF�.1O/.�/D
jOj�.O/

�.0/
:

Proof
We may proceed exactly as with the proof of Proposition 3.1.4 thanks to the formal
properties of the Fourier transform. The analogue of Lemma 3.1.3 is the following
calculation. Let n 2 C.A�/ be the function whose value at a 2 A is the number of
solutions x;y 2A of Œx; y�D a. Then, with our previous notation,

F�.n/.�/D
X
a2A

n.a/
.a/D
X
x;y2A


.Œx; y�/:
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The sum
P
x2A 
.Œx; y�/ vanishes unless y 2 CA.
/, in which case it equals jAj.

Hence F�.n/.�/D jAjjCA.
/j.

Remark 3.2.3
With the notation of Section 2.5.6, the GLn.Fq/-invariant characters of gln.Fq/ are
the functions F g.1O/ where O describes the set of adjoint orbits. Then note that

F�.1O0/
�
F g.1O/

�
DF g.1O0/.O/

and c.F g.1O//D .jgln.Fq/jq
�dim CG.x//

1
2 where x 2O.

4. Sums of character values
In this section we obtain a formula which is used, together with the results of Sec-
tion 3, to compute the number of Fq-rational points of character and quiver varieties
over Fq . Here G DGLn.Fq/.

4.1. Types of conjugacy classes, irreducible characters, and Levi subgroups
Let C be a conjugacy class of GF . The Frobenius f W Fq! Fq; x 7! xq acts on the
set of eigenvalues of C ; therefore we may write the set of eigenvalues of C as a union
of hf i-orbits

¹
1; 

q
1 ; : : : º

a
¹
2; 


q
2 ; : : : º

a
� � �
a
¹
s; 


q
s ; : : : º:

Put di D #
i ; 

q
i ; : : : , and let mi be the multiplicity of 
i . Clearly

P
i midi D n.

The unipotent part of an element of C defines a unique partition �i of mi given
by the Jordan blocks. Then � D .d1; �1/ � � � .ds; �s/ 2 Tn is called the type of C .
When q � n, any type ! 2 Tn arises as the type of some conjugacy class of GF . The
types of the semisimple conjugacy classes are of the form .d1; 1

n1/ � � � .dr ; 1
nr / where

n1; : : : ; nr are the multiplicities of the eigenvalues and .1ni / is the trivial partition
.1; : : : ; 1/ of ni .

LEMMA 4.1.1
Let ! 2 Tn, and let � 2GF be an element of type !. Then

H!.0;
p
q /D

qgdimCG.�/

jCGF .�/j

where H!.z;w/D
Q
i H!i .z

di ;wdi / for ! D .d1;!1/ � � � .dr ;!r/.

Proof
This follows from formula (2.3.22) and the identities dim CG.�/D

Pr
iD1 di h!

i ;!i i

and jCGF .�/j D
Qr
iD1 a!i .q

di /, which are well known.
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Recall (see Section 2.5) that an irreducible character X of GF arises from a datum
.L; 	L; '/. There exist positive integers di ; ni , i 2 ¹1; : : : ; sº, such that

L'

sY
iD1

GLni .Fq/
di :

We choose the indexing such that d1 � d2 � � � � � ds , and ni � nj if i > j and
di D dj . Let Sn be the symmetric group in n letters, and let � 2 Sn ' WG , where
WG is the Weyl group of G (with respect to some split F -stable maximal torus),
be such that the map z 7! �z��1 acts on each component of

Qs
iD1GLni .Fq/

di by
circular permutation of the di blocks of length ni . Then

.L;F /'
� sY
iD1

GLni .Fq/
di ; �F

�
; (4.1.1)

and so LF is isomorphic to
Qs
iD1GLni .Fqdi /. Moreover,

.WL;F /'
� sY
iD1

.Sni /
di ; �

�
:

The F -conjugacy classes of WL are thus parameterized by the conjugacy classes ofQ
i Sni , that is, by the set Pn1 � � � � �Pns . The set of F -stable irreducible characters

of WL is in bijection with Irr.Sn1/� � � � � Irr.Sns / which, by the Springer correspon-
dence, is parameterized by Pn1 � � � � � Pns in such a way that the trivial character
corresponds to the multipartition ..n1/; : : : ; .ns//. Hence ' 2 Irr.WL/F defines a par-
tition �i 2 Pni for all i 2 ¹1; : : : ; sº. The type .d1; �1/.d2; �2/ � � � .ds; �s/ 2 Tn is
called the type of the irreducible character X of GF . Note that when q � n, any type
in Tn arises as the type of some irreducible character ofGF . The type of the semisim-
ple irreducible characters of GF are of the form .d1; .n1//.d2; .n2// � � � .ds; .ns//.

It will be convenient to introduce the set OTn of nonincreasing sequences .d1; n1/
� � � .dr ; nr/ with di ; ni 2 Z>0 and

P
i dini D n where .d; k/ > .d 0; k0/ if d > d 0, or

d D d 0 and k > k0.
The types of the semisimple conjugacy classes are in bijection with OTn by

.d1; 1
n1/ � � � .dr ; 1

nr / 7! .d1; n1/ � � � .dr ; nr/:

Similarly, OTn parameterizes the types of the semisimple irreducible characters of GF

by �
d1; .n1/

�
� � �
�
dr ; .nr/

�
7! .d1; n1/ � � � .dr ; nr/:

The map which assigns to a semisimple element of G the Levi subgroup CG.�/ gives
a natural bijection between the types of the semisimple conjugacy classes of GF and
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the GF -conjugacy classes of the F -stable Levi subgroups of G. We will use the set
OTn to parameterize the GF -conjugacy classes of the F -stable Levi subgroups of G.
Namely, if �D .d1; n1/ � � � .dr ; nr/ 2 OTn, then a representativeL of the corresponding
GF -conjugacy class will satisfy (4.1.1). In this case we say that L is of type �.

4.2. Generic characters and generic conjugacy classes
Let L be an F -stable Levi subgroup of G. We say that a linear character � of ZFL is
generic if its restriction to ZFG is trivial and its restriction to ZFM is nontrivial for any
F -stable proper Levi subgroup M of G such that L�M . We put

.ZL/reg WD
®
x 2ZL

ˇ̌
CG.x/DL

¯
:

We have the following proposition.

PROPOSITION 4.2.1
Assume that L is of type ! D .d1; n1/.d2; n2/ � � � .dr ; nr/ 2 OTn and that � is a generic
linear character of ZFL . Then X

z2.ZL/Freg

�.z/D .q � 1/Ko!

with

Ko! D

´
.�1/r�1d r�1�.d/.r � 1/Š if for all i; di D d;

0 otherwise,

where � is the ordinary Möbius function.

Proof
Let �! be an element of Sn such that the map z 7! �!z�

�1
! induces an action on

each component of M WD
Q
i GLni .Fq/

di by circular permutation of the di blocks
of length ni . Then .L;F / ' .M;F!/ where F! is the Frobenius on G defined by
F!.g/D �!F.g/�

�1
! . Then the character � can be transferred to a generic charac-

ter �M of ZF!M . Its restriction to ZF!G is also trivial. Then
P
h2.ZM /

F!
reg
�M .h/ DP

h2.ZL/Freg
�.h/. We denote by P.!/ the set of Levi subgroups H of G such that

M �H � G and P.!/F! , and we denote by P.!/F the set of elements of P.!/
fixed by F! . We have the following partition ZM D

`
H2P.!/.ZH /reg. Indeed, if z 2

ZM , then CG.z/ is a Levi subgroup H of G and clearly z 2 .ZH /reg. If H 2 P.!/,
then F!.H/ 2 P.!/, and .ZH /reg \ .ZF!.H//reg D ; unless H 2 P.!/F! . There-
fore F! preserves the above partition, and ZF!M D

`
H2P.!/.ZH /

F!
reg . We define

a partial order on P.!/ by H1 � H2 if ZH1 � ZH2 (i.e., if H2 � H1). Then G
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is the unique minimal element and M is the unique maximal element. We have
a map � W P.!/F! ! Q` that sends H 2 P.!/F! to

P
z2Z

F!
H

�M .z/ and a map

�0 W P.!/F! ! Q` that sends H 2 P.!/F! to
P
z2.ZH /

F!
reg
�M .z/. Since ZF!H D`

E�H .ZE /
F!
reg for all H 2 P.!/F! , we have �.H/ D

P
E�H �

0.E/ for all H 2
P.!/F! . Then by the inclusion-exclusion principle, we have �0.H/D

P
E�H �!.E;

H/�.E/ for allH 2 P.!/F! where �! is the Möbius function on the poset P.!/F! .
In particular X

z2.ZM /
F!
reg

�M .z/D
X
H�M

�!.H;M/
X

z2Z
F!
H

�M .z/:

Using the assumption on � , we deduce thatX
z2.ZM /

F!
reg

�M .z/D .q � 1/�!.G;M/:

Let us compute �!.G;M/. An element of ZM is a diagonal matrix A 2Qr
iD1GLni .Fq/

di such that each component of A in GLni .Fq/ is central. We identify
ZM with

Qr
iD1.F

�

q /
di in the obvious way. Then the elements of .ZM /reg correspond

to the elements of the form .ak;s/1�k�r;1�s�dk 2
Qr
iD1.F

�

q /
di where ai;j ¤ ak;l

if .i; j / ¤ .k; l/. Let I D ¹i1;1; : : : ; i1;d1 ; i2;1; : : : ; i2;d2 ; : : : ; ir;1; : : : ; ir;dr º be a set
whose elements are indexed by the pairs .k; s/ with 1� k � r and 1� s � dk . Then
the partition ZM D

`
H2P.!/.ZH /reg is indexed by the partitions of the set I . The

part .ZM /reg corresponds to the unique partition of I which has jI j parts, that is,
to ¹i1;1º; ¹i1;2º; : : : ; ¹ir;dr º, and the part ZG D .ZG/reg, which is the set of diagonal
matrices with exactly one eigenvalue, corresponds to the unique partition of I which
has one part. By abuse of notation we denote by �! 2 SjI j the element which acts by
circular permutation on each subset ¹ik;1; : : : ; ik;dk º of I . Then it induces an action on
the set P.I / of partitions of I which corresponds via the bijection P.I /' P.!/ to
the action of F! D �!F on P.!/. We denote by O the minimal element of P.I /�!

and by 1 the unique maximal element of P.I /�! . Then �!.G;M/D �0!.0; 1/ where
�0! is the Möbius function on the poset P.I /�! . Now �0!.0; 1/ was computed by
Hanlon [17], and we find that �0!.0; 1/DK

o
! .

Definition 4.2.2
Let X1; : : : ;Xk be k-irreducible characters of GF . For each i , let .Li ; 	i ; 'i / be a
datum defining Xi . We say that the tuple .X1; : : : ;Xk/ is generic if

Qk
iD1.

gi 	i /jZM
is a generic character of ZFM for any F -stable Levi subgroup M of G which satisfies
the following condition: for all i 2 ¹1; : : : ; kº, there exists gi 2GF such that ZM �
giLig

�1
i .
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Let C1; : : : ;Ck be k-conjugacy classes of GF . For each i 2 ¹1; : : : ; kº, let si be the
semisimple part of an element of Ci . Let QCi be the conjugacy class of si in G. We
say that the tuple .C1; : : : ;Ck/ is generic if . QC1; : : : ; QCk/ is generic in the sense of
Definition 2.1.1.

The proof of the following proposition is similar to that of Proposition 4.2.1.

PROPOSITION 4.2.3
Let .C1; : : : ;Ck/ be a generic tuple of semisimple conjugacy classes of GF , let si 2
Ci , and put Li D CG.si /. Assume that M is an F -stable Levi subgroup of G of
type ! 2 OTn which satisfies the following condition: for all i 2 ¹1; : : : ; kº there exists
gi 2G

F such that ZM � giLig�1i . Then

X
�2Irrreg.MF /

kY
iD1

	.gisig
�1
i /D .q � 1/Ko! :

Note that gisig�1i is in the center of giLig�1i and so commutes with the elements
of ZM , that is, gisig�1i 2 CG.ZM /DM . Therefore it makes sense to evaluate 	 at
gisig

�1
i in the above formula.

4.3. Calculation of sums of character values
For a partition �, put T� WD Tt� , where t� 2 Sj�j is an element in the conjugacy class
of type �. If u� is a unipotent element of GF whose Jordan form is given by the
partition � , then the Green polynomial (see (2.3.16)) Q�

�.q/ is the value QG
T�
.u� / of

the Green function QG
T�

of Deligne and Lusztig defined in Section 2.5.4.

For �D .�1; : : : ;�k/ 2 .Tn/k and ! 2 Tn, define

H�! .q/ WD
.q � 1/Ko!
jW.!/j

kY
iD1

.�1/nCf .�i /
X
�

zŒ���
�i
�

z�

X
¹�jŒ��DŒ��º

Q!
� .q/

z�
;

OH�! .q/ WD
.q � 1/Ko!
jW.!/j

kY
iD1

.�1/nCf .!/
X
�

zŒ���
!
�

z�

X
¹�jŒ��DŒ��º

Q
�i
� .q/

z�

where Ko! WD K
o
�.!/

, for any type � D .d1; �1/ � � � .dr ; � r/, f .�/ WD
P
j j�

j j; and if
we write ! D ¹md;�º.d;�/, then W.!/D

Q
.d;�/2Z>0�P�

.Z=dZ/md;� � Smd;� .
Let .C1; : : : ;Ck/ be a generic tuple of conjugacy classes of GF of type �, and

let .X1; : : : ;Xk/ be a generic tuple of irreducible characters of GF of type �.
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THEOREM 4.3.1
We have
(1)

P
X

Qk
iD1X.Ci /D OH

�
! .q/ where the sum is over the irreducible characters

of GF of type !, and
(2)

P
O

Qk
iD1Xi .O/ D H�! .q/ where the sum is over the conjugacy classes of

GF of type !.

Remark 4.3.2
Let us denote by X!.1/ the degree of an irreducible character of GF of type !. (The
degree depends only on the type.) Hence formula (3.1.2) in Proposition 3.1.4 applied
to GLn reads

X
X2Irr.GF /

X.1/2

jGF j

� jGF j
X.1/

�2g kY
iD1

jCi jX.Ci /

X.1/

D
X
!2Tn

X!.1/
2

jGF j

� jGF j
X!.1/

�2g� kY
iD1

jCi j

X!.1/

�X
X

kY
iD1

X.Ci / (4.3.1)

where the second sum in the right-hand side is over the irreducible characters of
type !. Theorem 4.3.1(1) will be used in Section 5.2 to obtain an expression of this
formula in terms of symmetric functions.

Theorem 4.3.1(2) will be used to prove Theorem 6.1.1.

Proof of Theorem 4.3.1
Let X be an irreducible character of type ˛ 2 Tn, and let O be a conjugacy class of
GF of type ˇ 2 Tn. We have (see formula (2.5.2))

X D �G�M jWM j
�1

X
w2WM

Q'.wF /RGTw .	
Tw /:

The Fq-rank ofM is f .˛/, so �G�M D .�1/nCf .˛/. Let � 2O, and put LD CG.�s/.
Then for w 2WM ,

RGTw .	
Tw /.�/D jLF j�1

X
¹h2GF j�2h�1Twhº

QL
h�1Twh

.�u/	
Tw .h�sh

�1/:

We have ¹h 2GF j � 2 h�1Twhº D ¹h 2GF j h�1Twh�Lº. Put Aw WD ¹h 2 G j
h�1Twh � Lº. Note that the sum over AFw depends only on the F -conjugacy class
of w in WM . The F -conjugacy classes of WM , and so the MF -conjugacy classes of
the F -stable maximal tori of M , are parameterized by the set of types ¹� j � 	 ˛º
as in Section 4.1. From its definition, the value Q'.wF / depends also only on the
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F -conjugacy class of w in WM . For � 2 Tn, we write T� , A� , Q'.�/ instead of Tw ,
Aw , Q'.wF / if the F -conjugacy class of w is of type � . Let c.�/ be the cardinality of
the corresponding F -conjugacy class in WM . Then

X.�/D .�1/nCf .˛/jLF j�1
X
��˛

X
h2AF�

c.�/

jWM j
Q'.�/QL

h�1T�h
.�u/	

T� .h�sh
�1/:

We have c.�/=jWM j D z�1� and Q'.�/D �˛� . Hence

X.�/D .�1/nCf .˛/jLF j�1
X
�

z�1� �˛�

X
h2AF�

QL
h�1T�h

.�u/	
T� .h�sh

�1/:

Since by convention �˛� D 0 if � � ˛, we omit the condition � 	 ˛ in the above sum.
The map h 7! h�1T�h is a surjective map from the set AF� onto the set of F -stable
maximal tori ofL that are in theGF -conjugacy class (ofF -stable maximal tori ofG) of
type Œ� � 2 Pn. Therefore it induces a surjective mapAF� =L

F !¹� j � 	 ˇ; Œ��D Œ� �º.
Hence

X.�/D .�1/nCf .˛/
X
�

z�1� �˛�

X
¹�jŒ��DŒ��º

Qˇ
� .q/

X
l2A�

	T� .l�sl
�1/ (4.3.2)

where A� is the set of elements lLF of AF� =L
F such that the LF -conjugacy class of

l�1T� l is of type �.
Let us determine the set A� . The LF -conjugacy classes of the F -stable maximal

tori of LF are parameterized by the set ¹� j � 	 ˇº. Let T� denote an F -stable maxi-
mal torus of L whose LF -conjugacy class is of type � 2 ¹
 j 
 	 ˇ; Œ
�D Œ� �º. Then
the GF -conjugacy class of T� is of type Œ��D Œ� �, and so T� is GF -conjugate to T� ,
say, T� D gT�g�1 with g 2GF . We put B� D ¹h 2G j h�1T�h�Lº. Then the map
h 7! g�1h induces a bijection .AF� =L

F /' .BF� =L
F /. Since the maximal tori of L

are allL-conjugate, the mapNG.T�/! .B�=L/, n 7! nL is surjective and commutes
with the Frobenius F . This map induces a bijection .NG.T�/=NL.T�//

�
! .B�=L/

which commutes with F . We thus have a bijection:�
WG.T�/=WL.T�/

�F �
! .B�=L/

F :

Since L is connected we get bijections:�
WG.T�/=WL.T�/

�F �
! .BF� =L

F /' .AF� =L
F /:

Under this bijection, the elements of A� correspond to the elements u 2 .WG.T�/=
WL.T�//

F such that .T�/ Pu�1F. Pu/, Pu 2 WG.T�/ being a representative of u, and T�
are LF -conjugate. Now saying that .T�/ Pu�1F. Pu/ and T� are LF -conjugate is equiv-
alent to saying that Pu�1F. Pu/ is in the F -conjugacy class of 1 in WL.T�/; that is,
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Pu�1F. Pu/ D w�1F.w/ for some w 2 WL.T�/. We know that WG.T�/=WL.T�/ '
Sn=

Q
i .Sjˇ i j/

di . Under this bijection, the automorphism F on WG.T�/ induces an
automorphism on Sn which stabilizes

Q
i .Sjˇ i j/

di . Let us determine the automor-
phism obtained. Let vˇ be an element of Sn such that the automorphism z 7! vˇzv

�1
ˇ

induces an action on each component of
Q
i .Sjˇ i j/

di by circular permutation of the di
blocks of length jˇi j. Then .WL;F /'

�Q
i .Sjˇ i j/

di ; vˇ
�
. Now let w� 2

Q
i .Sjˇ i j/

di

be in the vˇ -conjugacy class of
Q
i .Sjˇ i j/

di corresponding to �; then .WG.T�/;F /'
.Sn;w�vˇ /, where w�vˇ W Sn! Sn; z 7!w�vˇz.w�vˇ /

�1. We deduce that A� is in
bijection with the set W� of elements x.

Q
i .Sjˇ i j/

di / with x 2 Sn such that
x�1.w�vˇ /x D t .w�vˇ /t

�1 for some t 2
Q
i .Sjˇ i j/

di .
Let us determine the cardinality of A� as we will need it later. Put H DQ

i .Sjˇ i j/
di . We have a bijective map CSn.w�vˇ /=CH .w�vˇ / ! W� ,

xCH .w�vˇ / 7! xH . But jCSn.w�vˇ /j D zŒ�� and jCH .w�vˇ /j D z� , and therefore,

jA� j D jW� j D zŒ��z
�1
� : (4.3.3)

Now let us compute
P

X

Q
i X.Ci / and

P
O

Q
i Xi .O/. We first compute the

second sum. Let .L;C / be a pair of type ! where L is an F -stable Levi subgroup
and C and an F -stable unipotent conjugacy class of L. Let u 2 C . We have a surjec-
tive map .ZL/Freg! ¹G

F � orbits of type !º that sends z to OGF

zu . If s; s0 2 .ZL/Freg,
then s and s0 have the same image if there exists g 2 GF such that g.sC /g�1 D
s0C , that is, gsg�1 D s0 and gCg�1 D C . The identity gsg�1 D s0 implies that
g 2 NG.L/. Therefore the fibers of our map can be identified with WG.L;C / WD
¹g 2GF jg 2NG.L/\NG.C /º=L

F , which is of cardinality jW.!/j. We thus have

X
O

kY
iD1

Xi .O/D
1

jW.!/j

X
z2.ZL/Freg

kY
iD1

Xi .zu/:

Applying the formula (4.3.2) with .˛;ˇ/D .�i ;!/, we get

X
O

kY
iD1

Xi .O/D
1

jW.!/j

X
�1;:::;�k

X
¹.�1;:::;�k/jŒ�i �DŒ�i �º

kY
iD1

��i�i z
�1
�i
Q!
�i
.q/

�
X

.l1;:::;lk/2A�1�			�A�k

� X
z2.ZL/Freg

kY
iD1

	
T�i
i .lizl

�1
i /

�
:

Put 	
l�1
i
T�i li

i .z/ WD 	
T�i
i .lizl

�1
i / for all z 2ZFL . Then

Q
i 	
l�1
i
T�i li

i is a linear char-
acter of ZFL . By assumption, it is generic and so by Proposition 4.2.1, we have
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P
z2.ZL/Freg

Q
i 	
l�1
i
T�i li .z/D .q � 1/Ko! , from which we deduce that

X
O

kY
iD1

Xi .O/

D
.q � 1/Ko!
jW.!/j

X
�1;:::;�k

X
¹.�1;:::;�k/jŒ�i �DŒ�i �º

kY
iD1

��i�i z
�1
�i
Q!
�i
.q/jW�1 j � � � jW�k j:

The assertion (2) of the theorem follows then from formula (4.3.3).
Let us now compute

P
X

Q
i X.Ci /. Let .L;�/ be of type ! with L an F -stable

Levi subgroup of G and � an F -stable irreducible character of WL. Let XL
	 be the

unipotent character of LF associated to �. The map Irrreg.L
F /! ¹X 2 Irr.GF / j

X of type !º that sends 	 to �G�LRGL .	 � X
L
	 / is surjective, and its fibers are of

cardinality jW.!/j. We thus have

X
X

kY
iD1

X.Ci /D
1

jW.!/j

X
�2Irrreg.LF /

kY
iD1

�G�LR
G
L .	 �X

L
	 /.Ci /:

The value �G�LRGL .	 � X
L
	 /.Ci / is of the form X.�/ (see formula (4.3.2)), with

.˛;ˇ/D .!;�i /. Hence

X
X

kY
iD1

X.Ci /D
1

jW.!/j

X
�1;:::;�k

X
¹.�1;:::;�k/jŒ�i �DŒ�i �º

kY
iD1

�!� z
�1
�i
Q�i
�i
.q/

�
X

.l1;:::;lk/2A�1�			�A�k

� X
�2Irrreg.LF /

kY
iD1

	T�i .li�i;sl
�1
i /

�

where �i;s is the semisimple part of some fixed element �i 2 Ci . Recall that for 	 2
Irrreg.L

F /, 	T�i is the restriction of 	 to T F�i . Assertion (1) of the theorem follows
from Proposition 4.2.3 and formula (4.3.3).

5. Character varieties
Fix a nonnegative integer g, and choose a generic tuple .C1;C2; : : : ;Ck/ of semisim-
ple conjugacy classes of GLn.C/ of type�D .�1; : : : ;�k/ where �i D .�i1; : : : ;�

i
ri
/

is a partition of n. Recall that the nonnegative integers �i1; : : : ;�
i
ri

are the multiplici-
ties of the distinct eigenvalues of Ci . Let M� be the corresponding complex character
variety as defined in Section 2.1.
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5.1. Independence of the generic eigenvalues
Though the variety M� depends on the choice of generic eigenvalues, our main Con-
jecture 1.2.1 predicts that the mixed Hodge polynomial Hc.M�Ix;y; t/ should not.
In general, in GIT problems depending on parameters, it is normal to see change
in cohomology as one crosses a wall of a certain chamber structure in the space of
parameters. In hyper-Kähler situations, however, it has been observed that no change
takes place (see, e.g., [1], [13]).

Generalizing the argument of [22, Corollary 2.2.4], here we prove that, for a
dense subset (in the analytic topology) of generic eigenvalues of multiplicities �,
the mixed Hodge polynomial of M� is constant. In particular, at least on this dense
subset, there is no change of behavior across walls. We prove in Corollary 5.2.2 below
that the E-polynomial of M� is completely independent of the choice of generic
eigenvalues of multiplicities �.

PROPOSITION 5.1.1
There is a dense subset (in the analytic topology) of generic eigenvalues of multiplic-
ities � for which the mixed Hodge polynomial Hc.M�Ix;y; t/ is constant.

Proof
Let r D r1 C � � � C rk be the number of distinct eigenvalues of the conjugacy classes
Ci . With the notation of the proof of Lemma 2.1.2, pick a0 2A0 ŠGr�1

m correspond-
ing to r � 1 algebraically independent transcendental complex numbers. By a general
fact on automorphisms of C=Q any two such choices can be conjugated by an ele-
ment of Aut.C=Q/. By functoriality, the two corresponding varieties have isomorphic
mixed Hodge structures. This proves our claim.

5.2. E-polynomial
In this section we prove that M� is polynomial-count, and we give a closed formula
for E.M�Iq/. This formula will be used to compute the Euler characteristic in Sec-
tion 5.3 and later to prove the connectedness of M� (see [20], [21]).

THEOREM 5.2.1
The variety M� is polynomial-count, and its E-polynomial is given by

E.M�Iq/D q
.1=2/d�H�

�p
q;

1
p
q

�

where H�.z;w/ is defined in (2.3.25) and d� D dim.M�/ (see (1.2.1)).

Proof
It is clear that H�.z;w/ 2 Q.z;w/. Hence Theorem 5.2.3 below implies that there
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exists Q.x/ 2 Q.x/ such that for all r we have #M


�.Fqr / DQ.q

r/. In particular,
Q.x/ is an integer for infinitely many integer values of x; henceQ.x/ 2QŒx�. There-
fore M� is polynomial-count, and so our claim follows from Theorem 2.4.1 and
Theorem 5.2.3 below.

The theorem has the following straightforward consequence.

COROLLARY 5.2.2
The E-polynomial of M� does not depend on the choice of the generic semisimple
conjugacy classes C1; : : : ;Ck of a given type �.

Let U� D Spec.A/ be the R-scheme defined in Appendix A. Put X� D

Spec.APGLn.R//. Then the R-scheme X� is a spreading out of M�; that is, X� gives
back M� after extension of scalars from R to C. If 
 W R! k is a ring homomor-
phism into a field k, we denote by M



� the k-scheme obtained from X� by extension

of scalars.

THEOREM 5.2.3
For any ring homomorphism 
 WR! Fq ,

#M

�.Fq/D q

.1=2/d�H�

�p
q;

1
p
q

�
:

Proof
Let k be an algebraic closure of Fq . Since PGLn.k/ is connected any F -stable
PGLn.k/-orbit of U



�.k/ contains an F -stable point, that is, an Fq-rational point.

Hence the natural map

U

�.Fq/=PGLn.Fq/!

�
U

�.k/=PGLn.k/

�F
DM


�.Fq/

is surjective. The k-tuple of conjugacy classes .C
1 ; : : : ;C



k
/ being generic, the group

PGLn.Fq/ acts freely on U


�.Fq/, and so the above map is injective. Hence

#M

�.Fq/D

#U


�.Fq/

jPGLn.Fq/j
:

Let Irr.GF /! denote the set of irreducible characters of type !. We denote by X!.1/

the degree of the irreducible characters in Irr.GF /! . For i 2 ¹1; : : : ; kº, let Ci be
the conjugacy class C



i .Fq/ of GF D GLn.Fq/. From Proposition 3.1.4 and Theo-



384 HAUSEL, LETELLIER, and RODRIGUEZ-VILLEGAS

rem 4.3.1(1) (see Remark 4.3.2), we have

#U

�.Fq/D jG

F j2g�1
X

X2Irr.GF /

1

X.1/2g�2Ck

kY
iD1

jCi jX.Ci /

D
X
!2Tn

jGF j2g�1
Qk
iD1 jCi j

X!.1/2g�2Ck

X
X2Irr.GF /!

kY
iD1

X.Ci /

D
X
!2Tn

jGF j2g�1
Qk
iD1 jCi j

X!.1/2g�2Ck
OH��! .q/

D
X
!2Tn

jGF j2g�1.q � 1/Ko!
Qk
iD1 jCi j

jW.!/jX!.1/2g�2Ck
.�1/knCkf .!/

kY
iD1

A.!;�i /

with A.!;�i�/ as in Lemma 2.3.5, where �i� is the type in Tn corresponding to the
partition �i (see beginning of this section). For a type ! D .d1;!1/ � � � .dr ;!r/, recall
(see [40, Chapter IV, (6.7)])

jGF j

X!.1/
D .�1/f .!/H!.q/q

1
2n.n�1/�n.!/:

By formula (2.3.22) we have H0

�i
�

.0;
p
q / D jCi j=jG

F j, and note that C 0! D K
o
!=

jW.!/j (see formula (2.3.10) and Proposition 4.2.1). Using also Lemma 2.3.5, we
thus deduce that

#U

�.Fq/

D jGF j.q � 1/
X
!2Tn

�
.�1/f .!/H!.q/q

.1=2/n.n�1/�n.!/
�2gCk�2

�C 0!.�1/
knCkf .!/

�

kY
iD1

hs!.xi /;H0

�i
�

.0;
p
q / QH�i

�

.xi Iq/i

D jGF j.q � 1/.�1/knq.1=2/n.n�1/.2gCk�2/
X
!2Tn

C 0!.H!.q/q
�n.!//2gCk�2

�

kY
iD1

hs!.xi /;H0

�i
�

.0;
p
q / QH�i

�

.xi Iq/i

D jGF j.q � 1/.�1/knq.1=2/.n
2.kC2g�2/�kn/
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�
DX
!2T

C 0!q
.1�g/j!j.H!.q/q

�n.!//2gCk�2
kY
iD1

s!.xi /;

kY
iD1

H0

�i
�

.0;
p
q / QH�i

�

.xi Iq/
E

D jGF j.q � 1/.�1/knq.1=2/.n
2.kC2g�2/�kn/

�
D
Log

�X
�2P

q.1�g/j�j.H�.q/q
�n.�//2gCk�2

kY
iD1

s�.xi /
�
;

kY
iD1

H0

�i
�

.0;
p
q / QH�i

�

.xi Iq/
E

D jGF j.q � 1/q.1=2/.n
2.kC2g�2/�kn/�

P
i n.�

i
�
/

�
D
Log

�X
�2P

q.1�g/j�j.H�.q/q
�n.�//2gCk�2

kY
iD1

s�.xi /
�
;

kY
iD1

h�i .xiy/
E
:

In the third equality j!j is defined as the size of !; that is, j!j D n if ! 2 Tn.
The last equality follows from Lemma 2.3.6. For any symmetric functions u and v,
hu.xy/; v.x/i D hu.x/; v.xy/i. This can be checked on the basis of power symmetric
functions. We deduce from Lemma 2.3.8 that

#U

�.Fq/D jG

F j.q � 1/q.1=2/.n
2.kC2g�2/�kn/�

P
i n.�

i
�
/

�
D
Log.�.

p
q; 1=
p
q //;

kY
iD1

h�i .xi /
E
:

We thus have

#M

�.Fq/

D .q � 1/2q.1=2/.n
2.kC2g�2/�kn/�

P
i n.�

i
�
/
D
Log.�.

p
q; 1=
p
q //;

kY
iD1

h�i .xi /
E
:

We have H�.
p
q; 1=
p
q / D ..q � 1/2=q/hLog.�.

p
q; 1=
p
q //;

Qk
iD1 h�i .xi /i:

It remains to check that the remaining power of q is d�=2, but this follows from
the observation that 2n.�i�/C nD

P
j .�

i
j /
2.

Here we can prove a consequence of the curious Poincaré duality Conjecture 1.2.2.
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COROLLARY 5.2.4
The E-polynomial is palindromic; that is, it satisfies the “curious” Poincaré duality

E.M�Iq/D q
d�E.M�Iq

�1/

D
X
i

�X
k

.�1/khi;i Ik.M�/
�
qi :

Proof
By Theorem 2.1.5 the variety M� is nonsingular of pure dimension d�. Hence the
second equality is a consequence of formula (2.4.1). From Theorem 5.2.1 we have

E.M�Iq
�1/D q�d�=2H�.1=

p
q;
p
q /

D q�d�=2
.q � 1/2

q

DY
i

h�i .xi /;Log.�.1=
p
q;
p
q //

E
:

From (2.3.24) we conclude that

E.M�Iq
�1/D q�d�=2

.q � 1/2

q

DY
i

h�i .xi /;Log.�.
p
q; 1=
p
q //

E

D q�d�E.M�Iq/:

5.3. Euler characteristic
The 2g-dimensional torus .C�/2g acts on the character variety M� by scalar multipli-
cation on the first 2g coordinates. Let QM� be the affine GIT quotient M�==.C

�/2g .
Exactly as in [22, Theorem 2.2.12] we can argue that

H�.M�/ŠH
�
�
.C�/2g

�
˝H�. QM�/

as mixed Hodge structures, which implies that

Hc.M�Ix;y; t/DHc. QM�Ix;y; t/ � .1C xyt/
2g

and hence also that

E.M�Iq/DE. QM�Iq/ � .1� q/
2g :

It follows that E.M�/D 0 if g > 0. Here we compute E. QM�/ for g > 0.

Remark 5.3.1
Note, in particular, that Conjecture 1.2.1(iii) implies that .z � w/2g should divide
H�.z;w/. This is not readily visible from its definition (see (1.1.3)).
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THEOREM 5.3.2
Assume that g > 1; then

E. QM�/D

´
�.n/n2g�3 if �D ..n/; : : : ; .n//;

0 otherwise,

where � is the ordinary Möbius function.

Proof
First note that

E. QM�/D
hh�;Log.�.

p
q; 1=
p
q //i

.q � 1/2g�2

ˇ̌̌
qD1

; (5.3.1)

where, as before, h� WD
Qk
iD1 h�i .xi /. We have by Section 2.3.6,

�.
p
q; 1=
p
q /D

X
�2P

A�; A� WD
�
q�

1
2 h�;�iH�.q/

�2g�2 kY
iD1

QH�.xi Iq; q
�1/:

(5.3.2)

Let Un D Un.x1; : : : ;xkIq/ be defined by

log
�
�.
p
q; 1=
p
q /
�
D
X
n�1

1

n
Un.x1; : : : ;xkIq/I

then, as in (2.3.6),

Un

n
D
X
m�

.�1/m�1.m� 1/Š
Y
�

A
m�
�

m�Š
(5.3.3)

where m WD
P
�m� and the sum is over all sequences ¹m�º of nonnegative integers

such that
P
�m�j�j D n. Since .q � 1/j�j divides H�.q/, .q � 1/.2g�2/n divides Un

as it divides each term in the sum (5.3.3). Let Vn D Vn.x1; : : : ;xkIq/ be defined by

Log
�
�.
p
q; 1=
p
q /
�
D
X
n�1

Vn.x1; : : : ;xkIq/;

and then by (2.3.5),

˝
h�;Log.�.

p
q; 1=
p
q //

˛
D hh�; Vni D

1

n

X
d jn

�.d/hh�;Un=d .x
d
1 ; : : : ;x

d
k Iq

d /i:

Since .q � 1/.2g�2/.n=d/ divides Un=d .xd1 ; : : : ;x
d
k
Iqd / for all d , we have

hh�; Vni

.q � 1/2g�2

ˇ̌̌
qD1
D
1

n
�.n/

D
h�;

U1.xn1; : : : ;x
n
k
Iqn/

.q � 1/2g�2

ˇ̌̌
qD1

E
:
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But

U1.xn1; : : : ;x
n
kIq

n/D qn.g�1/.qn � 1/2g�2
kY
iD1

QH.1/.x
n
i Iq

n; q�n/;

and QH.1/.xn/D p.1/.xn/D p.n/.x/. Hence

hh�; Vni

.q � 1/2g�2

ˇ̌̌
qD1
D
1

n
�.n/n2g�3

kY
iD1

hh�i .xi /;p.n/.xi /i

D

´
1
n
�.n/n2g�3 if �D ..n/; : : : ; .n//;

0 otherwise:

The last equality follows from Lemma 2.3.1.

THEOREM 5.3.3
For gD 1,

E. QM�/D
1

n

X
d jgcd.�i

j
/

�.n=d/�.d/
..n=d/Š/kQ
i;j .�

i
j =d/Š

where �.m/D
P
d jm d .

Proof
By [40, Chapter VI, (8.16)], we haveK��.1; 1/D ��.1n/ D nŠ=h.�/ where h.�/ is the
hook length of �, and so for a partition � of size n, we have (see [40, Chapter I, p.
66])

QH�.xI1; 1/D
X
�

nŠ

h.�/
s�.x/D e1.x/

n D h1.x/n:

Hence

�.1; 1/D
X
�

h
j�j

.1;1;:::;1/
D
Y
m�1

.1� hm1 /
�1 (5.3.4)

by Euler’s formula. As before, let Un D Un.x1; : : : ;xk/ and Vn D Vn.x1; : : : ;xk/ be
the coefficients of log.�1.1; 1// and Log.�1.1; 1//, respectively. Then Un D �.n/h1
and ˝

h�;Log.�.1; 1//
˛
D hh�; Vni

D
1

n

X
d jn

�.n=d/�.d/

kY
iD1

hh1.xdi /
n=d ; h�i .xi /i
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D
1

n

X
d jn

�.n=d/�.d/

kY
iD1

hp.dn=d /.xi /; h�i .xi /i

D
1

n

X
d jgcd.�i

j
/

�.n=d/�.d/
..n=d/Š/kQ
i;j .�

i
j =d/Š

:

The last equality follows from Lemma 2.3.1.

Remark 5.3.4
The task to evaluate the Euler characteristic when g D 0 is more complicated, due
to the presence of high-order poles in H0

�
.
p
q; 1=
p
q / at q D 1 (see (1.5.8) for a

computation in a specific example).

6. The pure part of H�.z;w/

In this section we fix once and for all a multipartition � D .�1; : : : ;�k/ 2 .Pn/k

where �i D .�i1; : : : ;�
i
li
/. We give both a representation theoretical and a cohomo-

logical interpretation of the pure part H�.0;w/ of H�.z;w/.

6.1. Multiplicities in tensor products
In this section G DGLn.Fq/. For a partition �D .n1; : : : ; nr/ we define �� to be the
type .1; .n1/1/ � � � .1; .nr/1/ 2 T. Let .X1; : : : ;Xk/ be a generic tuple of k-irreducible
characters of type �� WD .�

1
�
; : : : ;�k

�
/ 2 Tn. The irreducible characters X1; : : : ;Xk

are then semisimple. Put

R� WD

kO
iD1

Xi :

Let ƒ W GF ! Q` be defined by x 7! qg dim CG.x/. Note that the map x 7!
qdim CG.x/ is the character of the representation of GF in the group algebra Q`Œg

F �

where GF acts on gF by the adjoint action.
Let h�; �iGF be the nondegenerate bilinear form on C.GF / defined by

hf;giGF D jG
F j�1

X
x2GF

f .x/g.x/:

THEOREM 6.1.1
We have

hƒ˝R�; 1iGF DH�.0;
p
q /:
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Proof
Recall Lemma 4.1.1, which says that if C is a conjugacy class of GF of type ! 2 Tn,
then H!.0;

p
q /D qg dim CG.x/jC j=jGF j where x 2 C . Hence by Theorem 4.3.1(2),

D
ƒ˝

kO
iD1

Xi ; Id
E
GF

D
X
C

jC j

jGF j
ƒ.C/

kY
iD1

Xi .C /

D
X
!2Tn

H!.0;
p
q /H

�	
! .q/

D
X
!2Tn

.q � 1/Ko!
jW.!/j

H!.0;
p
q /

kY
iD1

.�1/nCf .�
i
	
/hs�i

	
.xi /; QH!.xi Iq/i

D .�1/knC
P
i f .�

i
	
/
X
!2Tn

.q � 1/C 0!H!.0;
p
q /
DY
i

s�i
	
.xi /;

Y
i

QH!.xi Iq/
E

D .�1/knC
P
i f .�

i
	
/.q � 1/

DY
i

s�i
	
.xi /;

X
!2Tn

C 0!H!.0;
p
q /
Y
i

QH!.xi Iq/
E

D .q � 1/
DY
i

h�i .xi /;Log.�.0;
p
q //

E
:

The last equality follows from the fact that f .�i
�
/ D n and s�i

	
.x/ D s.�i

1
/1.x/ � � �

s.�i
li
/1.x/D h�i .x/.

6.2. Poincaré polynomial of quiver varieties
Here we assume that � is indivisible so that we can choose a generic tuple .O1; : : : ;
Ok/ of semisimple adjoint orbits of gln.C/ of type �. Let Q� be the corresponding
complex quiver variety as in Section 2.2.

The aim of this section is to prove the following theorem.

THEOREM 6.2.1
The compactly supported Poincaré polynomial of Q� is given by

Pc.Q�I t /D t
d�H�.0; t/:

As we did for the character variety in Appendix A, we define a spreading out Y�=R

of Q� such that for any ring homomorphism 
 WR!K into an algebraically closed



ARITHMETIC HARMONIC ANALYSIS ON CHARACTER AND QUIVER VARIETIES 391

field K, the adjoint orbits O


1 ; : : : ;O




k
of gln.K/ are generic and of the same type as

O1; : : : ;Ok . Let Q


� denote the corresponding quiver variety over K.

THEOREM 6.2.2
For any ring homomorphism 
 WR! Fq we have

#Q

�.Fq/D q

.1=2/d�H�.0;
p
q /: (6.2.1)

Theorem 6.2.1 follows from Propositions 2.4.2 and 2.2.6 and Theorem 6.2.2. Indeed,
Theorem 6.2.2 implies that Q

g
�=C is polynomial-count.

We now prove Theorem 6.2.2.
For i 2 ¹1; : : : ; kº, let Oi be the adjoint orbit O



i .Fq/ of gF D gln.Fq/. As in the

character variety case we show that

#Q

�.Fq/D

#V


�.Fq/

jPGLn.Fq/j
:

Let ƒ W gF !Q`, x 7! qg dim CG.x/. By Proposition 3.2.2 and Remark 3.2.3, we have

#Q

�.Fq/D q

n2.g�1/.q � 1/
X
O

jOj

jGF j
ƒ.O/

kY
iD1

F g.1Oi /.O/

D qn
2.g�1/.q � 1/

X
!2Tn

H!.0;
p
q /
X
O

kY
iD1

F g.1Oi /.O/

where the second sum is over the adjoint orbits O of gF of type !. The type of
adjoint orbits is defined exactly as for conjugacy classes (see Section 4.1). We need
the following lemma.

LEMMA 6.2.3
Given ! 2 Tn, we have

X
O

kY
iD1

F g.1Oi /.O/D
q1C

P
i di=2

q � 1
H
�	
! .q/

where the sum is over the adjoint orbits of type !, where �� is as in Section 6.1, and
where di D n2 �

P
j .�

i
j /
2.

Proof
We first remark that if C is a semisimple adjoint orbit of gF of type .1; 1n1/.1; 1n2/ � � �
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.1; 1nr /, then by formula (2.5.5),

F g.1C /D �G�LjWLj
�1

X
w2WL

qdL=2R
g

tw

�
F tw .1Tw� /

�

where LD
Qr
iD1GLni .Fq/ and where � 2 C \L.

If X is an irreducible character of type .1; .n1/1/.1; .n2/1/ � � � .1; .nr/1/, then by
formula (2.5.2) we have

X D �G�LjWLj
�1

X
w2WL

RGTw .	
Tw /

where LD
Qr
iD1GLni .Fq/. Hence from formulas (2.5.1) and (2.5.4) we see that the

calculation of the values of X and F g.1C / is completely similar. We thus may follow
the proof of Theorem 4.3.1(2) to compute

P
O

Qk
iD1F g.1C /.O/. To do that we need

to use the Lie algebra analogue of Proposition 4.2.1, which is as follows. Let M be
an F -stable Levi subgroup of G of type ! 2 OTn with Lie algebra m. We say that a
linear character ‚ W z.m/F !Q` is generic if its restriction to z.g/F is trivial and if
for any proper F -stable Levi subgroup H containing M , its restriction to z.h/F is
nontrivial. Put

z.m/reg WD
®
x 2 z.m/

ˇ̌
CG.x/DM

¯
:

Then X
z2z.m/Freg

‚.z/D qKo!

whereKo! is as in Proposition 4.2.1. The proof of this identity is completely similar to
that of Proposition 4.2.1 except that here we are working with additive characters of
Fq instead of multiplicative characters of F�q . This explains the coefficient q instead
of q � 1.

We thus have

#Q

�.Fq/D q

n2.g�1/.q � 1/
X
!2Tn

H!.0;
p
q /
q1C

P
i di=2

q � 1
H
�	
! .q/

D qd�=2
X
!2Tn

H!.0;
p
q /H

�	
! .q/:

We may now proceed as in the proof of Theorem 6.1.1 to complete the proof of
Theorem 6.2.2.
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6.3. Quiver representations, Kac-Moody algebras, and the character ring of GLn.Fq/
Let � be the comet-shaped quiver associated to g and � as in Section 2.2, and let v be
the dimension vector with dimension

Pl
jD1�

i
j at the l th vertex on the i th leg. Then

we have the following.

THEOREM 6.3.1
For � indivisible, the following are equivalent:
(a) hƒ˝R�; 1i ¤ 0;
(b) the quiver variety Q� is nonempty.
For gD 0, (a) or (b) hold if and only if v is a root of the Kac-Moody algebra associ-
ated to � .

Proof
The equivalence between (a) and (b) follows from Theorems 6.2.1 and 6.1.1. If gD 0,
then it is proved by Crawley-Boevey [3, Section 6] that Q� is nonempty if and only
if v is a root.

As mentioned in the introduction, the problem of the nonemptiness of Q� in the genus
gD 0 case, which is part of the Deligne-Simpson problem, was first solved by Kostov
(see [29], [30]). The equivalence of (a) and (b) in Theorem 6.3.1 is formally similar to
the connection between Horn’s problem (which asks for which partitions �;�; � does
H� CH� CH� D 0 have solutions in Hermitian matrices) and the problem of the
nontrivial appearance of the trivial representation in the tensor product V�˝V�˝V�
of the irreducible representations V�; V�; V� of GLn.C/ (see [28]).

We conclude with a naturally arising question: Can the identity A�.q/D hƒ˝
R�; 1i in Section 1.4 be strengthened by establishing an explicit bijection between
the set of isomorphic classes of absolutely indecomposable representations of � and
a basis of .Vƒ ˝ V1 ˝ � � � ˝ Vk/GLn.Fq/ where Vƒ WD .Q`Œgln.Fq/�/

˝g and Vi is a
representation of GLn.Fq/ which affords the character Xi?

Appendices

Appendix A
Fix integers g � 0, k;n > 0. We now construct a scheme whose points parameterize
representations of the fundamental group of a k-punctured Riemann surface of genus
g into GLn with prescribed images in conjugacy classes C1; : : : ;Ck at the punctures.
We give the construction of this scheme in stages to alleviate the notation.
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Fix � D .�1;�2; : : : ;�k/ 2 Pn
k , and let aij , for i D 1; : : : ; kIj D 1; : : : ; ri WD

l.�i /, be indeterminates. We should think of ai1; : : : ; a
i
ri

as the distinct eigenvalues of
Ci each with multiplicity �ij ; it will be in fact convenient to work with the multiset

Ai WD ¹ai1; : : : ; a
i
1; a

i
2; : : : ; a

i
2; : : : ; a

i
ri
; : : : ; airi º. To simplify we write ŒA� WD

Q
a2A a

for any multiset A�Ai .
Let

R0 WD ZŒaij �=.1� ŒA1� � � � ŒAk�/;

and consider the multiplicative set S �R0 generated by (the classes of) aij1 � a
i
j2

for
j1 ¤ j2 and 1� ŒA01� � � � ŒA

0
k
� for A0i �Ai of the same cardinality n0 with 0 < n0 < n.

Since R0 is reduced and S does not contain 0, the localization

R WD S�1R0

is not trivial (R is a ring with 1). We refer to it as the ring of generic eigenvalues of
type �.

In the special case where k D 1 and �D .n/ we have

R0 D ZŒa�=.1� an/;

and S �R0 is the multiplicative set generated by 1� an
0

for 1� n0 < n.

LEMMA A.1
For k D 1 and �D .n/ the ring RD S�1R0 is isomorphic to ZŒ1=n; �n�, where �n is
a primitive nth root of unity.

Proof
The natural map  W R0! RD S�1R0 has kernel the ideal generated by .1� an/=
.1 � an

0

/ for 1 � n0 < n. This means that  factors through ZŒ�n� ,! R with
 .a/D �n. Since

n�1Y
iD1

.1� �in/D n

and each factor is in the image of S , it follows that 1=n 2R. Hence ZŒ1=n; �n� ,!R.
By the same token, the map 
 W R0! ZŒ1=n; �n� sending a to �n takes 1 � an

0

to a unit. Hence by the universal property of R there is a unique extension 
 W R!
ZŒ1=n; �n�. This completes the proof.

In general, we have a map ZŒa�=.1 � ad / ,! R0, where d WD gcd.�ij /, defined by

sending a to
Q
i;j .a

i
j /
�i
j
=d . By the lemma we get ZŒ1=d; �d � ,!R.
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Recall the definitions from Section 2.1. Note that, up to a possible reordering of
eigenvalues of equal multiplicity, a map 
 WR!K uniquely determines a k-tuple of
semisimple generic conjugacy classes .C
1 ;C



2 ; : : : ;C




k
/ of type � in GLn.K/ satis-

fying (2.1.2); C


i has eigenvalues 
.aij / of multiplicities �ij .

Consider the algebra A0 over R of polynomials in n2.2gC k/ variables, corre-
sponding to the entries of .n� n/-matrices A1; : : : ;Ag IB1; : : : ;Bg IX1; : : : ;Xk , with

detA1; : : : ;detAk ; detB1; : : : ;detBk; detX1; : : : ;detXk

inverted. Let In be the identity matrix, and for elementsA;B of a group put .A;B/ WD
ABA�1B�1.

Define I0 �A0 to be the radical of the ideal generated by the entries of

.A1;B1/ � � � .Ag ;Bg/X1 � � �Xk�In; .Xi�a
i
1In/ � � � .Xi�a

i
ri
In/; i D 1; : : : ; k;

and the coefficients of the polynomial

det.tIn �Xi /�
riY
jD1

.t � aij /
�i
j

in an auxiliary variable t . Finally, let A WDA0=I0 and U� WD Spec.A/.
Let 
 W R! K be a map to a field K , and let U



� be the corresponding base

change of U� to K . A K-point of U


� is a solution in GLn.K/ to

.A1;B1/ � � � .Ag ;Bg/X1 � � �Xk D In; Xi 2 C


i ;

where, as before, C


i is the semisimple conjugacy class in GLn.K/ with eigenvalues


.ai1/; : : : ; 
.a
i
ri
/ of multiplicities �i1; : : : ;�

i
ri

.
Hence, if †g is a compact Riemann surface of genus g with punctures S D

¹s1; : : : ; skº �†g , then U


�.K/ can be identified with the set®

� 2Hom.�1.†g n S/;GLn.K//
ˇ̌
�.
i / 2 C



i

¯
(for some choice of base point, which we omit from the notation). Here we use the
standard presentation

�1.†g n S/D h˛1; : : : ; ˛g Iˇ1; : : : ; ˇg I
1; : : : ; 
g j .˛1; ˇ1/ � � � .˛g ; ˇg/
1 � � �
k D 1i

(
i is the class of a simple loop around si with orientation compatible with that of
†g ).

Remark A.2
A completely analogous construction works for the quiver case in the case when � is
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indivisible yielding an affine scheme V� with similar properties. For example, in the
definition of R0 and R we replace the product of elements in a multiset by their sum
to guarantee genericity (see Section 2.2.1). The primes p 2 Z that become invertible
in R are those that are smaller than mini maxj �

j
i (cf. Section 2.2).

Appendix B
Here we prove a version of the smooth-proper base change theorem. A closely related
result was obtained by Nakajima [5, Appendix].

THEOREM B.1
Let X be a nonsingular complex algebraic variety, and let f W X ! C be a smooth
morphism, that is, a surjective submersion. Let C� act onX covering a positive power
of the standard action on C such that the fixed point set XC� is complete and for all
x 2X the lim�!0 �x exists. Then the fibers have isomorphic cohomology supporting
pure mixed Hodge structures.

Proof
The proof is similar to that of [23, Lemma 6.1]; we give the details to be self-
contained. By base change, if necessary, we can assume that the C�-action on X cov-
ers the standard action on C. Let C� act on C2 by �.z;w/D .�z;w/. Then C2!C

given by .z;w/ 7! zw is C�-equivariant with the standard action on C. Let now X 0

denote the base change of X via this map; in other words, X 0 D ¹.x; z;w/ 2 X �
C2jf .x/D zwº. Then X 0 inherits the C� action given by �.x; z;w/D .�x;�z;w/,
and f induces the map f 0 W X 0! C by f .x; z;w/ D w which is equivariant with
respect to the trivial action on the base. By [44, Theorem 11.2], the set U � X 0 of
points u 2X 0 such that lim�!1 �u does not exist is open, and there exists a geomet-
ric quotient X WD U==C� which is proper over C via the induced map f W X ! C.
Indeed it is a completion of X over C as X � X naturally by the embedding x 7!
C�.x; 1; f .x//.

We now show that f is topologically trivial. It is not entirely straightforward, as
X is only an orbifold, because the action of C� on U may not be free—there could
be points with finite stablizers. However, the multiplicative group R�C of positive real
numbers acts on U as a subgroup of C�. Therefore the action of R� on U is free. It
is properly discontinuous because the action of C� on U is properly discontinuous
as U ! X is a geometric quotient. The quotient space U=R�C is therefore a smooth
manifold and the total space of a principal T WD U.1/ orbi-bundle over the orbifold
X , which is proper over C. Hence the induced map fC W U=R�C!C is a proper sub-
mersion. Thus by choosing a T-invariant Riemannian metric on U=R�C and flowing
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perpendicular to the projection, we find a T-equivariant trivialization of fC in the
analytic topology. Dividing out by the T-action yields a trivialization of f in the ana-
lytic topology. Consequently, the restriction H�.X/!H�.Xw/ to the cohomology
of any fiber of f is an isomorphism.

Note that Z WD X n X D ¹C�.x; 0;w/ j lim�!1 �x existsº is trivial over C;
therefore H�.Z/! H�.Zw/ is an isomorphism. Applying the five lemma to the
long exact sequences of the pairs .X;Z/ and .Xw ;Zw/, we get that H�.X;Z/ Š
H�.Xw ;Zw/ Š H

�
cpt .Xw/. Thus any two fibers of f have isomorphic cohomol-

ogy; in particular, H�cpt .Xw/ Š H
�
cpt .X0/ for all w 2 C. As X0 is a proper orbi-

fold (in particular a rational homology manifold), [7, Theorem 8.2.4] implies that
its cohomology has pure mixed Hodge structure. Finally, by standard Morse theory
arguments, H�.X0/!H�.X0/ is surjective, and thus H�.X0/ also has pure mixed
Hodge structure. The proof is complete.
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