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Abstract

An action of a complex reductive group G on a smooth projective variety X is regular when all

regular unipotent elements in G act with finitely many fixed points. Then the complex G-equivariant

cohomology ring of X is isomorphic to the coordinate ring of a certain regular fixed point scheme.

Examples include partial flag varieties, smooth Schubert varieties and Bott–Samelson varieties. We

also show that a more general version of the fixed point scheme allows a generalisation to GKM spaces,

such as toric varieties.
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1 Introduction

In recent work [41, 42] a certain infinitesimal fixed point scheme for the action of GLn on Grpk, nq – the

Grassmannian of k-planes in Cn – is used to model the Hitchin map on a particular minuscule upward

flow in the GLn-Higgs moduli space. In turn, it was noticed that this fixed point scheme is isomorphic

to the spectrum of equivariant cohomology of Grpk, nq, and thus the Hitchin system on these minuscule

upward flows can be modelled as the spectrum of equivariant cohomology of Grassmannians. In this paper

we show that the appearance of the spectrum of equivariant cohomology as a fixed point scheme is not a

coincidence, and holds in more general situations.

We start more generally with partial flag varieties. Let G be a connected complex reductive group

and P Ă G be a parabolic subgroup. The partial flag variety is the projective homogeneous space G{P of

parabolic subgroups of G conjugate to P. Equivalently we can think of points in G{P as parabolic Lie

subalgebras conjugate to the parabolic Lie subalgebra p :“ LiepPq Ă g. Using this point of view we can

define the Grothendieck–Springer partial resolution as

µP : g̃P :“ tpx, p1q P g ˆ G{P|x P p1u Ñ g, (1.1)

given by projection to the first coordinate. It is a proper dominant morphism. Over regular elements

in g the morphism µP is finite, cf. [2] and Lemma 2.46. Recall that x P g is regular when its centraliser

gx Ă G under the adjoint action has dimension equal to the rank of G. The regular elements of g form

an open dense subset in g. An equivalent definition of being regular is that the corresponding fiber of π

is finite for P “ B a Borel subgroup. This implies that the Grothendieck–Springer partial resolution is

generically finite-to-one, i.e. an alteration.

One often studies the Grothendieck–Springer map as part of the commutative diagram:

g̃P t{{WL

g t{{W

νP

µP π

ρ
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Here ρ is the natural map

ρ : g Ñ g{{G – t{{W,

where t “ LiepTq is the Lie algebra of the maximal torus and W “ NGpTq{T is the Weyl group of G. We

can define a map

νP : g̃P Ñ p{{P – l{{L – t{{WL,

where L :“ P{Pu, the quotient with the unipotent radical of P, is the Levi quotient of P, l is its Lie

algebra and WL is its Weyl group. If P 1 is conjugate to P , with Levi quotient L1, then for any x P p1

the map is given by sending px, p1q P g̃P to the image of x P p1 in p1{{P1 – l1{{L1 and then canonically

identifying l1{{L1 – l{{L. If P – B is Borel, then L – T is the maximal torus and this later is used to define

the universal Cartan subalgebra, see e.g. [22, Lemma 6.1.1].

Fix a principal sl2-triple xe, f, hy – sl2 Ă g, where e P g is regular nilpotent. Let

S :“ e` Cgpfq Ă g (1.2)

be the Kostant section, where Cgpfq is the centraliser of f in g. We have a corresponding principal

SL2 Ñ G subgroup giving

τ : Cˆ Ă SL2 Ñ G. (1.3)

We define a Cˆ-action on g by

λ ¨ x “ λ´2 Adτpλqpxq. (1.4)

As adτpλqpeq “ λ2e, we see that this Cˆ-action leaves the Kostant section invariant.1

Denote now S̃P :“ µ´1
P pSq. Then we have the commutative diagram2

S̃P g̃P t{{WL

S g t{{W

ι̃

µP

–

νP

µP π

ι

–

ρ

such that ρ ˝ ι is an isomorphism, for S is the Kostant section. On the other hand νP ˝ ι̃ is finite as µP

and π are, when restricted to regular elements. Finally, the degree of the finite maps µP and π both equal

the Euler characteristic χpG{Pq. Thus it follows that νP ˝ ι̃ is a finite map to a normal variety t{{W of

degree one, thus an isomorphism.

We also note that the equivariant cohomology algebra

H˚
GpG{P;Cq – H˚

GˆPpG;Cq – H˚
P – H˚

L – CrtsWL

is naturally a H˚
G :“ H˚pBG;Cq – CrtsW-algebra. From this algebra structure we have a canonical

algebra homomorphism φ : H˚
G Ñ H˚

GpG{P;Cq. We denote the induced map between the affine spectra by

f : SpecpH˚
GpG{P;Cqq Ñ SpecpH˚

Gq,

which is Cˆ-equivariant with respect to the actions induced from the gradings on both sides. As the

odd cohomology HoddpG{P;Cq is trivial, the space G{P is equivariantly formal [32]. In other words, the

H˚
G-module H˚

GpG{P;Cq is free. Then we have the following commutative diagram.

1This action is considered e.g in [29], where the associated grading is referred to as the Kazhdan grading.
2In the case P “ B this diagram was communicated to us by Zhiwei Yun.
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S̃P g̃P t{{WL SpecpH˚
GpG{P;Cqq

S g t{{W SpecpH˚
Gq

ι̃

µP

–

νP

µP

–

π f

ι

–

ρ
–

(1.5)

Thus we see that the partial Grothendieck–Springer resolution µP over the Kostant section S is

precisely the spectrum of the G-equivariant cohomology algebra of the partial flag variety G{P. In this

paper our motivation is to show that the appearance of the spectrum of equivariant cohomology in (1.5)

is not a coincidence. We will show that the same holds for H-regular actions of a principally paired group

H on a smooth projective variety X.

Definition 1.1. 1. A complex linear algebraic group H is principally paired if it contains a pair

te, hu Ă h in its Lie algebra, such that rh, es “ 2e and e is a regular nilpotent, and an algebraic group

homomorphism BpSL2q Ñ H from the Borel subgroup of SL2 whose differential maps the regular

unipotent to e and the appropriate diagonal element to h.

2. An action of a principally paired group H on a smooth projective variety X is regular when a regular

unipotent element u P H has finitely many fixed points.

In fact a unipotent element always has a connected fixed point set [44], so for a regular action we have

Xu “ tou for some o P X. Examples of principally paired groups include parabolic subgroups of reductive

groups (see Lemma 2.21), such as Borel subgroups and reductive groups themselves. While examples of

H-regular varieties include for H “ G the partial flag varieties G{P considered above (see [2]), smooth

Schubert varieties are regular when H “ B Ă G is a Borel subgroup and Bott–Samelson resolutions will

be examples for parabolic subgroups H “ P Ă G of reductive groups.

We construct (see Section 2.2) a vector field Vh on h ˆX such that for any y P h its restriction

pVhqy P H0pX;TXq

to tyu ˆ X is the infinitesimal vector field on X generated by y. Recall the Kostant section from (1.2)

for reductive group. For an arbitrary principally paired group, we proceed as follows. Choose a Levi

subgroup L in H, so that H “ N ¸ L, where N is the unipotent radical of H. The regular nilpotent e P H

then splits into e “ en ` el with en P n, el P l. The latter can be completed to an sl2-triple pel, fl, hlq

in l and we take S “ e ` Clpflq. We prove in Theorem 2.37 that it is a section of the natural map

h Ñ h{{H – t{{W – SpecpH˚
Hq, in particular S – SpecpH˚

Hq.

Denote by VS :“ Vh|SˆX the vector field Vh restricted to S ˆX. Let ZS Ă S ˆX be the zero scheme

of VS , i.e. the subscheme defined by the sheaf of ideals generated by VSpOSˆXq Ă OSˆX , where VS acts

on OSˆX as a derivation. The distinguished homomorphism BpSL2q Ñ H restricted to the diagonal torus

gives a map τ : Cˆ Ñ H and a Cˆ action defined as in (1.4) will preserve S. We also pull back the action

of H via τ : Cˆ Ñ H on X to an action of Cˆ on X. Then ZS will be preserved by the diagonal Cˆ-action

on S ˆX. Our main theorem is the following:

Theorem 1.2. Suppose a principally paired group H acts regularly on a smooth projective complex variety

X. Then the zero scheme ZS Ă S ˆX of the vector field VS is reduced and affine and its coordinate ring,
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graded by the Cˆ-action above, is isomorphic as a graded ring

CrZSs H˚
HpX;Cq

CrSs H˚
H

–

–

π˚

to the H-equivariant cohomology of X, such that the structure map H˚
H Ñ H˚

HpX;Cq agrees with the

pullback map H˚
H – CrSs Ñ CrZSs of the natural projection π : ZS Ñ S. In particular,

ZS SpecpH˚
HpX;Cqq

S SpecpH˚
Hq,

π

–

–

i.e. the spectrum of equivariant cohomology of X is Cˆ-equivariantly isomorphic to the zero scheme

ZS Ă S ˆX over S – SpecpH˚
Hq.

We study first the case of solvable principally paired groups. Then the general case is reduced to the

Borel subgroup.

There is another version of our Theorem 1.2 where we do not restrict to the Kostant section S. Namely,

if a reductive group G acts regularly on X and we denote by Zg Ă g ˆX the zero scheme of Vg, then the

G-action on g ˆX leaves Zg invariant. We have the following:

Theorem 1.3. Suppose a complex reductive group G acts regularly on a smooth projective complex variety

X. Then the G-invariant part of the algebra of the global functions on the total zero scheme Zg

CrZgsG H˚
GpX;Cq

CrgsG H˚
G

–

–

is graded isomorphic with the equivariant cohomology of X over CrgsG – H˚
G. The gradings on CrgsG and

CrZgsG are induced from the weight ´2 action of Cˆ on g and the trivial action on X.

Note that for partial flag varieties X “ G{P the total zero scheme Zg – g̃P Ñ g is just the

Grothendieck–Springer resolution as above.

However, here the total zero scheme is no longer affine. On the other hand this version also holds for

GKM spaces, including toric varieties. Recall [32] that a smooth projective variety X with an action of a

torus T is a GKM space if the number of both the zero- and one-dimensional orbits is finite. We can form

the total zero scheme Zt Ă t ˆX as the zero scheme of the vector field Vt generated by the T-action, as

before.

Theorem 1.4. Suppose that a torus T acts on a smooth projective complex variety X with finitely many

zero- and one-dimensional orbits. Then the algebra of the global functions on the total zero scheme Zt

CrZts H˚
TpX;Cq

Crts H˚
T

–

–

is graded isomorphic to the equivariant cohomology of X over Crts – H˚
T. The gradings on Crts and CrZts

are induced by the weight ´2 action on t.
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The proof is straightforward, using the explicit description of H˚
TpX;Cq from [32]. We expect this

version to hold for an even larger class of group actions, including spherical varieties. However, in this

paper we concentrate on a more restrictive class of regular group actions. In that case, as in Theorem 1.2,

we can find an affine zero scheme ZS Ă S ˆX, which is precisely the spectrum of equivariant cohomology

of X.

Our main Theorem 1.2 was proved for the case of regular actions of the Borel BpSL2q by Brion–Carrell

[16, Theorem 1, Proposition 2]. The strategy of our proof of Theorem 1.2 – in the case of more general

Borel subgroups – is broadly following the approach of the proof in [16]. Using vector fields with possibly

degenerate isolated zeros to obtain topological information on a complex manifold from infinitesimal

information goes back to the pioneering works of Bott [12, 7]. For a comprehensive survey see [17].

We should also mention that there are other papers in the literature which study the spectrum of

equivariant cohomology geometrically, see e.g. [31] and the references therein. More recent example is [43],

where the spectrum of equivariant cohomology of certain varieties also appears as a fixed point scheme,

albeit of another – 3D-mirror – variety.

We finally note that many of our examples in this paper will be equivariant cohomology rings of partial

flag varieties, and as such they model the Hitchin system on various Lagrangian upward flows [41, 42]. The

pictures arising e.g. in §4.4 could be then thought of depicting the various fixed point schemes, spectra of

equivariant cohomology or the Hitchin systems on corresponding upward flows.

The contents of the paper is as follows. In Section 2 we describe the basic properties of actions of

algebraic groups and vector fields associated with them. In particular, in §2.2 we introduce the total vector

field which underlies the constructions used throughout the paper. In §2.4 and §2.5 we discuss regular

elements and principal integrable bpsl2q-pairs. In §2.6 we generalize the Kostant section to arbitrary

principally paired groups, and in §2.7 we discuss basic properties of regular actions. Section 3 contains

the proof of Theorem 3.5, which is the equivalent of Theorem 1.2 for the solvable group. Based on that,

in Section 4 we prove Theorem 1.2. In §5.1 we generalize the theorem to some singular varieties. Finally,

§5.2 and §5.3 contain the proofs and examples for Theorem 1.3 and Theorem 1.4.

Acknowledgements. We would like to thank David Ben-Zvi, Michel Brion, Jim Carrell, Harrison Chen,

Nigel Hitchin, Quoc Ho, Vadim Kaloshin, Friedrich Knop, Jakub Löwit, Anne Moreau, Richárd Rimányi,

András Szenes, Zsolt Szilágyi, Michael Thaddeus and Zhiwei Yun for useful comments and discussions. We

also thank the referees for useful comments. The first author was supported by an FWF grant “Geometry

of the top of the nilpotent cone” number P 35847. The second author was supported by an Austrian

Academy of Sciences DOC Fellowship. All figures were generated in Mathematica.

2 Generalities

2.1 Notation

We consider all the algebraic varieties, including algebraic groups, to be defined over C. For an algebraic

variety X, by CrXs “ OXpXq we denote the algebra of regular functions on X. All the cohomology groups

will be understood to have complex coefficients. For a Lie algebra g and a subset V Ă g we denote by

CgpV q, NgpV q the centraliser and normaliser of V in g, respectively. If V “ tvu, then we also write Cgpvq,

Ngpvq. We drop the lower index if the ambient Lie algebra is obvious. For any Zě0-graded C-algebra

R “
À8

n“0Rn we denote by PRptq its Poincaré series, i.e.

PRptq “

8
ÿ

n“0

dimCpRnqtn.
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Let diagpv1, v2, . . . , vnq be the diagonal nˆ n matrix with diagonal entries v1, v2, . . . , vn. We will denote

by In “ diagp1, 1, . . . , 1q the nˆ n identity matrix. For any algebraic group G with Lie algebra g, by gn

we denote the set (in general not a subalgebra) of nilpotent elements of g, as defined in [11, 4.5]. For a

commutative algebra A with a filtration F‚, we denote by GrF pAq the associated graded algebra.

2.2 Vector fields

Recall that a vector field on a smooth algebraic variety X is a derivation on the sheaf of regular

functions on X. This means that for any Zariski-open subset U Ă X we are given a C-linear derivation

OXpUq Ñ OXpUq and it is natural with respect to U . Given a vector field V on X, if x P X is a closed

point in X, we can restrict the derivation defined by V to the local ring OX,x. By restricting to the

maximal ideal mx Ă OX,x and evaluating the derivations of functions at x, we get a map mx Ñ C. In fact,

by the Leibniz rule it has to vanish on m2
x, hence we get a tangent vector Vx P HomCpmx{m2

x,Cq » Tx,X .

Whenever an algebraic group H acts on a variety X, it yields a Lie algebra homomorphism ϕ : h Ñ

VectpXq from h “ LiepHq to vector fields on X, see [23]. We will want to define the total vector field on

h ˆX. As it is a local problem on X, we can restrict to an affine open set U . Then

Crh ˆ U s “ Crhs bC CrU s (2.1)

and we need to define a derivation on this C-algebra. We can view ϕ|U as an element of h˚ bC VectpUq. As

Crhs “ S˚ph˚q, we have a multiplication map h˚ b Crhs Ñ Crhs. Additionally, VectpUq are by definition

the derivations on CrU s, which gives a C-bilinear VectpUq b CrU s Ñ CrU s. Those two maps together

with (2.1) lead to a C-bilinear map

ph˚ b VectpUqq b Crh ˆ U s Ñ Crh ˆ U s.

Fixing ϕ|U P ph˚ b VectpUqq gives a derivation Crh ˆ U s Ñ Crh ˆ U s.

Definition 2.1. The vector field defined by this derivation will be called the total vector field of H-action

on X.

Explicitly, let ϕ “
ř

ψi bDi for ψi P h˚, VectpUq. Then the defined derivation on f b g P Crhs bCrU s

takes value

ÿ

pψi ¨ fq bDipgq P Crhs b CrU s. (2.2)

This gives the total vector field on h ˆX. One can note that the vector field is tangent to tyu ˆX for

any y P h, i.e. as a derivation it preserves the set of functions vanishing on tyu ˆX. Indeed, locally such

functions are sums of f b g P Crhs bCrU s such that fpyq “ 0, and in such case the image of the derivation

(2.2) also vanishes at tyu ˆX. The vector field restricted to tyu ˆX is precisely ϕpyq and for any y P h

with H acting on X we will denote this vector field by Vy. Later we will consider restrictions of the total

zero schemes to bigger subsets of h.

One sees that for any y P h and x P X the value Vy|x of the vector field Vy at x can be recovered by

considering the derivative at 1H of the map H Ñ X defined as g ÞÑ g ¨ x, and evaluating it on y.

Definition 2.2. Let V be a vector field on a smooth variety X. For each open set U Ă X it gives a

derivation DU
V : OXpUq Ñ OXpUq. Let us consider the ideal sheaf generated by the image DV pOXq Ă OX .

This is the defining ideal of the zero scheme of V on X.
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Remark 2.3. One can also view vector fields on smooth varieties as sections of the tangent bundle. As the

tangent bundle is a locally free sheaf, we can define the zero scheme of the vector field by considering

it locally as a tuple of regular functions (see Lemma 3.10). In other words, if the tangent bundle is

free over an open subset U Ă X, after choosing a trivialisation, its section V is defined by n-tuple

of regular functions f1, f2,. . . , fn. Then the zero scheme of V on U is the zero scheme of the ideal

pf1, f2, . . . , fnq P OXpUq.

2.3 Background results on algebraic groups and vector fields

We first recall (a part of) the theorem of Borel on solvable groups ([11, Theorem 10.6], see also [55,

Theorem 16.33]) that we will often tacitly use throughout.

Theorem 2.4. Let H be a connected solvable group with Lie algebra h and Hu its set of unipotent elements.

Then

1. Hu is a connected normal closed, unipotent subgroup of H containing rH,Hs.

2. The maximal tori in H are all conjugate. If T is a maximal torus, then H “ Hu ¸ T. The Lie algebra

of Hu consists of all nilpotent elements of h.

3. If T is a maximal torus, then any semisimple element of H is conjugate to a unique element of T.

Remark 2.5. Let hn be the set of nilpotent elements of h. It follows from above that hn is a Lie subalgebra

of h. As it consists of nilpotent elements, hence acting nilpotently by the adjoint action, by Engel’s

theorem it is nilpotent itself. Moreover it contains rh, hs. In addition, from the second statement we get

that h “ hn ‘ t for t “ LiepTq.

Now assume we are given a group action H ü X of an algebraic group. For any g P HpCq, the action of

g is an isomorphism X Ñ X. If we fix any closed point x P X, its derivative Dg|x at x is an isomorphism

Tx,X Ñ Tgx,X . We will simply write it as Dg if x can be inferred from the context.

Lemma 2.6. Let an algebraic group H act on a variety X. Then for any g P H, y P h “ LiepHq and

x P X we have

VAdgpyq|gx “ DgpVy|xq.

Proof. Let µ : H ˆ H Ñ H denote the multiplication map and ρ : H ˆX Ñ X denote the action of H on

X. Consider the following commutative diagram.

H ˆ H ˆ H ˆX

H ˆ H ˆX H ˆ H ˆX

H ˆX H ˆX

X

µˆid ˆ id

id ˆ id ˆρ

µˆid id ˆρ

ρ

ρ

.

If we fix a point on the top, it yields an analogous commutative diagram of differential maps. Take

pg, 1, g´1, gxq P H ˆ H ˆ H ˆX and p0, y, 0, 0q in its tangent space. Going through the left branch, it is

mapped to VAdgpyq|gx and going through the right one, it is mapped to DgpVy|xq. ■
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Lemma 2.7. Let A be a commutative C-algebra. Let DY : A Ñ A be a C-linear derivation and V a

C-vector space of C-derivations A Ñ A normalised by DY , i.e. for any DW P V we have rDW , DY s P V.

Let mx be a radical ideal in A that contains imDW for all DW P V. Then for any f P
a

pimDW qDW PV

we have DY f P mx.

Proof. Let I “ pimDW qDW PV be the ideal generated by images of all the derivations from V. We first

prove by induction that pDY qnpIq Ă mx for all n ě 0. The case n “ 0 follows from the assumption that

I Ă mx. Now assume that pDY qnpIq Ă mx for some n ě 0. Fix one particular derivation DW P V ; we will

want to prove that pDY qn`1 imDW Ă mx. We have DYDW ´DWDY “ DZ P V, therefore

Dn`1
Y DW ´Dn

YDWDY “ Dn
YDZ ,

hence

Dn`1
Y DW “ Dn

Y pDWDY `DZq.

Now clearly imDWDY `DZ Ă I, hence by inductive assumption the image of right-hand side is always

in mx. Therefore imDn`1
Y DW Ă mx, as we wanted to prove.

Now assume that f P
?
I and let fk Ă I. We then know that fk P mx, therefore f P mx. By above we

also know that Dk
Y f

k P mx. By Leibniz rule Dk
Y f

k is the sum of terms of the form

k
ź

i“1

pDαi

Y fq

for non-negative integers α1, α2 . . . , αk such that α1 ` α2 ` ¨ ¨ ¨ ` αk “ k. Note that for all the terms

except for pDY fqk, at least one of α1, α2, . . . , αk is zero, and all those terms belong to mX , as f P mx.

Therefore we get pDY fqk P mx, hence DY f P mx. ■

As a geometric counterpart, we get the following lemma, which will prove very useful in our proofs.

Lemma 2.8. Let Y be a vector field on a smooth variety X. Assume that V is a subspace of the C-vector

space all global vector fields. If Y normalises V, i.e. rY,Vs Ă V, then Y is tangent to the reduced zero

scheme of V.

In particular, if a Lie group H acts on X, and a subspace V Ă h has isolated (simultaneous) fixed

points, then they are fixed by the normaliser NhpVq of V in h.

Note that even the reduced zero scheme of V might be singular. A vector from a tangent space to X

is considered tangent to a subscheme Z if it is in the image of the tangent space of Z, see the discussion

in Section 2.2. Equivalently, in local affine neighbourhood it annihilates all the functions that vanish on

Z, i.e. those from the defining ideal of Z.

Proof. As the statement is local, we can assume that X “ SpecA is affine. Let x P X be a simultaneous

zero of V. Then x corresponds to a maximal ideal mx ŸA. The space V gives rise to a vector space of

C-derivations A Ñ A, and Y to a single derivation DY : A Ñ A. By assumption on x, for any DW P V

we have imDW Ă mx. Hence, by Lemma 2.7, the derivation DY vanishes at the point x on the ideal of

the reduced zero scheme of V. Thus Y is tangent to that scheme. ■

Remark 2.9. There is an alternate, analytic proof, which works under the assumption that V is finite

dimensional– which will be always the case for us. It is non-algebraic and hence also non-translatable

to other fields, but one could argue it is less technically demanding, and moreover works in a smooth,

not necessarily algebraic setting, so we present it here as well. In fact, the assumption, that V is finite
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dimensional, can also be dropped, if we use the fact that the functions we deal with are all analytic, hence

they vanish locally if all the derivatives in a point vanish – this approach mimics the algebraic proof.

Let ϕ “ rY,´s
ˇ

ˇ

V be the commutator map V Ñ V induced by Y . Let x be fixed by V and let us consider

local one-parameter subgroup Ψt around x defined by the vector field Y . For any vector field W we have

rY,W sx “
d

dt

`

pDxΨtq
´1WΨtpxq

˘
ˇ

ˇ

t“0

and analogously

rY,W sΨtpxq “
d

du

`

pDxΨuq´1WΨt`upxq

˘
ˇ

ˇ

u“0
.

Composing this with the linear map pDxΨtq
´1 we get, for W P V, the following:

pDxΨtq
´1ϕpW qΨtpxq “

d

du

`

pDxΨuq´1WΨupxq

˘
ˇ

ˇ

u“t
.

Hence if we consider the map τ : p´ε, εq Ñ HompV, TpXq defined as

τptqpY q “ pDxΨuq´1WΨtpxq

we get
d

dt
τptq “ ϕ˚τptq.

We get a linear equation, and in particular as τp0q vanishes (because V vanishes at x), we get that

that τ vanishes also around 0, hence τ moves along fixed points of V.

The next Lemma will be used to show that zeros of generalised Jordan matrices are zeros of the torus.

Lemma 2.10. Let a Lie algebra h acts on a smooth variety X. Let d, n P h commute and assume that

the Lie subalgebra generated by rh, hs and n is nilpotent. Let x P X be an isolated zero of the vector field

Vj associated to j “ d` n. Then x is also a simultaneous zero of Chpdq. In particular, x is a zero of any

abelian subalgebra of h containing d.

Proof. Let k be the Lie subalgebra generated by rh, hs and n. By Lemma 2.8 we first get that x is a zero

of d and n, as they commute with j.

We will first prove that x is a zero of C 1pdq “ Chpdq X k. As k is nilpotent by assumption, its subalgebra

C 1pdq is nilpotent as well.

By definition d is in the center of Cpdq, in particular it commutes with C 1pdq. Hence from Lemma 2.8

we have that x is a zero of NC1pdqpC ¨nq. It is therefore an isolated simultaneous zero of d and NC1pdqpC ¨nq

and we can apply the same argument repeatedly to get that for i “ 1, 2, . . . it is a zero of N i
C1pdq

pC ¨ nq.

The sequence
´

N i
C1pdq

pC ¨ nq

¯8

n“1
has to stabilise at a Lie subalgebra of C 1pdq which is its own normaliser

in C 1pdq. As C 1pdq is nilpotent, it then has to be equal to whole C 1pdq (see [14, Proposition 3 in Chapter

1, §4.1]). Therefore d and C 1pdq vanish at x. But rChpdq, Chpdqs Ă Chpdq X rh, hs Ă Chpdq X k “ C 1pdq,

hence C 1pdq is normalised by whole Chpdq. Therefore by Lemma 2.8 whole Chpdq vanishes at x. ■

From Remark 2.5 the assumptions about d and n hold whenever h is solvable, rd, ns “ 0 and n P hn

(as hn is nilpotent and contains rh, hs as well as n).

2.4 Regular elements

Let H be an algebraic group and T Ă H be a maximal torus, of dimension r. We will call an element

v P h “ LiepHq regular if dimChpvq “ r. This is stronger than the usual notion of a regular element in

literature (see e.g. [21]) – an element whose centraliser has minimal possible dimension. All the centralisers

have dimension not smaller than r, but it is possible that no regular element exists. For example for

H “ Cˆ ˆC – the product of the multiplicative and the additive group – all centralisers are 2-dimensional.
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Example 2.11. For H “ GLnpCq or H “ SLnpCq, a regular element of h is a matrix with all eigenspaces of

dimension 1. Among the regular elements, the regular semisimple ones are the diagonalisable matrices

with distinct eigenvalues, and a regular nilpotent matrix is conjugate to a single Jordan block.

Example 2.12. More generally any reductive group G contains regular elements in its Lie algebra, in

particular a regular nilpotent element. Indeed, once we choose a maximal torus T Ă G and positive roots,

we can take e “ x1 ` x2 ` ¨ ¨ ¨ ` xs, where x1, x2, . . . , xs are the root vectors of g corresponding to the

positive simple roots (s “ r ´ dimZpGq). Then e is a regular nilpotent in G (see [49, Section 4, Theorem

4]).

The condition dimChpwq ą r is a Zariski-closed condition on w – as it means that rw,´s has sufficiently

small rank, which amounts to vanishing of some minors of a matrix. Therefore, if H admits a regular

element in its Lie algebra, the subset of regular elements hreg Ă h is open and dense.

Note that if H is solvable, then by Theorem 2.4 we have rh, hs Ă hn. This means that for any v P h we

have rv, hs Ă hn. As the codimension of hn is exactly r “ dim T, the dimension of maximal torus, v being

regular is equivalent to rv, hs “ hn.

Note also that if H1 Ă H is a subgroup which contains a maximal torus T of H, then any regular v P h

contained in h1 is also regular in h1. Indeed, if r “ dim T, then dimCh1 pvq ď dimChpvq “ r, but at the

same time dimCh1 pvq cannot be less than the dimension of the maximal torus T of H1. This means in

particular that the centraliser Chpvq is contained in h1.

2.5 sl2-triples and bpsl2q-pairs

The classical version of Carrell–Liebermann theorem ([20, Main Theorem and Remark 2.7]) deals with an

arbitrary vector field V on a smooth projective variety X, which vanishes in a discrete, nonempty set.

They prove the following

Theorem 2.13. Let X be a smooth projective complex variety and V a vector field with finitely many

zeros and denote its zero scheme by Z. Then there exists an increasing filtration F‚ on CrZs such that

H˚pXq » GrF pCrZsq.

The degree on the left is multiplied by two, in particular X only has even cohomology.

The theorem therefore gives some information on cohomology, but this depends on determining the

filtration F‚. This can be hard in general. Only if V comes with a Cˆ-action which satisfies t˚pV q “ tkV

for some nonzero integer k, we get H˚pXq – CrZpV qs ([6], [3, Theorem 1.1]). We will consider those

vector fields as coming from an action of a Lie group. Hence the following definition.

Definition 2.14. For any complex Lie algebra h, by bpsl2q-pair in h we mean a pair pe, hq of elements of

h that satisfy the condition rh, es “ 2e. By sl2-triple in h we mean a triple pe, f, hq of elements of h such

that rh, es “ 2e, rh, f s “ ´2f , re, f s “ h.

If G is a semisimple group, then by Jacobson–Morozov theorem (see e.g. [22, Theorem 3.7.1]) for any

nilpotent element e P g there exists an sl2-triple pe, f, hq in g such that f is nilpotent and h is semisimple.

The same is then true for any reductive Lie group G, as a reductive Lie algebra is a direct sum of its

center and a semisimple ideal ([48, Theorem II.11]).

Let us consider the connected subgroup K Ă G whose Lie algebra k is the smallest one which contains e,

f , h (see [11, 7.1]). Then the Lie algebra of rK,Ks is equal to rk, ks (see [11, Proposition 7.8]). However, by

[11, Corollary 7.9] we have rk, ks “ rspanpe, f, hq, spanpe, f, hqs “ spanpe, f, hq. Hence we get an algebraic
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subgroup rK,Ks (contained in K, hence equal to K) of G whose Lie algebra is spanpe, f, hq. As its Lie

algebra is semisimple, the group itself is semisimple. By [55, Theorem 20.33], if it is nontrivial, it has to

be either SL2pCq or PSL2pCq. In either case, there is a covering map

ϕ : SL2pCq Ñ K. (2.3)

As any automorphism of sl2pCq lifts to an automorphism of SL2pCq, we can assume that the canonical

basis e0, f0, f0 of sl2 maps to e, f , h, respectively. Hence we get the following.

Proposition 2.15. For any nilpotent element e in the Lie algebra g of an algebraic reductive group, there

exists an sl2 triple pe, f, hq within g with f nilpotent and h semisimple. If e ‰ 0, the element h integrates

to a map Cˆ Ñ G with discrete kernel, whose differential is h.

Remark 2.16. As we saw in Example 2.12, if G is reductive, then there exists a principal nilpotent e P g.

By the proposition, this means that there is a an sl2 triple pe, f, hq with e principal nilpotent, f nilpotent

and h semisimple. By the general theory of representations of sl2, the ranks of the operators re,´s and

rf,´s are equal, hence f is also regular. This motivates the following definition.

Definition 2.17. An sl2-triple pe, f, hq will be called principal if e and f are regular nilpotents.

Definition 2.18. For a linear algebraic group H, an integrable bpsl2q-pair in h “ LiepHq is an sl2 pair

pe, hq in h which consists of a nilpotent element e and a semisimple element h which is tangent to some

one-parameter subgroup H : Cˆ Ñ H, i.e. h “ DH|1p1q. This means that pe, hq comes from an algebraic

group morphism B2 “ BpSL2q Ñ H. We call an integrable bpsl2q-pair principal if e is a regular element

of h.

Remark 2.19. Note that, unlike an sl2-triple, a bpsl2q-pair does not have to be integrable. As an easy

counterexample, we may take

h “

¨

˚

˚

˝

π 0 0

0 π ´ 2 0

0 0 2 ´ 2π

˛

‹

‹

‚

, e “

¨

˚

˚

˝

0 1 0

0 0 0

0 0 0

˛

‹

‹

‚

for H “ SL3pCq. Then rh, es “ 2e, but h is not tangent to a one-dimensional torus (we can replace π with

any irrational number).

Definition 2.20. We call a connected linear algebraic group H principally paired if it contains a principal

integrable bpsl2q-pair.

For example a reductive group is principally paired because of Proposition 2.15. More generally we

have the following

Lemma 2.21. Let G be a reductive group. Then any parabolic subgroup P Ă G is principally paired.

Proof. Because there is a Borel subgroup B Ă P, it is enough to prove the result for B “ P. Note that if

B “ B2 is the Borel subgroup of SL2pCq, then the image ϕpB2q of (2.3) is a solvable connected subgroup

of G, hence it is contained in a Borel subgroup of G. All Borel subgroups of G are conjugate (see [11,

Theorem 11.1]), hence they are all principally paired. ■

2.6 Kostant section and generalisations

The seminal work of Kostant shows the following theorem ([49, Theorem 0.10]).

12



Theorem 2.22. Assume that G is a semisimple group and pe, f, hq is a principal sl2-triple. Then every

regular element of g “ LiepGq is conjugate to exactly one element of S “ e ` Cgpfq. Moreover, the

restriction CrgsG Ñ CrSs is an isomorphism.

The affine plane S is called the Kostant section. We will provide in Theorems 2.35 and 2.37 a version

that works for arbitrary principally paired groups.

2.6.1 Solvable groups

Assume first that H is a solvable group. Let T be its maximal torus and hn be the nilpotent part of

h “ LiepHq. Assume that e P hn, h P t are such that pe, hq is a principal integrable bpsl2q-pair. Let

tHtutPCˆ be the one-parameter subgroup in H to which h P h integrates.

Lemma 2.23. All elements of e` t are regular and not conjugate to one another.

Proof. Assume that for some v P t the element e` v is not regular. This means that dimChpvq ě r ` 1.

As AdHtpe` vq “ t2e` v, for any t P Cˆ we have

dimCh

`

e` v{t2
˘

“ dimCh

`

t2e` v
˘

“ dimChpe` vq ě r ` 1.

As the set of nonregular elements is closed in h, we get dimChpeq ě r ` 1. This contradicts the regularity

assumption.

For any x P h and M P H we have AdM pxq ´ x P rh, hs Ă hn by [11, Propositions 3.17, 7.8]. Therefore

no two distinct elements from e` t can be conjugate to one another, as they differ on the t component. ■

Lemma 2.24. 3 Every regular element of h is conjugate to a unique element of e` t.

Proof. We know that h “ t ‘ hn. Assume that x “ v ` n, where v P t and n P hn, is regular. This means

that rx, hs “ hn (see Section 2.4). Let us consider the map

Ad´pxq : H Ñ h. (2.4)

As in the proof of the previous lemma, we see that the image is actually contained in v ` hn.

Note that the image of the derivative of (2.4) at 1 is rx, hs “ hn “ T0pv`hnq. Therefore by [58, Theorem

4.3.6] the morphism Ad´pxq : H Ñ v`hn is dominant. Analogously, the morphism Ad´pe`vq : H Ñ v`hn

is dominant, as e` v is regular from the previous lemma. Therefore the images of Ad´pxq and Ad´pe` vq

are both dense in v ` hn. By [58, Theorem 1.9.5] they both contain open dense subsets of v ` hn and

hence they intersect, which means that x and e` v are conjugate.

Uniqueness follows from the previous lemma. ■

Now we will also provide an equivalent of the classical Jordan form, for arbitrary solvable groups.

Recall that by Remark 2.5 every x P h is of the form x “ w ` n, where w P t and n P hn.

Theorem 2.25. For any x “ w`n P h with w P t, n P hn, there exists M P H such that x “ AdM pw`n1q

with rw, n1s “ 0 and n1 P hn.

Proof. We have the Jordan decomposition (see [11, Theorem 4.4]) x “ xs ` xn, where xs is semisimple,

xn is nilpotent and rxs, xns “ 0. Then by Theorem 2.4 the element xs is conjugate to an element of t.

Hence there exists M P H such that AdM´1pxsq P t. Note that

AdM´1pxsq ´ xs P rh, hs

3This is based on an argument provided by Anne Moreau.
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as in the proof of Lemma 2.23. Moreover

xs ´ w “ px´ xnq ´ px´ nq “ n´ xn P hn.

As rh, hs Ă hn by Theorem 2.4, we therefore get Ad´1
M pxsq ´ w P hn. As both AdM´1pxsq and w lie in t,

we get that they are equal. Therefore putting n1 “ AdM´1 xn we get

x “ xs ` xn “ AdM pwq ` AdM pn1q “ AdM pw ` n1q

and the conditions are satisfied. ■

Note that if w P treg :“ t X hreg is a regular element in t, then the only nilpotent n1 commuting with w is

0. Therefore we get

Corollary 2.26. For every w P treg and n P hn, the elements w and n` w are conjugate.

Example 2.27. Let us see two examples for H “ B3, the Borel subgroup (of upper triangular matrices) of

SL3pCq. Let the principal nilpotent element e be of the form

e “

¨

˚

˚

˝

0 1 0

0 0 1

0 0 0

˛

‹

‹

‚

.

1. Let w P t be of the form w “ diagp0, v1, v2q ´ v1`v2
3 I3 with v1 ‰ 0, v2 ‰ 0, v1 ‰ v2. Then note that

the matrix e` w is diagonalisable in the basis defined by the matrix

Mw “

¨

˚

˚

˝

1 1
v1

1
v2pv2´v1q

0 1 1
v2´v1

0 0 1

˛

‹

‹

‚

,

i.e. e` w “ MwwM
´1
w .

2. Consider the matrix e` w, where w P t is of the form w “ diagp0, v1, 0q ´ v1
3 I3 with v1 ‰ 0. If we

take

Mw “

¨

˚

˚

˝

1 1
v1

0

0 1 1

0 0 ´v1

˛

‹

‹

‚

,

then
¨

˚

˚

˝

0 1 0

0 v1 1

0 0 0

˛

‹

‹

‚

“ Mw

¨

˚

˚

˝

0 0 1

0 v1 0

0 0 0

˛

‹

‹

‚

M´1
w .

Therefore for e` w “

¨

˚

˚

˝

0 1 0

0 v1 1

0 0 0

˛

‹

‹

‚

´ v1
3 I3 we get

pe` wq “ Mw

¨

˚

˚

˝

´v1{3 0 1

0 2v1{3 0

0 0 ´v1{3

˛

‹

‹

‚

M´1
w .

The matrix Mw used here does not have determinant one. We can however multiply it by any cubic

root of v´1
1 to get a matrix from B3.
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In the case of H “ Bn, one can apply the following intuition. If w is a regular element of t, then

it is a diagonal matrix with distinct eigenvalues. Then if we add any upper triangular matrix, it is

still diagonalisable. Moreover, as all the entries are on or above the diagonal, we can diagonalise it by

conjugating with an upper diagonal matrix.

Remark 2.28. Even for H “ Bm, the Borel subgroup of SLm, we cannot require w ` n1 from Theorem

2.25 to be of the classical Jordan form, under no additional assumption on x. Even for w “ 0, there is an

infinite number of nilpotent orbits of adjoint action of Bm on bm for m ě 6, see [25]. One can prove that

if x is a regular matrix, then we can actually find n1 which is a nilpotent Jordan matrix.

2.6.2 Reductive groups

Assume that G is a reductive group. Let T be its maximal torus, B a Borel subgroup containing T, B´ the

opposite Borel, U and U´ the respective unipotent subgroups. Let g, t, b, b´, u, u´ be the corresponding

Lie algebras. Let pe, f, hq be a principal sl2-triple in g, such that e P u, f P u´, h P t. Let

S “ e` Cgpfq

be the Kostant section.

Lemma 2.29. Under the assumptions above

Ad´p´q : U´ ˆ S Ñ e` b´

is an isomorphism.

Proof. If G is semisimple, then the map

Ad´p´q : U´ ˆ S Ñ e` b´

is an isomorphism ([50, Theorem 1.2], see also another proof in [30, Theorem 7.5]).

Now if G is an arbitrary reductive group, let Gad be its adjoint group and let π : G Ñ Gad be

the quotient map. From [55, Proposition 17.20] we have that πpBq and πpU´q are Borel and maximal

unipotent in Gad, respectively. Note that kerπ “ ZpGq and the connected component of ZpGq is a torus

([55, Proposition 19.12]). As a torus contains no nontrivial unipotent elements, we have kerπ X U´ “ t1u.

Therefore π|U´ is an isomorphism U´ – πpU´q. We then know from above that

Ad´p´q : πpU´q ˆ SGad Ñ e` b´

Gad

is an isomorphism. From [48, Theorem II.11] we can identify gad with an ideal inside g such that

g “ Zpgq ‘ gad. Then we have

πpU´q ˆ SG – pπpU´q ˆ SGadq ˆ Zpgq

and

b´
G “ b´

Gad ˆ Zpgq.

As the adjoint representation is trivial on the center of a Lie algebra, we have the following diagram,

where the middle column is the product of the left and right and the horizontal arrows are the projections.

πpU´q ˆ SGad U´ ˆ SG Zpgq

e` b´

Gad e` b´
G Zpgq

Ad´p´q Ad´p´q “

15



As the peripheral vertical arrows are isomorphisms, we get that also for G the map

Ad´p´q : U´ ˆ S Ñ e` b´

is an isomorphism. ■

Let us now consider the preimage of e` t and for any w P t denote by Apwq P U´, χpwq P S the elements

such that

AdApwqpe` wq “ χpwq. (2.5)

Note that we have two inclusions of affine spaces S ãÑ g and e ` t ãÑ g. The former one induces the

isomorphism S – g{{G, i.e. CrgsG
–

ÝÑ CrSs (by [49, Section 4.7, Theorem 7]). The latter induces a map

CrgsG Ñ Cre ` ts. However, a regular element w P t is conjugate to w ` e (see Corollary 2.26). Let us

then consider the composition CrgsG Ñ Cre` ts Ñ Crts, where the last map comes from translation by e.

It is equal to the map CrgsG Ñ Crts coming from inclusion t Ñ g – as the dual maps of schemes agree on

a dense subset of t.

Note that if we compose χ˚ : CrSs Ñ Crts with the isomorphism CrgsG Ñ CrSs described above, then

we get the composite map above CrgsG Ñ Crts, which now we know is induced by inclusion t Ñ g. By

Chevalley’s restriction theorem (cf. [22, Theorem 3.1.38]) this map is an inclusion whose image is CrtsW.4

Therefore we get

Proposition 2.30. The map χ : t Ñ S defined by the property (2.5) induces an isomorphism t{{W Ñ S.

2.6.3 Principally paired groups

Let now H be any principally paired group. Let N be the unipotent radical of H. Then N is a normal

subgroup of H and H{N is reductive. Let L Ă H be any Levi subgroup, i.e. a section of H Ñ H{N. By

Mostow’s Levi decomposition ([56]), we can take for L any maximal reductive subgroup of H. We have

H “ N ¸ L and hence h “ n ‘ l, where h, n, l are the Lie algebras of H, N, L, respectively. Let r be the

dimension of maximal torus.

Assume that pe, hq is an integrable principal bpsl2q-pair within h and let tHtu be the embedding of

Cˆ to which h integrates. We can choose L such that h P l, hence we will assume it from now on. We

then have e “ en ` el, where en P n, el P l. Let us consider, by Jacobson–Morozov Theorem (cf. Section

2.5), the sl2-triple pel, fl, hlq within l.

Lemma 2.31. For H and pe, hq as above, el is a regular element of l.

Proof. We know that e is a regular element of h. This means that re, hs is of codimension r in h. But

note that re, hs Ă n ‘ rel, ls as n is an ideal. Therefore rel, ls is of codimension at most r in l. Therefore

dimClpelq ď r, hence actually dimClpelq “ r and el is regular in l. ■

Now, let Bl be a Borel subgroup of L whose Lie algebra contains el and h and inside it let T be a

torus whose Lie algebra contains h. In fact, Bl is defined uniquely by those properties [22, Proposition

3.2.14] Let B “ N ¸ Bl – it is easy to see that B is then a Borel subgroup of H. Let U be its subgroup

of unipotent elements. Given Bl and T, let B´
l be the opposite Borel subgroup of L and Ul, U´

l the

unipotent subgroups of Bl and B´
l . By b, bl, t, b

´
l , u, ul, u

´
l we denote the corresponding Lie algebras.

Let W be the Weyl group of H (equal to the Weyl group of L).

4Chevalley’s theorem is originally formulated for semisimple groups. However, if we again consider gad as an ideal of g

such that g “ gad ‘ Zpgq, we have

CrgsG “ Crgad ‘ ZpgqsG
ad

“ CrgadsG
ad

‘ Zpgq “ Crt X gadsW ‘ Zpgq “ CrtsW,

where the third equality follows from original Chevalley’s theorem for Gad.
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Lemma 2.32. All the weights of tHtu-action on u are positive even integers.

Proof. As e is regular in H, it has to be regular in B as well. Therefore re, bs “ u (cf. Section 2.4).

We can choose a basis of b which consists of eigenvectors of rh,´s. We then choose from it a subset

tv1, v2, . . . , vku such that tre, visu
k
i“1 forms a basis of u. Then re,´s is an isomorphism spanpv1, . . . , vkq Ñ u.

Let ϕ denote this restricted commutator operator re,´s. For any v P b we have

rh, re, vss “ rrh, es, vs ` re, rh, vss “ 2re, vs ` re, rh, vss,

hence if rh, vs “ λv, we get rh, re, vss “ pλ ` 2qre, vs. Therefore for an h-weight vector v, ϕ satisfies the

condition

rh, vs “ λv ðñ rh, ϕpvqs “ pλ` 2qϕpvq.

Let us consider a weight vector w P u such that rh,ws “ λw and assume that λ is not a positive even

integer. We now know that w “ ϕpw1q for some w1 P b with rh,w1s “ pλ´ 2qw1. As λ´ 2 ‰ 0, we have

w1 P u (as t has only zero weights of Ht-action). Then analogously w1 “ ϕpw2q for w2 P b of weight λ´ 4.

As again λ´ 4 ‰ 0, we get w2 “ ϕpw3q, and we continue this procedure to get an infinite sequence w “ w0,

w1, w2, . . . , such that wi is a weight vector of weight wi ´ 2i. However, b is finite-dimensional, so we get

a contradiction. ■

For our principally paired H the role of the Kostant section will be played by

S :“ e` Clpflq Ă h. (2.6)

Note that in case H is solvable, this is the same as we consider in Section 2.6.1, i.e. S “ e` t, where t “ l

is the Lie algebra of a maximal torus.

Lemma 2.33. The conjugation map

Ad´p´q : U´
l ˆ S Ñ e` b´

l

is an isomorphism.

Proof. With Lemma 2.31 we know that the conjugation map

Ad´p´q : U´
l ˆ pel ` Clpflqq Ñ el ` b´

l (2.7)

is an isomorphism. But note that the weights of T-action on u´
l are exactly the negatives of weights on ul.

Hence by Lemma 2.32, evaluated on h they are all negative even integers. As n is an ideal in h, we have

ru´
l , ens Ă n.

However, we know (again from Lemma 2.32) that the h-weight of en (equal to 2) is the lowest possible

among the weights in n. All the h-weights in ru´
l , ens would be lower. Therefore in fact ru´

l , ens “ 0.

Hence U´
l commutes with en.

Then we get the conclusion simply by adding en to both sides of (2.7). ■

Now note that we are given two one-parameter subgroups: Ht and Ht
l generated by h and hl,

respectively. We show that they actually only differ by a center of L.

Lemma 2.34. Let G be a reductive group and e a regular nilpotent element in g “ LiepGq. Then the only

semisimple elements in its centraliser Cgpeq are the ones in the center Zpgq.
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Proof. Assume that v P g is a semisimple element such that rv, es “ 0. Choose a Borel subgroup B Ă G

whose Borel subalgebra b Ă g contains e and v and let n be the nilpotent part of b. We can choose a

maximal torus T within B whose Lie algebra contains v. Let r “ dim T “ dimCgpeq.

As e is regular in H, it is also regular in b and n “ rb, es (cf. Section 2.4). However, b “ t ‘ n, so by

iterating we easily see that b is generated by e and t. Then as rv, es “ 0, this easily leads to rv, bs “ 0. As

b was a Borel subalgebra and v is semisimple, from this rv, gs “ 0 follows. ■

From this lemma, as rh, es “ rhl, es “ 2e, we infer h ´ hl P Zplq. In the map Ad´p´q from Lemma

2.33, let us consider the preimage of e` t and for any w P t denote by Apwq P U´, χpwq P S the elements

such that

AdApwqpe` wq “ χpwq. (2.8)

We will now want to generalise Kostant’s Theorem 2.22. First, we find the contracting Cˆ-action on

S from (2.6). Note that as el is regular in L, also fl is regular in L (see Remark 2.16). Moreover, as all

the weights of Ht-action on ul are positive integers, on u´
l they are all negative integers. As the weight of

the action on fl is ´2 (note that we use Lemma 2.34 to switch between the actions of hl and h), fl must

lie in u´
l . In particular fl P b´

l , and as b´
l contains the Lie algebra of the maximal torus of L, we have

that fl is regular in b´
l . This means that Chpflq Ă b´

l (cf. Section 2.4). In particular, all the weights of

Ht-action on Chpflq are nonpositive integers. Therefore, for any x P Chpflq, we have

AdHtpx` eq “ AdHtpxq ` t2e “ t2
`

AdHtpxq{t2 ` e
˘

and

lim
tÑ8

AdHtpxq{t2 “ 0.

Therefore if we define the action of Cˆ on H by

t ¨ v “ t´2 AdHtpvq,

then it preserves S and for any v P S we have

lim
tÑ8

t ¨ v “ e.

Theorem 2.35. Every element of S is regular in h. Moreover, every regular orbit of adjoint action of H

on h meets S.

Proof. For the first part, we proceed as in the proof of Lemma 2.23. Assuming that for some x P Chpflq

the element x` e is not regular, we get that AdHtpxq{t2 ` e is not regular for any t and from continuity

(t Ñ 8) we get that e is not regular.

Now assume that some y P h is regular. It lies in a Borel subalgebra and by [46, 16.4] all Borel

subalgebras are conjugate, hence we can assume y P b. As B contains a maximal torus of H, we have that

y is regular in b as well. Therefore by Lemma 2.24 it is conjugate to an element of the form e` v for v P t.

It is then conjugate to χpvq P S. ■

To finish the proof of CrhsH “ CrSs we need to state the following lemma, known for reductive groups

already.

Lemma 2.36. CrhsH “ CrlsL “ CrtsW.

Proof. The latter equation is just Chevalley’s restriction theorem ([22, Theorem 3.1.38] and footnote4).

We need to prove that the restriction map CrhsH Ñ CrlsL is an isomorphism.
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Let us first prove that it is surjective. We have the projection map π : H Ñ L and then we can use it

to pull back any L-invariant function on l. If f is such function, its pullback is f ˝ π˚ and for any g P H

and v P h we have

pf ˝ π˚qpAdgpvqq “ fpAdπpgqpπ˚pvqqq “ fpπ˚pvqq “ pf ˝ π˚qpvq,

hence f ˝ π˚ is H-invariant (and obviously restricts to f on l).

Now we prove injectivity. As every element of H is contained in a Lie algebra of a Borel subgroup, and

they are all conjugate ([11, Theorem 11.1]), a function from CrhsH is fully determined by its values on b.

We know that b “ t ‘ u and the weights of tHtu-action on t are all 0, and on u they are all positive.

Therefore any polynomial on b which is invariant under this action, can only contain the t-variables.

Hence it is uniquely determined by its values on t. ■

From the proof of Lemma 2.33 and from Proposition 2.30 the map χ defines an isomorphism CrSs Ñ

CrtsW and when composed with the restriction from CrhsH, it clearly gives the restriction CrhsH Ñ CrtsW

(note that x and χpxq are always conjugate). Then from Lemma 2.36 we get

Theorem 2.37. The restriction map CrhsH Ñ CrSs is an isomorphism.

In particular, this means that no elements of S are conjugate to each other. Together with Theorem

2.35 this gives

Corollary 2.38. Every regular orbit of adjoint action of H on h meets S exactly once.

2.7 Regular actions and fixed point sets

Definition 2.39. Assume we are given a principally paired H with pe, hq being the integrable principal

bpsl2q-pair in h. If H acts on a smooth projective variety X, we say that it acts regularly if e has a unique

zero o P X.

Remark 2.40. The choice of integrable principal pair pe, hq in h is not unique. However, we will see below

in Lemma 2.46 that the property of the action being regular does not depend on the choice.

Note that as e is nilpotent, it generates an additive subgroup of H (by [11, Proposition 1.10, Theorem

4.4, 7.3]) and hence by [44, Theorem 4.1] the zero scheme Xe of Ve is connected. It is therefore enough to

assume that the fixed points of e are isolated. We will in fact prove in Lemma 2.46 that all the regular

elements of h have isolated fixed points on X.

Example 2.41. This example is from the PhD thesis of Ersan Akyildiz ([1]), see also [2]. Consider a

complex reductive group G, with the choice of e as in Example 2.12. By the discussion in Section 2.5

there exists an h P g which makes G principally paired. Let X “ G{B be the full flag variety of G. Then

for any x “ gB P X, from Lemma 2.6

Ve|x “ DgpVAdg´1peq|r1sq.

Therefore Ve vanishes at x if and only if Adg´1peq vanishes at r1s “ B. This means that Adg´1peq P

b “ LiepBq, or in other words, e P LiepgBg´1q. The subgroup gBg´1 is of course a Borel subgroup of G.

From Section 2.5 the group B is the unique Borel subgroup of G whose Lie algebra contains e. Therefore

e P LiepgBg´1q only if gBg´1 “ B. By [11, 11.16] this is true only for g P B, i.e. x “ r1s. Therefore G

acts on the full flag variety G{B regularly.

Hence it also acts regularly on all the partial flag varieties G{P. Indeed, assume that x P G{P is fixed

by e. If we denote by πP the projection πP : G{B Ñ G{P, then π´1
P pxq is a closed subvariety of G{B,
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closed under the action of Ga generated by e. Hence by the Borel fixed point theorem (see [55, Corollary

17.3]), it contains a fixed point of Ga, which is unique. Therefore x is its image.

Example 2.42 (see [16, Section 6]). Let H “ SL2pCq and consider the irreducible representation V of

SL2pCq of dimension n` 1. In particular, the regular nilpotent

e “

˜

0 1

0 0

¸

acts on V with the matrix
¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

0 1 0 0 . . . 0

0 0 1 0 . . . 0

0 0 0 1 . . . 0
...

...
...

...
. . .

...

0 0 0 0 . . . 1

0 0 0 0 . . . 0

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

.

If we consider X “ PpV q, the action is clearly regular and the only fixed point of e corresponds to the

vector of highest weight in V .

2.7.1 Solvable groups

Lemma 2.43. Let H be a solvable group. Let T be its maximal torus and hn be the nilpotent part of

h “ LiepHq. Assume that e P hn, h P t are such that pe, hq is an integrable bpsl2q-pair and that H acts

regularly on a smooth projective variety X. Then any element of e` t has isolated zeros on X.

Proof. We will denote by tHtutPCˆ the one-parameter subgroup to which h integrates. Define Z P t ˆX

as the zero scheme of the total vector field restricted to e ` t – t. In other words, for any w P t, that

vector field restricted to twu ˆX equals Ve`w (cf. Definition 3.4). Consider also an action of Cˆ on tˆX

which is defined on t by multiplication by t´2 and on X by the action of Ht. From Lemma 2.6 this action

preserves Z, as AdHtpeq “ t2e.

Consider the map π : Z Ñ t defined as the projection onto the first factor of tˆX. As it is a morphism

of schemes locally of finite type, by Chevalley’s semicontinuity theorem [35, 13.1.3], the set

D “ tpw, xq P Z : dimπw ě 1u

is closed. Here

πw :“ π´1pwq Ă Z

denotes the fibre. Suppose D is nonempty. Hence we have some w P t such that dimtx P Z : pw ` eq|x “

0u ě 1. Note that for any t P Cˆ we have

t2w ` e “ t2pw ` t´2eq “ t2 Ad´1
Htpw ` eq.

Therefore the zero set of t2w ` e is the same as the zero set of Ad´1
Htpw ` eq, which by Lemma 2.6 is

isomorphic – via the action of Ht – to the zero set of w ` e. Hence for each t ‰ 0 we have ptw, oq P D,

where o P X is the unique fixed point of e. Because D is closed we get p0, oq P D. Hence dimπ0 ě 1,

which is impossible, as π0 “ tp0, oqu by our regularity assumption. ■

Theorem 2.44. Assume H and X are as in Lemma 2.43 and e is a principal nilpotent. Then any regular

element of h has isolated zeros on X.
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Proof. It now follows directly from Lemma 2.43 and Lemma 2.24. ■

In particular, regular semisimple elements have isolated zeros on X. Therefore we get

Corollary 2.45. There are finitely many T-fixed points on X.

2.7.2 General principally paired groups

With the use of the results of Section 2.6.3 we can also provide a version of Theorem 2.44 for arbitrary

principally paired groups.

Lemma 2.46. Let a principally paired group H act regularly on a smooth projective variety X. Then all

the regular elements of h have isolated zeros on X.

Proof. We know from Lemma 2.35 that every regular element of h is conjugate to an element of S from

(2.6). Therefore it is enough to prove the statement for the elements of S. The argument is the same as in

the proof of Lemma 2.43, using the contracting action from Section 2.6.3. Note that if p P X is a zero of

x`e, then Htp is a zero of AdHtpxq{t2 `e. Therefore if px`e, pq P D, we have pAdHtpxq{t2 `e,Htpq P D

for any t P Cˆ and then pe, limtÑ8 Htpq P D. ■

3 Main theorem for solvable groups

We first consider a solvable group H acting on a variety X. We will prove that if the action is regular, then

for maximal torus T Ă H we can find SpecH˚
TpXq as a particular subscheme of tˆX. This generalises the

result of [16] for the Borel subgroup of SL2pCq. The goal of this section is to find necessary assumptions

on H and construct the scheme Z “ SpecH˚
TpXq inside t ˆX.

3.1 Principally paired solvable groups

Assume that H is a principally paired solvable group and pe, hq the principal integrable bpsl2q-pair within

H. By tHtutPCˆ we denote the one-parameter subgroup to which h integrates. Let T Ă H be the maximal

torus which contains it. From Theorem 2.4 we have H “ T ˙ Hu, where Hu Ă H is the subgroup of

unipotent elements. We denote by r the dimension of T (or t), equal to the rank of H. The torus T

acts on the Lie algebra h by the adjoint action Ad. It splits into two representations h “ t ‘ hn, where

hn “ LiepHuq. The first one is trivial and the weights of the other, α1, α2, . . . , αk P t˚ will be called the

roots of H. This means that if v1, v2, . . . , vk are the root vectors, then for any map ϕ : Cˆ Ñ T we have

Adϕptqpviq “ tαipDϕ|1p1qqvi.

We denote by treg “ t X hreg the subset of t consisting of regular elements. As any element of t commutes

with the whole t, the condition of v P t being regular means Chpvq “ t. This means that rv,´s does not

have zeros on hn, i.e. α1pvq, α2pvq, . . . , αkpvq are all nonzero. Hence we see that the elements of treg are

those in t that are not annihilated by any root of H. As h P t is regular, all the roots are nonzero on h –

by Lemma 2.32 they are even positive integers when evaluated on h – hence non-zero. Therefore treg is a

non-empty open subset of t and its complement is a union of hyperplanes.

In our applications H will mostly be the Borel subgroup of some principally paired algebraic group G.

Let us see an example below.
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Example 3.1. A simple case of the above is H “ Bm :“ BpSLmq, the Borel subgroup of SLm consisting of

upper triangular matrices. Let bm be its Lie algebra. We have the torus T Ă Bm consisting of diagonal

matrices of determinant 1 and its Lie algebra t Ă bm consisting of traceless diagonal matrices.

We can identify t with Cm´1 via the isomorphism

pv1, v2, . . . , vm´1q ÞÑ diagp0, v1, v2, . . . , vm´1q ´
v1 ` v2 ` ¨ ¨ ¨ ` vm´1

m
Im,

i.e. pv1, v2, . . . , vm´1q corresponds to the unique matrix A in t with aii ´ a11 “ vi´1 for i “ 1, 2, . . . ,m´ 1.

Then we can take e.g.

e “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

0 1 0 0 . . . 0

0 0 1 0 . . . 0

0 0 0 1 . . . 0
...

...
...

...
. . .

...

0 0 0 0 . . . 1

0 0 0 0 . . . 0

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

P g

and

h “

¨

˚

˚

˚

˚

˚

˚

˚

˝

m´ 1 0 0 . . . 0

0 m´ 3 0 . . . 0

0 0 m´ 5 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1 ´m

˛

‹

‹

‹

‹

‹

‹

‹

‚

,

or equivalently h “ p´2,´4, . . . , 2 ´ 2mq P Cm´1. Then

Ht “ diagptm´1, tm´3, tm´5, . . . , t3´m, t1´mq.

The regular elements of t are the diagonal traceless matrices with pairwise distinct diagonal entries.

We can generalise this example by taking H to be a Borel subgroup of any reductive group G. This

choice defines the choice of positive roots (as those whose root vectors lie in h). We can therefore take

e “ x1 ` x2 ` ¨ ¨ ¨ ` xs, where x1, x2, . . . , xs are the root vectors of g corresponding to the positive

simple roots (s “ r ´ dimZpGq). Then e is a regular nilpotent in G and H (see Example 2.12). From the

discussion in Section 2.5 we see that there exists h that satisfies the conditions.

3.2 Uniform diagonalisations

We saw in Corollary 2.26 that e`w is always conjugate to w if w P treg. In the first case in Example 2.27,

we have a closed formula for the conjugating matrix. We generalise this observation here.

Theorem 3.2. There exists a morphism M : treg Ñ H denoted by w ÞÑ Mw that satisfies the equality

AdMw
pwq “ e` w

for any w P treg.

Proof. From Corollary 2.26 we know that for each w P treg and n P hn there exists A P H such that

AdApwq “ n` w. (3.1)

We have to prove that for n “ e we can choose such matrices in a way that varies regularly when w varies.

We know by Theorem 2.4 that there exists V P T such that AV P Hu. Any element of T clearly

centralises w. Therefore AV also satisfies AdAV pwq “ n ` w. Hence we can assume that A P Hu. We
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first show that A P Hu is unique with respect to (3.1). Indeed, assume on contrary that A, A1 are both

unipotent and AdApwq “ AdA1 pwq “ n` w. Then

AdA´1A1 pwq “ AdA´1pn` wq “ w.

Thus A´1A1 centralises w. Hence it centralises Apwq, the smallest closed subgroup of H whose Lie algebra

contains w. The group Apwq is contained in the torus T, therefore by [47, 19.4] its centraliser CHpApwqq

is connected. But LiepCHpApwqqq has to commute with LiepApwqq, which contains w. By regularity

assumption Chpwq “ t, thus from connectivity we get CHpApwqq Ă T. Therefore A´1A1 P T, but as A´1A1

is unipotent we get A´1A1 “ 1, hence A “ A1.

Now consider the map

ϕ : Hu ˆ treg Ñ hn ‘ treg

ϕpA,wq “ AdApwq.

We have just proved that ϕ is a bijection. Now by Grothendieck’s version of Zariski’s main theorem ([34,

Theorem 4.4.3]) it can be factored as ϕ “ ϕ̃ ˝ ι, where ι : Hu ˆ treg Ñ Y is an open embedding and Y Ñ ϕ̃

is finite. By restricting Y to the closure of im ι, we can assume that im ι is dense in Y . The map ϕ is

clearly dominant, and its source is irreducible, hence by [37, Proposition 7.16] it is birational. Therefore ϕ̃

is birational as well, but it is finite and its target is normal, hence ϕ̃ is an isomorphism. Therefore ϕ is an

open embedding, which has to be an isomorphism, as it is surjective.

Hence we get the desired map M : treg Ñ Hu by considering the first coordinate of ϕ´1|teuˆtreg . ■

3.3 Regular actions

From now on we will assume that our principally paired solvable group H acts on a smooth projective

variety X regularly (Definition 2.39). By Lemma 2.10 the unique zero o P X of e is a zero of the whole h.

Example 3.3. In Example 2.41 we see regular actions of reductive group G on flag varieties. In Example

2.42 we constructed a regular action of SL2 on Pn. In both cases, when we restrict to a Borel subgroup,

we get a solvable principally paired group (Example 3.1) acting regularly on smooth projective varieties.

By Corollary 2.45 there are finitely many fixed points of the torus T acting on X. We will call them

ζ0 “ o, ζ1, . . . , ζs. Moreover, combining Lemma 2.43 with Lemma 2.8 we get that for any w P treg the

only zeros of Vw on X are ζ0, ζ1, . . . , ζs.

Now, following the idea of [16], we define the scheme whose coordinate ring will turn out to be the

H-equivariant cohomology of X. As H is homotopically equivalent to its maximal torus T, this is the

same as the T-equivariant cohomology.

Definition 3.4. Let Z Ă t ˆ X be defined as the zero scheme of the total vector field (Definition 2.1)

restricted to e` t – t. We will denote that restricted vector field by Ve`t. In other words, for any w P t,

the vector field Ve`t restricted to twu ˆX equals Ve`w.

We will also consider an action of Cˆ on t ˆX which is defined on t by multiplication by t´2 and on

X by the action of Ht. Clearly from Lemma 2.6 this action preserves Z, as AdHtpeq “ t2e. Our goal will

be to prove the following theorem.

Theorem 3.5. Let H be a principally paired solvable group acting regularly on a smooth complex projective

variety X. Then there is a homomorphism

ρ : H˚
TpXq Ñ CrZs
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to be defined in (3.5), which is an isomorphism of graded Crts-algebras. Moreover, the zero scheme Z is

affine, so that we have the following diagram with vertical isomorphisms:

Z SpecH˚
TpX;Cq

t SpecH˚
T.

π

ρ˚

–

We will first study the structure of Z with connection to the torus fixed points ζ0, . . . , ζs. We will

also prove that Z is reduced. This will allow us to define a map ρ : H˚
TpXq Ñ CrZs by specifying ρpcq by

its values. To show that ρpcq is a regular function on Z, we will prove that H˚
TpXq is generated by Chern

classes of H-equivariant vector bundles.

3.4 Equivariant cohomology and Bia lynicki-Birula decomposition

We know that the T-equivariant cohomology H˚
Tpptq “ Crts of the point is the ring of polynomials on

t. By I we will denote the ideal of polynomials vanishing at 0, equivalently I “
À

ną0H
n
Tpptq. The

multiplicative group Cˆ acts on X by the means of the morphism H : Cˆ Ñ H, t ÞÑ Ht. This action

has finitely many fixed points ζ0, ζ1, . . . , ζs. We may then consider its Bia lynicki-Birula plus– and

minus–decompositions ([9]), i.e.

W`
i “ tx P X : lim

tÑ0
Ht ¨ x “ ζiu, W´

i “ tx P X : lim
tÑ8

Ht ¨ x “ ζiu.

All those sets are locally closed varieties, isomorphic to affine spaces.

When such decompositions exist, the odd cohomology of X vanishes [10]. Then by Goresky–Kotwitz–

MacPherson (cf. [32, Corollary 1.3.2]), the T-space X is equivariantly formal. In particular,

H˚
TpXq – H˚

Tpptq bH˚pXq (3.2)

as H˚
Tpptq-modules and H˚pXq – H˚

TpXq{IH˚
TpXq as C-algebras.

Theorem 3.6. Bia lynicki-Birula plus-decomposition X “
Ťs
i“0W

`
i is H-stable.

Proof. Assume that x P W`
i , i.e. limtÑ0H

t ¨ x “ ζi. Let M P H and x1 “ Mx and let ζj “ limtÑ0H
t ¨ x1.

Then

Htx1 “ HtMx “ pHtMpHtq´1qHtx. (3.3)

Let M “ D ¨ U , where D P T and U P Hu. As Ht P T, it commutes with D, therefore

HtMpHtq´1 “ DHtUpHtq´1. (3.4)

Now as U P Hu, we have U “ exppuq for some u P hn. Here exp should be understood as the algebraic

exponential for unipotent groups (see [55, Proposition 14.32]). We then have

HtUpHtq´1 “ Ht exppuqpHtq´1 “ exppAdHtpuqq.

By Lemma 2.32, the weights of Ht-action on hn are positive. Therefore limtÑ0 AdHtpuq “ 0, hence

limtÑ0H
tUpHtq´1 “ 1. Combining (3.3) and (3.4) gives

Htx1 “ DHtUpHtq´1Htx.

Passing to limit t Ñ 0 then yields

ζj “ Dζi.

As ζi is fixed by T, we get i “ j, hence x1 P W`
i as desired. ■
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3.5 Structure of Z

In order to prove H˚
TpXq – CrZs we study the structure of Z and construct a map H˚

TpXq Ñ CrZs. Let

pw, xq P Z. This means that e`w vanishes on x and by Lemma 2.43 it is an isolated zero. From Theorem

2.25, there exists M P H such that e ` w “ AdM pw ` n1q, where rw, n1s “ 0 and n1 P rh, hs. Then by

Lemma 2.6 we have that M´1x is a zero of w ` n1 and from Lemma 2.10 it is a zero of t. Hence we get

x “ Mζi for some i P t0, 1, . . . , su. Moreover, not only is ζi a zero of t, but also of n1.

Example 3.7. We continue Example 2.27 and use the notation from Example 3.1 for the elements of t.

1. Let w P t – C2 be of the form w “ pv1, v2q with v ‰ 0, w ‰ 0, v ‰ w. We know that e ` w “

MwwM
´1
w and therefore any zero of e` w is of the form x “ Mwζi and conversely, for any i, the

point Mwζi is fixed by w ` e.

2. If w “ pv1, 0q with v1 ‰ 0, then we have a matrix Mw P B3 such that

pe` wq “ Mw

¨

˚

˚

˝

´v1{3 0 1

0 2v1{3 0

0 0 ´v1{3

˛

‹

‹

‚

M´1
w .

Therefore every zero of e` w is of the form x “ Mwζi for i such that ζi is also a zero of

E13 “

¨

˚

˚

˝

0 0 1

0 0 0

0 0 0

˛

‹

‹

‚

.

But conversely, if ζi is additionally a zero of E13, then Mwζi is a zero of e` w.

Remark 3.8. By Theorem 3.6, if x “ Mζi, then ζi is in the same plus-cell as x. But ζi itself is a torus

fixed point, hence ζi “ limtÑ0H
t ¨ x. In particular, this means that regardless of potential choice of M

we might make, we always get the same torus fixed point, i.e. if x “ M1ζi1 “ M2ζi2 , then i1 “ i2. The

elements M and n1 are however not unique.

Note that for i “ 0, 1, . . . , s and w P t, there is at most one zero of e` w in the plus-cell of ζi. Indeed,

assume that there are two such points. By above, if we choose any M such that e` w “ AdM pw ` n1q,

then they are of the forms x1 “ Mζi1 , x2 “ Mζi2 . But as in the last paragraph, in fact we have i2 “ i1 “ i.

Therefore x1 “ x2.

The converse statement also holds, for particular torus-fixed points. Assume that we are given w P t

and Mw P H, n1 P hn such that e ` w “ AdMw
pw ` n1q and rw, n1s “ 0. In this case if ζi is a zero of n1,

then Mwζi is a zero of e`w. However, for given w, the corresponding vector field Vn1 in general does not

vanish in all the torus-fixed points.

Example 3.9. Let us consider the standard action of B3 on P2, i.e. we define

¨

˚

˚

˝

a b c

0 d e

0 0 f

˛

‹

‹

‚

¨ rv0 : v1 : v2s “ ru0 : u1 : u2s

for u0, u1, u2 such that
¨

˚

˚

˝

a b c

0 d e

0 0 f

˛

‹

‹

‚

¨

˚

˚

˝

v0

v1

v2

˛

‹

‹

‚

“

¨

˚

˚

˝

u0

u1

u2

˛

‹

‹

‚

.
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We have three torus-fixed points ζ1 “ o “ r1 : 0 : 0s, ζ2 “ r0 : 1 : 0s, ζ3 “ r0 : 0 : 1s. For

w “ pv1, v2q P C2 – t regular there exists a matrix Mw such that e ` w “ MwwM
´1
w . Then Mwζi is a

fixed point of e` w for i “ 1, 2, 3.

However, if w “ pv1, 0q with v1 ‰ 0, then there exists a matrix Mw such that e`w “ Mwpw`e13qM´1
w .

The vector field Ve13 corresponding to e13 vanishes at ζ1 and ζ2 (but not at ζ3), therefore the zeros of

e` w are exactly of the forms Mwζ1 and Mwζ2.

Specializing even more, if we consider w “ p0, 0q, then e` w “ e is already a Jordan matrix (we can

take Mw “ I3). Its only zero is ζ1 “ o, so the only fixed point of e` w is o.

We will define a map H˚
TpXq Ñ CrZs by constructing, for each element of H˚

TpXq, a function in CrZs

by its values. So that it is well defined we first show that Z is reduced.

Remember that we defined a Cˆ-action on X and t – see the comment below Definition 3.4. It turns

out ([18, Proposition 1]) that if we consider the Bia lynicki-Birula minus-decomposition on X, then the

minus-cell Xo :“ W´
0 corresponding to o is open. In other words, all the weights of the action around o

are negative. Therefore we can choose on Xo coordinates x1, x2, . . . , xn that are weight vectors of T and

the values of weights on h are positive integers a1, a2, . . . , an. Using these coordinates we model Xo as a

vector space, thus we can identify the tangent spaces to its points with Xo itself.

We also have the grading on Crts defined by the action of Cˆ on t (of weight ´2). Therefore choosing

coordinates v1, . . . , vr on t we have

Crt ˆXos “ Crv1, v2, . . . , vr, x1, x2, . . . , xns

with deg vi “ 2 (for i “ 1, 2, . . . , r), deg xi “ ai (for i “ 1, 2, . . . , n). The tangent bundle of Xo, as an affine

space, is trivial, and the coordinates on Xo define its trivialisation, hence we can speak of coordinates of

Ve`t (cf. Remark 2.3). We now prove the following Lemma, which for H “ B2 was proved in [18, Theorem

4].

Lemma 3.10. The scheme Z is complete intersection and reduced and contained in t ˆXo, hence affine.

The ideal of Z in Crt ˆXos “ Crv1, v2, . . . , vr, x1, x2, . . . , xns is then generated by the vertical coordinates

of the vector field Ve`t:

pVe`tq1 , pVe`tq2 , . . . , pVe`tqn .

The degree of each pVe`tqi is equal to ai ` 2 and together with v1, v2, . . . , vr they form a homogeneous

regular sequence in Crv1, v2, . . . , vr, x1, x2, . . . , xns.

Proof. First, let us see that Z is contained in t ˆXo. Let pw, xq P Z. We then know that x is a zero of

the vector field Ve`w. For any t P Cˆ by Lemma 2.6 we have that Ht ¨ x is a zero of VAdHt pe`wq. As

AdHtpe`wq “ t2e`w, this means that Ht ¨ x is a zero of e` t´2w. When we take t Ñ 8, this converges

to e. Therefore limtÑ8 Ht ¨ x “ o. This means that x P Xo.

Now we will prove that pVe`tqi is homogeneous of degree ai ` 2. We have

pVe`tqi |t¨px,wq “
`

Ve`w{t2 |Ht¨x

˘

i
“

´

Ht
˚pVAd

Ht´1 pe`w{t2q|xq

¯

i
“

`

Ht
˚pVe{t2`w{t2 |xq

˘

i

and Ht acts on i-th coordinate of tangent space by multiplying it by t´ai , therefore

`

Ht
˚pVe{t2`w{t2 |xq

˘

i
“ t´ai

`

Ve{t2`w{t2 |x
˘

i
“ t´ai´2 pVe`tqi |px,wq.

Since v1, v2, . . . , vr have degree 2 we have that the sequence

pVe`tq1 , pVe`tq2 , . . . , pVe`tqn , v1, v2, . . . , vr
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consists of homogeneous functions on the pr ` nq-dimensional affine space t ˆXo. There is r ` n of them

and they have only one common zero. Therefore (see [8, Proposition 4.3.4]) they form a regular sequence.

In particular, Z is the zero scheme of a regular sequence pVe`tq1, pVe`tq2, . . . , pVe`tqn, therefore it is

complete intersection.

Now we have to prove that Z is reduced. Let π : Z Ñ t be the first projection. By Theorem 3.2 we get

an isomorphism π´1ptregq – treg ˆXT. The first factor, as an open subscheme of affine space, is reduced.

The fixed points of the torus are also reduced (cf. [55, Theorem 13.1]), therefore π´1ptregq is reduced.

Now note that π´1ptregq is an open dense subset in Z. It is open because treg is open in t. To prove that

it is dense, assume on the contrary that there exists x P Zzπ´1ptregq. Let Y be its irreducible component

in Z. As Z “ π´1ptregq Y π´1ptztregq and both sets are closed, by irreducibility Y has to be contained in

one of them. As x is not contained in the former, Y has to be contained in the latter, so that πpY q Ă tztreg.

As tztreg is a union of hyperplanes in t, the same argument shows that πpY q lies within one of them

(of dimension r ´ 1). Considering π|Y as mapping to πpY q and reducing if needed, we get a dominant

map between integral schemes. Note that as Z is complete intersection, it is Cohen–Macaulay, and thus

equidimensional by [53, Theorem 17.6 and Theorem 6.5]. As t ˆ tou is closed in Z and of dimension r,

the dimension of Z is at least r. Therefore by the fiber dimension theorem (see [39, Ex. 3.22(b)]) the

fibers of π|Y are at least one-dimensional. But they are finite by Lemma 2.43, so we get a contradiction.

Now as π´1ptregq is an open dense subset in Z, it contains its generic points, hence Z is generically

reduced. Using that Z is Cohen–Macaulay, by [33, Proposition 14.124] we get that Z is reduced. ■

3.6 The homomorphism ρ

Let c P H˚
TpXq. In Section 3.5 we show that every element pw, xq of Z satisfies x “ Mwζi. Here Mw

is some element of H depending on w and ζi is a uniquely determined fixed point of T-action. The

localisation c|ζi of c to the torus fixed point can be now seen as a polynomial on t, because H˚
Tpptq “ Crts.

We then define

ρpcqpw, xq “ c|ζipwq. (3.5)

This follows the idea of [16], where ρ is defined this way for B2. For any c P H˚
TpXq this defines a function

ρpcq on the set of closed points Z. This clearly gives a Crts-homomorphism between H˚
TpXq and the

algebra of all C-valued functions on Z. We have to prove that for any c P H˚
TpXq the image ρpcq defines a

regular function, which is unique by Lemma 3.10. Thus we get a Crts-homomorphism

ρ : H˚
TpXq Ñ CrZs.

In general, assume that we are given an algebraic group H and an H-variety A. For any H-linearised

bundle E on A we may consider its equivariant Chern classes cHk pEq P H2k
H pAq. Let p P A be a fixed point

of H. From naturality of Chern classes we get cHk pEq|p “ cHk pEpq, where Ep is the fiber of E over p. This

belongs to H˚
Hpptq Ă Crhs and for any y P h we get

cHk pEq|ppyq “ TrΛkEp
pΛkypq. (3.6)

Here yp is the infinitesimal action of y P h on Ep, which is a representation of H.

Lemma 3.11. Let E be an H-linearised vector bundle on X and let k be a non-negative integer. Then for

any pw, xq P Z we have

ρpcTk pEqqpw, xq “ TrΛkEx
pΛkpe` wqxq.

In particular, ρpcTk pEqq P CrZs.
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Proof. We have x “ Mwζi for some ζi P XT and Mw P H. Moreover,

e` w “ AdMw
pw ` e1q

for some e1 P hn that vanishes at ζi and commutes with w. Note that, as E is H-linearised,

TrΛkEx
pΛkpe` wqxq “ TrΛkE

M
´1
w x

pΛk
´

AdM´1
w

pe` wq

¯

M´1
w x

q “ TrΛkEζi
pΛkpw ` e1qζiq.

From (3.5) and (3.6) we have

ρpcTk pEqqpw, xq “ cTk pEq|ζipwq “ TrΛkEζi
pΛkwζiq.

Thus we have to prove that

TrΛkEζi
pΛkpw ` e1qζiq “ TrΛkEζi

pΛkwζiq.

But by the assumptions that rw, e1s “ 0, w is semisimple and e1 is nilpotent, we get that the sum w` e1 is

the Jordan decomposition of AdM´1
w

pe`wq in the sense of [11, 4.4]. Then by the naturality of the Jordan

decomposition the derivative of the representation StabHpζiq Ñ GLpEζiq preserves it. Therefore wζi seen

as an element of glpEζiq is the semisimple part of pw ` e1qζi seen as an element of glpEζiq.
But for Jordan decomposition in the general linear group, the eigenvalues of the semisimple part are

the same as the eigenvalues of the decomposed element. Because traces of external powers are polynomials

in eigenvalues, this concludes the proof. ■

The following lemma is based on [18, Proposition 3], which proves it for B2.

Lemma 3.12. The cohomology ring H˚pXq is generated, as a C-algebra, by Chern classes of H-linearised

vector bundles on X.

Proof. We know that the fundamental classes of the plus–cells form a basis of H˚pXq, hence their

Poincaré duals form a basis of H˚pXq. Now we use Baum–Fulton–MacPherson’s Grothendieck–Riemann–

Roch theorem (see [28, Theorem 18.3, (5)]). We get that for any plus-cell Wi P X the homology class

pchpWiq tdpXiqq X rXs is equal to the sum of rWis and lower-degree terms. Therefore chpWiq is equal to

the sum of the dual class of rWis and higher-degree terms. Therefore Chern characters of the structure

sheaves of plus–cells generate H˚pXq.

As the plus–cells are H-stable by Theorem 3.6, we get that ch is surjective when restricted to the

Grothendieck group of H-equivariant coherent sheaves. By [60, Corollary 5.8] it is generated by the classes

of H-equivariant vector bundles and the conclusion follows. ■

Remark 3.13. We did not use the regularity of the action in the proof. In fact, it was enough to know

that the fixed points of T are isolated. One could also argue the following in general case. By [11,

15.1, Example (2)] a linear solvable group over C is split. Then the restriction K0
HpXq Ñ K0

TpXq is an

isomorphism [54, Corollary 2.16] and the restriction K0
TpXq Ñ K0pXq is a surjection [54, Proposition

3.1]. The Chern character is an isomorphism from K0pXq b C to A˚pXq b C [28, Theorem 18.3] and

the cycle class map A˚pXq Ñ H˚pX,Zq is an isomorphism due to the paving given by Bia lynicki-Birula

decomposition [28, Example 19.1.11]. Therefore the (non-equivariant) Chern character gives a surjection

K0
HpXq Ñ H˚pX,Cq.

Lemma 3.14. The equivariant cohomology H˚
TpXq is generated, as a Crts-algebra, by T-equivariant

Chern classes of H-equivariant vector bundles on X.
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Proof. Recall that I denotes the maximal ideal of Crts cutting out the zero point. Since X is equivariantly

formal, we have an exact sequence

0 Ñ IH˚
TpXq Ñ H˚

TpXq Ñ H˚pXq Ñ 0.

By Lemma 3.12 we get that the C-algebra H˚pXq is generated by Chern classes of H-linearised vector

bundles on X. Then from graded Nakayama lemma (see Corollary 6.2) the Crts-algebra H˚
TpXq is

generated by their equivariant Chern classes. ■

This together with Lemma 3.11 gives

Corollary 3.15. The map ρ is a homomorphism of Crts-algebras H˚
TpXq Ñ CrZs.

3.7 Proof of isomorphism

Proof of Theorem 3.5. Clearly ρ preserves the grading. For injectivity, note that for any c P H˚
TpXq, we

can extract from ρpcq the localisations c|ζi for all i – as on the regular locus the function ρpcq is defined

by all those localisations. Recall that X is equivariantly formal (3.2). Therefore we get injectivity of ρ by

injectivity of localisation on equivariantly formal spaces [32, Theorem 1.6.2].

Hence to prove that the map is an isomorphism, it suffices to check that the Poincaré series of the two

sides coincide. Since X is equivariantly formal, H˚
TpXq is a free Crts-module and

H˚
TpXq{IH˚

TpXq – H˚pXq.

Therefore

PH˚pXqptq “ PH˚
T pXqptqp1 ´ t2qr. (3.7)

On the other hand, from Lemma 3.10 we know that the generating set of I is a regular sequence in

CrZs, hence

PCrZs{ICrZsptq “ PCrZsptqp1 ´ t2qr. (3.8)

Now CrZs{ICrZs is the zero scheme of the vector field given by e. In addition, the action of the

torus Ht satisfies AdHtpeq “ t2e. Therefore by the Akyildiz–Carrell version of the Carrell–Liebermann

theorem(see [6], and [3, Theorem 1.1] for this particular case) we have CrZs{ICrZs – H˚pXq and in

particular

PCrZs{ICrZsptq “ PH˚pXqptq.

Therefore, from (3.7) and (3.8) we get

PCrZsptq “ PH˚
T pXqptq.

■

Remark 3.16. From Theorem 3.5 we get that CrZs is a finitely generated free module over Crts. Therefore

the map π : Z Ñ t is finite flat.

Remark 3.17. The theorem can in fact be proved for a slightly larger class of solvable groups. We need H

to be a connected linear algebraic solvable group, and as before pe, hq to be an integrable bpsl2q-pair, but

it does not necessarily have to be principal. For the proof of Theorem 3.6 we need to assume αphq ą 0

for any root α of H. However, even this assumption can be made unnecessary as we can consider the
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subgroup H1 generated by T and the additive group generated by e. By [11, Theorem 7.6] it is algebraic

and its Lie algebra is generated by t and e. As Lie bracket of h-weight vectors adds the weights, we clearly

see that all the weights on H1 are non-negative multiples of 2.

Even if we assume that H is generated by T and the additive group generated by e, it does not follow

that e is regular. Take for example

H “

$

’

’

’

’

&

’

’

’

’

%

¨

˚

˚

˚

˚

˝

t{u2 ˚ ˚ ˚

0 t ˚ ˚

0 0 u ˚

0 0 0 u{t2

˛

‹

‹

‹

‹

‚

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

t, u P Cˆ

,

/

/

/

/

.

/

/

/

/

-

,

where the asterisks are understood to stand for any complex numbers. We choose

h “

¨

˚

˚

˚

˚

˝

3 0 0 0

0 1 0 0

0 0 ´1 0

0 0 0 ´3

˛

‹

‹

‹

‹

‚

, e “

¨

˚

˚

˚

˚

˝

0 1 0 0

0 0 1 0

0 0 0 1

0 0 0 0

˛

‹

‹

‹

‹

‚

.

Because the maximal torus is two-dimensional and the centraliser of e is three-dimensional thus e is not

regular. However together with the diagonal matrices it generates h as a Lie algebra.

In all our examples of regular action, we only consider principally paired groups and this extension

seems to only include very tropical cases. Therefore we formulate our results in terms of principally paired

groups.

3.8 Functoriality

We prove now that Theorem 3.5 is actually functorial, with respect to both the group and the variety. We

prove the latter first.

Proposition 3.18. Assume that X and Y are two H-regular varieties and ϕ : X Ñ Y is an H-equivariant

morphism between them. Let ZX – SpecH˚
TpXq and ZY – SpecH˚

TpY q be the schemes constructed above

for X and Y , respectively. The map pid, ϕq : t ˆ X Ñ t ˆ Y induces a morphism ZX Ñ ZY and the

following diagram commutes:

H˚
TpY q H˚

TpXq

CrZY s CrZX s

ϕ˚

ρY ρX

pid,ϕq
˚

.

In other words, ρ is a natural isomorphism between the functors H˚
T and CrZs on the category of H-regular

varieties.

Proof. Consider a class c P H˚
TpY q. We want to show that for any pw, xq P ZX the functions ρXpϕ˚pcqq

and pid, ϕq˚pρY pcqq take the same value on pw, xq. We know from Section 3.5 that x “ Mwζ, where Mw is

some element of H depending on w, and ζ is one of T-fixed points of X. Obviously then ϕpζq is a T-fixed

point in Y and ϕpxq “ Mwϕpζq. We have then

pid, ϕq˚pρY pcqqpw, xq “ ρY pcqpw, ϕpxqq “ c|ϕpζqpwq.

On the other hand

ρXpϕ˚pcqqpw, xq “ ϕ˚pcq|ζpwq.
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Now the equality of the above follows from functoriality of H˚
T and commutativity of

tζu tϕpζqu

X Y

ιζ

ϕ

ιϕpζq

ϕ

.

■

Proposition 3.19. Assume that H1, H2 are solvable principally paired groups. Let Ti Ă Hi be the

corresponding maximal tori and ei P phiqn the corresponding nilpotent elements in their Lie algebras. Let

ψ : H1 Ñ H2 be a homomorphism of algebraic groups satisfying

ψpT1q Ă T2, ψ˚pe1q “ e2.

Assume that H2 acts regularly on a smooth projective variety X. Then the map ψ together with the

H2-action induce an action of H1 on X, which is also regular. In turn, the map pψ˚, idq induces a

morphism ZH1
Ñ ZH2

and the following diagram commutes:

H˚
T2

pXq H˚
T1

pXq

CrZH2
s CrZH1

s

ψ˚

ρH2 ρH1

pψ˚,idq
˚

.

Proof. As ψ˚pe1q “ e2, the group H1 clearly acts on X regularly. Obviously if pw, xq P ZH1
, then e1 ` w

vanishes at x, and therefore ψ˚pe1 ` wq “ e2 ` ψpwq vanishes at x, hence pψ˚, idq maps ZH1 to ZH2 .

Now let c P H˚
T2

pXq and pw, xq P ZH1
. We want to prove that

pψ˚, idq˚pρH2
pcqqpw, xq “ ρH1

pψpcqqpw, xq.

We know that x “ Mwζ for some Mw P H1 depending on w and an isolated T1-fixed point ζ. Then by

Lemma 2.8 the point ζ is fixed by T2. Therefore (cf. Remark 3.8) we have

pψ˚, idq˚pρH2pcqqpw, xq “ ρH2pcqpψ˚pwq, xq “ c|ζpψ˚pwqq

and

ρH1
pψpcqqpw, xq “ ψpcq|ζpwq.

Now the equality follows from commutativity of

H˚
T2

pptq H˚
T1

pptq

Crt2s Crt1s

ψ˚

– –

pψ˚q
˚

.

■

3.9 Examples and comments

We illustrate Theorem 3.5 with a few examples.
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Figure 1: SpecH˚
Cˆ pP3q.

Example 3.20. We continue Example 2.42 which already appears in [16]. The point o “ r1 : 0 : ¨ ¨ ¨ : 0s is

the unique zero of e. If rz0 : z1 : ¨ ¨ ¨ : zns are the homogeneous coordinates of Pn, then the scheme Z lies

completely in the affine chart Xo of o, with affine coordinates xi “ zi{z0, for i “ 1, 2, . . . , n. We have

Vh|x1,...,xn “ p´2x1,´4x2, . . . ,´2nxnq

and

Ve|x1,...,xn “ px2 ´ x1x1, x3 ´ x1x2, x4 ´ x1x3, . . . , xn ´ x1xn´1,´x1xnq.

Then

Ve`vh|x1,...,xn
“ px2 ´ x1px1 ` 2vq, x3 ´ x2px1 ` 4vq, . . . , xn ´ xn´1px1 ` 2pn´ 1qvq,´xnpx1 ` 2nqq.

If we consider the zero scheme Z of e ` vh within t ˆ Xo, then the coordinates x2, . . . , xn are clearly

determined by x1 and v and we can identify Z with the subscheme of SpecCrv, x1s cut out by the equation

x1px1 ` 2vqpx1 ` 4vq . . . px1 ` 2nvq “ 0.

In other words, H˚
Cˆ pPnq “ Crv, xs{

`

xpx` 2vqpx` 4vq . . . px` 2nvq
˘

with deg v “ deg x “ 2. See Figure

1.

Remark 3.21. Clearly a product X ˆ Y of two varieties with a regular H-action is also regular and its

equivariant cohomology scheme can be represented as a fiber product, i.e. H˚
TpX,Y q “ H˚

TpXqbH˚
T
H˚

TpY q.

In particular the product P1 ˆ P1 is regular under the action of SL2, hence also of B2. It embeds in

P3 via the Segre embedding. The action of SL2 on P3 from Example 2.42 is also regular. However the

Segre embedding cannot be SL2- or even B2-equivariant with respect to those two actions. In fact, using

Theorem 3.5 we can prove a more general statement:

Corollary 3.22. Let a principally paired solvable group H act regularly on a smooth projective variety X.

Assume that Z is its closed, smooth, H-invariant subvariety. Then the induced map on cohomology rings

f˚ : H˚pX,Cq Ñ H˚pZ,Cq

is surjective.
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Proof. Clearly Z is also an H-regular variety. From Theorem 3.5 we have H˚
TpXq “ CrZX s and H˚

TpZq “

CrZZs where ZX and ZZ are the zero schemes constructed for X and Z according to Definition 3.4.

But clearly from the definition we see that ZZ is the (reduced) intersection ZX X Z, hence a closed

subvariety of ZX . This means that the induced map CrZX s Ñ CrZZs is surjective. By Proposition 3.18

this is the same as the map induced on equivariant cohomology. By equivariant formality we get the

non-equivariant cohomology by tensoring with C over H˚
T, and this operation is right-exact, hence it

preserves surjectivity. ■

In particular, as h2pP1 ˆ P1q “ 2, the product P1 ˆ P1 cannot be embedded B2-equivariantly in any of

Pm’s with regular action.

Figure 2: Two different views of SpecH˚
Cˆ pGrp2, 4qq. Note that all the components project bijectively to

the v axis.

Example 3.23. As we have defined an action of SL2pCq on any Cn, we can use this to define actions on

partial or full flag varieties. Let us consider the action of the upper Borel subgroup of SL2 on C4 and

the induced action on the Grassmannian Grp2, 4q of two-planes in C2. We can identify it with SL4pCq{P,

where P is the parabolic group of matrices of the form

¨

˚

˚

˚

˚

˝

˚ ˚ ˚ ˚

˚ ˚ ˚ ˚

0 0 ˚ ˚

0 0 ˚ ˚

˛

‹

‹

‹

‹

‚

.

The only fixed point of e is o “ spanpe1, e2q and in the representation above Xo can be thought of as the

set of classes of matrices of the form
¨

˚

˚

˚

˚

˝

1 0 ˚ ˚

0 1 ˚ ˚

x1 y1 ˚ ˚

x2 y2 ˚ ˚

˛

‹

‹

‹

‹

‚

.
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Then if we write down the coordinates x1, y1, x2, y2 in this order, one checks that

Ve|x1,y1,x2,y2 “ px2 ´ x1y1,´x1 ´ y21 ` y2,´x1y2,´x2 ´ y1y2q

and

Vh|x1,y1,x2,y2 “ p4x1, 2y1, 6x2, 4y2q.

Therefore the equations of Z in Crv, x1, y1, x2, y2s are

4vx1 ` x2 ´ x1y1 “ 0, 2vy1 ´ x1 ´ y21 ` y2 “ 0, 6vx2 ´ x1y2 “ 0, 4vy2 ´ x2 ´ y1y2 “ 0.

We can determine x2 and y2 from the first two equations and plugging in to the other two, we get

x1px1 ` 24v2 ´ 8vy1 ` y21q “ 0, py1 ´ 4vqp2x1 ´ 2vy1 ` y21q “ 0.

This gives six one-parameter families of solutions (one for each torus-fixed point):

px1 “ 0, y1 “ 0q; px1 “ 0, y1 “ 2vq; px1 “ ´8v2, y1 “ 4vq;

px1 “ 0, y1 “ 4vq; px1 “ ´12v2, y1 “ 6vq; px1 “ ´24v2, y1 “ 8vq;

see Figure 2.

Figure 3: SpecH˚
TpP2q.

Example 3.24. Let us now switch to groups of higher rank. As in Example 2.41, we can consider the

regular nilpotent

e “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

0 1 0 0 . . . 0

0 0 1 0 . . . 0

0 0 0 1 . . . 0
...

...
...

...
. . .

...

0 0 0 0 . . . 1

0 0 0 0 . . . 0

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

.

in SLn`1. We have the regular action of SLn`1 on Pn, which in particular restricts to a regular action

of its upper Borel subgroup. We continue using notation from Example 3.1 for the elements of t. As in

Example 3.20, we have

Ve|x1,...,xn
“ px2 ´ x1x1, x3 ´ x1x2, x4 ´ x1x3, . . . , xn ´ x1xn´1,´x1xnq.
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For the element pv1, v2, . . . , vnq P Cn, which corresponds to diagp0, v1, v2, . . . , vnq ´ v1`v2`¨¨¨`vn
n`1 In`1, the

associated vector field at px1, x2, . . . , xnq is equal to pv1x1, v2x2, . . . , vnxnq. Hence

Ve`pv1,v2,...,vnq|x1,...,xn
“ px2 ´ x1px1 ´ v1q, x3 ´ x2px1 ´ v2q, . . . , xn ´ xn´1px1 ´ vn´1q,´xnpx1 ´ vnqq.

Thus we can determine x2, x3, . . . , xn from x1 and v1, v2, . . . , vn. The scheme Z can be then realised

within SpecCrv1, v2, . . . , vn, x1s and cut out by one equation

x1px1 ´ v1qpx1 ´ v2q . . . px1 ´ vnq “ 0.

This scheme consists of n` 1 hyperplanes. Their intersections, when projected on the v1, . . . , vn-plane,

form the toric fan of Pn. The functions on the scheme consist of n`1 polynomials, one for each component,

that agree on the intersections. This agrees with the classical description of equivariant cohomology of

toric variety as piecewise polynomials on the fan (see e.g. [15, section 2.2]). For n “ 2 the scheme is

depicted in Figure 3.

Example 3.25. We can extend the previous example to full flag varieties. Take for example the variety

F3 “ SL3 {B of full flags in C3. The only zero of e is the flag spanpe1q Ă spanpe1, e2q and the cell Xo in

this case consists of the flags represented by matrices of the form

¨

˚

˚

˝

1 0 ˚

a 1 ˚

b c ˚

˛

‹

‹

‚

P SL3pCq.

One finds that

Ve|a,b,c “ p´a2 ` b,´ab,´b` ac´ c2q.

If, as before, we consider a pair w “ pv1, v2q P C2 as an element of t, then we have

Vw|a,b,c “ pv1a, v2b, pv2 ´ v1qcq.

Hence the equations for Ve`w “ 0 are

´a2 ` b` v1a “ 0, ´ab` v2b, ´b` ac´ c2 ` pv2 ´ v1qc.

Plugging b from the first one into the others yields two equations

apa´ v1qpa´ v2q “ 0, ´a2 ` av1 ` ac´ c2 ´ cv1 ` cv2 “ 0.

By splitting the first equation into cases, we easily get the six families of solutions (one for each coordinate

flag):

pa “ 0, c “ 0q; pa “ v1, c “ 0q; pa “ v1, c “ v2q;

pa “ v2, c “ v2q; pa “ 0, c “ ´v1 ` v2q; pa “ v2, c “ ´v1 ` v2q.

Example 3.26. Another natural family of examples are the Bott–Samelson resolutions of Schubert varieties

([13],[36],[24]). We first recall their construction here. Let G be a semisimple group of rank r, with simple

roots α1, α2, . . . , αr. The reflections s1, s2, . . . , sr in the simple roots generate the Weyl group W of

G. Let pei, fi, hiq be an sl2-triple corresponding to αi. For any sequence ω “ pαi1 , αi2 , . . . , αilq of simple

roots we can construct the Bott–Samelson variety as follows:

Xω “ Pi1 ˆB Pi2 ˆB ¨ ¨ ¨ ˆB Pil{B,
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where B is the Borel subgroup of G and Pi is the minimal (non-Borel) parabolic subgroup corresponding

to the root αi. Here B acts on Pi both on left and right, hence we can define the mixed quotients as

above, and the last quotient is by the right B-action on Pil . The variety admits the multiplication map

Xω Ñ G{B. If ω is a reduced word representing an element ω P W, then this map is a resolution of the

Schubert variety Xω “ BωB{B. The Borel subgroup B acts on the Bott–Samelson variety on the left.

Lemma 3.27. The Bott–Samelson resolutions are regular B-varieties.

Proof. Assume that an element x P Xω represented by pg1, g2, . . . , glq is fixed by the regular nilpotent e.

As e generates an additive subgroup exppteq inside B, every zero of e is fixed by this subgroup, and in

particular by b1 “ u “ exppeq. This means that in the Bott–Samelson variety

rpb1g1, g2, g3, . . . , glqs “ rpg1, g2, g3, . . . , glqs (3.9)

First, this means that b1g1 “ g1b2 for some b2 P B, hence b1 P g1Bg´1
1 . As b1 is a regular unipotent

element, there is only one Borel subgroup, namely B, which contains b1 (see the discussion in Example

2.41). As NGpBq “ B, we have g1 P B. From b1g1 “ g1b2 we have that b2 is conjugate to b1, hence it is

also a regular unipotent in B. From (3.9) we have

rpb2g2, g3, . . . , glqs “ rpg2, g3, . . . , glqs

in the Bott–Samelson variety corresponding to the sequence pαi2 , . . . , αilq. Applying the same reasoning,

we get inductively that g1, g2, . . . , gl P B, hence rpg1, g2, g3, . . . , glqs “ rp1, 1, . . . , 1qs in Xω.5 ■

This means that using the method above we can determine H˚
TpXωq, where T is the maximal torus inside

B. The open Bia lynicki-Birula cell Xo consists of the classes

rpexppx1fi1q, exppx2fi2q, . . . , exppxlfilqsx1,x2,...,xlPC

and we would like to find the scheme Z inside Xo ˆ t. We need to determine the infinitesimal action of B

on that cell. We will proceed coordinate by coordinate. Note that for i P t1, 2, . . . , ru the group Pi contains

texppt ¨ fiq|t P Cu ¨ B as a dense subset. Therefore for any x P C there exists an open neighbourhood

U Ă B of 1B such that for all g P U we have

g ¨ exppxfiq “ exppbpgqfiqhpgq

for some maps b : U Ñ C and h : U Ñ B with bp1q “ x and hp1q “ 1. The two sides of the equality are

functions of g. Let us differentiate them at g “ 1 in the direction of y P b. We get

y ¨ exppxfiq “ exppxfiq ¨ pDb|1pyqfi `Dh|1pyqq,

where on the left hand side the dot denotes the right translation by exppxfiq and on the right hand side it

analogously denotes the left translation. Therefore

Db|1pyqfi `Dh|1pyq “ Adexpp´xfiqpyq.

Now let y “ e` w, where w P T. Then

Adexpp´xfiqpyq “ Adexpp´xfiqpeq ` Adexpp´xfiqpwq “ pe` xhi ´ x2fiq ` pw ´ αipwqxfiq

“ p´αipwqx´ x2qfi ` pe` w ` xhiq.

5We thank Jakub Löwit for this argument.
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Thus we get Db|1pyq “ ´αipwqx´ x2 and Dh|1pyq “ e` w ` xhi. Hence the infinitesimal action on Xω

in direction e` w yields the vector of first coordinate ´αi1pwqx1 ´ x21 and induces infinitesimal action of

e` w ` x1hi1 on the second coordinate. We can apply this procedure inductively and get that the j-th

coordinate is acted upon by

e` w `

j´1
ÿ

k“1

xkhik

and the corresponding coordinate of the vector field Ve`w is

´

j´1
ÿ

k“1

αij phikqxkxj ´ αij pwqxj ´ x2j .

Therefore if we define the numbers bjk “ αij phikq, we obtain the following presentation of the equivariant

cohomology ring:

H˚
TpXωq “ Crtsrx1, x2, . . . , xls{

˜

x2j “ ´
ÿ

kăj

bjkxkxj ´ αij pwqxj

¸

,

where w denotes the t coordinate. Note that e.g. for α1, . . . , αr being the standard simple roots of SLn,

those numbers vanish whenever |ij ´ ik| ą 1.

The variety has 2l torus-fixed points and hence the equivariant cohomology ring is a free module over

Crts of rank 2l. An additive basis consists of all the square-free monomials in x1, x2, . . . , xl. We recover

then the results obtained e.g. in [13, Proposition 4.2] or [61, Proposition 3.7].

4 Reductive and arbitrary principally paired algebraic groups

4.1 Reductive groups

In this section, we will make a transition from solvable groups to reductive groups. We do that by

restricting to Borel subgroups and utilizing Theorem 3.5.

Let then G be a complex reductive algebraic group of rank r. We assume that e P g “ LiepGq is a

regular nilpotent element. Let f, h P g denote the remaining elements of an sl2-triple pe, f, hq (see the

discussion in Section 2.5). In fact, all the regular nilpotents are conjugate (see [49, Section 3, Theorem 1]).

Hence, we can actually assume e “ x1 ` x2 ` ¨ ¨ ¨ ` xs, as in Example 3.1. In particular, h is semisimple

and contained in the unique Borel subalgebra b of g containing e. It integrates to a map Ht : Cˆ Ñ G

with finite kernel. We denote by S “ e ` Cgpfq the corresponding Kostant section (cf. [49, Theorem

0.10]). Kostant’s theorem also gives CrSs “ CrgsG “ CrtsW “ H˚
Gpptq. The goal will be to prove the

following result.

Theorem 4.1. Let G be as above and assume that G acts on a connected smooth projective variety

X regularly. Let ZG be the closed subscheme of S ˆ X defined as the zero set of the total vector field

(Definition 2.1) restricted to S ˆX. Then ZG is an affine, reduced scheme and H˚
GpXq – CrZGs as graded

CrSs-algebras, where the grading on right-hand side is defined by the action of Cˆ on S via 1
t2 AdHt and

on X via Ht. In other words, ZG “ SpecH˚
GpXq, S “ SpecH˚

G and the pullback of functions along the

projection ZG Ñ S yields the structure map H˚
G Ñ H˚

GpXq, so we have the following diagram.

ZG SpecH˚
GpX;Cq

S SpecH˚
G.

π

–

–
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Moreover, the isomorphism H˚
GpXq – CrZGs of graded CrSs-algebras is functorial both in X and

G. The admissible morphisms are those that map a G1-regular variety X to G2-regular variety Y in a

G1-equivariant way, where G1 Ñ G2 is a homomorphism between two reductive algebraic groups which

maps the fixed principal sl2-triple to the other fixed principal sl2-triple.

ZG1pXq SpecH˚
G1

pX;Cq

ZG2
pY q SpecH˚

G2
pY ;Cq.

–

–

Note that H˚
GpXq “ H˚

TpXqW, where T is the maximal torus and W “ NGpTq{T is the Weyl group

of G (see e.g. [45, Chapter III, Proposition 1]). Therefore, we will be able to make use of the result for

solvable groups (Theorem 3.5).

4.2 Motivating example: G “ SL2pCq

For G “ SL2pCq we can choose the canonical e, f , h:

e “

˜

0 1

0 0

¸

, f “

˜

0 0

1 0

¸

, h “

˜

1 0

0 ´1

¸

.

Then we get S “ te` vf |v P Cu. Again, let us adapt convention from Example 3.1 for the basis of t, i.e.

a number v P C will denote ´vh{2. We know that H˚
TpXq “ CrZB2

s, where ZB2
is defined as before for

solvable (Borel) subgroup B2 of SL2pCq consisting of upper triangular matrices. Let us now see how the

Weyl group (in this case Σ2 “ t1, ϵu) acts on H˚
TpXq. We have the following commutative diagram

H˚
TpXq H˚

TpXq

H˚
Tpϵζiq H˚

Tpζiq

ϵ˚

ι˚
ϵζi

ι˚
ζi

ϵ˚

.

Note that in the bottom line we have the (contravariant) action of W on H˚
Tpptq – Crts, which is defined

by the (covariant) adjoint action of W on t. In the case of SL2 the element ϵ acts on t by v ÞÑ ´v.

Therefore we get that for any c P H˚
TpXq and any T-fixed point ζi we have

pϵ˚cq|ζi “ pc|ϵζiq ˝ ϵ,

where ϵ is here seen as a map t Ñ t. This determines ϵ˚c completely, as the restriction H˚
TpXq Ñ

À

H˚
Tpζiq

is injective. Hence when we apply the isomorphism ρ : H˚
TpXq Ñ CrZB2s, we will get

ρpϵ˚cqpw,Mwζiq “ ρpcqpϵw,Mϵwϵζiq.

We get an algebra homomorphism CrZB2
s Ñ CrZB2

s, which has to come from a morphism ZB2
Ñ ZB2

.

This morphism sends Mwζi ÞÑ Mϵwϵζi.

We will now look at the adjoint action of elements of the form

exppsfq “

˜

1 0

s 1

¸

P SL2 .

We have

Adexpptfqpe` thq “ e` t2f (4.1)

Adexpp2tfqpe` thq “ e´ th. (4.2)
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From (4.2) we infer (by Lemma 2.6) that the map

ψϵ : pv, xq ÞÑ p´v, expp´vfqxq

is an isomorphism of ZB2 (note that in our choice of basis the number v denotes ´vh{2). We claim that

it is equal to the above (i.e. it is dual to ρ ˝ ϵ˚ ˝ ρ´1). Clearly the action on the first factor agrees. Now

we have

expp´vfqpMvζiq “

˜

1 0

´v 1

¸ ˜

1 1{v

0 1

¸

ζi

and we get

M´1
´v expp´vfqpMvζiq “

˜

1 1{v

0 1

¸ ˜

1 0

´v 1

¸ ˜

1 1{v

0 1

¸

ζi “

˜

0 1{v

´v 0

¸

ζi “ ϵζi.

Therefore

ψϵpMvζiq “ expp´vfqpMvζiq “ M´vϵζi

and indeed

ρpϵ˚cqpv, xq “ ρpcqpψϵpv, xqq.

Thus SpecH˚
SL2pCq

pXq is the GIT quotient of ZB2
over this action.

Now from (4.1) we get that the map ϕ : pv, xq ÞÑ pv, expp´vf{2qxq is an isomorphism between ZB2
and

Z 1 “ tpv, xq P C ˆX : pVe`v2{4f q|x “ 0u. Therefore we might as well look for the GIT quotient of Z 1 by

ϕ ˝ ψϵ ˝ ϕ´1. We get

ϕ ˝ ψϵ ˝ ϕ´1pv, xq “ ϕ ˝ ψϵpv, exppvf{2qxq “ ϕp´v, expp´vf{2qxq “ p´v, xq.

The GIT quotient of Z 1 “ tpv, xq : pVe`v2{4f q|x “ 0u by this action is clearly isomorphic to ZG “ tpt, xq P

C ˆX : pVe`tf q|x “ 0u.

4.3 General case

We will want to mimic the proof for SL2 in the general reductive case. Let ZB be the scheme from Section

3, defined for the Borel subgroup B of G. We need the following:

• Regular maps A : t Ñ G and χ : t Ñ S that satisfy

AdApwqpe` wq “ χpwq,

so that pidt, Apwqq maps ZB to Z 1, where

Z 1 “ tpw, xq P t ˆX : Vχpwq|x “ 0u.

• Moreover we want χ to be W-invariant and induce an isomorphism t{{W Ñ S, so that we can

construct ZG as a quotient of Z 1.

• We want to realise the Weyl group action on ZB by action on the second factor, i.e. for each η P W

we want to define a map Bη : t Ñ G such that

pw, xq ÞÑ pηpwq, Bηpwq ¨ xq

is the action of Weyl group.
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• If we conjugate above with the isomorphism ZB Ñ Z 1, we want to get a map that fixes the

X-coordinate. In other words,

ApηwqBηpwqA´1pwq “ 1,

i.e. Bηpwq “ Apηwq´1Apwq.

We will now formalise those ideas. First, let B be the unique Borel subgroup of G containing the regular

nilpotent e (cf. Section 2.5). We denote by U the corresponding maximal unipotent subgroup and by B´,

U´ the opposite Borel and unipotent subgroup. Let b, u, b´, u´ denote the corresponding Lie algebras.

As above, by ZB Ă t ˆX we denote the zero scheme defined by the action of B, which by Theorem 3.5 is

isomorphic to SpecH˚
TpXq. We start by finding the map A. We know from Lemma 2.29 that the map

Ad´p´q : U´ ˆ S Ñ e` b´

is an isomorphism. Let us consider the preimage of e` t and denote by Apwq P U´, χpwq P S the elements

such that

AdApwqpe` wq “ χpwq. (4.3)

We know then from Proposition 2.30 and (4.3) that the map ϕ defined as

ϕpw, xq “ pw,Apwqxq

is an isomorphism from

ZB “ tpw, xq P t ˆX : Ve`w|x “ 0u.

to

Z 1 “ tpw, xq P t ˆX : Vχpwq|x “ 0u.

Moreover, let

Bηpwq “ Apηwq´1Apwq

for any η P W, w P T. Then the map ψη defined as

ψη “ ϕ´1 ˝ pη, idq ˝ ϕ,

i.e. ψηpw, xq “ pηw,Bηpwqxq, is an automorphism of ZB. Here η is seen as a map t Ñ t.

Lemma 4.2. The map ψη defines the action of W on ZB. In other words, W acts on the right on H˚
TpXq

and the dual left action on ZB is defined by ψ.

Proof. For any η P W we have the commutative diagram

H˚
TpXq H˚

TpXq

H˚
Tpηζiq H˚

Tpζiq

η˚

ι˚
ηζi

ι˚
ζi

η˚

.

In the bottom row both entries are isomorphic to Crts and the map is precomposition with η : t Ñ t.

Therefore for any c P H˚
TpXq and any T-fixed point ζi we get

pη˚cq|ζi “ pc|ηζiq ˝ η.
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This determines η˚c completely, as the restriction H˚
TpXq Ñ

À

H˚
Tpζiq is injective. We want to determine

what this action of W induces on ZB. The action of W on ZB, which we will denote by η ÞÑ η˚, has to

satisfy the equality

ρpcqpη˚pw, xqq “ ρpη˚pcqqpw, xq.

From the proof of Lemma 3.10 we know that ZB X ptreg ˆXq is dense in ZB. Therefore to determine η˚,

it is enough to determine its values η˚pw, xq for w regular. In this case if pw, xq P ZB, then, by Section 3.5,

we have that w “ Mwζi, where Mw P B is such that AdMwpwq “ e`w. Then ρpcqpw, xq “ c|ζipwq. Hence

ρpη˚pcqqpw, xq “ η˚pcq|ζipwq “ pc|ηζiqpηwq “ ρpcqpηw,Mηwηζiq.

Thus

η˚pw,Mwζiq “ pηw,Mηwηζiq.

We claim that η˚ “ ψη, i.e. BηpwqMwζi “ Mηwηζi. We have to prove that Cη,w “ M´1
ηwBηpwqMw sends

ζi to ηζi.

Note that

AdCη,wpwq “ AdM´1
ηwBηpwqMw

pwq “ AdM´1
ηwA

´1
ηwAwMw

pwq “ AdM´1
ηwA

´1
ηwAw

pe` wq “

“ AdM´1
ηwA

´1
ηw

pχpwqq “ AdM´1
ηwA

´1
ηw

pχpηwqq “ AdM´1
ηw

pe` ηwq “ ηw.

Therefore for any representative η̃ P NGpTq of η we have

η̃´1Cη,w P CHpwq.

As w is regular, its centraliser within h is just t. It is the Lie algebra of CGpwq, which is connected by

[59, Corollary 3.11], hence equal to T. Therefore η̃´1Cη,w P T, hence Cη,w represents the class of η in

NGpTq{T. Thus Cη,w sends ζi to ηζi, as we wanted to prove. ■

Proof of Theorem 4.1. We saw above that the map ϕ defined as ϕpw, xq “ pw,Apwqxq is an isomorphism

from ZB to Z 1 “ tpw, xq P tˆX : Vχpwq|x “ 0u. Then we can conjugate the maps ψη with this isomorphism,

hence getting maps ϕ ˝ ψη ˝ ϕ´1 : Z 1 Ñ Z 1. We have

ϕ ˝ ψη ˝ ϕ´1pw, xq “ ϕ ˝ ψηpw,Apwq´1xq “ ϕpηw,BηpwqApwq´1xq

“ pηw,ApηwqBηpwqApwq´1xq “ pηw, xq. (4.4)

The last equality follows from the definition Bηpwq “ Apηwq´1Apwq. By Lemma 4.2 the map ϕ ˝ψη ˝ ϕ´1

gives the action of W on Z 1 – ZB – SpecH˚
TpXq.

We have H˚
GpXq “ H˚

TpXqW and therefore SpecH˚
GpXq “ SpecH˚

TpXq{{W “ Z 1{{W. But we know

from (4.4) that W acts only on the t-coordinate of Z 1 and moreover from Proposition 2.30 the map χ

induces an isomorphism t{{W Ñ S. Therefore

SpecH˚
GpXq “ Z 1{{W “ tpw, xq P t ˆX : Vχpwq|x “ 0u{{W “ tpv, xq P S ˆX : Vv|x “ 0u “ ZG.

The zero scheme ZG is reduced because Z 1 – ZB is reduced from Lemma 3.10. The agreement of

CrSs-algebra structures follows from commutativity of the diagram

SpecH˚
TpXq “ ZB Z 1 SpecH˚

GpXq “ ZG

SpecH˚
T “ t SpecH˚

G “ t{{W

–

πB

{{W

πG

{{W
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and the analogous statement for B in Theorem 3.5.

It remains to show that the grading agrees on the two sides. We know from Theorem 3.5 that the

grading in the solvable case is defined by the weights of the torus acting on t ˆX by
`

1
t2 , H

t
˘

. We have

to prove that it descends to the action by
`

1
t2 AdHt , Ht

˘

. But we have

AdApwqpe` wq “ χpwq

and thus

AdHtApwqH´tpAdHtpe` wqq “ AdHtpχpwqq

and dividing both sides by t2 gives

AdHtApwqH´t

´

e`
w

t2

¯

“
1

t2
AdHtpχpwqq.

However

HtApwqH´t P U´,
1

t2
AdHtpχpwqq P S.

The latter follows from 1
t2 AdHtpeq “ e and AdHt preserving the centraliser of f , as AdHtpfq “ 1

t2 f .

Therefore by uniqueness we have

HtApwqH´t “ A
´w

t2

¯

,
1

t2
AdHtpχpwqq “ χ

´w

t2

¯

.

The quotient map ZB Ñ ZG sends pw, xq to pχpwq, Apwqxq. And by above, it sends t ¨ pw, xq “
`

w
t2 , H

tx
˘

to

´

χ
´w

t2

¯

, A
´w

t2

¯

Htx
¯

“

ˆ

1

t2
AdHt pχpwqq , HtApwqH´tHtx

˙

“

ˆ

1

t2
AdHt pχpwqq , HtApwqx

˙

,

which proves that the action of Cˆ on ZB descends to the action by
`

1
t2 AdHt , Ht

˘

on ZG.

The functoriality follows immediately from functoriality for B (cf. Propositions 3.18 and 3.19). ■

Remark 4.3. We know Cgpfq Ă b´ (Section 2.5) and all the weights of the Ht action on b´ are nonpositive

(Lemma 2.32). Therefore the argument as in Lemma 3.10 shows that ZG lies in S ˆXo. This means that

for any computations we have to consider only an affine part Xo of X.

Remark 4.4. In the spirit of Lemma 3.11 we can determine in the reductive case too what functions on

ZG the particular Chern classes are mapped to. Assume that E is a G-linearised vector bundle on X.

Let k be a non-negative integer and consider cGk pEq P H˚
GpXq “ H˚

TpXqW. If we first consider the map

ρ : H˚
TpXq Ñ CrZBs from Section 3.6, then from Lemma 3.11 we know for any pw, xq P ZB that

ρpcTk pEqqpw, xq “ TrΛkEx
pΛkpe` wqxq.

The map ϕ defined as

ϕpw, xq “ pw,Apwqxq

maps ZB isomorphically to Z 1. Then cTk pEq defines on Z 1 the function ρpcTk pEqq ˝ ϕ´1 which satisfies

ρpcTk pEqq ˝ ϕ´1pw, yq “ ρpcTk pEqqpw,Apwq´1yq “ TrΛkEApwq´1y
pΛkpe` wqApwq´1yq.

As E is G-invariant, this is equal to

TrΛkEy
pΛk AdApwqpe` wqyq “ TrΛkEy

pΛkχpwqyq

This means that on the quotient ZG the function ρGpcGk pEqq corresponding to cGk pEq satisfies

ρGpcGk pEqqpv, xq “ TrΛkEx
pΛkvxq.
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Let us also note that the G-equivariant Chern classes generate the equivariant cohomology ring.

Lemma 4.5. In the setting above, the G-equivariant cohomology H˚
GpXq is generated as a CrtsW-algebra

by equivariant Chern classes of G-equivariant vector bundles.

Proof. By Nakayama lemma it is enough to prove (see the proof of Lemma 3.14) that the non-equivariant

cohomology H˚pXq is generated by Chern classes of G-equivariant vector bundles.

We know from the proof of Lemma 3.12 that H˚pXq is generated by Chern characters of T-equivariant

coherent sheaves. For any such sheaf F , we can consider the “averaged” sheaf FW “ 1
|W|

À

ηPW η˚W. As

the group G is connected, for any g P G we have chpg˚Fq “ chpFq, hence chpFWq “ chpFq. Therefore

H˚pXq is generated by Chern characters of NGpTq-equivariant coherent sheaves. Then again by [60,

Corollary 5.8] it is generated by Chern characters of NGpTq-equivariant vector bundles. Every NGpTq-

equivariant vector bundle is a W-invariant element of KTpXq. However we know by [38, Corollary 6.7]

that KTpXqW “ KGpXq, hence H˚pXq is generated by Chern classes of G-equivariant vector bundles. ■

4.4 Examples

We finish this section by providing examples for Theorem 4.1. These are extensions of the examples above

for Theorem 3.5.
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Figure 4: SpecH˚
SL2pCq

pP4q and SpecH˚
SL2pCq

pP5q.

Example 4.6. We continue Example 3.20. There, we found the Cˆ-equivariant cohomology of Pn. Now,

using the tools above, we can also find SpecHSL2pCqpPnq. We know that the map pv, xq ÞÑ pv, pI ` vfqxq

maps the zeros of Ve`vh isomorphically to the zeros of Ve`v2f . The former form the subscheme cut out by

x1px1 ` 2vqpx1 ` 4vq . . . px1 ` 2nvq “ 0 in the pv, x1q-plane. Note that

f “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

0 0 0 0 . . . 0

1 ¨ n 0 0 0 . . . 0

0 2 ¨ pn´ 1q 0 0 . . . 0
...

...
...

...
. . .

...

0 0 pn´ 1q ¨ 2 0 . . . 0

0 0 0 n ¨ 1 . . . 0

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

,
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hence the map I ` vf acts on the x1 coordinate by adding nv. This means that the zeros of Ve`v2f are

defined by

px1 ´ nvqpx1 ´ pn´ 2qvqpx1 ´ pn´ 4qvq . . . px1 ` pn´ 2qvqpx1 ` nvq “ 0.

Bringing the symmetric factors together, we get

$

&

%

px21 ´ n2v2qpx21 ´ pn´ 2q2v2q . . . px21 ´ 4v2qx1 “ 0 for n even;

px21 ´ n2v2qpx21 ´ pn´ 2q2v2q . . . px21 ´ 9v2qpx21 ´ v2q “ 0 for n odd.

Therefore

H˚
SL2pCq

pPnq “

$

&

%

Crt, x1s{
`

px21 ´ n2tqpx21 ´ pn´ 2q2tq . . . px21 ´ 4tqx1
˘

for n even;

Crt, x1s{
`

px21 ´ n2tqpx21 ´ pn´ 2q2tq . . . px21 ´ 9tqpx21 ´ tq
˘

for n odd.

The scheme has rn`1
2 s components, one for each orbit of the action of W “ Z{2Z on pPnqC

ˆ

. The parabolas

correspond to two-element orbits and the line (for even n) corresponds to unique fixed point of Cˆ fixed

by W. It is equal to r0 : 0 : ¨ ¨ ¨ : 0
loooooomoooooon

n{2

: 1 : 0 : ¨ ¨ ¨ : 0 : 0
loooooomoooooon

n{2

s. Examples of the scheme for n “ 4 and n “ 5 are

depicted in Figure 4.

Figure 5: Two different views of SpecH˚
SL2pCq

pGrp2, 4qq.

Example 4.7. We continue Example 3.23. The principal SL2pCq Ă SL4pCq subgroup acts on Grp2, 4q. One

can check that

Vf |x1,y1,x2,y2 “ p´3y1, 4, 3x1 ´ 3y2, 3y1q.

Then

Ve`tf |x1,y1,x2,y2 “ px2 ´ x1y1 ´ 3ty1,´x1 ´ y21 ` y2 ` 4t,´x1y2 ` 3tx1 ´ 3ty2,´x2 ´ y1y2 ` 3ty1q.

As before, from the first two equations of Ve`tf “ 0, we can determine x2 and y2, so SpecH˚
SL2pCq

pGrp2, 4qq

can be embedded in Crt, x1, y1s. Its equations are

12t2 ` 4tx1 ´ x21 ´ 3ty21 ´ x1y
2
1 “ 0, y1p4t´ 2x1 ´ y21q “ 0.
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By considering two possibilities in the latter, one easily arrives at four possibilities:

px1 “ ´2t, y1 “ 0q, px1 “ 6t, y1 “ 0q, px1 “ ´6t, y21 “ 16tq, px1 “ 0, y21 “ 4tq.

As in the previous example, the components correspond to orbits of W acting on Grp2, 4qC
ˆ

. The former

two correspond to one-element orbits, i.e. tspanpe2, e3qu and tspanpe1, e4qu, and the latter come from two

two-element orbits. The scheme embedded in t, x1, y1-space is presented in Figure 5.

Example 4.8. We consider an example for a group of higher rank, SL3pCq, that we can still draw. Let it

act on P2 in the standard way. In Example 3.24 we calculated the equivariant cohomology of P2 with

respect to (two-dimensional) torus. Now we will compute the SL3-equivariant cohomology. The Kostant

section is

S “

$

’

’

&

’

’

%

¨

˚

˚

˝

0 1 0

c2 0 1

c3 c2 0

˛

‹

‹

‚

: c2, c3 P C.

,

/

/

.

/

/

-

The coordinates c2, c3 P CrSs – H˚pB SL3pCqq are (up to scalar multiples) the universal Chern classes of

principal SL3pCq-bundles, or equivalently, of rank 3 vector bundles with trivial determinant. We have

already computed that Ve|x1,x2
“ px2 ´ x21,´x1x2q. Then it is easy to see that for

M “

¨

˚

˚

˝

0 1 0

c2 0 1

c3 c2 0

˛

‹

‹

‚

we have VM |x1,x2
“ px2 ´x21 ` c2,´x1x2 ` c2x1 ` c3q. As before, we can eliminate x2 by substituting from

the first equation and we get the equation x31´2c2x1´c3 “ 0. The corresponding scheme SpecH˚
SL3pCq

pP2q

in coordinates c2, c3, x1 is illustrated in Figure 6. It is irreducible, as all three torus-fixed points lie in

one orbit of the Weyl group. The projection to the pc2, c3q-plane is generically a 3 ´ 1 map.

On the right hand side of Figure 6 the slice c3 “ 0 is marked in red. The elements of S that satisfy

c3 “ 0 form the Kostant section of the principal SL2 subgroup – which acts as in Example 4.6. Therefore

the red scheme is equal to SpecH˚
SL2

pP2q. Additionally, the functoriality of Theorem 4.1 implies that

restriction to c3 “ 0 yields the base restriction map

H˚
SL3

pP2q Ñ H˚
SL2

pP2q.

Example 4.9. As in Example 3.25, we now consider the action of SL3pCq on the variety F3 of full flags in

C3. We determined Ve in Example 3.25. We can analogously determine the vector fields corresponding to

lower triangular matrices. Then for

M “

¨

˚

˚

˝

0 1 0

c2 0 1

c3 c2 0

˛

‹

‹

‚

we easily get

VM |a,b,c “ p´a2 ` b` c2,´ab` ac2 ` c3,´b` ac´ c2 ` c2q.

Plugging in b from the first equation, we obtain

a3 ´ 2c2a` c3 “ 0, a2 ´ ac` c2 “ 2c2.

The first equation for a clearly coincides with the equation for x1 from the previous example. One

can easily see that the equations mean that a and ´c are two of the three roots of the polynomial

x3 ´ 2c2x` c3 “ 0. The map to the pc2, c3q-plane is generically 6 ´ 1. As all the torus-fixed points, i.e.

coordinate flags, lie in one orbit of the Weyl group, in the GIT quotient of SpecpH˚
TpF3qq they are joined

together and the scheme is irreducible.
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Figure 6: SpecH˚
SL3pCq

pP2q. On the right the subscheme SpecH˚
SL2pCq

pP2q is marked. Compare with

Figure 4.

4.5 Principally paired algebraic groups

In fact, we can prove the equivalent of Theorem 4.1 for a principally paired, but not necessarily reductive

algebraic group. This version will yield a common generalisation to Theorem 4.1 and Theorem 3.5. Note

that H˚
H “ CrtsW “ CrSs – see the comment above Theorem 2.37. We will prove the following.

Theorem 4.10. Assume that H is a principally paired algebraic group which acts on a smooth projective

variety X regularly. Let ZH be the closed subscheme of S ˆX, defined as the zero set of the total vector

field (Definition 2.1) restricted to S ˆX.

Then ZH is an affine reduced scheme and H˚
HpXq – CrZHs as graded CrSs-algebras, where the grading

on right-hand side is defined on S via 1
t2 AdHt and on X by the action of Cˆ via Ht. In other words,

ZH “ SpecH˚
HpXq, S “ SpecH˚

H and the projection ZH Ñ S yields the structure map H˚
H Ñ H˚

HpXq.

This isomorphism is functorial as in Theorem 4.1.

ZH SpecH˚
HpX;Cq

S SpecH˚
H.

π

–

–

Remark 4.11. As N is contractible, the Levi subgroup L Ă H is a homotopy retract of H, and for any

H-space X we have H˚
HpXq “ H˚

L pXq. In particular, if H is solvable, we have H˚
HpXq “ H˚

TpXq, where T

is a maximal torus within H. This explains how the theorem above generalises Theorem 3.5.

Proof of Theorem 4.10. We will proceed analogously to the proof in Section 4.3. We follow the notation

from Section 2.6.3. In particular, B is the Borel subgroup of H such that its Lie algebra b contains e. We

first consider the scheme ZB Ă t ˆX, defined as in Section 3, i.e. the zero scheme of the total vector field

on g ˆ X, restricted to pt ` eq ˆ X. Then from Lemma 2.33 we get morphisms A : t Ñ U´, χ : t Ñ S
such that

AdApwqpe` wq “ χpwq,
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so that pid, Apwqq maps ZB to Z 1, where

Z 1 “ tpw, xq P t ˆX : Vχpwq|x “ 0u.

In fact, A and χ are exactly the same as in Section 4.3 (see the proof of Lemma 2.33). In particular,

χ induces the isomorphism t{{W Ñ S. For any regular w P t we have the element Mw P B such that

AdMw
pwq “ e ` w. Just like in Lemma 4.2, for any η P W we get that for any regular w the element

Cη,w “ M´1
ηpwq

Apηwq´1ApwqMw is in the class of η in NLpTq{T. Note that here Mηpwq P Bl.

This then proves, similarly as in Section 4.3, that the Weyl group action on ZB, when transported to

Z 1, is defined by η ÞÑ pη, idq. And then as χ : t{{W Ñ S is an isomorphism, we get that

ZH – ZB{{W “ SpecH˚
TpXq{{W “ SpecH˚

HpXq.

We have to prove that the grading on CrZHs defined by the grading on H˚
HpXq agrees with the one

described in the theorem. We know that in the solvable case the grading is defined by the action of Cˆ

on ZB via
`

1
t2 , H

t
˘

(Definition 3.4). Just like in the reductive case, we need to prove that under quotient

by W it descends to the action by
`

1
t2 AdHt , Ht

˘

. The argument for reductive groups does not translate

exactly, as a priori we do not know whether Ht preserves the centraliser of f . However we know that Ht
l ,

the one-parameter subgroup generated by hl, does.

On the other hand, as rh, es “ rhl, es “ 2e, from Lemma 2.34 we infer h´ hl P Zplq. As in the proof of

Theorem 4.1, we have

AdHtApwqH´t

´

e`
w

t2

¯

“
1

t2
AdHtpχpwqq

and

HtApwqH´t P U´,
1

t2
AdHtpχpwqq P S,

where now the latter follows from 1
t2 AdHtpeq “ e and AdHt “ AdHt

l
preserving the centraliser of f , as

AdHt
l
pfq “ 1

t2 f . Therefore we have

HtApwqH´t “ A
´w

t2

¯

,
1

t2
AdHtpχpwqq “ χ

´w

t2

¯

.

and the same reasoning follows. This proves Theorem 4.10. ■

Example 4.12. Basic examples of non-reductive, non-solvable linear groups are parabolic subgroups of

reductive groups. Let us consider such a group P Ă G, where G is reductive and assume that B Ă P is a

Borel subgroup of G contained in P. Then we can consider a principal bpsl2q-triple pe, f, hq in g such that

e, h P b. This makes P into a principally paired group and we can make use of Theorem 4.10.

Suppose that X is a Schubert variety in some partial flag variety G{Q. Its stabiliser P in G contains B,

hence it is a parabolic subgroup. In general it is larger than B (see more in [57, Section 2]). Remember that

B acts on G{Q regularly (Example 2.41). Therefore if X is smooth, Theorem 4.10 gives the P-equivariant

cohomology of X.

Example 4.13. As in the previous example, assume that X is Schubert variety in G{Q fixed by P. One

can then construct a Bott–Samelson resolution of X [57, Section 2, p. 446] which is P-equivariant. As in

Lemma 3.27, such a resolution will be a smooth regular P-variety. Hence we can use Theorem 4.10 to

compute its P-equivariant cohomology.

We also extend Lemma 4.5 to principally paired groups.

Lemma 4.14. Assume that a principally paired group H acts regularly on a smooth projective variety X.

Then the H-equivariant cohomology H˚
HpXq is generated as a CrtsW-algebra by equivariant Chern classes

of H-equivariant vector bundles.
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Proof. As in the proof of Lemma 4.5, it is enough to prove that the non-equivariant cohomology H˚pXq is

generated by Chern classes of H-equivariant vector bundles. By Lemma 4.5, we know that it is generated

by Chern classes, and in fact by Chern characters of L-equivariant vector bundles for L being a Levi

subgroup of H. We have the following two maps

K0
HpXq Ñ K0

LpXq
ch

ÝÑ H˚pXq.

The former is simply the restriction of H-equivariant bundles to L-equivariant bundles and the latter is

the Chern character map. We know that the image of composition generates the whole H˚pXq. We prove

that the first map is, in fact, an isomorphism, which will prove the claim.

By [60, 6.2], the restriction along X Ñ H ˆL X induces an isomorphism

K0
HpH ˆL Xq Ñ K0

LpXq.

Now H ˆLX maps H-equivariantly to X (simply by rph, xqs ÞÑ hx) and we will show that this map induces

an isomorphism on K0
H.6 Let N be the unipotent radical of H, so that H “ N ¸ L. Notice that then we

have the H-equivariant isomorphism

H ˆL X » N ˆX,

where H acts on N ˆX diagonally by conjugation and action.

Indeed, every element of H is uniquely decomposed as ul for u P N, l P L. This means that

H ˆL X » N ˆX. Now we need to see how the H acts on this product. Note that in H ˆL X we have

h ¨ rpu, xqs “ rphu, xqs “ rphuh´1, hxqs,

and as huh´1 P N, upon identification with N ˆX we have h ¨ pu, xq “ phuh´1, hxq.

We want to prove that the map N ˆX Ñ X induces an isomorphism on K0
H. Note that it is not the

projection, but the action of N on X. However, we can split it into the isomorphism N ˆX Ñ N ˆX

given by pu, xq ÞÑ pu, uxq, and the projection. Note that this isomorphism is in fact H-invariant, as

h ¨ pu, uxq “ phuh´1, huxq “ phuh´1, huh´1hxq.

Therefore we have to show that the projection N ˆX Ñ X yields an isomorphism on K0
H.

Now by [55, Proposition 14.32] the algebraic exponential map for the unipotent group exp : n Ñ N

is an isomorphism of schemes. Thus in fact N ˆX » n ˆX has a structure of a (trivial) vector bundle

over X. Note that H acts on it linearly. Indeed, we have h exppvqh´1 “ expphvh´1q and the adjoint

representation of H on n is linear. Then by [60, 4.1] the projection N ˆX Ñ X gives an isomorphism on

K0
H.

■

5 Extensions: singular varieties and total zero schemes

In this section we discuss two directions to extend our results. First we discuss generalisations to singular

varieties.

5.1 Singular varieties

Our main Theorem 4.10 may be generalised to singular varieties, in the spirit of [16, Section 7]. A sufficient

condition will be an embedding in a smooth regular variety such that the corresponding map on ordinary

cohomology is surjective (cf. Corollary 3.22).

6This argument is based on a suggestion by Andrzej Weber.
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Proposition 5.1. Assume that H is a principally paired algebraic group and let S be the Kostant section

within H, as defined in Section 4.5. Let B be a Borel subgroup of H. Assume that H acts regularly on a

smooth projective variety X and let ZX
H be the zero scheme defined in Theorem 4.10 for the H-action on

X.

Assume Y is a closed H-invariant subvariety whose cohomology is generated by Chern classes of

B-linearised vector bundles. Then analogously to Section 4.5 we can define an isomorphism of graded CrSs-

algebras H˚
HpY q Ñ CrZY

H s, where ZY
H is the reduced intersection ZY

H “ ZX
H X pS ˆ Y q. The isomorphism

makes the diagram

H˚
HpXq H˚

HpY q

CrZX
H s CrZY

H s

(5.1)

commutative. The assumption on cohomology of Y holds in particular if the inclusion Y Ñ X induces a

surjective map H˚pXq Ñ H˚pY q on ordinary cohomology.

Proof. The proof is essentially the same as in [16, Section 7]. We only sketch it here. Assume first that H

is solvable. Every point of the variety ZY
H is of the form pw,Mwζq, where Mw P H depends on w and ζ is

a T-fixed point contained in Y . Therefore, for any c P H˚
TpY q, we can define ρY pcq (we only localise to

points in Y ). The condition on cohomology of Y allows us to use Lemma 3.11 to show that ρY actually

maps H˚
TpY q to CrZY

H s. The injectivity follows again from injectivity of localisation on equivariantly

formal spaces ([32, Theorem 1.2.2]). The diagram is obviously commutative and surjectivity follows then

from the surjectivity of restriction CrZX
H s Ñ CrZY

H s to closed subvariety.

Now assume that H is arbitrary principally paired group. Let B be its Borel subgroup and by ZY
B

denote the appropriate zero scheme defined for B acting on Y . As Y is H-invariant, the arguments from

the proof of Theorem 4.10 show that CrZY
H s “ CrZY

B sW and the conclusion follows. The last line of the

proposition is implied by Lemma 3.14. ■

Example 5.2. Let H “ B, the Borel subgroup of a reductive group G. Natural examples of singular regular

B-varieties are Schubert varieties in flag variety G{B or any other subvarieties that are unions of Bruhat

cells, see [5, Theorem 5 with remarks]. In general, Schubert varieties are stabilised by parabolic subgroups

(see in [57, Section 2]). Those are therefore singular P-regular varieties for parabolic groups P.

Example 5.3. Assume that X “ G{B is the flag variety of type A, hence G “ SLmpCq. Then if Y is

any Springer fiber within X, the restriction on cohomology H˚pXq Ñ H˚pY q is surjective ([51]), hence

Proposition 5.1 also holds in that case.

However, there exist G-invariant subvarieties for which the restriction map on cohomology is not

surjective.

Remark 5.4. The assumption on surjectivity on cohomology of Y is necessary in the proposition above.

Consider the following. Let SL2 act on P3 as in Example 4.6. It comes from a representation Sym3 V ,

where V is the fundamental representation of SL2. It has two extreme (highest and lowest) weights and

two “middle” weights. The point o of P3 which represents the highest weight space is fixed by the Borel

subgroup of upper triangular matrices and hence one sees that its orbit is isomorphic to the full flag

variety SL2 {B2 – P1. However, if we consider a point p P P3 representing a non-highest weight space,

its stabiliser is a torus, i.e. StabSL2
ppq – T. Hence its SL2-orbit is not closed. We denote its closure

by Y :“ SL2 ¨p. We claim that Y is not smooth. We can see this directly, by noticing that it is the

projectivised variety of polynomials a0x
3 ` a1x

2y ` a2xy
2 ` y3 with at least two roots (vanishing lines)
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equal, and writing down the discriminant equation. We can also see this using our results. If Y were

smooth, by Corollary 3.22, the map H˚pP3q Ñ H˚pY q would be surjective, but both varieties admit an

action of T, with the same set of fixed points, therefore the map would have to be an isomorphism. It is

impossible for dimensional reasons (H6pY q “ 0).

Moreover, not only is Y singular, but in any case the map H˚pP3q Ñ H˚pY q cannot be surjective.

This would mean that Proposition 5.1 applies. However, as all the T-fixed points are already in Y , one sees

immediately that Z is already in Y . Then again, we would have H˚pY q “ H˚pP3q, which is impossible

for the same reason as above. Thus H˚pP3q Ñ H˚pY q is not surjective, and moreover H˚pP3q is not

generated by Chern classes of B2-equivariant bundles. This shows that the assumption is necessary in the

proposition.

Remark 5.5. Assume we are given an H-invariant subvariety Y of a regular smooth H-variety X. By

Proposition 5.1 and Corollary 3.22 the surjectivity of restriction H˚pXq Ñ H˚pY q is necessary and

sufficient for the existence of an isomorphism H˚
HpY q Ñ CrZY

H s which makes (5.1) commutative. Carrell

and Kaveh prove in [19, Theorem 2], for the case of H “ B2, that it is equivalent to H˚
TpY q being generated

by Chern classes of B2-equivariant bundles.

5.2 Total zero scheme

Assume that G is a principally paired algebraic group, e.g. G reductive. We proved in Theorem 4.10 how

to see geometrically the spectrum of G-equivariant cohomology of X for G acting regularly on a projective

variety X. However, this needed a choice – of a concrete bpsl2q-pair pe, hq and the associated Kostant

section. A natural challenge would be to try to find equivariant cohomology as global functions on a

scheme that does not depend on choices.

Definition 5.6. Let an algebraic group G act on a smooth projective variety X. Consider the total vector

field on g ˆX (Definition 2.1). We call its reduced zero scheme

Ztot Ă g ˆX

the total zero scheme.

Now we are ready to show the following.

Theorem 5.7. Assume that G is principally paired. Let it act on a smooth projective variety regularly.

Consider the action of Cˆ on the total zero scheme Ztot by t ¨ pv, xq “
`

1
t2 v, x

˘

and the action of G acts

by g ¨ pv, xq “ pAdgpvq, g ¨ xq. Then the ring CrZtots
G of G-invariant functions on Ztot is a graded algebra

over CrgsG – H˚
Gpptq isomorphic to H˚

Gpptq, where the grading comes from the weights of Cˆ-action on

CrgsG:

CrZgsG H˚
GpX;Cq

CrgsG H˚
G.

–

–

Following the notation from Theorem 4.10, we show that the restriction CrZtots
G Ñ CrZGs is an

isomorphism, so that we get the following diagram

CrZtots
G CrZGs H˚

GpX,Cq

CrgsG CrtsW H˚
Gppt,Cq
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with all horizontal arrows being isomorphisms. The bottom line follows from Lemma 2.36. First we prove

that the restriction is an epimorphism.

Lemma 5.8. Under the assumptions of Theorem 5.7, the restriction CrZtots
G Ñ CrZGs is surjective.

Proof. By Lemma 4.14 we know that CrZGs is generated over CrtsW – CrgsG by functions ρGpcGk pEqq for

positive integers k and G-equivariant vector bundles E . Those functions are defined by

ρGpcGk pEqqpv, xq “ TrΛkEx
pΛkvxq,

see Remark 4.4. For each such function, we can consider the regular function fk,E defined on Ztot by its

values:

fk,Epv, xq “ TrΛkEx
pΛkvxq.

It is clearly G-invariant and restricts to ρGpcGk pEqq on ZG. As CrZGs is generated by such functions, the

conclusion follows. ■

For the injectivity, let us start with an easy intermediate step. Let Zreg be the open subscheme of

Ztot consisting of the part over greg Ă g (hence a closed subscheme of greg ˆX). Then we have

Lemma 5.9. Let G be a principally paired algebraic group. Assume it acts on a connected smooth

projective variety, not necessarily regularly. The restriction CrZregsG Ñ CrZGs is injective, where Zreg

and ZG are defined as above, as zero schemes over greg and S.

Proof. As Zreg is reduced, a function is determined by its values on closed points. By Lemma 2.35 every

G-orbit in greg intersects S, thus the G-orbit of any closed point in Zreg intersects ZG. It is therefore

enough to specify a G-invariant function on Zreg on closed points of ZG. The result follows. ■

To finish the proof, we are only left with the proof of injectivity of the restriction CrZtots
G Ñ CrZregsG.

We will utilise the following Lemma to prove that the restriction CrZtots Ñ CrZregs is injective.

Lemma 5.10. Let Y be a reduced scheme over a field k. Assume Z is a closed subvariety and every

closed point p P Y is contained in a projective closed subvariety that intersects Z. Then the restriction

map on regular functions krY s Ñ krZs is injective.

Proof. Let us assume that f P krY s vanishes on Z. Consider any closed point p P Y . Let Ap be a

projective closed subvariety that contains p and intersects Z in a closed point q. Then f |Ap is a regular

function on a projective variety over k, hence it is has constant value on all closed points of Ap. As

fpqq “ 0, this means that it takes the value 0. Therefore fppq “ 0. Hence f vanishes on every closed

point.

As Y is reduced and of finite type over a field, we know that regular functions are uniquely determined

by its values on closed points. Therefore f “ 0. ■

To arrive at lemma’s assumptions, we first prove slightly stronger versions of Lemmas 2.8 and 2.10,

under the condition that the action of the Lie algebra is integrable.

Lemma 5.11. Assume that a solvable algebraic group H acts on a smooth complex variety X. Let P Ă X

be a projective irreducible component of the reduced zero scheme of a linear subspace V Ă h. Then P

contains a simultaneous zero of NhpVq.
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Proof. By [11, Lemma 7.4] we have NhpVq “ LiepNHpVqq. Let NHpVqo be the connected component of

unity within NHpVq. We know from Lemma 2.6 that NHpVq preserves the zero set of V. Thus NHpVqo

preserves its irreducible components, in particular P . By the Borel fixed point theorem [55, Corollary

17.3], NHpVqo it must have a fixed point p P P . Then its Lie algebra LiepNHpVqoq “ LiepNHpVqq “ NhpVq

vanishes on p. ■

Lemma 5.12. Assume that an algebraic group H acts on a smooth variety X. Let d, n P h commute and

assume that the Lie subalgebra generated by rh, hs and n is nilpotent. Let P be a projective irreducible

component of the reduced zero scheme of j “ d ` n. Then P contains a simultaneous zero of Chpdq, in

particular, a zero of any abelian subalgebra of h containing d.

Proof. By restricting to the connected component of identity, we can assume that H is connected. As

rh, hs is nilpotent, h must be solvable, hence H is solvable too.

Let k be the Lie subalgebra generated by rh, hs and n. By Lemma 5.11 we get that inside P there is a

zero p of NhpC ¨ jq, which in particular contains d and n. As P is irreducible, any irreducible component

of the simultaneous zero set of d and n which contains p is completely contained in P . Let P1 Ă P be one

such irreducible component. As it is closed inside P , it also has a structure of a projective scheme.

We will first show that P1 contains a simultaneous zero of C 1pdq “ Chpdq X k. As k is nilpotent, C 1pdq

is as well. By Lemma 5.11, P1 contains a simultaneous zero of NhpspanCpd, nqq, hence in particular of

NC1pdqpC ¨ nq. Note that by definition everything in C 1pdq centralises d. As P1 consists of zeros of d, it

will contain an irreducible component P2 of the common fixed point set of d and NC1pdqpC ¨ nq. As a

closed subscheme of P1, P2 is also projective. By the same argument, P2 contains an projective irreducible

component P3 of the common fixed point set of d and N2
C1pdq

pC ¨ nq. As in the proof of Lemma 2.10,

there exists a positive integer k such that Nk
C1pdq

pC ¨ nq “ C 1pdq, hence we get a projective irreducible

component Pk`1 of the common fixed point set of d and C 1pdq. But again as in Lemma 2.10, C 1pdq, as

well as d, is normalised by Chpdq. Hence inside Pk`1 there is a zero of Chpdq. ■

Lemma 5.13. Let G be a principally paired algebraic group. Assume that it acts on a connected smooth

projective variety X, not necessarily regularly. The restriction CrZtots
G Ñ CrZGs is injective, where Zreg

and ZG are defined as before, as zero schemes over greg and S.

Proof. We have the sequence of restrictions CrZtots
G Ñ CrZregsG Ñ CrZGs. By Lemma 5.9 we only need

to prove that the first map is injective. Obviously the restriction CrZregs Ñ CrZregs is injective (here we

take the closure of Zreg in Ztot). We will prove that CrZtots Ñ CrZregs is injective and this will prove the

theorem.

We employ Lemma 5.10 for that. We have to prove that every point of Ztot is contained in a projective

subvariety which intersects Zreg. Let pv, pq P Ztot Ă g ˆX. Then p is contained in the zero scheme of the

vector field Vv, hence in some irreducible component P thereof. It is a closed subscheme of X, hence it is

projective. Then we have tvu ˆ P Ă Ztot as a projective closed subvariety. Let v “ d` n be the Jordan

decomposition of v ([11, 4.4]). As d and n commute, they are contained in a Lie algebra b, of some Borel

subgroup B Ă G. Let T be a maximal torus within B such that d P t “ LiepTq. Then from Lemma 5.12

(take H “ B) we get that P contains a simultaneous zero x of t. It is also a zero of v, hence we have

pt ` C ¨ vq ˆ txu Ă Ztot. Note that t contains a regular element, and as the regular elements within g form

an open subset, the regular elements of t ` C ¨ v form an open nonempty subset, hence they are dense.

This means that pt ` C ¨ vq ˆ txu Ă Zreg, hence in particular pv, xq P Zreg, and pv, xq P tvu ˆ P , where

tvu ˆ P is a projective subvariety of Ztot, therefore we are done. ■

Proof of Theorem 5.7. The isomorphism follows from Lemmas 5.8 and 5.13.
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For the grading, we just have to show that the defined action of Cˆ descends under the restriction

CrZtots
G Ñ CrZGs to the action defined in Theorem 4.10. Let f be a G-invariant function on Ztot. Then

for any t P Cˆ the pullback t˚f of f by t is defined by

t˚fpv, xq “ f

ˆ

1

t2
v, x

˙

.

As f is G-invariant, this means

t˚fpv, xq “ f

ˆ

1

t2
AdHt v,Htx

˙

.

When we restrict to ZG, the group Cˆ acts precisely by
`

1
t2 AdHt , Ht

˘

(Theorem 4.10). Therefore the

actions agree. ■

Example 5.14. Assume that G is a reductive group acting on a partial flag variety X “ G{P. Then the

zero scheme is

g̃P :“ tpx, p1q P g ˆ G{P|x P p1u,

which agrees with the partial Grothendieck–Springer resolution. Thus we get that as a CrgsG – H˚
G-module,

the ring of invariant functions Crg̃PsG is equal to H˚
GpG{Pq “ H˚

P “ CrtsWP .

Figure 7: Affine parts of the total zero scheme for the action of B2 on P1. The left part misses a line (over

b “ 0), the right part misses the blue component.

Example 5.15. There is one example that we are able to draw. It is the action of B2 on P1 (see Example

3.20). The total zero scheme is not affine, but we can cover it with two affine pieces, coming from affine

cover of P1. First one will be the part contained in b2 ˆ tr1 : xs|x P Cu and the other will be the part

contained in b2 ˆ try : 1s|y P Cu. If we consider coordinates pa, bq on b2 that correspond to matrices

˜

a b

0 ´a

¸

P b2,

then the surface has the equations 2ax ` bx2 “ 0 in pa, b, xq-plane (the first piece) and 2ay ` b “ 0 in

pa, b, yq-plane (the second piece). The scheme has two irreducible components and the pieces are drawn in

Figure 7.
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One sees that the B2-invariant functions on the blue part depend only on a, hence they form Cras.

Analogously on the orange part the B2-invariant functions only depend on a “ bx, as for a ‰ 0 any two

points with the same a are conjugate, and for a “ 0 we get b “ 0 or x “ 0. The former line is a projective

line on which an invariant function must attain the same value, and the latter lies in the blue part. This

leaves us with two functions from Cras with the same constant term. One easily sees that this ring is

isomorphic to e.g. Cra, xs{xpx` 2aq.

5.3 Equivariant cohomology of GKM spaces via total zero scheme

We suspect that the description of equivariant cohomology as the ring of regular functions on the total

zero scheme might still hold in a larger generality. For example, one could presume that a sufficiently

regular torus action might lead to such a description, even without embedding torus in a larger solvable

group (as in Section 3). Here we prove this equality for GKM (Goresky–Kottwitz–MacPherson) spaces

([32]), whose equivariant cohomology we know.

Theorem 5.16. Let a torus T – pCˆqr act on a smooth projective complex variety X with finitely

many zero and one-dimensional orbits. In other words, the T-action makes X a GKM space. Let

Z “ Ztot Ă t ˆX be the reduced total zero scheme of this action (Definition 5.6). Then CrZs – H˚
TpXq

as algebras over Crts » H˚
T:

CrZs H˚
TpX;Cq

Crts H˚
T.

–

–

Let us denote the T-fixed points by ζ1, ζ2, . . . , ζs and the one-dimensional orbits by E1, E2, . . . , Eℓ.

Closure of any Ei is an embedding of P1 and contains two fixed points ζi0 and ζi8 , which for any x P Ei

are equal to the limits limtÑ0 tx and limtÑ8 tx. The action of T on Ei has a kernel of codimension 1,

which is uniquely determined by its Lie algebra ki. We then have the following result ([32, Theorem 1.2.2]):

Theorem 5.17 (Goresky–Kottwitz–MacPherson, 1998). Assume that a torus T acts on a smooth GKM

space X. Then the restriction H˚
TpX,Cq Ñ H˚

TpXT ,Cq – Crtss is injective and its image is

H “

"

pf1, f2, . . . , fsq P Crtss
ˇ

ˇ

ˇ

ˇ

fi0 |ki “ fi8 |ki for j “ 1, 2, . . . , ℓ

*

.

We will proceed by finding an injective map ρ : H˚
TpXq Ñ CrZs and an injective left inverse

r : CrZs Ñ H – H˚
TpXq. We will use Lemma 5.10 with Y “ Z as defined above and Z “ t ˆXT. Take

any pv, pq P Z. The point p lies in the zero scheme Zv of the vector field on X corresponding to v. As T

is a commutative group, and hence acts trivially on its Lie algebra, it preserves zeros of v P t. Therefore

tvu ˆ T ¨ p Ă Z and tvu ˆ T ¨ p is a closed projective subvariety of Z. As T acts on it, then by Borel fixed

point theorem it contains a fixed point of T, hence intersects Z nontrivially. Therefore this choice of Y

and Z satisfies the conditions of the Lemma.

We know that there are finitely many distinct types of orbits of the T-action on X. This can be seen by

embedding X equivariantly in a projective space with a linear action of T, see [26, Theorem 7.3]. Therefore

there exists a one-parameter subgroup tHtutPCˆ Ă T that is not contained in any proper centraliser.

Then the fixed points of Ht are automatically the fixed points of T. Consider the Bia lynicki-Birula

minus–decomposition, consisting of cells

W´
i “ tx P X : lim

tÑ8
Ht ¨ x “ ζiu

for ζ1, ζ2, . . . , ζs being the fixed points of T.
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We first define the map ρ : H˚
TpXq Ñ CrZs. We will define it on closed points, using reducedness of Z.

Let c P H˚
TpXq. Assume that pv, xq P Z, i.e. the vector field v is zero at x. We know that x P W´

i for

some i P t1, 2, . . . , su. The restriction c|ζi is an element of H˚
Tpptq – Crts. Define then

ρpcqpv, xq “ c|ζipvq.

We first have to prove that this defines a regular function for each c.

Lemma 5.18. Let E be a T-equivariant bundle on X. Then

ρpckpEqqpv, xq “ TrΛkpExqpΛkpvqq.

In particular, ρpckpEqq is a regular function on Z.

Proof. Let c “ ckpEq. Consider the curve C “ Ht ¨ x. In particular let ζi “ limtÑ8 Ht ¨ x P C. We then

defined ρpcqpv, xq “ c|ζipvq. But we know that this is equal to

ckpEq|ζipvq “ TrΛkpEζi
qpΛkvq.

However, as T is commutative, the action of any of its elements, in particular of Ht, on X is T-equivariant,

therefore

TrΛkpExqpΛkvq “ TrΛkpEHt¨xqpΛkvq

for any t P Cˆ. Therefore the equality stays true also in the limit, hence

TrΛkpExqpΛkvq “ TrΛkpEζi
qpΛkvq “ ρpcqpv, xq.

■

Proof of Theorem 5.16. We have defined the map ρ, we just have to prove that it is an isomorphism. For

injectivity, note that t ˆ XT is contained in Z. By definition, if ρpcq is zero on this subspace, then all

localisations to T-fixed points vanish. But by theorem 5.17 the localisation is injective, hence c “ 0.

The set t ˆXT Ă Z is closed and considering it as a reduced subvariety, by Lemma 5.10 we get that

the restriction map

r : CrZs Ñ Crt ˆXTs – Crtss

is injective. We need to prove that the image lies in H and that r ˝ ρ is the localisation map H˚
TpXq Ñ H.

The latter comes directly from the definition, as ρpcqpv, ζiq “ c|ζipvq.

Now we need to prove that for any Ei and v P ki and f P CrZs we have fpv, ζi0q “ fpv, ζi8 q. Note

that as the infinitesimal action of ki is trivial on Ei, we have ki ˆ Ei Ă Z. This means that over each

v P ki there is a closed subset tvu ˆEi Ă Z. As the reduced subscheme structure makes this is a projective

variety (P1, precisely), every global function on Z needs to be constant along this subvariety. As it

contains pv, ζi0q and pv, ζi8 q, we get fpv, ζi0q “ fpv, ζi8 q. ■

Remark 5.19. Thus the ring of regular functions on the total scheme is isomorphic to the equivariant

cohomology for regular actions of principally paired group on smooth projective varieties, by Theorem 5.7,

as well as for GKM spaces by Theorem 5.16. We expect this to hold for a larger class of group actions on

smooth projective varieties, including spherical varieties.

In the above, we used the fact that the torus-fixed points are isolated, but we also needed the GKM

cohomology result, i.e. Theorem 5.17. This way we know that any function on the zero scheme will be a

cohomology class, as it will determine an element that already lies in H. Note that for arbitrary torus
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actions, every 1-orbit defines a similar condition on the image of localisation, but the image of localisation

will be in general stricty smaller than similarly defined H.

We can see that it is not enough to assume for the torus to act with isolated fixed points. Indeed, let

us consider X “ P2, but we restrict the standard action of the two-dimensional torus to one-dimensional

Cˆ. Take e.g. the action t ¨ rx : y : zs “ rx : t2y : t4zs. The only fixed points are r1 : 0 : 0s and r0 : 1 : 0s

and r0 : 0 : 1s and hence if we consider any nonzero v P C – LiepCˆq, the associated vector field only has

those three zeros. On the other hand, for v “ 0 the zero scheme is the whole P2. Therefore Ztot Ă C ˆX

will consist of a vertical P2 and three horizontal lines. The action of t P Cˆ multiplies by t´2 on each of

those lines.

Any global function on Ztot determines polynomials f1, f2, f3 on those lines. Then CrZtots “

tpf1, f2, f3q P Crxs3|f1p0q “ f2p0q “ f3p0qu. There is an injective map H˚
Cˆ pP2q Ñ CrZtots, but it is

not surjective. From Example 3.20 we have H˚
Cˆ pP2q “ Crx, vs{

`

xpx ` 2vqpx ` 4vqq. Geometrically,

we see the map Ztot Ñ SpecH˚
Cˆ pP2q which contracts P2 to the point. We see that h2Cˆ pP2q “ 2, but

CrZtots
2 “ tpax, bx, cxq|a, b, c P Cu is three-dimensional.

A work is ongoing to determine under what assumptions this result holds. For example for many

affine Bott–Samelson varieties Löwit [52] proves H˚
GpX,Cq – CrZtots, as well as a version for equivariant

K-theory. Other examples and applications can be found in [40, §4].

6 Appendix: Graded Nakayama lemma

For the sake of completeness we provide here the proof of the version of graded Nakayama Lemma that

we need (see also [27, Corollary 4.8, Exercise 4.6]).

Let R be an Zě0-graded ring R “
À

ně0Rn and I “
À

ną0Rn the ideal generated by elements of positive

degree.

Lemma 6.1. If a Zě0-graded R-module M satisfies M “ IM , then M “ 0.

Proof. Suppose on contrary that a P M is a nonzero homogeneous element of minimal degree d P Zě0

present in M . By assumption M “ IM we have that

a “

k
ÿ

i“1

riai

for some ri P I, ai P M . But as ri P I, the minimal degree present in ri is at least 1. As ai P M , the

minimal degree present in ai is at least d. Therefore the elements riai have zero part in degrees less than

d` 1. In particular, we cannot get a as a sum of them, as it has nonzero part in degree d. ■

Corollary 6.2. Let M be an Zě0-graded R-module M . Suppose that elements pajqjPJ of M generate the

R{I-module M{IM . Then they generate M as R-module.

Proof. Let us consider the map of R-modules ϕ : RJ Ñ M defined by the elements aj . We have the exact

sequence

RJ
ϕ

ÝÑ M Ñ cokerϕ Ñ 0.

As tensor product is right exact, by tensoring with R{I we get an exact sequence of R{I-modules:

pR{IqJ Ñ M{IM Ñ pcokerϕq bR R{I Ñ 0.

By assumption the first map is an epimorphism, hence pcokerϕq bR R{I “ 0. In other words, cokerϕ

satisfies the conditions of lemma. Therefore cokerϕ “ 0, hence ϕ is surjective. ■
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