Spectrum of equivariant cohomology as a fixed point scheme
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Abstract

An action of a complex reductive group G on a smooth projective variety X is regular when all
regular unipotent elements in G act with finitely many fixed points. Then the complex G-equivariant
cohomology ring of X is isomorphic to the coordinate ring of a certain regular fixed point scheme.
Examples include partial flag varieties, smooth Schubert varieties and Bott—Samelson varieties. We
also show that a more general version of the fixed point scheme allows a generalisation to GKM spaces,

such as toric varieties.
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1 Introduction

In recent work [4I], [42] a certain infinitesimal fixed point scheme for the action of GL,, on Gr(k,n) — the
Grassmannian of k-planes in C™ — is used to model the Hitchin map on a particular minuscule upward
flow in the GL,,-Higgs moduli space. In turn, it was noticed that this fixed point scheme is isomorphic
to the spectrum of equivariant cohomology of Gr(k,n), and thus the Hitchin system on these minuscule
upward flows can be modelled as the spectrum of equivariant cohomology of Grassmannians. In this paper
we show that the appearance of the spectrum of equivariant cohomology as a fixed point scheme is not a
coincidence, and holds in more general situations.

We start more generally with partial flag varieties. Let G be a connected complex reductive group
and P < G be a parabolic subgroup. The partial flag variety is the projective homogeneous space G/P of
parabolic subgroups of G conjugate to P. Equivalently we can think of points in G/P as parabolic Lie
subalgebras conjugate to the parabolic Lie subalgebra p := Lie(P) < g. Using this point of view we can

define the Grothendieck—Springer partial resolution as

pp g = {(z,p") eg x G/Plzep’} —g, (1.1)

given by projection to the first coordinate. It is a proper dominant morphism. Over regular elements
in g the morphism pp is finite, cf. [2] and Lemma Recall that x € g is regular when its centraliser
g® < G under the adjoint action has dimension equal to the rank of G. The regular elements of g form
an open dense subset in g. An equivalent definition of being regular is that the corresponding fiber of 7
is finite for P = B a Borel subgroup. This implies that the Grothendieck—Springer partial resolution is
generically finite-to-one, i.e. an alteration.

One often studies the Grothendieck—Springer map as part of the commutative diagram:

p —— t/Wy,

[

g —— W



Here p is the natural map
p:g—g/G=t/W,

where t = Lie(T) is the Lie algebra of the maximal torus and W = Ng(T)/T is the Weyl group of G. We
can define a map

vp:gp — pJP =)L = t/Wy,
where L := P/P,, the quotient with the unipotent radical of P, is the Levi quotient of P, [ is its Lie
algebra and Wy, is its Weyl group. If P’ is conjugate to P, with Levi quotient L', then for any z € p’
the map is given by sending (z,p’) € gp to the image of x € p’ in p’/P’ =~ ' /L’ and then canonically
identifying I' /L’ =~ [/L. If P =~ B is Borel, then L. = T is the maximal torus and this later is used to define
the universal Cartan subalgebra, see e.g. [22, Lemma 6.1.1].

Fix a principal sla-triple {e, f, h) =~ sly g, where e € g is regular nilpotent. Let
S=e+Cy(f)cyg (1.2)

be the Kostant section, where Cy(f) is the centraliser of f in g. We have a corresponding principal

SLy — G subgroup giving
7:C* < SLy — G. (1.3)
We define a C*-action on g by
Ax=A"2Ad, (). (1.4)

As ad.(y)(e) = A2e, we see that this C*-action leaves the Kostant section invariantﬂ

Denote now Sp := p'(S). Then we have the commutative diagra

Sp = gp — /Wy,

"

S——9—Ft/W
such that p o¢ is an isomorphism, for S is the Kostant section. On the other hand vp o7 is finite as up
and 7 are, when restricted to regular elements. Finally, the degree of the finite maps up and 7 both equal
the Euler characteristic x(G/P). Thus it follows that vp o7 is a finite map to a normal variety t/W of

degree one, thus an isomorphism.

We also note that the equivariant cohomology algebra
HE(G/P;C) = HE, p(G;C) = Hf = Hf = C[(V

is naturally a HY := H*(BG;C) =~ C[t]W-algebra. From this algebra structure we have a canonical
algebra homomorphism ¢ : H, — H(G/P;C). We denote the induced map between the affine spectra by

[+ Spec(HE(G/P; C)) — Spec(H{),

which is C*-equivariant with respect to the actions induced from the gradings on both sides. As the
odd cohomology H°(G/P;C) is trivial, the space G/P is equivariantly formal [32]. In other words, the

H¢-module HE(G/P;C) is free. Then we have the following commutative diagram.

I This action is considered e.g in [29], where the associated grading is referred to as the Kazhdan grading.
2In the case P = B this diagram was communicated to us by Zhiwei Yun.



Sp — gp — t/Wr, —=— Spec(HE(G/P;C))

yp J,Lp |» s (1.5)

S g —5— /W = Spec(HE)

Thus we see that the partial Grothendieck—Springer resolution pp over the Kostant section S is
precisely the spectrum of the G-equivariant cohomology algebra of the partial flag variety G/P. In this
paper our motivation is to show that the appearance of the spectrum of equivariant cohomology in
is not a coincidence. We will show that the same holds for H-regular actions of a principally paired group

H on a smooth projective variety X.

Definition 1.1. 1. A complex linear algebraic group H is principally paired if it contains a pair
{e,h} < b in its Lie algebra, such that [h,e] = 2e and e is a regular nilpotent, and an algebraic group
homomorphism B(SLs) — H from the Borel subgroup of SLa whose differential maps the regular

unipotent to e and the appropriate diagonal element to h.

2. An action of a principally paired group H on a smooth projective variety X is regular when a regular

unipotent element v € H has finitely many fized points.

In fact a unipotent element always has a connected fixed point set [44], so for a regular action we have
X% = {o} for some 0 € X. Examples of principally paired groups include parabolic subgroups of reductive
groups (see Lemma, such as Borel subgroups and reductive groups themselves. While examples of
H-regular varieties include for H = G the partial flag varieties G/P considered above (see [2]), smooth
Schubert varieties are regular when H = B < G is a Borel subgroup and Bott—Samelson resolutions will
be examples for parabolic subgroups H = P < G of reductive groups.

We construct (see Section a vector field V4 on h x X such that for any y € b its restriction

(Vo)y € HY(X; Tx)

to {y} x X is the infinitesimal vector field on X generated by y. Recall the Kostant section from
for reductive group. For an arbitrary principally paired group, we proceed as follows. Choose a Levi
subgroup L in H, so that H = N x L, where N is the unipotent radical of H. The regular nilpotent e € H
then splits into e = e, + ¢; with e,, € n, ¢; € [. The latter can be completed to an sly-triple (e, fi, ;)
in [ and we take S = e + C|(f;). We prove in Theorem that it is a section of the natural map
h — h/H = t/W = Spec(Hj;), in particular S = Spec(H};).

Denote by Vs := Vy|sxx the vector field Vj restricted to S x X. Let Zs < S x X be the zero scheme
of Vs, i.e. the subscheme defined by the sheaf of ideals generated by Vs(Osxx) € Osx x, where Vs acts
on Ogyx as a derivation. The distinguished homomorphism B(SLy) — H restricted to the diagonal torus
gives a map 7 : C* — H and a C* action defined as in will preserve S. We also pull back the action
of Hvia 7: C* — H on X to an action of C* on X. Then Zg will be preserved by the diagonal C*-action

on § x X. Our main theorem is the following:

Theorem 1.2. Suppose a principally paired group H acts reqularly on a smooth projective complex variety

X. Then the zero scheme Zs = S x X of the vector field Vs is reduced and affine and its coordinate ring,



graded by the C*-action above, is isomorphic as a graded ring

C[Zs] —— H{(X;C)

W*T T

C[S] ——— H}

to the H-equivariant cohomology of X, such that the structure map Hf; — H{j(X;C) agrees with the
pullback map Hi; = C[S] — C[Zs] of the natural projection 7 : Zg — S. In particular,

Zs +—=— Spec(Hf(X;C))

| |

S +—<— Spec(Hf),

i.e. the spectrum of equivariant cohomology of X is C*-equivariantly isomorphic to the zero scheme

Zs <8 x X over § = Spec(Hyfy).

We study first the case of solvable principally paired groups. Then the general case is reduced to the
Borel subgroup.

There is another version of our Theorem [1.2| where we do not restrict to the Kostant section S. Namely,
if a reductive group G acts regularly on X and we denote by Z; < g x X the zero scheme of Vj, then the

G-action on g x X leaves Z, invariant. We have the following:

Theorem 1.3. Suppose a complex reductive group G acts reqularly on a smooth projective complex variety

X. Then the G-invariant part of the algebra of the global functions on the total zero scheme Zg4

C[24]% —— HE(X;0)

I |

Clg]® ——— H{

is graded isomorphic with the equivariant cohomology of X over C[g]® = H{. The gradings on Clg]® and

C[ZQ]G are induced from the weight —2 action of C* on g and the trivial action on X.

Note that for partial flag varieties X = G/P the total zero scheme Z; =~ gp — g is just the
Grothendieck—Springer resolution as above.

However, here the total zero scheme is no longer affine. On the other hand this version also holds for
GKM spaces, including toric varieties. Recall [32] that a smooth projective variety X with an action of a
torus T is a GKM space if the number of both the zero- and one-dimensional orbits is finite. We can form
the total zero scheme Z; c t x X as the zero scheme of the vector field V; generated by the T-action, as

before.

Theorem 1.4. Suppose that a torus T acts on a smooth projective complex variety X with finitely many

zero- and one-dimensional orbits. Then the algebra of the global functions on the total zero scheme Z

Cl2] —— H}(X;C)

| I

Clt] —=—— HX

is graded isomorphic to the equivariant cohomology of X over C[t] = HZ. The gradings on C[t] and C[Z]

are induced by the weight —2 action on t.



The proof is straightforward, using the explicit description of H¥(X;C) from [32]. We expect this
version to hold for an even larger class of group actions, including spherical varieties. However, in this
paper we concentrate on a more restrictive class of regular group actions. In that case, as in Theorem
we can find an affine zero scheme Zs < § x X, which is precisely the spectrum of equivariant cohomology
of X.

Our main Theorem was proved for the case of regular actions of the Borel B(SLy) by Brion—Carrell
[16, Theorem 1, Proposition 2]. The strategy of our proof of Theorem — in the case of more general
Borel subgroups — is broadly following the approach of the proof in [16]. Using vector fields with possibly
degenerate isolated zeros to obtain topological information on a complex manifold from infinitesimal
information goes back to the pioneering works of Bott [12] [7]. For a comprehensive survey see [17].

We should also mention that there are other papers in the literature which study the spectrum of
equivariant cohomology geometrically, see e.g. [31] and the references therein. More recent example is [43],
where the spectrum of equivariant cohomology of certain varieties also appears as a fixed point scheme,
albeit of another — 3D-mirror — variety.

We finally note that many of our examples in this paper will be equivariant cohomology rings of partial
flag varieties, and as such they model the Hitchin system on various Lagrangian upward flows [41},[42]. The
pictures arising e.g. in §4.4] could be then thought of depicting the various fixed point schemes, spectra of
equivariant cohomology or the Hitchin systems on corresponding upward flows.

The contents of the paper is as follows. In Section [2| we describe the basic properties of actions of
algebraic groups and vector fields associated with them. In particular, in §2:2| we introduce the total vector
field which underlies the constructions used throughout the paper. In §2.4 and §2.5 we discuss regular
elements and principal integrable b(sly)-pairs. In we generalize the Kostant section to arbitrary
principally paired groups, and in we discuss basic properties of regular actions. Section [3| contains
the proof of Theorem which is the equivalent of Theorem for the solvable group. Based on that,
in Section [ we prove Theorem [I.2} In §5.1 we generalize the theorem to some singular varieties. Finally,
and contain the proofs and examples for Theorem [I.3] and Theorem [1.4
Acknowledgements. We would like to thank David Ben-Zvi, Michel Brion, Jim Carrell, Harrison Chen,
Nigel Hitchin, Quoc Ho, Vadim Kaloshin, Friedrich Knop, Jakub Lowit, Anne Moreau, Richard Rimanyi,
Andras Szenes, Zsolt Szilagyi, Michael Thaddeus and Zhiwei Yun for useful comments and discussions. We
also thank the referees for useful comments. The first author was supported by an FWF grant “Geometry
of the top of the nilpotent cone” number P 35847. The second author was supported by an Austrian
Academy of Sciences DOC Fellowship. All figures were generated in Mathematica.

2 Generalities

2.1 Notation

We consider all the algebraic varieties, including algebraic groups, to be defined over C. For an algebraic
variety X, by C[X] = Ox(X) we denote the algebra of regular functions on X. All the cohomology groups
will be understood to have complex coefficients. For a Lie algebra g and a subset V < g we denote by
Cy(V'), Ng(V) the centraliser and normaliser of V' in g, respectively. If V' = {v}, then we also write Cy(v),
Ngy(v). We drop the lower index if the ambient Lie algebra is obvious. For any Zso-graded C-algebra
R =@®7_, R, we denote by Pr(t) its Poincaré series, i.e.

Pr(t) = ) dime(R,)t".
n=0



Let diag(v1,ve,...,v,) be the diagonal n x n matrix with diagonal entries v1, va, ..., v,. We will denote
by I, = diag(1,1,...,1) the n x n identity matrix. For any algebraic group G with Lie algebra g, by g,
we denote the set (in general not a subalgebra) of nilpotent elements of g, as defined in [I1] 4.5]. For a

commutative algebra A with a filtration F,, we denote by Grgr(A) the associated graded algebra.

2.2 Vector fields

Recall that a vector field on a smooth algebraic variety X is a derivation on the sheaf of regular
functions on X. This means that for any Zariski-open subset U < X we are given a C-linear derivation
Ox(U) - Ox(U) and it is natural with respect to U. Given a vector field V on X, if z € X is a closed
point in X, we can restrict the derivation defined by V to the local ring Ox ;. By restricting to the
maximal ideal m, < Ox , and evaluating the derivations of functions at z, we get a map m, — C. In fact,
by the Leibniz rule it has to vanish on m2, hence we get a tangent vector V,, € Homg(m,/m2,C) ~ T}, x.

Whenever an algebraic group H acts on a variety X, it yields a Lie algebra homomorphism ¢ : h —
Vect(X) from b = Lie(H) to vector fields on X, see [23]. We will want to define the total vector field on

h x X. As it is a local problem on X, we can restrict to an affine open set U. Then
Clh x U] = C[h] @c C[U] (2.1)

and we need to define a derivation on this C-algebra. We can view ¢|y as an element of h* ®c Vect(U). As
C[b] = S*(b*), we have a multiplication map h* ® C[h] — C[h]. Additionally, Vect(U) are by definition
the derivations on C[U], which gives a C-bilinear Vect(U) ® C[U] — C[U]. Those two maps together
with lead to a C-bilinear map

(h* ® Vect(U)) ® C[h x U] — C[h x U].
Fixing ¢|y € (h* @ Vect(U)) gives a derivation C[h x U] — C[h x U].

Definition 2.1. The vector field defined by this derivation will be called the total vector field of H-action
on X.

Explicitly, let ¢ = > ¢; ® D; for ¢; € h*, Vect(U). Then the defined derivation on f® g € C[h] @ C[U]

takes value

Wi - £)® Dilg) € C[h] @ C[U]. (2.2)

This gives the total vector field on h x X. One can note that the vector field is tangent to {y} x X for
any y € b, i.e. as a derivation it preserves the set of functions vanishing on {y} x X. Indeed, locally such
functions are sums of f ® g € C[h] ® C[U] such that f(y) = 0, and in such case the image of the derivation
also vanishes at {y} x X. The vector field restricted to {y} x X is precisely ¢(y) and for any y € h
with H acting on X we will denote this vector field by V,,. Later we will consider restrictions of the total
zero schemes to bigger subsets of b.

One sees that for any y € h and x € X the value V|, of the vector field V;, at = can be recovered by

considering the derivative at 1y of the map H — X defined as g — g - x, and evaluating it on y.

Definition 2.2. Let V' be a vector field on a smooth variety X. For each open set U c X it gives a
derivation DY : Ox (U) — Ox (U). Let us consider the ideal sheaf generated by the image Dy (Ox) < Ox.
This is the defining ideal of the zero scheme of V on X.



Remark 2.3. One can also view vector fields on smooth varieties as sections of the tangent bundle. As the
tangent bundle is a locally free sheaf, we can define the zero scheme of the vector field by considering
it locally as a tuple of regular functions (see Lemma . In other words, if the tangent bundle is
free over an open subset U < X, after choosing a trivialisation, its section V is defined by n-tuple

of regular functions fi, fo,..., fn. Then the zero scheme of V on U is the zero scheme of the ideal

(f1: f2,---. fn) € Ox(U).

2.3 Background results on algebraic groups and vector fields

We first recall (a part of) the theorem of Borel on solvable groups ([I1, Theorem 10.6], see also [55]
Theorem 16.33]) that we will often tacitly use throughout.

Theorem 2.4. Let H be a connected solvable group with Lie algebra by and H,, its set of unipotent elements.
Then

1. Hy is a connected normal closed, unipotent subgroup of H containing [H, H].

2. The mazimal tori in H are all conjugate. If T is a mazximal torus, then H = H, x T. The Lie algebra

of H,, consists of all nilpotent elements of .
3. If T is a mazimal torus, then any semisimple element of H is conjugate to a unique element of T.

Remark 2.5. Let b, be the set of nilpotent elements of h. It follows from above that b,, is a Lie subalgebra
of h. As it consists of nilpotent elements, hence acting nilpotently by the adjoint action, by Engel’s
theorem it is nilpotent itself. Moreover it contains [, h]. In addition, from the second statement we get
that b = b, @ t for t = Lie(T).

Now assume we are given a group action H G X of an algebraic group. For any g € H(C), the action of

g is an isomorphism X — X. If we fix any closed point = € X, its derivative Dg|, at x is an isomorphism

Ty x = Tge,x. We will simply write it as Dg if = can be inferred from the context.

Lemma 2.6. Let an algebraic group H act on a variety X. Then for any g € H, y € b = Lie(H) and

x € X we have
Vady ) lge = Dg(Vyla).

Proof. Let : H x H— H denote the multiplication map and p : H x X — X denote the action of H on

X. Consider the following commutative diagram.

HxHxHxX
id x id xp
Aid \
HxHxX HxHxX
pxid id xp

Hx X Hx X
P
P
X

If we fix a point on the top, it yields an analogous commutative diagram of differential maps. Take
(9,1, %, g7) e Hx H x H x X and (0,y,0,0) in its tangent space. Going through the left branch, it is
mapped to Vg, (y)|g- and going through the right one, it is mapped to Dg(V,|.). |



Lemma 2.7. Let A be a commutative C-algebra. Let Dy : A — A be a C-linear derivation and V a
C-vector space of C-derivations A — A normalised by Dy, i.e. for any Dy €V we have [Dyw, Dy]| € V.
Let m,, be a radical ideal in A that contains im Dy for all Dy € V. Then for any f € A/(im Dw)pyey

we have Dy f € my,.

Proof. Let T = (im Dy ) p,, ey be the ideal generated by images of all the derivations from V. We first
prove by induction that (Dy)™(I) < m, for all n = 0. The case n = 0 follows from the assumption that
7 < m,. Now assume that (Dy)"(I) € m, for some n > 0. Fix one particular derivation Dy, € V; we will

want to prove that (Dy)"*!im Dy < m,. We have Dy Dy — Dyw Dy = Dz € V, therefore
DY Dy, — DY Dw Dy = Dy Dy,

hence
DY Dy = DY (DwDy + Dz).

Now clearly im Dy Dy + Dy < Z, hence by inductive assumption the image of right-hand side is always
in m,. Therefore im D} Dy < m,, as we wanted to prove.
Now assume that f € v/Z and let f* © Z. We then know that f* € m,,, therefore f € m,. By above we

also know that DY f* € m,. By Leibniz rule D% f* is the sum of terms of the form

k
[ (D5 )

i=1

for non-negative integers ay,as ..., ay such that a; + as + -+ + ax = k. Note that for all the terms
except for (Dy f)*, at least one of ay, s, ..., ay is zero, and all those terms belong to mx, as f € m,.
Therefore we get (Dy f)* € m,, hence Dy f € m,. [ ]

As a geometric counterpart, we get the following lemma, which will prove very useful in our proofs.

Lemma 2.8. Let Y be a vector field on a smooth variety X. Assume that V is a subspace of the C-vector
space all global vector fields. If Y normalises V, i.e. [Y,V] €V, then'Y is tangent to the reduced zero
scheme of V.

In particular, if a Lie group H acts on X, and a subspace V < § has isolated (simultaneous) fized

points, then they are fized by the normaliser Ny (V) of V in b.

Note that even the reduced zero scheme of V might be singular. A vector from a tangent space to X
is considered tangent to a subscheme Z if it is in the image of the tangent space of Z, see the discussion
in Section Equivalently, in local affine neighbourhood it annihilates all the functions that vanish on
Z, i.e. those from the defining ideal of Z.

Proof. As the statement is local, we can assume that X = Spec A is affine. Let x € X be a simultaneous
zero of V. Then x corresponds to a maximal ideal m, < A. The space V gives rise to a vector space of
C-derivations A — A, and Y to a single derivation Dy : A — A. By assumption on z, for any Dy € V
we have im Dy © m,,. Hence, by Lemma [2.7] the derivation Dy vanishes at the point  on the ideal of

the reduced zero scheme of V. Thus Y is tangent to that scheme. |

Remark 2.9. There is an alternate, analytic proof, which works under the assumption that ) is finite
dimensional— which will be always the case for us. It is non-algebraic and hence also non-translatable
to other fields, but one could argue it is less technically demanding, and moreover works in a smooth,

not necessarily algebraic setting, so we present it here as well. In fact, the assumption, that V is finite



dimensional, can also be dropped, if we use the fact that the functions we deal with are all analytic, hence
they vanish locally if all the derivatives in a point vanish — this approach mimics the algebraic proof.
Let ¢ = [Y, _]|v be the commutator map V — V induced by Y. Let x be fixed by V and let us consider
local one-parameter subgroup ¥; around z defined by the vector field Y. For any vector field W we have
d .
[K W]x = % ((Dx\ljt) W\Pf(z)) |t=0

and analogously

d _
[Y; W]‘I/f(r) = % ((DIE\I]U) 1W‘I}t+u(m)) |u=0'

Composing this with the linear map (D, V¥;)~! we get, for W € V, the following:

(D290 )i, 1) = 3 (Do) Wy ) |

Hence if we consider the map 7 : (—¢,&) — Hom(V, T, X) defined as

u=t"

T(t)(Y) = (DaVu) ™ Wy, (a)

we get p
Zr(t) = 6*7(0).

We get a linear equation, and in particular as 7(0) vanishes (because V vanishes at x), we get that

that 7 vanishes also around 0, hence 7 moves along fixed points of V.

The next Lemma will be used to show that zeros of generalised Jordan matrices are zeros of the torus.

Lemma 2.10. Let a Lie algebra b acts on a smooth variety X. Let d,n € h commute and assume that
the Lie subalgebra generated by [b,h] and n is nilpotent. Let x € X be an isolated zero of the vector field
V; assoctated to j = d + n. Then x is also a simultaneous zero of Cy(d). In particular, x is a zero of any

abelian subalgebra of b containing d.

Proof. Let € be the Lie subalgebra generated by [h, h] and n. By Lemma we first get that x is a zero
of d and n, as they commute with j.

We will first prove that x is a zero of C'(d) = Cjy(d) n€. As £ is nilpotent by assumption, its subalgebra
C’(d) is nilpotent as well.

By definition d is in the center of C(d), in particular it commutes with C’(d). Hence from Lemma [2.8]
we have that x is a zero of N¢v(q)(C-n). It is therefore an isolated simultaneous zero of d and Nev(q)(C-n)

and we can apply the same argument repeatedly to get that for i = 1,2,... it is a zero of N(ij, () (C-n).

) oo}
The sequence (N’ '(a) (C- n))

in C'(d). As C’(d) is nilpotent, it then has to be equal to whole C”(d) (see [14] Proposition 3 in Chapter

1, §4.1]). Therefore d and C’(d) vanish at . But [Cy(d), Cy(d)] < Cy(d) n [h,h] < Cy(d) nt = C'(d),

hence C’(d) is normalised by whole Cp(d). Therefore by Lemma [2.8] whole Cy(d) vanishes at z. ]

has to stabilise at a Lie subalgebra of C’(d) which is its own normaliser
1

From Remark the assumptions about d and n hold whenever § is solvable, [d,n] = 0 and n € b,,

(as b, is nilpotent and contains [h, h] as well as n).

2.4 Regular elements

Let H be an algebraic group and T < H be a maximal torus, of dimension r. We will call an element
v € h = Lie(H) regular if dim Cy(v) = r. This is stronger than the usual notion of a regular element in
literature (see e.g. [21]) — an element whose centraliser has minimal possible dimension. All the centralisers
have dimension not smaller than r, but it is possible that no regular element exists. For example for

H = C* x C — the product of the multiplicative and the additive group — all centralisers are 2-dimensional.
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Ezample 2.11. For H = GL,,(C) or H = SL,,(C), a regular element of h is a matrix with all eigenspaces of
dimension 1. Among the regular elements, the regular semisimple ones are the diagonalisable matrices

with distinct eigenvalues, and a regular nilpotent matrix is conjugate to a single Jordan block.

Example 2.12. More generally any reductive group G contains regular elements in its Lie algebra, in
particular a regular nilpotent element. Indeed, once we choose a maximal torus T < G and positive roots,
we can take e = x1 + x2 + -+ - + x5, Where x1, o, ..., x5 are the root vectors of g corresponding to the
positive simple roots (s = r — dim Z(QG)). Then e is a regular nilpotent in G (see [49] Section 4, Theorem
4]).

The condition dim Cy(w) > r is a Zariski-closed condition on w — as it means that [w, —] has sufficiently
small rank, which amounts to vanishing of some minors of a matrix. Therefore, if H admits a regular
element in its Lie algebra, the subset of regular elements §*™® — h is open and dense.

Note that if H is solvable, then by Theorem we have [h, b] < b,,. This means that for any v € h we
have [v,h] < b,. As the codimension of b, is exactly r = dim T, the dimension of maximal torus, v being
regular is equivalent to [v, h] = b,,.

Note also that if H' < H is a subgroup which contains a maximal torus T of H, then any regular v € §
contained in b’ is also regular in h’. Indeed, if r = dim T, then dim Cy (v) < dim Cy(v) = r, but at the
same time dim Cj(v) cannot be less than the dimension of the maximal torus T of H’. This means in

particular that the centraliser Cy(v) is contained in b’

2.5 sly-triples and b(sly)-pairs

The classical version of Carrell-Liebermann theorem ([20, Main Theorem and Remark 2.7]) deals with an
arbitrary vector field V' on a smooth projective variety X, which vanishes in a discrete, nonempty set.

They prove the following

Theorem 2.13. Let X be a smooth projective complex variety and V' a vector field with finitely many

zeros and denote its zero scheme by Z. Then there exists an increasing filtration Fy on C[Z] such that
H*(X) ~ Grp(C[Z]).
The degree on the left is multiplied by two, in particular X only has even cohomology.

The theorem therefore gives some information on cohomology, but this depends on determining the
filtration F,. This can be hard in general. Only if V comes with a C*-action which satisfies t, (V) = t*V/
for some nonzero integer k, we get H*(X) =~ C[Z(V)] ([6], [3, Theorem 1.1]). We will consider those

vector fields as coming from an action of a Lie group. Hence the following definition.

Definition 2.14. For any complex Lie algebra b, by b(sly)-pair in h we mean a pair (e, h) of elements of
b that satisfy the condition [h,e] = 2e. By slo-triple in b we mean a triple (e, f, h) of elements of b such
that [h,e] = 2e, [h, f] = =2f, [e, f] = h.

If G is a semisimple group, then by Jacobson-Morozov theorem (see e.g. [22] Theorem 3.7.1]) for any
nilpotent element e € g there exists an sly-triple (e, f,h) in g such that f is nilpotent and h is semisimple.
The same is then true for any reductive Lie group G, as a reductive Lie algebra is a direct sum of its
center and a semisimple ideal ([48], Theorem II.11}).

Let us consider the connected subgroup K © G whose Lie algebra ¢ is the smallest one which contains e,
f, h (see [II], 7.1]). Then the Lie algebra of [K, K] is equal to [¢, €] (see [II], Proposition 7.8]). However, by
[11, Corollary 7.9] we have [, €] = [span(e, f, h),span(e, f, h)] = span(e, f, h). Hence we get an algebraic
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subgroup [K, K] (contained in K, hence equal to K) of G whose Lie algebra is span(e, f, h). As its Lie
algebra is semisimple, the group itself is semisimple. By [65, Theorem 20.33], if it is nontrivial, it has to

be either SLy(C) or PSLy(C). In either case, there is a covering map
¢ : SLy(C) - K. (2.3)

As any automorphism of sly(C) lifts to an automorphism of SLy(C), we can assume that the canonical

basis eq, fo, fo of slo maps to e, f, h, respectively. Hence we get the following.

Proposition 2.15. For any nilpotent element e in the Lie algebra g of an algebraic reductive group, there
exists an sly triple (e, f, h) within g with f nilpotent and h semisimple. If e # 0, the element h integrates

to a map C* — G with discrete kernel, whose differential is h.

Remark 2.16. As we saw in Example if G is reductive, then there exists a principal nilpotent e € g.
By the proposition, this means that there is a an sl triple (e, f, h) with e principal nilpotent, f nilpotent
and h semisimple. By the general theory of representations of sly, the ranks of the operators [e, —] and

[f, —] are equal, hence f is also regular. This motivates the following definition.
Definition 2.17. An slo-triple (e, f, h) will be called principal if e and f are regular nilpotents.

Definition 2.18. For a linear algebraic group H, an integrable b(sly)-pair in b = Lie(H) is an sly pair
(e, h) in b which consists of a nilpotent element e and a semisimple element h which is tangent to some
one-parameter subgroup H : C* — H, i.e. h = DH;(1). This means that (e, h) comes from an algebraic

group morphism By = B(SLa) — H. We call an integrable b(sly)-pair principal if e is a regular element

of b.

Remark 2.19. Note that, unlike an slo-triple, a b(sly)-pair does not have to be integrable. As an easy

counterexample, we may take

0 0 0
h=0 n—-2 0 ) e=10
0 0 2 —2m 0

o O =
o o O

for H = SL3(C). Then [k, e] = 2e, but A is not tangent to a one-dimensional torus (we can replace m with

any irrational number).

Definition 2.20. We call a connected linear algebraic group H principally paired if it contains a principal

integrable b(sly)-pair.

For example a reductive group is principally paired because of Proposition More generally we

have the following
Lemma 2.21. Let G be a reductive group. Then any parabolic subgroup P < G is principally paired.

Proof. Because there is a Borel subgroup B < P, it is enough to prove the result for B = P. Note that if
B = By is the Borel subgroup of SLy(C), then the image ¢(Bz) of (2.3) is a solvable connected subgroup
of G, hence it is contained in a Borel subgroup of G. All Borel subgroups of G are conjugate (see [IT],

Theorem 11.1]), hence they are all principally paired. |

2.6 Kostant section and generalisations

The seminal work of Kostant shows the following theorem ([49, Theorem 0.10]).
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Theorem 2.22. Assume that G is a semisimple group and (e, f,h) is a principal sly-triple. Then every
reqular element of g = Lie(G) is conjugate to exactly one element of S = e + Cy(f). Moreover, the

restriction C[g]® — C[S] is an isomorphism.

The affine plane S is called the Kostant section. We will provide in Theorems and a version

that works for arbitrary principally paired groups.

2.6.1 Solvable groups

Assume first that H is a solvable group. Let T be its maximal torus and b, be the nilpotent part of
h = Lie(H). Assume that e € bh,,h € t are such that (e, h) is a principal integrable b(sly)-pair. Let
{H%},ecx be the one-parameter subgroup in H to which h € b integrates.

Lemma 2.23. All elements of e + t are regular and not conjugate to one another.

Proof. Assume that for some v € t the element e + v is not regular. This means that dim Cy(v) > r + 1.

As Adge(e +v) = t?e + v, for any t € C* we have
dim Cy (e + v/t?) = dim Cy, (t?e + v) = dim Cy(e + v) > + 1.

As the set of nonregular elements is closed in b, we get dim Cy(e) = r + 1. This contradicts the regularity
assumption.
For any « € h and M € H we have Ady(z) — x € [h, ] < b, by [1I} Propositions 3.17, 7.8]. Therefore

no two distinct elements from e + t can be conjugate to one another, as they differ on the t component. W
Lemma 2.24. EI Every regular element of b is conjugate to a unique element of e + t.

Proof. We know that h = t®h,,. Assume that x = v + n, where v € t and n € b, is regular. This means
that [z, h] = b, (see Section . Let us consider the map

Ad_(z) :H—b. (2.4)

As in the proof of the previous lemma, we see that the image is actually contained in v + b,,.

Note that the image of the derivative of at 1is [z, ] = b, = To(v+h,). Therefore by [58, Theorem
4.3.6] the morphism Ad_(z) : H — v+b,, is dominant. Analogously, the morphism Ad_(e+v) : H — v+b,
is dominant, as e + v is regular from the previous lemma. Therefore the images of Ad_(z) and Ad_(e +v)
are both dense in v + h,. By [68, Theorem 1.9.5] they both contain open dense subsets of v + b,, and
hence they intersect, which means that  and e + v are conjugate.

Uniqueness follows from the previous lemma. |

Now we will also provide an equivalent of the classical Jordan form, for arbitrary solvable groups.
Recall that by Remark every x € by is of the form z = w + n, where w € t and n € b,,.

Theorem 2.25. For any x = w+n € b withw € t, n € b, there exists M € H such that x = Adp(w+n')

with [w,n'] =0 and n’ € b,,.

Proof. We have the Jordan decomposition (see [I1, Theorem 4.4]) = 5 + z,,, where x5 is semisimple,
%, is nilpotent and [zs,2,] = 0. Then by Theorem the element =4 is conjugate to an element of t.
Hence there exists M € H such that Ady;-1(zs) € t. Note that

Adel(xs) —Ts € [h’ h]

3This is based on an argument provided by Anne Moreau.
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as in the proof of Lemma Moreover
xs—w=(x—x,)— (r—n)=n—x, € by

As [b,h] < b, by Theorem we therefore get AdJT/[1 (zs) —w € by,. As both Adp;—1(zs) and w lie in ¢,
we get that they are equal. Therefore putting n’ = Ad;;-1 z,, we get

T=x5+ 2, = Adpy(w) + Adpys(n') = Adps(w + 1)
and the conditions are satisfied. |

Note that if w € t'°8 := t n h*8 is a regular element in t, then the only nilpotent n’ commuting with w is

0. Therefore we get
Corollary 2.26. For every w € t'°® and n € by, the elements w and n + w are conjugate.

Ezample 2.27. Let us see two examples for H = B, the Borel subgroup (of upper triangular matrices) of

SL3(C). Let the principal nilpotent element e be of the form

10
0 1
0 0

)
I
o o o

1. Let w € t be of the form w = diag(0, vy, vs) — %Ig with v1 # 0, v # 0, v1 # vo. Then note that

the matrix e + w is diagonalisable in the basis defined by the matrix

1 1
1 v va(vz—v1)
M,=1|0 1 1 ;
V2 —U1
0 O 1

ie. e+w= MywM,'.

2. Consider the matrix e 4+ w, where w € t is of the form w = diag(0,v1,0) — %13 with vy # 0. If we

take
L= 0
My=10 1 1 |,
0 0 —n
then
0 1 0 0 0 1
0 vy 1|=My,|0 v, 0]|M;*
0 0 O 0 0 O
0 1 0
Therefore fore+w = [0 vy 1 |- 513 we get
0 0 0
—v1/3 0 1
(e +w) = M, 0 201/3 0 Mt
0 0 —v1/3

The matrix M, used here does not have determinant one. We can however multiply it by any cubic

root of vy ! to get a matrix from Bs.
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In the case of H = B,,, one can apply the following intuition. If w is a regular element of t, then
it is a diagonal matrix with distinct eigenvalues. Then if we add any upper triangular matrix, it is
still diagonalisable. Moreover, as all the entries are on or above the diagonal, we can diagonalise it by

conjugating with an upper diagonal matrix.

Remark 2.28. Even for H = B,,,, the Borel subgroup of SL,,, we cannot require w + n’ from Theorem
to be of the classical Jordan form, under no additional assumption on z. Even for w = 0, there is an
infinite number of nilpotent orbits of adjoint action of B,, on b,, for m > 6, see [25]. One can prove that

if z is a regular matrix, then we can actually find n’ which is a nilpotent Jordan matrix.

2.6.2 Reductive groups

Assume that G is a reductive group. Let T be its maximal torus, B a Borel subgroup containing T, B~ the
opposite Borel, U and U~ the respective unipotent subgroups. Let g, t, b, b, u, u~ be the corresponding
Lie algebras. Let (e, f, h) be a principal sly-triple in g, such that eeu, feu™, het. Let

S =e+ Cy(f)
be the Kostant section.

Lemma 2.29. Under the assumptions above
Ad_(=):U" xS —>e+b"
is an isomorphism.
Proof. If G is semisimple, then the map
Ad_(=):U" xS —>e+b"
is an isomorphism ([50, Theorem 1.2], see also another proof in [30, Theorem 7.5]).
Now if G is an arbitrary reductive group, let G be its adjoint group and let 7 : G — G2 be
the quotient map. From [55, Proposition 17.20] we have that 7(B) and w(U~) are Borel and maximal
unipotent in G*4, respectively. Note that ker 7 = Z(G) and the connected component of Z(G) is a torus

(55, Proposition 19.12]). As a torus contains no nontrivial unipotent elements, we have kerm n U~ = {1}.

Therefore 7|y- is an isomorphism U~ = 7(U~). We then know from above that

Ad_(=) :m(U7) x Sgaa = € + b

is an isomorphism. From [48, Theorem II.11] we can identify g*! with an ideal inside g such that
g=Z(g) ®g*.. Then we have

m(U7) x Sg = (7(U7) x Sgaa) % Z(g)

and
bg = bgaa X Z(g).
As the adjoint representation is trivial on the center of a Lie algebra, we have the following diagram,

where the middle column is the product of the left and right and the horizontal arrows are the projections.
’/T(Uf) X Sgad «—— U™ x Sg —» Z(g)

Ad_(-) Ad_(-)

e+tbiu «——et+bg —> Z(g)
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As the peripheral vertical arrows are isomorphisms, we get that also for G the map
Ad_(—=): U xS —e+b"
is an isomorphism. ]

Let us now consider the preimage of e + t and for any w € t denote by A(w) € U™, x(w) € S the elements
such that
Ad ) (e +w) = x(w). (2.5)
Note that we have two inclusions of affine spaces S — g and e +t — g. The former one induces the
isomorphism S = g/G, i.e. C[g]¢ = C[S] (by [AY, Section 4.7, Theorem 7]). The latter induces a map
C[g]¢ — C[e + t]. However, a regular element w € t is conjugate to w + e (see Corollary . Let us
then consider the composition C[g]® — C[e + t] — C[t], where the last map comes from translation by e.
It is equal to the map C[g]® — C[t] coming from inclusion t — g — as the dual maps of schemes agree on
a dense subset of t.
Note that if we compose x* : C[S] — C[t] with the isomorphism C[g]® — C[S] described above, then
we get the composite map above C[g]® — C[t], which now we know is induced by inclusion t — g. By
Chevalley’s restriction theorem (cf. [22] Theorem 3.1.38]) this map is an inclusion whose image is (C[t]wﬁ

Therefore we get

Proposition 2.30. The map x : t — S defined by the property (2.5)) induces an isomorphism t/W — S.

2.6.3 Principally paired groups

Let now H be any principally paired group. Let N be the unipotent radical of H. Then N is a normal
subgroup of H and H/N is reductive. Let L ¢ H be any Levi subgroup, i.e. a section of H — H/N. By
Mostow’s Levi decomposition ([56]), we can take for L any maximal reductive subgroup of H. We have
H =N x L and hence h = n@® [, where b, n, [ are the Lie algebras of H, N, L, respectively. Let r be the
dimension of maximal torus.

Assume that (e, h) is an integrable principal b(sly)-pair within h and let {H'} be the embedding of
C* to which h integrates. We can choose L such that h € [, hence we will assume it from now on. We

then have e = e,, + ¢;, where e, € n, ¢; € [. Let us consider, by Jacobson—-Morozov Theorem (cf. Section
2.5)), the sly-triple (eg, f1, h;) within [.

Lemma 2.31. For H and (e, h) as above, e; is a reqular element of I.

Proof. We know that e is a regular element of h. This means that [e, h] is of codimension r in . But
note that [e,h] € n@ [e;, 1] as n is an ideal. Therefore [e;, [] is of codimension at most r in [. Therefore

dim Ci(e;) < r, hence actually dim Cy(e;) = r and ¢, is regular in [. ]

Now, let B; be a Borel subgroup of L whose Lie algebra contains e¢; and h and inside it let T be a
torus whose Lie algebra contains h. In fact, B; is defined uniquely by those properties [22, Proposition
3.2.14] Let B = N x B; — it is easy to see that B is then a Borel subgroup of H. Let U be its subgroup
of unipotent elements. Given B; and T, let B;” be the opposite Borel subgroup of L and U;, U; the
unipotent subgroups of B; and B;". By b, by, , b;", u, u;, u; we denote the corresponding Lie algebras.
Let W be the Weyl group of H (equal to the Weyl group of L).

4Chevalley’s theorem is originally formulated for semisimple groups. However, if we again consider g2d as an ideal of g
such that g = g4 @ Z(g), we have

Clg]® = Clg™ @ 2(g)]°™ = C[¢*4]%™ @ Z(g) = C[t n "]V @ Z(g) = C[W,

where the third equality follows from original Chevalley’s theorem for G2d,
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Lemma 2.32. All the weights of {H'}-action on u are positive even integers.

Proof. As e is regular in H, it has to be regular in B as well. Therefore [e, b] = u (cf. Section [2.4]).
We can choose a basis of b which consists of eigenvectors of [h, —]. We then choose from it a subset
{v1,va, ..., v} such that {[e, v;]}¥_, forms a basis of u. Then [e, —] is an isomorphism span(vy, ..., v;) — u.

Let ¢ denote this restricted commutator operator [e, —]. For any v € b we have
[, [e,v]] = [[hs €], v] + [e, [h,v]] = 2[e, v] + [e, [R, v]],

hence if [h,v] = Av, we get [h, [e,v]] = (A + 2)[e,v]. Therefore for an h-weight vector v, ¢ satisfies the
condition

(7, v] = v < [h,¢(v)] = (A + 2)¢(v).

Let us consider a weight vector w € u such that [h,w] = Aw and assume that A is not a positive even
integer. We now know that w = ¢(w;) for some wy € b with [h,w1] = (A — 2)w;. As A —2 # 0, we have
wy € u (as t has only zero weights of Hf-action). Then analogously w; = ¢(ws) for we € b of weight A — 4.
As again A —4 # 0, we get wy = ¢(ws), and we continue this procedure to get an infinite sequence w = wy,
wy, Wa, ..., such that w; is a weight vector of weight w; — 2i. However, b is finite-dimensional, so we get

a contradiction. |

For our principally paired H the role of the Kostant section will be played by
S:=e+C(fi) ch. (2.6)

Note that in case H is solvable, this is the same as we consider in Section [2.6.1] i.e. S = e+ t, where t = [

is the Lie algebra of a maximal torus.
Lemma 2.33. The conjugation map

Ad_(-): U xS —e+b,
is an isomorphism.

Proof. With Lemma [2:31] we know that the conjugation map
Ad_(=) : U x (e + Ci(fi)) = er + b (2.7)

is an isomorphism. But note that the weights of T-action on u; are exactly the negatives of weights on u;.

Hence by Lemma evaluated on h they are all negative even integers. As n is an ideal in h, we have
(1, ,en] C 0.

However, we know (again from Lemma [2.32)) that the h-weight of e,, (equal to 2) is the lowest possible
among the weights in n. All the h-weights in [u; ,e,] would be lower. Therefore in fact [u; ,e,] = 0.

Hence U;” commutes with e,.
Then we get the conclusion simply by adding e,, to both sides of (2.7]). |

Now note that we are given two one-parameter subgroups: H® and H} generated by h and hy,

respectively. We show that they actually only differ by a center of L.

Lemma 2.34. Let G be a reductive group and e a regular nilpotent element in g = Lie(G). Then the only

semisimple elements in its centraliser Cy(e) are the ones in the center Z(g).
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Proof. Assume that v € g is a semisimple element such that [v,e] = 0. Choose a Borel subgroup B c G
whose Borel subalgebra b — g contains e and v and let n be the nilpotent part of b. We can choose a
maximal torus T within B whose Lie algebra contains v. Let r = dim T = dim Cy(e).

As e is regular in H, it is also regular in b and n = [b, e] (cf. Section [2.4). However, b = t@®n, so by
iterating we easily see that b is generated by e and t. Then as [v, e] = 0, this easily leads to [v,b] = 0. As

b was a Borel subalgebra and v is semisimple, from this [v, g] = 0 follows. ]

From this lemma, as [h,e] = [h,e] = 2e, we infer h — h; € Z(I). In the map Ad_(—) from Lemma
let us consider the preimage of e + t and for any w € t denote by A(w) € U™, x(w) € S the elements
such that

Ad 4wy (e +w) = x(w). (2.8)

We will now want to generalise Kostant’s Theorem First, we find the contracting C*-action on
S from . Note that as e; is regular in L, also f; is regular in L (see Remark . Moreover, as all
the weights of H'-action on 1; are positive integers, on u;” they are all negative integers. As the weight of
the action on f; is —2 (note that we use Lemma to switch between the actions of h; and h), f; must
lie in u; . In particular f; € b;", and as b, contains the Lie algebra of the maximal torus of L, we have
that f; is regular in b, . This means that Cy(f;) < b, (cf. Section . In particular, all the weights of

H'-action on Cy(f;) are nonpositive integers. Therefore, for any = € Cy(f;), we have
Adg:(z +e) = Adg:(2) + t’e = ¢ (Adg: (2)/1* +¢€)
and
tli)rgJ Adpye(x)/t? = 0.

Therefore if we define the action of C* on H by
t-v=1t"2Adg:(v),
then it preserves S and for any v € S we have

lim ¢-v =e.
t—o0

Theorem 2.35. Every element of S is regular in . Moreover, every regular orbit of adjoint action of H

on b meets S.

Proof. For the first part, we proceed as in the proof of Lemma Assuming that for some z € Cy(f;)
the element  + e is not regular, we get that Ady+(x)/t? + e is not regular for any ¢ and from continuity
(t —> o0) we get that e is not regular.

Now assume that some y € b is regular. It lies in a Borel subalgebra and by [406], 16.4] all Borel
subalgebras are conjugate, hence we can assume y € b. As B contains a maximal torus of H, we have that
y is regular in b as well. Therefore by Lemma it is conjugate to an element of the form e + v for v € t.
It is then conjugate to x(v) € S. |

To finish the proof of C[h]" = C[S] we need to state the following lemma, known for reductive groups
already.

Lemma 2.36. C[h]" = C[l]* = C[{]WV.
Proof. The latter equation is just Chevalley’s restriction theorem ([22, Theorem 3.1.38] and footnoté®).

We need to prove that the restriction map C[h]" — C[(]" is an isomorphism.
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Let us first prove that it is surjective. We have the projection map 7 : H — L and then we can use it
to pull back any L-invariant function on [. If f is such function, its pullback is f o m, and for any g € H

and v € h we have

(f o) (Adg(v)) = f(Adr(g) (T (v))) = f(ms(v)) = (f 0 m4) (v),

hence f oy is H-invariant (and obviously restricts to f on [).

Now we prove injectivity. As every element of H is contained in a Lie algebra of a Borel subgroup, and
they are all conjugate ([I1, Theorem 11.1]), a function from C[h]! is fully determined by its values on b.
We know that b = t@u and the weights of {H!}-action on t are all 0, and on u they are all positive.

Therefore any polynomial on b which is invariant under this action, can only contain the t-variables.

Hence it is uniquely determined by its values on {t. |

From the proof of Lemma and from Proposition the map x defines an isomorphism C[S] —
C[]W and when composed with the restriction from C[h]Y, it clearly gives the restriction C[h]" — C[{]W
(note that x and x(z) are always conjugate). Then from Lemma we get

Theorem 2.37. The restriction map C[h]" — C[S] is an isomorphism.

In particular, this means that no elements of S are conjugate to each other. Together with Theorem

this gives

Corollary 2.38. FEvery regular orbit of adjoint action of H on b meets S exactly once.

2.7 Regular actions and fixed point sets

Definition 2.39. Assume we are given a principally paired H with (e, h) being the integrable principal
b(sla)-pair in b. If H acts on a smooth projective variety X, we say that it acts regularly if e has a unique

zero o€ X.

Remark 2.40. The choice of integrable principal pair (e, k) in b is not unique. However, we will see below
in Lemma that the property of the action being regular does not depend on the choice.

Note that as e is nilpotent, it generates an additive subgroup of H (by [II} Proposition 1.10, Theorem
4.4, 7.3]) and hence by [44, Theorem 4.1] the zero scheme X° of V. is connected. It is therefore enough to
assume that the fixed points of e are isolated. We will in fact prove in Lemma [2.46] that all the regular

elements of h have isolated fixed points on X.

Ezample 2.41. This example is from the PhD thesis of Ersan Akyildiz ([I]), see also [2]. Consider a
complex reductive group G, with the choice of e as in Example By the discussion in Section [2.5
there exists an h € g which makes G principally paired. Let X = G/B be the full flag variety of G. Then
for any x = ¢B € X, from Lemma [2.6

Vele = Dg(Vaa, ., (e)l1)-

Therefore V, vanishes at x if and only if Ad,-;(e) vanishes at [1] = B. This means that Ad,—;(e) €

b = Lie(B), or in other words, e € Lie(¢gBg~!). The subgroup gBg~!

is of course a Borel subgroup of G.
From Section the group B is the unique Borel subgroup of G whose Lie algebra contains e. Therefore
e € Lie(¢gBg~!) only if gBg~* = B. By [11} 11.16] this is true only for g € B, i.e. = [1]. Therefore G
acts on the full flag variety G/B regularly.

Hence it also acts regularly on all the partial flag varieties G/P. Indeed, assume that x € G/P is fixed

by e. If we denote by 7p the projection mp : G/B — G/P, then 75 '(z) is a closed subvariety of G/B,
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closed under the action of G, generated by e. Hence by the Borel fixed point theorem (see [55, Corollary

17.3]), it contains a fixed point of G,, which is unique. Therefore z is its image.

Ezample 2.42 (see [16, Section 6]). Let H = SLy(C) and consider the irreducible representation V' of

SL2(C) of dimension n + 1. In particular, the regular nilpotent

o)

e =
acts on V with the matrix
0
0
0 0 1
0 0 0

If we consider X = P(V), the action is clearly regular and the only fixed point of e corresponds to the

vector of highest weight in V.

2.7.1 Solvable groups

Lemma 2.43. Let H be a solvable group. Let T be its maximal torus and b, be the nilpotent part of
h = Lie(H). Assume that e € b,,,h € t are such that (e, h) is an integrable b(sly)-pair and that H acts

reqularly on a smooth projective variety X. Then any element of e + t has isolated zeros on X.

Proof. We will denote by {H'},ccx the one-parameter subgroup to which h integrates. Define Z € t x X
as the zero scheme of the total vector field restricted to e + t = t. In other words, for any w € t, that
vector field restricted to {w} x X equals V.4, (cf. Definition [3.4). Consider also an action of C* on t x X
which is defined on t by multiplication by t~2 and on X by the action of H?. From Lemma this action
preserves Z, as Adg:(e) = t2e.

Consider the map 7 : Z — t defined as the projection onto the first factor of t x X. As it is a morphism

of schemes locally of finite type, by Chevalley’s semicontinuity theorem [35] 13.1.3], the set
D= {(w,x) € Z:dimm, > 1}

is closed. Here

T =71 Hw)c 2
denotes the fibre. Suppose D is nonempty. Hence we have some w € t such that dim{z € Z : (w + ¢€)|, =
0} = 1. Note that for any ¢t € C* we have

2w+ e=t2(w+t"2e) = 2 Adt (w + e).

Therefore the zero set of t2w + e is the same as the zero set of Ad;ﬁ (w + e), which by Lemma is
isomorphic — via the action of H? — to the zero set of w + e. Hence for each ¢ # 0 we have (tw,0) € D,
where o € X is the unique fixed point of e. Because D is closed we get (0,0) € D. Hence dimmy > 1,

which is impossible, as g = {(0,0)} by our regularity assumption. |

Theorem 2.44. Assume H and X are as in Lemma and e s a principal nilpotent. Then any reqular

element of b has isolated zeros on X.
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Proof. Tt now follows directly from Lemma and Lemma, [2.24] |
In particular, regular semisimple elements have isolated zeros on X. Therefore we get

Corollary 2.45. There are finitely many T-fized points on X.

2.7.2 General principally paired groups

With the use of the results of Section [2.6.3 we can also provide a version of Theorem [2.:44] for arbitrary
principally paired groups.

Lemma 2.46. Let a principally paired group H act regularly on a smooth projective variety X. Then all

the reqular elements of b have isolated zeros on X.

Proof. We know from Lemma [2.35] that every regular element of h is conjugate to an element of S from
. Therefore it is enough to prove the statement for the elements of S. The argument is the same as in
the proof of Lemma [2.43] using the contracting action from Section [2:6.3] Note that if p € X is a zero of
x+e, then H'p is a zero of Adg:(z)/t? +e. Therefore if (x +e,p) € D, we have (Adg:(z)/t? +e, H'p) € D
for any ¢t € C* and then (e,lim; .., H'p) € D. [ ]

3 Main theorem for solvable groups

We first consider a solvable group H acting on a variety X. We will prove that if the action is regular, then
for maximal torus T < H we can find Spec HE(X) as a particular subscheme of t x X. This generalises the
result of [16] for the Borel subgroup of SLy(C). The goal of this section is to find necessary assumptions
on H and construct the scheme Z = Spec H¥(X) inside t x X.

3.1 Principally paired solvable groups

Assume that H is a principally paired solvable group and (e, h) the principal integrable b(sls)-pair within
H. By {H'},ccx we denote the one-parameter subgroup to which h integrates. Let T = H be the maximal
torus which contains it. From Theorem [2.4] we have H = T x H,,, where H,, < H is the subgroup of
unipotent elements. We denote by r the dimension of T (or t), equal to the rank of H. The torus T
acts on the Lie algebra h by the adjoint action Ad. It splits into two representations h = t® b,,, where
b, = Lie(H,). The first one is trivial and the weights of the other, oy, as, ..., ax € t* will be called the

roots of H. This means that if v, va, ..., vg are the root vectors, then for any map ¢ : C* — T we have
Ad¢(t) (’UZ‘) = tai’(Dqﬁ‘l(l))’Ui.

We denote by t7°& = t n h™& the subset of t consisting of regular elements. As any element of £ commutes
with the whole t, the condition of v € t being regular means Cy(v) = t. This means that [v, —] does not
have zeros on b, i.e. ay(v), az(v), ..., ax(v) are all nonzero. Hence we see that the elements of t'°¢ are
those in t that are not annihilated by any root of H. As h € t is regular, all the roots are nonzero on h —
by Lemma they are even positive integers when evaluated on h — hence non-zero. Therefore t'°8 is a
non-empty open subset of t and its complement is a union of hyperplanes.

In our applications H will mostly be the Borel subgroup of some principally paired algebraic group G.

Let us see an example below.
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Ezample 3.1. A simple case of the above is H = B,, := B(SL,,), the Borel subgroup of SL,, consisting of
upper triangular matrices. Let b, be its Lie algebra. We have the torus T < B,,, consisting of diagonal
matrices of determinant 1 and its Lie algebra t < b,,, consisting of traceless diagonal matrices.

We can identify t with C™~! via the isomorphism

. V1 + V2 + "+ Um—1
(v1,v2, ..., Um—1) — diag(0,v1,va, ..., Vm—1) — - I,

i.e. (v1,v2,...,Vm—1) corresponds to the unique matrix A in t with a;; —ay; = v;—1 fori =1,2,...,m—1.

Then we can take e.g.

0
0
e = €Eg
0
0 0 0 O 0
and
m—1 0 0
0 m—3 0
h = 0 0 m—>5 0 ,
0 0 0 1-m

or equivalently h = (=2, —4,...,2 —2m) € C™~!. Then
H' = diag(¢™ 1, ¢m=3,¢m=5, . 37 1),

The regular elements of t are the diagonal traceless matrices with pairwise distinct diagonal entries.

We can generalise this example by taking H to be a Borel subgroup of any reductive group G. This
choice defines the choice of positive roots (as those whose root vectors lie in ). We can therefore take
e =x1 + T2 + -+ + x5, where x1, T2, ..., T are the root vectors of g corresponding to the positive
simple roots (s = r — dim Z(G)). Then e is a regular nilpotent in G and H (see Example [2.12). From the

discussion in Section [2.5] we see that there exists h that satisfies the conditions.

3.2 Uniform diagonalisations

We saw in Corollary 226 that e + w is always conjugate to w if w € t"°8. In the first case in Example 2.27]

we have a closed formula for the conjugating matrix. We generalise this observation here.

Theorem 3.2. There exists a morphism M : t°¢ — H denoted by w — M, that satisfies the equality
Ady, (w) =e+w

for any w € t*°8.

Proof. From Corollary we know that for each w € t*°8 and n € b,, there exists A € H such that
Ady(w) =n +w. (3.1)

We have to prove that for n = e we can choose such matrices in a way that varies regularly when w varies.
We know by Theorem that there exists V € T such that AV € H,. Any element of T clearly

centralises w. Therefore AV also satisfies Adsy (w) = n + w. Hence we can assume that A € H,. We
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first show that A € H,, is unique with respect to (3.1)). Indeed, assume on contrary that A, A" are both
unipotent and Ad4(w) = Ada (w) = n+ w. Then

AdAflA/(w) = Ad g (Tl + w) =w.

Thus A=A’ centralises w. Hence it centralises A(w), the smallest closed subgroup of H whose Lie algebra
contains w. The group A(w) is contained in the torus T, therefore by [47, 19.4] its centraliser Cy(A(w))
is connected. But Lie(Cy(A(w))) has to commute with Lie(A(w)), which contains w. By regularity
assumption Cy(w) = t, thus from connectivity we get Cpi(A(w)) < T. Therefore A=A’ € T, but as A=1 A’
is unipotent we get A"1A’ = 1, hence A = A’.
Now consider the map
¢:H, x 7% - §, Dt

¢(A, w) = AdA(w).

We have just proved that ¢ is a bijection. Now by Grothendieck’s version of Zariski’s main theorem ([34}
Theorem 4.4.3]) it can be factored as ¢ = ¢~)o t, where ¢ : H, x t*°® — Y is an open embedding and ¥ — gg
is finite. By restricting Y to the closure of im ¢, we can assume that im ¢ is dense in Y. The map ¢ is
clearly dominant, and its source is irreducible, hence by [37, Proposition 7.16] it is birational. Therefore é
is birational as well, but it is finite and its target is normal, hence g?) is an isomorphism. Therefore ¢ is an
open embedding, which has to be an isomorphism, as it is surjective.

Hence we get the desired map M : t*°¢ — H,, by considering the first coordinate of ¢_1|{e}xtrcg. |

3.3 Regular actions

From now on we will assume that our principally paired solvable group H acts on a smooth projective
variety X regularly (Definition [2.39)). By Lemma the unique zero o € X of e is a zero of the whole b.

Ezxample 3.3. In Example we see regular actions of reductive group G on flag varieties. In Example
we constructed a regular action of SLy on P”. In both cases, when we restrict to a Borel subgroup,
we get a solvable principally paired group (Example [3.1)) acting regularly on smooth projective varieties.

By Corollary there are finitely many fixed points of the torus T acting on X. We will call them
Co=0,C, ..., (s. Moreover, combining Lemma [2.43] with Lemma [2.8] we get that for any w € t*°¢ the
only zeros of V,, on X are (p, (1, ..., Cs-

Now, following the idea of [I6], we define the scheme whose coordinate ring will turn out to be the
H-equivariant cohomology of X. As H is homotopically equivalent to its maximal torus T, this is the

same as the T-equivariant cohomology.

Definition 3.4. Let Z c t x X be defined as the zero scheme of the total vector field (Deﬁnition
restricted to e + t =~ t. We will denote that restricted vector field by Vey¢. In other words, for any w € t,
the vector field Voo restricted to {w} x X equals Ve .

We will also consider an action of C* on t x X which is defined on t by multiplication by ¢t~2 and on
X by the action of H?. Clearly from Lemma this action preserves Z, as Ady:(e) = t?e. Our goal will

be to prove the following theorem.

Theorem 3.5. Let H be a principally paired solvable group acting reqularly on a smooth complex projective

variety X. Then there is a homomorphism

p: HE(X) - C[2]
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to be defined in (3.5), which is an isomorphism of graded C[t]-algebras. Moreover, the zero scheme Z is

affine, so that we have the following diagram with vertical isomorphisms:

*
2z 2 Spec HX(X;C)

| |

t ———— Spec HE.

We will first study the structure of Z with connection to the torus fixed points (p, ..., ;. We will
also prove that Z is reduced. This will allow us to define a map p : H¥(X) — C[Z] by specifying p(c) by
its values. To show that p(c) is a regular function on Z, we will prove that H7(X) is generated by Chern

classes of H-equivariant vector bundles.

3.4 Equivariant cohomology and Bialynicki-Birula decomposition

We know that the T-equivariant cohomology H7(pt) = C[t] of the point is the ring of polynomials on
n0 H1(pt). The
multiplicative group C* acts on X by the means of the morphism H : C* — H, t — H?. This action

t. By Z we will denote the ideal of polynomials vanishing at 0, equivalently Z = @

has finitely many fixed points (y, (1, ..., {(s. We may then consider its Bialynicki-Birula plus— and

minus—decompositions ([9]), i.e.
Wit = {xeX:%ir%thc:Q}, W = {xeX:tlim H' -z = ()
— —00

All those sets are locally closed varieties, isomorphic to affine spaces.
When such decompositions exist, the odd cohomology of X vanishes [10]. Then by Goresky—Kotwitz—
MacPherson (cf. [32, Corollary 1.3.2]), the T-space X is equivariantly formal. In particular,

Hy(X) = Hi(pt) ® H*(X) (3.2)
as H¥(pt)-modules and H*(X) =~ H¥(X)/ZTH%(X) as C-algebras.
Theorem 3.6. Biatynicki-Birula plus-decomposition X = Uf:o Wi+ is H-stable.

Proof. Assume that x € W', i.e. limy_o H' -2 = (;. Let M € H and 2/ = Mz and let ¢; = limy_,o H' - 2.
Then

His' = H'Mx = (H'M(H") ") H'z. (3.3)
Let M = D -U, where De T and U € H,. As H! € T, it commutes with D, therefore
H'M(H")™' = DH'UH")™. (3.4)

Now as U € H,,, we have U = exp(u) for some u € b,,. Here exp should be understood as the algebraic

exponential for unipotent groups (see [55, Proposition 14.32]). We then have

H'UH") ™! = H' exp(u)(H") ™" = exp(Adg: (u)).
By Lemma the weights of H'-action on b, are positive. Therefore lim; .o Adge(u) = 0, hence
lim;_o H'U(H')~! = 1. Combining (3.3) and (3.4) gives

H's' = DH'U(H") 'H'z.
Passing to limit ¢ — 0 then yields
G = DG.

As (; is fixed by T, we get i = j, hence 2’ € W, as desired. |

7
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3.5 Structure of Z

In order to prove H}(X) =~ C[Z] we study the structure of Z and construct a map H%(X) — C[Z]. Let
(w,z) € Z. This means that e + w vanishes on  and by Lemma[2.43|it is an isolated zero. From Theorem
there exists M € H such that e + w = Ady(w + n’), where [w,n'] = 0 and n’ € [h,h]. Then by
Lemma we have that M~z is a zero of w + n’ and from Lemma it is a zero of t. Hence we get

x = M¢; for some i € {0,1,...,s}. Moreover, not only is (; a zero of t, but also of n'.

Ezxample 3.7. We continue Example and use the notation from Example for the elements of t.

1. Let w € t =~ C? be of the form w = (vy,vs) with v # 0, w # 0, v # w. We know that e + w =
My,wM ' and therefore any zero of e + w is of the form x = M, (; and conversely, for any i, the

point M,,¢; is fixed by w + e.

2. If w = (v1,0) with vy # 0, then we have a matrix M, € B3 such that

—’01/3 0 1
(€+U}):Mw 0 2’1)1/3 0 M,;l
0 0 —ui/3

Therefore every zero of e + w is of the form x = M,,(; for ¢ such that (; is also a zero of

0 0
E13 =10 O
0 0

oS O =

But conversely, if (; is additionally a zero of Ey3, then M,,(; is a zero of e + w.

Remark 3.8. By Theorem if . = M(;, then (; is in the same plus-cell as z. But (; itself is a torus
fixed point, hence ¢; = lim;_,o H? - z. In particular, this means that regardless of potential choice of M
we might make, we always get the same torus fixed point, i.e. if x = M1(;, = Ma(;,, then ¢; = ia. The
elements M and n’ are however not unique.

Note that for i = 0,1,...,s and w € t, there is at most one zero of e + w in the plus-cell of (;. Indeed,
assume that there are two such points. By above, if we choose any M such that e + w = Adpy (w + n’),
then they are of the forms x1 = M(;,, x2a = M(;,. But as in the last paragraph, in fact we have iy = i1 = i.

Therefore 21 = 4.

The converse statement also holds, for particular torus-fixed points. Assume that we are given w € t
and M,, € H, n’ € b,, such that e + w = Adys, (w +n’) and [w,n’] = 0. In this case if {; is a zero of n/,

then M,,(; is a zero of e + w. However, for given w, the corresponding vector field V,,; in general does not

vanish in all the torus-fixed points.

Example 3.9. Let us consider the standard action of Bz on P2, i.e. we define

a b c
0 d e [vo:vy:ve]=[ug:uy: us
0 0 f
for ug, w1, us such that
a b c Vo Ug
0 d e v |=1wuw
0 0 f/) \v Uo
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We have three torus-fixed points (; = o = [1 : 0:0], & =[0:1:0], {3 =1[0:0:1]. For
w = (v1,vq) € C? = t regular there exists a matrix M, such that e + w = Mwlejl. Then M, (; is a
fixed point of e + w for i = 1,2, 3.

However, if w = (v1,0) with v1 # 0, then there exists a matrix M, such that e +w = M, (w+e13) M, .
The vector field V,

©1s corresponding to ejs vanishes at ; and (2 (but not at (3), therefore the zeros of

e + w are exactly of the forms M,,(; and M,,(s.
Specializing even more, if we consider w = (0,0), then e + w = e is already a Jordan matrix (we can

take M, = I3). Its only zero is ¢; = o, so the only fixed point of e + w is o.

We will define a map H3(X) — C[Z] by constructing, for each element of H¥(X), a function in C[Z]
by its values. So that it is well defined we first show that Z is reduced.

Remember that we defined a C*-action on X and t — see the comment below Definition B4l It turns
out ([I8, Proposition 1]) that if we consider the Bialynicki-Birula minus-decomposition on X, then the
minus-cell X, := W~ corresponding to o is open. In other words, all the weights of the action around o
are negative. Therefore we can choose on X, coordinates x1, s, ..., x, that are weight vectors of T and
the values of weights on h are positive integers ai, as, ..., a,. Using these coordinates we model X, as a
vector space, thus we can identify the tangent spaces to its points with X, itself.

We also have the grading on C[t] defined by the action of C* on t (of weight —2). Therefore choosing

coordinates vq,...,v, on t we have
Clt x X,] = Cluy,v2, ..., 00,21, T2, ..., T ]

with degv; =2 (fori =1,2,...,7), degz; = a; (for i = 1,2,...,n). The tangent bundle of X, as an affine
space, is trivial, and the coordinates on X, define its trivialisation, hence we can speak of coordinates of
Vett (cf. Remark . We now prove the following Lemma, which for H = By was proved in [I8, Theorem
4].

Lemma 3.10. The scheme Z is complete intersection and reduced and contained in t x X,, hence affine.
The ideal of Z in C[t x X,] = Clv1,v2,...,0p,21,%2,...,Zy,] is then generated by the vertical coordinates
of the vector field Vo ¢:

(‘/e-‘rt)l ) (‘/;+t)2 yeeey (‘/e-‘r{)n .

The degree of each (Veiy); is equal to a; + 2 and together with vi, va, ..., v, they form a homogeneous

reqular sequence in Clvy,va, ..., Up, @1, Tay ..., Tp].

Proof. First, let us see that Z is contained in t x X,. Let (w,z) € Z. We then know that z is a zero of
the vector field V.,,,. For any t € C* by Lemma we have that H? - x is a zero of Vade(etw)- As
Adge(e +w) = t2e + w, this means that H' - z is a zero of e + ¢ 2w. When we take ¢ — o0, this converges
to e. Therefore lim;_,o, H' - © = 0. This means that z € X,.

Now we will prove that (V.1¢), is homogeneous of degree a; + 2. We have

(Ve+t)i |t-(:c,w) = (Veer/t2|Ht-z)i = <Hi(VAdHt71 (e+w/t2)|w))i = (Hi(ve/thrw/tz‘x))i

and H? acts on i-th coordinate of tangent space by multiplying it by ¢~%, therefore

(Hi(Ve/t%w/t?\z))i =t (Ve/t2+w/t2|w)i =2 (VeJr’t)i |(x,w)'

Since v1, vg, ..., v, have degree 2 we have that the sequence

(Vetrt)1 s (Vest)as -+ s Vert), s v1,02, 5 vr
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consists of homogeneous functions on the (r + n)-dimensional affine space t x X,. There is r + n of them
and they have only one common zero. Therefore (see [§, Proposition 4.3.4]) they form a regular sequence.
In particular, Z is the zero scheme of a regular sequence (Vei¢);, (Vett)g, - -5 (Vest),,, therefore it is
complete intersection.

Now we have to prove that Z is reduced. Let 7 : Z — t be the first projection. By Theorem we get
an isomorphism 7! (£*°8) =~ t*°¢ x X T. The first factor, as an open subscheme of affine space, is reduced.
The fixed points of the torus are also reduced (cf. [55, Theorem 13.1]), therefore 7= () is reduced.

Now note that 7=1(t°8) is an open dense subset in Z. It is open because t*°8 is open in t. To prove that
it is dense, assume on the contrary that there exists z € Z\m—1(t¢). Let Y be its irreducible component
in Z. As Z = 7-1(tre8) U 7~ (£\t"*8) and both sets are closed, by irreducibility ¥ has to be contained in
one of them. As x is not contained in the former, ¥ has to be contained in the latter, so that 7(Y") < t\t"°e.
As t\t"8 is a union of hyperplanes in t, the same argument shows that 7(Y") lies within one of them
(of dimension r — 1). Considering 7|y as mapping to TY) and reducing if needed, we get a dominant
map between integral schemes. Note that as Z is complete intersection, it is Cohen—Macaulay, and thus
equidimensional by [53, Theorem 17.6 and Theorem 6.5]. As t x {0} is closed in Z and of dimension r,
the dimension of Z is at least r. Therefore by the fiber dimension theorem (see [39, Ex. 3.22(b)]) the
fibers of 7|y are at least one-dimensional. But they are finite by Lemma so we get a contradiction.

Now as 7~ (t°8) is an open dense subset in Z, it contains its generic points, hence Z is generically
reduced. Using that Z is Cohen—-Macaulay, by [33 Proposition 14.124] we get that Z is reduced. ]

3.6 The homomorphism p

Let ¢ € H¥(X). In Section we show that every element (w,z) of Z satisfies © = M, (;. Here M,
is some element of H depending on w and (; is a uniquely determined fixed point of T-action. The
localisation c|¢, of ¢ to the torus fixed point can be now seen as a polynomial on t, because Hi(pt) = C[t].
We then define

ple)(w, ) = cl¢, (w). (3-5)

This follows the idea of [16], where p is defined this way for By. For any ¢ € H(X) this defines a function
p(c) on the set of closed points Z. This clearly gives a C[t]-homomorphism between H#(X) and the
algebra of all C-valued functions on Z. We have to prove that for any c € Hf(X) the image p(c) defines a
regular function, which is unique by Lemma Thus we get a C[t]-homomorphism

p: HE(X) - C[Z].

In general, assume that we are given an algebraic group H and an H-variety A. For any H-linearised
bundle € on A we may consider its equivariant Chern classes i (€) € HZ¥(A). Let p € A be a fixed point
of H. From naturality of Chern classes we get cll(£)], = cl(€,), where &, is the fiber of € over p. This
belongs to Hfi(pt)  C[h] and for any y € h we get

cg(f)h,(y) = Trpke, (Akyp). (3.6)
Here y,, is the infinitesimal action of y € h on &,, which is a representation of H.

Lemma 3.11. Let £ be an H-linearised vector bundle on X and let k be a non-negative integer. Then for
any (w,x) € Z we have
p(ci, (€))(w, x) = Trarg, (A (e + w),).

In particular, p(ci (€)) € C[Z].
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Proof. We have © = M,,(; for some (; € XT and M, € H. Moreover,
e+w = Ady, (w+¢€)
for some €’ € bj,, that vanishes at {; and commutes with w. Note that, as £ is H-linearised,

Trare, (A (e + w)a) = Trare, , (A (Adyi(e+w)) ) = Trang, (AF(w +¢)c,).

-1
My~ x

From (3.5) and (3.6) we have

Gi (’U)) = TrAkECi (Akai>'
Thus we have to prove that

Trpre,, (A" (w + e)¢) = Tryre,, (Akai)‘

i

But by the assumptions that [w, €] = 0, w is semisimple and ¢’ is nilpotent, we get that the sum w + ¢’ is
the Jordan decomposition of Ad,,—1(e + w) in the sense of [T, 4.4]. Then by the naturality of the Jordan
decomposition the derivative of the representation Stabg((;) — GL(E,) preserves it. Therefore we, seen
as an element of gl(&,) is the semisimple part of (w + €’)¢, seen as an element of gl(&, ).

But for Jordan decomposition in the general linear group, the eigenvalues of the semisimple part are
the same as the eigenvalues of the decomposed element. Because traces of external powers are polynomials

in eigenvalues, this concludes the proof. |
The following lemma is based on [I8, Proposition 3], which proves it for Bs.

Lemma 3.12. The cohomology ring H*(X) is generated, as a C-algebra, by Chern classes of H-linearised

vector bundles on X.

Proof. We know that the fundamental classes of the plus—cells form a basis of H,(X), hence their
Poincaré duals form a basis of H*(X). Now we use Baum—Fulton-MacPherson’s Grothendieck—Riemann—
Roch theorem (see [28, Theorem 18.3, (5)]). We get that for any plus-cell W; € X the homology class
(ch(W;) td(X;)) n [X] is equal to the sum of [W;] and lower-degree terms. Therefore ch(W;) is equal to
the sum of the dual class of [W;] and higher-degree terms. Therefore Chern characters of the structure
sheaves of plus—cells generate H*(X).

As the plus—cells are H-stable by Theorem we get that ch is surjective when restricted to the
Grothendieck group of H-equivariant coherent sheaves. By [60, Corollary 5.8] it is generated by the classes

of H-equivariant vector bundles and the conclusion follows. |

Remark 3.13. We did not use the regularity of the action in the proof. In fact, it was enough to know
that the fixed points of T are isolated. One could also argue the following in general case. By [I1
15.1, Example (2)] a linear solvable group over C is split. Then the restriction K§(X) — K%(X) is an
isomorphism [54, Corollary 2.16] and the restriction K$(X) — K°(X) is a surjection [54, Proposition
3.1]. The Chern character is an isomorphism from K°(X)® C to A*(X)® C [28, Theorem 18.3] and
the cycle class map A*(X) — H*(X,Z) is an isomorphism due to the paving given by Bialynicki-Birula
decomposition [28, Example 19.1.11]. Therefore the (non-equivariant) Chern character gives a surjection
K%(X) - H*(X,C).

Lemma 3.14. The equivariant cohomology H¥(X) is generated, as a C[t]-algebra, by T-equivariant

Chern classes of H-equivariant vector bundles on X.
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Proof. Recall that Z denotes the maximal ideal of C[t] cutting out the zero point. Since X is equivariantly

formal, we have an exact sequence
0—>ZHHX)— HY¥(X) > H*(X) — 0.

By Lemma we get that the C-algebra H*(X) is generated by Chern classes of H-linearised vector
bundles on X. Then from graded Nakayama lemma (see Corollary the C[t]-algebra HI(X) is

generated by their equivariant Chern classes. ]
This together with Lemma [3:11] gives

Corollary 3.15. The map p is a homomorphism of C[t]-algebras H:(X) — C[Z].

3.7 Proof of isomorphism

Proof of Theorem[3.5 Clearly p preserves the grading. For injectivity, note that for any ¢ € HX(X), we

can extract from p(c) the localisations c|¢, for all ¢ — as on the regular locus the function p(c) is defined

by all those localisations. Recall that X is equivariantly formal (3.2)). Therefore we get injectivity of p by
injectivity of localisation on equivariantly formal spaces [32, Theorem 1.6.2].
Hence to prove that the map is an isomorphism, it suffices to check that the Poincaré series of the two

sides coincide. Since X is equivariantly formal, H}(X) is a free C[t]-module and
HX(X)/ZTHY(X) ~ H*(X).
Therefore

Prpsx)(t) = Pz x) ()1 — )" (3.7)

On the other hand, from Lemma we know that the generating set of Z is a regular sequence in
C[Z], hence

Perzyzerz)(t) = Pepz ()1 —£%)". (3.8)

Now C[Z]/ZC[Z] is the zero scheme of the vector field given by e. In addition, the action of the
torus H' satisfies Ady:(e) = t?e. Therefore by the Akyildiz—Carrell version of the Carrell-Liebermann
theorem(see [6], and [3l, Theorem 1.1] for this particular case) we have C[Z]/ZC[Z] =~ H*(X) and in

particular

Perzyjzerz)(t) = Prx(x)(t).
Therefore, from (3.7) and (3.8) we get
Perz(t) = PH%‘(X)(t)‘
|

Remark 3.16. From Theorem [3.5| we get that C[Z] is a finitely generated free module over C[t]. Therefore
the map 7 : Z — t is finite flat.

Remark 3.17. The theorem can in fact be proved for a slightly larger class of solvable groups. We need H
to be a connected linear algebraic solvable group, and as before (e, h) to be an integrable b(sly)-pair, but
it does not necessarily have to be principal. For the proof of Theorem we need to assume a(h) > 0

for any root « of H. However, even this assumption can be made unnecessary as we can consider the
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subgroup H’ generated by T and the additive group generated by e. By [11, Theorem 7.6] it is algebraic
and its Lie algebra is generated by t and e. As Lie bracket of h-weight vectors adds the weights, we clearly
see that all the weights on H' are non-negative multiples of 2.

Even if we assume that H is generated by T and the additive group generated by e, it does not follow

that e is regular. Take for example

t/u2 * % *
0 t
H= T t,ue C* },
0 0 u *
0 0 0 u/t?

where the asterisks are understood to stand for any complex numbers. We choose

30 0 O 01 00

01 0 0 0 0 1 0
h = , e =

0 0 -1 0 0 0 01

00 0 -3 0 00O

Because the maximal torus is two-dimensional and the centraliser of e is three-dimensional thus e is not
regular. However together with the diagonal matrices it generates h as a Lie algebra.

In all our examples of regular action, we only consider principally paired groups and this extension
seems to only include very tropical cases. Therefore we formulate our results in terms of principally paired

groups.

3.8 Functoriality

We prove now that Theorem is actually functorial, with respect to both the group and the variety. We
prove the latter first.

Proposition 3.18. Assume that X and Y are two H-reqular varieties and ¢ : X — Y is an H-equivariant
morphism between them. Let Zx = Spec HE(X) and Zy = Spec HE(Y') be the schemes constructed above
for X and Y, respectively. The map (id, ) : t x X — t X Y induces a morphism Zx — Zy and the
following diagram commutes:

HE(Y) —2 HE(X)

PY PX

1 (id,¢)*

C[zy C[Zx]

In other words, p is a natural isomorphism between the functors HY and C[Z] on the category of H-regular

varieties.

Proof. Consider a class ¢ € H¥(Y). We want to show that for any (w,z) € Zx the functions px(¢*(c))
and (id, ¢)* (py (c)) take the same value on (w,z). We know from Section [3.5| that z = M,,(, where M,, is
some element of H depending on w, and ( is one of T-fixed points of X. Obviously then ¢({) is a T-fixed
point in Y and ¢(x) = M,¢(¢). We have then

(id, )* (py () (w, x) = py (c)(w, ¢(x)) = clg(c)(w).

On the other hand
px (¢¥(c))(w, ) = ¢*(c)[¢(w).
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Now the equality of the above follows from functoriality of H} and commutativity of

(X = {0(0))

Le(¢) *

Proposition 3.19. Assume that Hy, Hy are solvable principally paired groups. Let T; < H; be the
corresponding mazximal tori and e; € (h;)n the corresponding nilpotent elements in their Lie algebras. Let

¥ : Hy — Hy be a homomorphism of algebraic groups satisfying

P(T1) < Ty, Vy(e1) = ea.

Assume that Ho acts reqularly on a smooth projective variety X. Then the map 1 together with the
Hs-action induce an action of Hy on X, which is also regular. In turn, the map (Vy,id) induces a

morphism Zu, — Zu, and the following diagram commutes:
w*
HY,(X) —— HE (X)
PHy pPH, -
g ,id)*
O[] “% C[Zn,)

Proof. As 1.(e1) = ez, the group H; clearly acts on X regularly. Obviously if (w,z) € Zy,, then e; + w
vanishes at z, and therefore 1), (e; + w) = e2 + 1 (w) vanishes at x, hence (1)y,1d) maps Zp, to Zp,.
Now let c € Hf, (X) and (w,x) € Zi,. We want to prove that

(¥s,1d)* (pn, () (w, ) = pa, (¥ () (w, z).

We know that x = M,,( for some M,, € H; depending on w and an isolated T;-fixed point (. Then by
Lemma the point ¢ is fixed by Ty. Therefore (cf. Remark we have

(¥4, 1d)* (pu, (€)) (w, ) = prs, () (¥ (w), ) = el (P (w))

and
P, (Y(0)(w, z) = ¥(c) ¢ (w).

Now the equality follows from commutativity of

1[/,*
Hy,(pt) —— Hf, (pt)

I1e
e

3.9 Examples and comments

We illustrate Theorem [3.5 with a few examples.
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Figure 1: Spec H¥, (P?).
Ezample 3.20. We continue Example which already appears in [16]. The point o ={1:0:---:0] is
the unique zero of e. If [zo : 21 : -+ - : z,] are the homogeneous coordinates of P, then the scheme Z lies
completely in the affine chart X, of o, with affine coordinates x; = z;/z, for i = 1,2, ..., n. We have
Viler,oown = (—221, =42, ..., —2nx,)
and
Vel zn = (T2 — 121,23 — 2122, T4 — 2173, ..., Ty — T1Tp—1, —T1Ty).-
Then
Vetohler,..own, = (2 — z1(x1 + 20), 23 — 22(21 + 40), ..., Ty, — Tp—1(z1 + 2(n — 1)v), —x, (21 + 2n)).
If we consider the zero scheme Z of e + vh within t x X,, then the coordinates xs, ..., x, are clearly

determined by z; and v and we can identify Z with the subscheme of Spec C[v, z1] cut out by the equation
z1(z1 + 20)(x1 + ) ... (x1 + 2nv) = 0.

In other words, HE, (P") = Clv, z]/(z(z + 2v)(x + 4v) ... (x + 2nv)) with degv = degx = 2. See Figure

m

Remark 3.21. Clearly a product X x Y of two varieties with a regular H-action is also regular and its

equivariant cohomology scheme can be represented as a fiber product, i.e. H3(X,Y) = H¥ (X)®H¥ HX(Y).
In particular the product P! x P! is regular under the action of SLg, hence also of By. It embeds in

P3 via the Segre embedding. The action of SLy on P3 from Example is also regular. However the

Segre embedding cannot be SLo- or even Ba-equivariant with respect to those two actions. In fact, using

Theorem [3.5 we can prove a more general statement:

Corollary 3.22. Let a principally paired solvable group H act regularly on a smooth projective variety X.

Assume that Z is its closed, smooth, H-invariant subvariety. Then the induced map on cohomology Tings
f*:H*(X,C) —» H*(Z,C)

18 surjective.
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Proof. Clearly Z is also an H-regular variety. From Theorem we have H¥(X) = C[Zx] and H}(Z) =
C[Zz] where Zx and Zz are the zero schemes constructed for X and Z according to Definition
But clearly from the definition we see that Zz is the (reduced) intersection Zx n Z, hence a closed
subvariety of Zx. This means that the induced map C[Zx] — C[Z] is surjective. By Proposition [3.18]
this is the same as the map induced on equivariant cohomology. By equivariant formality we get the
non-equivariant cohomology by tensoring with C over H¥, and this operation is right-exact, hence it

preserves surjectivity. |

In particular, as h?(P! x P') = 2, the product P! x P! cannot be embedded Ba-equivariantly in any of

P™’s with regular action.

Figure 2: Two different views of Spec Hf, (Gr(2,4)). Note that all the components project bijectively to

the v axis.

Ezample 3.23. As we have defined an action of SLy(C) on any C™, we can use this to define actions on
partial or full flag varieties. Let us consider the action of the upper Borel subgroup of SLy on C* and
the induced action on the Grassmannian Gr(2,4) of two-planes in C2. We can identify it with SL4(C)/P,

where P is the parabolic group of matrices of the form

* ok % %
* * % *
0 0 = =
0 0 = =

The only fixed point of e is 0 = span(ey, e2) and in the representation above X, can be thought of as the

set of classes of matrices of the form



Then if we write down the coordinates x1, y1, €2, Y2 in this order, one checks that

2
Veloryr,wa,ye = (T2 — 21Y1, =1 — Yi + Y2, —T1Y2, —T2 — Y1Y2)

and
Vh|m1’y1,z2,y2 = (41’1, 2y1, 6z, 4y2)-

Therefore the equations of Z in Clv,z1,y1, T2, y2] are
dvwy +xg —x1y1 =0, 20y1 —a1 —yi +y2 =0, 6vry —z1yo =0, 4dvys — x5 — Y132 = 0.
We can determine z2 and yo from the first two equations and plugging in to the other two, we get
1(z1 +240% — 8oyy +97) =0, (y1 — 4v)(221 — 2vy1 + y) = 0.
This gives six one-parameter families of solutions (one for each torus-fixed point):

(z1= 0,91 = 0); (1 =0,9y1 = 20); (z1 = 8%,y = dv);
(1 = 0,91 = 4v); (21 = —120°,y1 = 6v); (z1 = —240%,y; = 8v);

see Figure 2]

Figure 3: Spec HX(P?).

Ezample 3.24. Let us now switch to groups of higher rank. As in Example we can consider the

regular nilpotent

01 00
0 010
0 0 01
e =
0 000 ... 1
0 000 ... 0

in SL,,+1. We have the regular action of SL, ;1 on P", which in particular restricts to a regular action
of its upper Borel subgroup. We continue using notation from Example for the elements of t. As in
Example [3:20] we have

Velor, .z = (X2 — 2121, 23 — X1X2, Ty — T1X3, ..., Ty, — T1Tp—1, —T1Tp).
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For the element (v, va,...,v,) € C", which corresponds to diag(0,vy,va, ..., v,) — Lttt a 0 the

n+1
associated vector field at (z1,za,...,2,) is equal to (viz1, vaxa,. .., U2y, ). Hence
‘/eJr(vl,vg,,..,vn)|x1,...,xn = (332 - 351(%1 - Ul),x3 - xz(ﬂh - Uz), cees T — %—1(351 - Un—l)7 —l“n(l‘l - Un))-
Thus we can determine z», 23, ..., z, from z; and vy, vs, ..., v,. The scheme Z can be then realised
within Spec C[vy, v, ..., v,, 21] and cut out by one equation

z1(x1 —v1)(z1 —v2)...(x1 —v,) =0.

This scheme consists of n + 1 hyperplanes. Their intersections, when projected on the vy, ..., v,-plane,
form the toric fan of P™. The functions on the scheme consist of 7+ 1 polynomials, one for each component,
that agree on the intersections. This agrees with the classical description of equivariant cohomology of
toric variety as piecewise polynomials on the fan (see e.g. [I5] section 2.2]). For n = 2 the scheme is
depicted in Figure

Ezample 3.25. We can extend the previous example to full flag varieties. Take for example the variety
F3 = SL3 /B of full flags in C3. The only zero of e is the flag span(e;) < span(ey, e2) and the cell X, in

this case consists of the flags represented by matrices of the form

1 0 =
a 1 =]€ SLg(C)
b ¢ =

One finds that
Velab,e = (—a2 +b,—ab,—b+ ac — 02).

If, as before, we consider a pair w = (vy,v2) € C? as an element of t, then we have
Vilap,e = (11a,v2b, (v2 — v1)c).
Hence the equations for Ve, = 0 are
—a? +b+via =0, —ab + vab, —b+ac—c + (va — vy
Plugging b from the first one into the others yields two equations
ala —v1)(a—wvy) =0, —a? 4 avy + ac — % — cvy + cvy = 0.

By splitting the first equation into cases, we easily get the six families of solutions (one for each coordinate
flag):

(a =0,c=0); (a =v1,c =0); (a =v1,c=v3);

(a = v9,c = v3); (a=0,c=—v1 + v); (a = v9,c = —v1 + v3).
Ezample 3.26. Another natural family of examples are the Bott—Samelson resolutions of Schubert varieties
([13],[36],]24]). We first recall their construction here. Let G be a semisimple group of rank r, with simple
roots agy, g, ..., a,.. The reflections sy, so, ..., s, in the simple roots generate the Weyl group W of
G. Let (e, fi, hi) be an sly-triple corresponding to «;. For any sequence w = (a,, @4y, . . ., ;) of simple

roots we can construct the Bott—Samelson variety as follows:
Xg = Pi1 XB Pi2 XB '+ XB Piz/B7

35



where B is the Borel subgroup of G and P; is the minimal (non-Borel) parabolic subgroup corresponding
to the root «;. Here B acts on P; both on left and right, hence we can define the mixed quotients as
above, and the last quotient is by the right B-action on P;,. The variety admits the multiplication map
X, — G/B. If w is a reduced word representing an element w € W, then this map is a resolution of the
Schubert variety X, = m The Borel subgroup B acts on the Bott—Samelson variety on the left.

Lemma 3.27. The Bott-Samelson resolutions are regular B-varieties.

Proof. Assume that an element = € X, represented by (g1, 92, ..., ¢:) is fixed by the regular nilpotent e.
As e generates an additive subgroup exp(te) inside B, every zero of e is fixed by this subgroup, and in

particular by b; = u = exp(e). This means that in the Bott-Samelson variety

[(b1913927g37 v 7gl)] = [(glag%g& v 791)] (39)

First, this means that b;g; = g1bs for some b € B, hence b; € nggfl. As by is a regular unipotent
element, there is only one Borel subgroup, namely B, which contains b; (see the discussion in Example
. As N¢(B) = B, we have g; € B. From by g1 = ¢g1b2 we have that by is conjugate to by, hence it is
also a regular unipotent in B. From we have

[(b292’937 e 7gl>] = [(92,937 . ,gz)]

in the Bott—Samelson variety corresponding to the sequence (v,,...,a;, ). Applying the same reasoning,

we get inductively that g1, ¢2,...,9 € B, hence [(¢1,92,95,---,91)] = [(1,1,...,1)] in Xﬁﬂ |

This means that using the method above we can determine H(X,,), where T is the maximal torus inside

B. The open Biatynicki-Birula cell X, consists of the classes

[(exp(x1 fi,), exp(x2fiy), .- -, exp(xifi))]er zo.....meC

and we would like to find the scheme Z inside X, x t. We need to determine the infinitesimal action of B
on that cell. We will proceed coordinate by coordinate. Note that for i € {1,2,...,7} the group P; contains
{exp(t - fi)|t € C} - B as a dense subset. Therefore for any = € C there exists an open neighbourhood
U c B of 1p such that for all g € U we have

g -exp(zf;) = exp(b(g) fi)h(g)

for some maps b: U — C and h: U — B with b(1) = x and h(1) = 1. The two sides of the equality are
functions of g. Let us differentiate them at g = 1 in the direction of y € b. We get

y-exp(afi) = exp(zfi) - (Dbl1(y) fi + Dhl1(y)),

where on the left hand side the dot denotes the right translation by exp(xf;) and on the right hand side it

analogously denotes the left translation. Therefore

Db‘l(y)fl + Dh|1(y) = Adexp(—mﬁ,)(?/)-

Now let y = e + w, where w € T. Then

Adexp(fa?fi)(y) = Adexp(fmfi)(e) + Adexp(f:cfi)(w) = (6 + mhi - mei) + (’LU - ai(w)xfi)
= (—aj(w)x — %) fi + (e + w + xh;).

5We thank Jakub Lowit for this argument.
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Thus we get Db|;(y) = —ai(w)z — 22 and Dhl|;(y) = e + w + zh,;. Hence the infinitesimal action on X,
in direction e + w yields the vector of first coordinate —c;, (w)xq — 2% and induces infinitesimal action of
e+ w + x1h;, on the second coordinate. We can apply this procedure inductively and get that the j-th

coordinate is acted upon by
j—1
e+ w+ 2 Trhi,
k=1

and the corresponding coordinate of the vector field V.., is

1
i, (hy)rpr; — ag (w)z; — z2.
1

J

J
k=
Therefore if we define the numbers bj, = a; (h;, ), we obtain the following presentation of the equivariant

cohomology ring:

HY(X,) = Clt][z1, 22, ..., 21]/ (:U? =— Z bijkTrr; — (w):c]> ,
k<j
where w denotes the t coordinate. Note that e.g. for a1, ..., «, being the standard simple roots of SL,,,
those numbers vanish whenever |i; — ij| > 1.
The variety has 2! torus-fixed points and hence the equivariant cohomology ring is a free module over
C[t] of rank 2!. An additive basis consists of all the square-free monomials in x1, s, ...,2;. We recover

then the results obtained e.g. in [I3] Proposition 4.2] or [61l, Proposition 3.7].

4 Reductive and arbitrary principally paired algebraic groups

4.1 Reductive groups

In this section, we will make a transition from solvable groups to reductive groups. We do that by
restricting to Borel subgroups and utilizing Theorem

Let then G be a complex reductive algebraic group of rank r. We assume that e € g = Lie(G) is a
regular nilpotent element. Let f,h € g denote the remaining elements of an sly-triple (e, f, h) (see the
discussion in Section . In fact, all the regular nilpotents are conjugate (see [49, Section 3, Theorem 1]).
Hence, we can actually assume e = 1 + x2 + - - - + ¢, as in Example In particular, h is semisimple
and contained in the unique Borel subalgebra b of g containing e. It integrates to a map H? : C* — G
with finite kernel. We denote by S = e + Cy(f) the corresponding Kostant section (cf. [49, Theorem
0.10]). Kostant’s theorem also gives C[S] = C[g]® = C[t]V = H¥(pt). The goal will be to prove the

following result.

Theorem 4.1. Let G be as above and assume that G acts on a connected smooth projective variety
X regularly. Let Zg be the closed subscheme of & x X defined as the zero set of the total vector field
(Deﬁm’tion restricted to S x X. Then Zg is an affine, reduced scheme and HE(X) = C[Zg] as graded
C[S]-algebras, where the grading on right-hand side is defined by the action of C* on S via t% Ady+ and
on X via H'. In other words, Zg = Spec H(X), 8 = Spec HY, and the pullback of functions along the
projection Zg — S yields the structure map HY, — H(X), so we have the following diagram.

Zg —— Spec H%(X;C)

; l

S —=—— Spec H{.
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Moreover, the isomorphism HE(X) = C[Z2g] of graded C[S]-algebras is functorial both in X and
G. The admissible morphisms are those that map a Gi-regular variety X to Ge-regular variety Y in a
G1-equivariant way, where G — Go is a homomorphism between two reductive algebraic groups which

maps the fived principal sla-triple to the other fized principal sly-triple.

Za,(X) —— Spec HY;, (X;C)
Za,(Y) —— Spec HE_(Y;C).

Note that HE(X) = H¥(X)W, where T is the maximal torus and W = Ng(T)/T is the Weyl group
of G (see e.g. [45, Chapter III, Proposition 1]). Therefore, we will be able to make use of the result for
solvable groups (Theorem .

4.2 Motivating example: G = SLy(C)

For G = SL3(C) we can choose the canonical e, f, h:

) ) L)
0 0 1 0 0 -1

Then we get S = {e + vf|v € C}. Again, let us adapt convention from Example for the basis of t, i.e.
a number v € C will denote —vh/2. We know that H¥(X) = C[Zg, ], where Zp, is defined as before for
solvable (Borel) subgroup Bz of SLa(C) consisting of upper triangular matrices. Let us now see how the

Weyl group (in this case X3 = {1,€}) acts on H7%(X). We have the following commutative diagram

Note that in the bottom line we have the (contravariant) action of W on HZ(pt) = C[t], which is defined
by the (covariant) adjoint action of W on t. In the case of SLy the element € acts on t by v — —uv.

Therefore we get that for any ¢ € H%(X) and any T-fixed point ¢; we have

(€%¢)

where € is here seen as a map t — t. This determines ¢*c completely, as the restriction H#(X) — @ HE ()

G = (C ECi) S

is injective. Hence when we apply the isomorphism p : H¥(X) — C[Zg, ], we will get
p(E*C)(w7 chl) = p(c)(ew7 Mewﬁgi)'

We get an algebra homomorphism C[Zg,] — C[Zg, ], which has to come from a morphism Zp, — Zg,.
This morphism sends M,,(; — M €.

We will now look at the adjoint action of elements of the form

exp(sf) = <i ?) € SLy.

Adexpip)(e +th) = e + 2 f (4.1)
Adexpats) (e + th) = e — th. (4.2)

We have
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From (4.2]) we infer (by Lemma that the map
Ye i (v,2) > (—v,exp(—vf)z)

is an isomorphism of Zp, (note that in our choice of basis the number v denotes —vh/2). We claim that

it is equal to the above (i.e. it is dual to p o €* o p=1). Clearly the action on the first factor agrees. Now

we have
(1 0 1 1w '
exp(_vf)(MuC1) - (—1} 1> (0 1 >Cz
and we get
1 e ‘:11/1) 1 0 1 1/v lel/’U o
M—'ue p( vf)(Msz) (0 1 ) (—1} 1) <O 1 )Cz (—1} 0 )Cz 66:1-
Therefore
we(MvQ) = exp(fvf)(MvQ) = M—’UEC’i
and indeed

p(e*c)(v,z) = p(c)(ve(v, z)).
Thus Spec H¥

SLo(C) (X) is the GIT quotient of Zp, over this action.

Now from we get that the map ¢ : (v, x) — (v,exp(—vf/2)z) is an isomorphism between Zp, and
Z' ={(v,z) € Cx X : (Voqp2/a5)|z = 0}. Therefore we might as well look for the GIT quotient of 2’ by
por.op . We get

(b © we o (b_l(U? LU) = ¢ © we(va exp(vf/2)9€) = ¢(—U, exp(—’l)f/2).’L’) = (_Uv 1’)
The GIT quotient of 2’ = {(v,x) : (Veqr2/a¢)|« = 0} by this action is clearly isomorphic to Z¢ = {(t,7) €

Cx X : (Vearp)la = 0).

4.3 General case

We will want to mimic the proof for SLy in the general reductive case. Let Zg be the scheme from Section
defined for the Borel subgroup B of G. We need the following;:

e Regular maps A :t — G and x : t — S that satisfy
AdA(w) (6 + UJ) = X(’LU),
so that (id¢, A(w)) maps Zp to Z’, where

Z' ={(w,z)etx X : Vy(wylz = 0}

e Moreover we want y to be W-invariant and induce an isomorphism t/W — S, so that we can

construct Zqg as a quotient of Z’.

e We want to realise the Weyl group action on Zg by action on the second factor, i.e. for each n e W

we want to define a map B, : t — G such that

(w, ) = (n(w), By(w) - )

is the action of Weyl group.
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e If we conjugate above with the isomorphism Zg — Z’, we want to get a map that fixes the
X-coordinate. In other words,
A(nw) By(w)A™ (w) = 1,

ie. By(w) = A(nw) ' A(w).

We will now formalise those ideas. First, let B be the unique Borel subgroup of G containing the regular
nilpotent e (cf. Section . We denote by U the corresponding maximal unipotent subgroup and by B™,
U~ the opposite Borel and unipotent subgroup. Let b, u, b—, u™ denote the corresponding Lie algebras.
As above, by Zg < t x X we denote the zero scheme defined by the action of B, which by Theorem is
isomorphic to Spec Hi(X). We start by finding the map A. We know from Lemma that the map

Ad_(=):U" xS —>e+b"

is an isomorphism. Let us consider the preimage of e + t and denote by A(w) € U™, x(w) € S the elements
such that
Ad 4wy (e +w) = x(w). (4.3)

We know then from Proposition and (4.3]) that the map ¢ defined as
P(w, z) = (w, A(w)z)

is an isomorphism from
Zp = {(w,z) et x X : Voiyl|. = 0}

to
Z'={(w,z)etx X : Vy(wylz = 0}

Moreover, let
By(w) = A(nw) ™ A(w)

for any 7€ W, w € T. Then the map 1), defined as
1;[}?7 = ¢71 © (77,1d) © ¢7
ie. ¢Yp(w,z) = (nw, B,(w)x), is an automorphism of Zg. Here 7 is seen as a map t — t.

Lemma 4.2. The map v, defines the action of W on Zg. In other words, W acts on the right on H¥(X)
and the dual left action on Zg is defined by 1.

Proof. For any n € W we have the commutative diagram

*

HE(X) —— H}(X)

*

*
LﬁCi

¢,

HA(G) —2 HE(C)

In the bottom row both entries are isomorphic to C[t] and the map is precomposition with 7 : t — t.

Therefore for any c € H#(X) and any T-fixed point (; we get

(n*c)

¢ = (clne) o
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This determines n*c completely, as the restriction Hi(X) — @ H¥((;) is injective. We want to determine
what this action of W induces on Zg. The action of W on Zp, which we will denote by 7 +— 7, has to
satisfy the equality

p(e)(ns(w, x)) = p(n*(c))(w, ).
From the proof of Lemma we know that Zp n (£°¢ x X) is dense in Zp. Therefore to determine n*,
it is enough to determine its values 7y (w, z) for w regular. In this case if (w,x) € Zg, then, by Section
we have that w = M,,(;, where M, € B is such that Adas, (w) = e+ w. Then p(c)(w, z) = c|¢,(w). Hence

p(n*(c))(w, ) = n*(c)l¢, (w) = (c|nc;) (nw) = p(c)(nw, MyunG).
Thus
UEs (wv chl) = (77?U7 annCi)'
We claim that . = ¢y, i.e. By(w)My¢ = Mywné;. We have to prove that C,, ,, = M{U}Bn(u})Mw sends

Gi to nG;.
Note that

Adg, , (w) = Adyap g, (W) = Adyor gy, (W) = Adya oy (e +w) =

= AdMnjA,;i (x(w)) = AdMnjA,;i (x(nw)) = AdMnj (e + nw) = nw.
Therefore for any representative 77 € N (T) of 7 we have
ﬁ_lcnﬂﬂ € CH(w)

As w is regular, its centraliser within b is just t. It is the Lie algebra of Cg(w), which is connected by
[59, Corollary 3.11], hence equal to T. Therefore 77'C,, ,, € T, hence C, ,, represents the class of 7 in
Ng(T)/T. Thus C) ., sends ¢; to n¢;, as we wanted to prove. [ ]

Proof of Theorem[4.1, We saw above that the map ¢ defined as ¢(w, z) = (w, A(w)z) is an isomorphism
from Zp to 2" = {(w,z) € tx X : V()| = 0}. Then we can conjugate the maps v, with this isomorphism,
hence getting maps ¢ o, 0 ¢~ : Z’ — Z’. We have

¢ oty 097 (w,z) = ¢ oty (w, A(w) ™ x) = ¢(nw, By(w)A(w) ™ z)
= (nw, A(nw) By (w)A(w) " 'z) = (nw,z).  (4.4)

The last equality follows from the definition B, (w) = A(nw) ' A(w). By Lemma |4.2| the map ¢ o, 0 ¢~*
gives the action of W on 2’ =~ Zg = Spec H¥(X).

We have H¥(X) = H%(X)W and therefore Spec HY(X) = Spec HA(X)/W = Z’/W. But we know
from that W acts only on the t-coordinate of Z’ and moreover from Proposition the map x

induces an isomorphism t/W — S. Therefore
Spec H4(X) = Z'JW = {(w,z) € t x X : Vy(u)|o = 0}/W = {(v,2) € S x X : V|, = 0} = Zq.

The zero scheme Zg is reduced because Z' =~ Zy is reduced from Lemma The agreement of

C[S]-algebra structures follows from commutativity of the diagram

Spec HA(X) = 25 —= 2/ 1 Spec HA(X) = Zg
B TQ
Spec H¥ =t Al Spec HE, = t/W
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and the analogous statement for B in Theorem 3.5
It remains to show that the grading agrees on the two sides. We know from Theorem that the
grading in the solvable case is defined by the weights of the torus acting on t x X by (t%, H t). We have
to prove that it descends to the action by (#% Adge, H*). But we have
Ad g (e +w) = x(w)
and thus
AdH"A(w)H*t (AdHt (6 + UJ)) = AdHt (X(’LU))

and dividing both sides by t? gives

w 1
AdHtA(w)H—t (6 + *) = 2 Adge (X(w))

2
However
H'A(w)H " e U™, tledHt (x(w)) € 8.
The latter follows from t%AdHt(e) = e and Adg+ preserving the centraliser of f, as Adg:(f) = t%f.
Therefore by uniqueness we have
HAWE = A (%), 5 Adm(x(w) = x ().

The quotient map Zg — Zg sends (w,z) to (x(w), A(w)x). And by above, it sends ¢ - (w,z) = (%, H'xz)

to

(c (32) A () ) = (G Adim (et H A A ) = (5 Adn (x() B A ).

which proves that the action of C* on Zg descends to the action by (t% AdHt,Ht) on Zg.
The functoriality follows immediately from functoriality for B (cf. Propositions and [3.19)). |

Remark 4.3. We know Cy(f) < b~ (Section and all the weights of the H? action on b~ are nonpositive
(Lemma [2.32)). Therefore the argument as in Lemma shows that Zg lies in § x X,. This means that

for any computations we have to consider only an affine part X, of X.

Remark 4.4. In the spirit of Lemma [3.11] we can determine in the reductive case too what functions on
Z¢ the particular Chern classes are mapped to. Assume that £ is a G-linearised vector bundle on X.
Let k be a non-negative integer and consider ¢ (£) € H(X) = H%(X)W. If we first consider the map
p: H¥(X) — C[Zg] from Section then from Lemma [3.11] we know for any (w,z) € Zp that

plek (€)(w, ) = Trpng, (A" (e + w)y).

The map ¢ defined as
o(w,z) = (w, A(w)zx)

maps Zgp isomorphically to Z’. Then c} (€) defines on Z’ the function p(cj (€)) o ~! which satisfies

p(c;c[‘((‘:)) © qb_l(w’y) = p(cg(‘s))(’wv A(w)_ly) = Trpre (Ak(e + w)A(w)_ly)'

A(w)~ly
As £ is G-invariant, this is equal to

TI'Akgy (Ak AdA(w) (6 + U])y) = TI'Akgy (Akx(’l,l))y)
This means that on the quotient Zg the function pg(c$ (£)) corresponding to ¢ (€) satisfies

PG(CS(E;))(U?%) = Trpre, (Akvx)'
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Let us also note that the G-equivariant Chern classes generate the equivariant cohomology ring.

Lemma 4.5. In the setting above, the G-equivariant cohomology H¥(X) is generated as a C[t]V -algebra

by equivariant Chern classes of G-equivariant vector bundles.

Proof. By Nakayama lemma it is enough to prove (see the proof of Lemma that the non-equivariant
cohomology H*(X) is generated by Chern classes of G-equivariant vector bundles.

We know from the proof of Lemma that H*(X) is generated by Chern characters of T-equivariant
coherent sheaves. For any such sheaf F, we can consider the “averaged” sheaf Fw = ﬁ ®neW N+ W. As
the group G is connected, for any g € G we have ch(g«F) = ch(F), hence ch(Fw) = ch(F). Therefore
H*(X) is generated by Chern characters of Ng(T)-equivariant coherent sheaves. Then again by [60,
Corollary 5.8] it is generated by Chern characters of Ng(T)-equivariant vector bundles. Every Ng(T)-
equivariant vector bundle is a W-invariant element of K+ (X). However we know by [38, Corollary 6.7]
that K1(X)W = Kq(X), hence H*(X) is generated by Chern classes of G-equivariant vector bundles. B

4.4 Examples

We finish this section by providing examples for Theorem These are extensions of the examples above
for Theorem [B.5

xy OF b xy OF

Figure 4: Spec Hg; ©

(P*) and Spec H o (P°).

Ezample 4.6. We continue Example There, we found the C*-equivariant cohomology of P". Now,
using the tools above, we can also find Spec Hgy,, ¢)(P"). We know that the map (v, z) — (v, (I +vf)x)
maps the zeros of Ve, isomorphically to the zeros of Ve ,2¢. The former form the subscheme cut out by
z1(x1 + 20)(z1 +4v) ... (21 + 2nv) = 0 in the (v, z1)-plane. Note that

0 0 0 0 0
1-n 0 0 0 0
0 2 (n—l) 0 0 0
f: . ;
0 (n—l)-2 0 0
0 n-1 0
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hence the map I + vf acts on the x; coordinate by adding nv. This means that the zeros of V. 2, are
defined by
(x1 —nv)(z1 — (n —2)v) (1 — (R —4)v) ... (21 + (n — 2)v)(z1 + nv) = 0.

Bringing the symmetric factors together, we get

(22 —n%0?) (23 — (n — 2)%0?) ... (23 — 421 =0 for n even;

(22 —n?v?) (23 — (n — 2)%0?) ... (23 — Q?)(2? —v?) =0 for n odd.
Therefore

C[t,z1]/((2? — n?t) (23 — (n— 2)%t) ... (2} — 4t)ay) for n even;

HE, o (P") =
Sha© Clt.211/((23 — n26) (2 — (n — 2)%1) ... (23 — 9t)(a? — 1)) for n odd.

The scheme has [21] components, one for each orbit of the action of W = Z/2Z on (P")©". The parabolas
correspond to two-element orbits and the line (for even n) corresponds to unique fixed point of C* fixed

by W. It isequal to [0:0:---:0:1:0:---:0:0]. Examples of the scheme for n = 4 and n = 5 are
- - —

n/2 n/2
depicted in Figure

Figure 5: Two different views of Spec H§

120 (Gr(2,4)).

Ezample 4.7. We continue Example The principal SLy(C) < SL4(C) subgroup acts on Gr(2,4). One
can check that

Vilaryi,wewe = (—3y1,4, 331 — 3y2, 3y1).
Then

Vettfloryr,zays = (T2 — x1y1 — 3tyr, —1 — yf + yo + 4t, —x1y2 + 3ty — 3tys, —x2 — Y1y + 3ty1).

As before, from the first two equations of Ve,1f = 0, we can determine x5 and ys, so Spec Hg; | ) (Gr(2,4))

can be embedded in C[¢,z1,y1]. Its equations are

1262 + dtay — 22 — 3ty? — 212 = 0, (4t — 221 — y?) = 0.
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By considering two possibilities in the latter, one easily arrives at four possibilities:
(z1 = =2t,y1 = 0), (21 ="6t,y1=0), (21 =—6t,y; =16t), (x1 =097 = 4t).

As in the previous example, the components correspond to orbits of W acting on Gr(2, 4)CX. The former
two correspond to one-element orbits, i.e. {span(es,es)} and {span(ej,eq)}, and the latter come from two

two-element orbits. The scheme embedded in ¢, x1, y;-space is presented in Figure

Ezample 4.8. We consider an example for a group of higher rank, SL3(C), that we can still draw. Let it
act on P? in the standard way. In Example we calculated the equivariant cohomology of P? with

respect to (two-dimensional) torus. Now we will compute the SLz-equivariant cohomology. The Kostant

section is
0O 1 0
S= ce 0 1]|:co,c3€C.
C3 C2 0

The coordinates ¢, c3 € C[S] =~ H*(BSL3(C)) are (up to scalar multiples) the universal Chern classes of
principal SL3(C)-bundles, or equivalently, of rank 3 vector bundles with trivial determinant. We have

already computed that V|, », = (z2 — 2%, —z122). Then it is easy to see that for

0 1 0
MZCQOI

C3 CQO

we have Vi|yy 2, = (X2 — 2?2 + o, —2179 + c2m1 + c3). As before, we can eliminate o by substituting from
the first equation and we get the equation 2 —2c21 —c3 = 0. The corresponding scheme Spec H, §L3(C) (IP?)
in coordinates cs, c3, @1 is illustrated in Figure[6] It is irreducible, as all three torus-fixed points lie in
one orbit of the Weyl group. The projection to the (cq, c3)-plane is generically a 3 — 1 map.

On the right hand side of Figure [6] the slice ¢5 = 0 is marked in red. The elements of S that satisfy
c3 = 0 form the Kostant section of the principal SLy subgroup — which acts as in Example Therefore
the red scheme is equal to Spec Hgp (P?). Additionally, the functoriality of Theorem implies that

restriction to c3 = 0 yields the base restriction map
H;Lg (B?) — H§L2 (PQ)-
Ezample 4.9. As in Example we now consider the action of SL3(C) on the variety F3 of full flags in

C3. We determined V, in Example We can analogously determine the vector fields corresponding to

lower triangular matrices. Then for

0 0
M = Co 0 1
c3 C2 0

we easily get

Vtlab,e = (—a® + b+ cy, —ab + acy + c3, —b + ac — 2 + ¢).
Plugging in b from the first equation, we obtain

a3—2cQa+63:O, a? — ac + ¢ = 2¢s.

The first equation for a clearly coincides with the equation for x; from the previous example. One
can easily see that the equations mean that a and —c are two of the three roots of the polynomial
2% — 2cor + c3 = 0. The map to the (co, c3)-plane is generically 6 — 1. As all the torus-fixed points, i.e.
coordinate flags, lie in one orbit of the Weyl group, in the GIT quotient of Spec(H:(F3)) they are joined

together and the scheme is irreducible.
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Figure 6: Spec Hgp © (P2). On the right the subscheme Spec HE © (P2) is marked. Compare with
Figure E}

4.5 Principally paired algebraic groups

In fact, we can prove the equivalent of Theorem for a principally paired, but not necessarily reductive
algebraic group. This version will yield a common generalisation to Theorem [£.1] and Theorem Note
that Hy; = C[t]'V = C[S] - see the comment above Theorem We will prove the following.

Theorem 4.10. Assume that H is a principally paired algebraic group which acts on a smooth projective
variety X reqularly. Let Zy be the closed subscheme of S x X, defined as the zero set of the total vector
field (Definition [2.1]) restricted to S x X.

Then Zy is an affine reduced scheme and Hf{(X) = C[Zu]| as graded C[S]-algebras, where the grading
on right-hand side is defined on S via t% Ady: and on X by the action of C* via H'. In other words,
Zy = Spec Hj{(X), § = Spec Hjj and the projection Zy — S yields the structure map H{; — H(X).
This isomorphism is functorial as in Theorem [{.1]

Zy — Spec H%(X;C)

lﬂ l

S —=—— Spec HE.

Remark 4.11. As N is contractible, the Levi subgroup L. € H is a homotopy retract of H, and for any
H-space X we have Hf{(X) = H{*(X). In particular, if H is solvable, we have H}{(X) = H¥(X), where T

is a maximal torus within H. This explains how the theorem above generalises Theorem [3.5

Proof of Theorem[].10. We will proceed analogously to the proof in Section [£.3] We follow the notation
from Section [2.6.3] In particular, B is the Borel subgroup of H such that its Lie algebra b contains e. We
first consider the scheme Zg < t x X, defined as in Section [3] i.e. the zero scheme of the total vector field
on g x X, restricted to (t + e) x X. Then from Lemma we get morphisms A:t—>U", x:t—> S
such that

Adg(w)(e +w) = x(w),
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so that (id, A(w)) maps Zp to Z’, where
Z'={(w,z) et x X : Vy(u)le = 0}

In fact, A and x are exactly the same as in Section (see the proof of Lemma . In particular,
X induces the isomorphism t/W — S. For any regular w € t we have the element M, € B such that
Adys, (w) = e + w. Just like in Lemma for any n € W we get that for any regular w the element
Cpw = Mn_(iU)A(nw)’lA(w)Mw is in the class of 7 in Np,(T)/T. Note that here M, € B;.

This then proves, similarly as in Section that the Weyl group action on Zp, when transported to
Z' is defined by n — (n,id). And then as x : t/W — S is an isomorphism, we get that

Zy = ZgJW = Spec H¥(X) /W = Spec Hf; (X).

We have to prove that the grading on C[Zy] defined by the grading on H{;(X) agrees with the one
described in the theorem. We know that in the solvable case the grading is defined by the action of C*
on Zg via (%, H') (Definition . Just like in the reductive case, we need to prove that under quotient
by W it descends to the action by (tiz Adg:, H t). The argument for reductive groups does not translate
exactly, as a priori we do not know whether H' preserves the centraliser of f. However we know that HY,
the one-parameter subgroup generated by h;, does.

On the other hand, as [h, e] = [hy, €] = 2e, from Lemma we infer h — h; € Z(I). As in the proof of
Theorem we have

w 1
AdHtA(w)H—‘ (6 + ?) = 2 Adye (X(’w))

and )
H'A(w)H 'eU™, o) Adg:(x(w)) € S,

where now the latter follows from %2 Adpyt(e) = e and Adg: = Ad gt preserving the centraliser of f, as

Adge(f) = 7 f. Therefore we have

_ w 1 w
HAWH ™ =A(5),  5Adm (@) =x(5)-
and the same reasoning follows. This proves Theorem |

Ezample 4.12. Basic examples of non-reductive, non-solvable linear groups are parabolic subgroups of
reductive groups. Let us consider such a group P < G, where G is reductive and assume that Bc P is a
Borel subgroup of G contained in P. Then we can consider a principal b(sly)-triple (e, f, h) in g such that
e, h € b. This makes P into a principally paired group and we can make use of Theorem [£.10]

Suppose that X is a Schubert variety in some partial flag variety G/Q. Its stabiliser P in G contains B,
hence it is a parabolic subgroup. In general it is larger than B (see more in [57), Section 2]). Remember that
B acts on G/Q regularly (Example . Therefore if X is smooth, Theorem gives the P-equivariant
cohomology of X.

Ezample 4.13. As in the previous example, assume that X is Schubert variety in G/Q fixed by P. One
can then construct a Bott—Samelson resolution of X [567, Section 2, p. 446] which is P-equivariant. As in
Lemma [3:27] such a resolution will be a smooth regular P-variety. Hence we can use Theorem [£.10] to

compute its P-equivariant cohomology.

We also extend Lemma to principally paired groups.

Lemma 4.14. Assume that a principally paired group H acts regularly on a smooth projective variety X .
Then the H-equivariant cohomology H;(X) is generated as a C[t]V-algebra by equivariant Chern classes

of H-equivariant vector bundles.
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Proof. As in the proof of Lemma it is enough to prove that the non-equivariant cohomology H*(X) is
generated by Chern classes of H-equivariant vector bundles. By Lemma we know that it is generated
by Chern classes, and in fact by Chern characters of L-equivariant vector bundles for L. being a Levi

subgroup of H. We have the following two maps
Kj(X) = KJ(X) = H*(X).

The former is simply the restriction of H-equivariant bundles to L-equivariant bundles and the latter is
the Chern character map. We know that the image of composition generates the whole H*(X). We prove
that the first map is, in fact, an isomorphism, which will prove the claim.

By [60} 6.2], the restriction along X — H x X induces an isomorphism
Ky(H x¥ X) - KY(X).

Now H x¥ X maps H-equivariantly to X (simply by [(k, )] — hz) and we will show that this map induces
an isomorphism on Kﬂﬂ Let N be the unipotent radical of H, so that H = N x L. Notice that then we
have the H-equivariant isomorphism

Hx"X ~Nx X,

where H acts on N x X diagonally by conjugation and action.
Indeed, every element of H is uniquely decomposed as ul for v € N, [ € L. This means that
H x™ X ~ N x X. Now we need to see how the H acts on this product. Note that in H x* X we have

h[(u,2)] = [(hu, 2)] = [(huh™", ha)],

and as huh~! € N, upon identification with N x X we have h - (u,x) = (huh™1, hx).
We want to prove that the map N x X — X induces an isomorphism on K{. Note that it is not the
projection, but the action of N on X. However, we can split it into the isomorphism N x X — N x X

given by (u,x) — (u,uz), and the projection. Note that this isomorphism is in fact H-invariant, as
h- (u,ux) = (huh™', hux) = (huh™', huh™ hz).

Therefore we have to show that the projection N x X — X yields an isomorphism on KJ.

Now by [55, Proposition 14.32] the algebraic exponential map for the unipotent group exp : n — N
is an isomorphism of schemes. Thus in fact N x X ~ n x X has a structure of a (trivial) vector bundle
over X. Note that H acts on it linearly. Indeed, we have hexp(v)h~! = exp(hvh™!) and the adjoint
representation of H on n is linear. Then by [60] 4.1] the projection N x X — X gives an isomorphism on
KQ.

|

5 Extensions: singular varieties and total zero schemes

In this section we discuss two directions to extend our results. First we discuss generalisations to singular

varieties.

5.1 Singular varieties

Our main Theorem may be generalised to singular varieties, in the spirit of [16], Section 7]. A sufficient
condition will be an embedding in a smooth regular variety such that the corresponding map on ordinary
cohomology is surjective (cf. Corollary [3.22)).

6This argument is based on a suggestion by Andrzej Weber.
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Proposition 5.1. Assume that H is a principally paired algebraic group and let S be the Kostant section
within H, as defined in Section[{.5 Let B be a Borel subgroup of H. Assume that H acts regularly on a
smooth projective variety X and let Z§ be the zero scheme defined in Theoremfor the H-action on
X.

Assume Y is a closed H-invariant subvariety whose cohomology is generated by Chern classes of
B-linearised vector bundles. Then analogously to Section we can define an isomorphism of graded C[S]-
algebras H%(Y) — C[ZY], where 2} is the reduced intersection ZY = Z& n (S x Y). The isomorphism

makes the diagram
HE(X) —— HE(Y)

(5.1)

Clzi] — Cl2k]

commutative. The assumption on cohomology of Y holds in particular if the inclusion Y — X induces a

surjective map H*(X) — H*(Y) on ordinary cohomology.

Proof. The proof is essentially the same as in [I6] Section 7]. We only sketch it here. Assume first that H
is solvable. Every point of the variety ZJ is of the form (w, M,(), where M, € H depends on w and ( is
a T-fixed point contained in Y. Therefore, for any ¢ € H(Y'), we can define py (c) (we only localise to
points in Y). The condition on cohomology of Y allows us to use Lemma to show that py actually
maps H%(Y) to C[Z}]. The injectivity follows again from injectivity of localisation on equivariantly
formal spaces ([32, Theorem 1.2.2]). The diagram is obviously commutative and surjectivity follows then
from the surjectivity of restriction C[Z§] — C[Z}Y] to closed subvariety.

Now assume that H is arbitrary principally paired group. Let B be its Borel subgroup and by Z¥
denote the appropriate zero scheme defined for B acting on Y. As Y is H-invariant, the arguments from
the proof of Theorem show that C[Z}] = C[ZY]W and the conclusion follows. The last line of the
proposition is implied by Lemma [3.14 ]

Example 5.2. Let H = B, the Borel subgroup of a reductive group G. Natural examples of singular regular
B-varieties are Schubert varieties in flag variety G/B or any other subvarieties that are unions of Bruhat
cells, see |5l Theorem 5 with remarks|. In general, Schubert varieties are stabilised by parabolic subgroups

(see in [57, Section 2]). Those are therefore singular P-regular varieties for parabolic groups P.

Ezample 5.3. Assume that X = G/B is the flag variety of type A, hence G = SL,,,(C). Then if Y is
any Springer fiber within X, the restriction on cohomology H*(X) — H*(Y) is surjective ([51]), hence
Proposition [5.1] also holds in that case.

However, there exist G-invariant subvarieties for which the restriction map on cohomology is not

surjective.

Remark 5.4. The assumption on surjectivity on cohomology of Y is necessary in the proposition above.
Consider the following. Let SLs act on P? as in Example It comes from a representation Sym®V/,
where V is the fundamental representation of SLy. It has two extreme (highest and lowest) weights and
two “middle” weights. The point o of P? which represents the highest weight space is fixed by the Borel
subgroup of upper triangular matrices and hence one sees that its orbit is isomorphic to the full flag
variety SLy /By = P!. However, if we consider a point p € P? representing a non-highest weight space,
its stabiliser is a torus, i.e. Stabgy,(p) = T. Hence its SLg-orbit is not closed. We denote its closure
by Y := SLy-p. We claim that Y is not smooth. We can see this directly, by noticing that it is the

projectivised variety of polynomials agx® + a12%y + aszy? + 3® with at least two roots (vanishing lines)
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equal, and writing down the discriminant equation. We can also see this using our results. If Y were
smooth, by Corollary the map H*(P3) — H*(Y) would be surjective, but both varieties admit an
action of T, with the same set of fixed points, therefore the map would have to be an isomorphism. It is
impossible for dimensional reasons (H°(Y) = 0).

Moreover, not only is Y singular, but in any case the map H*(P?) — H*(Y) cannot be surjective.
This would mean that Proposition [5.1] applies. However, as all the T-fixed points are already in Y, one sees
immediately that Z is already in Y. Then again, we would have H*(Y) = H*(P3), which is impossible
for the same reason as above. Thus H*(P3) — H*(Y) is not surjective, and moreover H*(P?3) is not
generated by Chern classes of By-equivariant bundles. This shows that the assumption is necessary in the
proposition.

Remark 5.5. Assume we are given an H-invariant subvariety Y of a regular smooth H-variety X. By
Proposition and Corollary the surjectivity of restriction H*(X) — H*(Y) is necessary and
sufficient for the existence of an isomorphism H(Y) — C[Z}] which makes commutative. Carrell
and Kaveh prove in [19, Theorem 2|, for the case of H = By, that it is equivalent to H#%(Y") being generated

by Chern classes of Bo-equivariant bundles.

5.2 Total zero scheme

Assume that G is a principally paired algebraic group, e.g. G reductive. We proved in Theorem how
to see geometrically the spectrum of G-equivariant cohomology of X for G acting regularly on a projective
variety X. However, this needed a choice — of a concrete b(slz)-pair (e, h) and the associated Kostant
section. A natural challenge would be to try to find equivariant cohomology as global functions on a

scheme that does not depend on choices.

Definition 5.6. Let an algebraic group G act on a smooth projective variety X . Consider the total vector
field on g x X (Definition . We call its reduced zero scheme

Ztot cgXx X
the total zero scheme.
Now we are ready to show the following.

Theorem 5.7. Assume that G is principally paired. Let it act on a smooth projective variety reqularly.
Consider the action of C* on the total zero scheme Zio by t- (v,x) = (t%v,x) and the action of G acts
by g+ (v,x) = (Ad,y(v),g-x). Then the ring C[Zi01]¢ of G-invariant functions on Zi is a graded algebra
over C[g]® =~ H(pt) isomorphic to HE(pt), where the grading comes from the weights of C* -action on
Clg]:

C[2,]% —— HE(X;0)

I |

Clg]® ——— HE.

Following the notation from Theorem we show that the restriction C[Z,;]¢ — C[Zg] is an

isomorphism, so that we get the following diagram

C[Z0t]¢ — C[2g] —— HE(X,C)

Clg]® —— C[Y —— HE(pt, C)
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with all horizontal arrows being isomorphisms. The bottom line follows from Lemma First we prove

that the restriction is an epimorphism.
Lemma 5.8. Under the assumptions of Theorem the restriction C[Zy01]¢ — C[Zg] is surjective.

Proof. By Lemma we know that C[Zg] is generated over C[t]V =~ C[g]® by functions pg(c§ (€)) for

positive integers k and G-equivariant vector bundles £. Those functions are defined by
G _ k
PG(Ck (5))(U7 .%') = TrAkSz (A Ul’)v

see Remark For each such function, we can consider the regular function fj ¢ defined on Z by its

values:
fre(,x) = Tryee, (Akvw).

It is clearly G-invariant and restricts to pg(c§ (€)) on Zg. As C[Zg] is generated by such functions, the

conclusion follows. [ |

For the injectivity, let us start with an easy intermediate step. Let Z,.; be the open subscheme of

Zi0t consisting of the part over g"® — g (hence a closed subscheme of g*®8 x X). Then we have

Lemma 5.9. Let G be a principally paired algebraic group. Assume it acts on a connected smooth
projective variety, not necessarily regularly. The restriction C[Zeq]® — C[Z¢] is injective, where Zyeq

and Zg are defined as above, as zero schemes over g™ and S.

Proof. As Z.. is reduced, a function is determined by its values on closed points. By Lemma every
G-orbit in g'*® intersects S, thus the G-orbit of any closed point in Z,., intersects Zg. It is therefore

enough to specify a G-invariant function on Z,., on closed points of Zg. The result follows. |

To finish the proof, we are only left with the proof of injectivity of the restriction C[Z;0]¢ — C[Zeg]®.

We will utilise the following Lemma to prove that the restriction C[Zyo] — C[Z,eg] is injective.

Lemma 5.10. Let Y be a reduced scheme over a field k. Assume Z is a closed subvariety and every
closed point p € Y 1is contained in a projective closed subvariety that intersects Z. Then the restriction

map on reqular functions k[Y] — k[Z] is injective.

Proof. Let us assume that f € k[Y] vanishes on Z. Consider any closed point p € Y. Let A, be a
projective closed subvariety that contains p and intersects Z in a closed point g. Then f|4, is a regular
function on a projective variety over k, hence it is has constant value on all closed points of A,. As
f(q) = 0, this means that it takes the value 0. Therefore f(p) = 0. Hence f vanishes on every closed
point.

As Y is reduced and of finite type over a field, we know that regular functions are uniquely determined

by its values on closed points. Therefore f = 0. |

To arrive at lemma’s assumptions, we first prove slightly stronger versions of Lemmas [2.8] and 2:10]

under the condition that the action of the Lie algebra is integrable.

Lemma 5.11. Assume that a solvable algebraic group H acts on a smooth complex variety X. Let P < X
be a projective irreducible component of the reduced zero scheme of a linear subspace V < h. Then P

contains a simultaneous zero of Ny(V).
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Proof. By [11l, Lemma 7.4] we have Ny(V) = Lie(Nu(V)). Let Nu(V)° be the connected component of
unity within Ng(V). We know from Lemma [2.6| that Ny (V) preserves the zero set of V. Thus Ny (V)°
preserves its irreducible components, in particular P. By the Borel fixed point theorem [55 Corollary
17.3], Nu(V)° it must have a fixed point p € P. Then its Lie algebra Lie(Nyg(V)°) = Lie(Nu(V)) = Ny(V)

vanishes on p. |

Lemma 5.12. Assume that an algebraic group H acts on a smooth variety X. Let d,n € b commute and
assume that the Lie subalgebra generated by [h,h] and n is nilpotent. Let P be a projective irreducible
component of the reduced zero scheme of j = d+n. Then P contains a simultaneous zero of Cy(d), in

particular, a zero of any abelian subalgebra of b containing d.

Proof. By restricting to the connected component of identity, we can assume that H is connected. As
[b,b] is nilpotent, h must be solvable, hence H is solvable too.

Let ¢ be the Lie subalgebra generated by [h,h] and n. By Lemma we get that inside P there is a
zero p of Ny (C - j), which in particular contains d and n. As P is irreducible, any irreducible component
of the simultaneous zero set of d and n which contains p is completely contained in P. Let P; = P be one
such irreducible component. As it is closed inside P, it also has a structure of a projective scheme.

We will first show that P; contains a simultaneous zero of C’(d) = Cy(d) n €. As ¢t is nilpotent, C’(d)
is as well. By Lemma Py contains a simultaneous zero of Ny (spang(d,n)), hence in particular of
Ne¢i(ay(C - n). Note that by definition everything in C’(d) centralises d. As Py consists of zeros of d, it
will contain an irreducible component P of the common fixed point set of d and Nei(4)(C-n). As a
closed subscheme of P;, P; is also projective. By the same argument, P, contains an projective irreducible
component P3 of the common fixed point set of d and N2,(d) (C-n). As in the proof of Lemma m,
there exists a positive integer k such that Nk,(d)((c -n) = C’'(d), hence we get a projective irreducible
component P41 of the common fixed point set of d and C’(d). But again as in Lemma[2.10 C'(d), as
well as d, is normalised by Cj(d). Hence inside Py4q there is a zero of Cy(d). [ |

Lemma 5.13. Let G be a principally paired algebraic group. Assume that it acts on a connected smooth
projective variety X, not necessarily reqularly. The restriction C[Z4]¢ — C[2g] is injective, where Zyeq

and Z¢g are defined as before, as zero schemes over g'°® and S.

Proof. We have the sequence of restrictions C[Z0]¢ — C[Ze¢]¢ — C[Z¢]. By Lemma [5.9| we only need
to prove that the first map is injective. Obviously the restriction C[Zeg] — C[Z,eg] is injective (here we
take the closure of Zieg in Zior). We will prove that C[Zit] — C[Zeg] is injective and this will prove the
theorem.

We employ Lemma [5.10] for that. We have to prove that every point of Z; is contained in a projective
subvariety which intersects Tcg. Let (v,p) € Ziot € g x X. Then p is contained in the zero scheme of the
vector field V,,, hence in some irreducible component P thereof. It is a closed subscheme of X, hence it is
projective. Then we have {v} x P < Zi as a projective closed subvariety. Let v = d + n be the Jordan
decomposition of v ([11 4.4]). As d and n commute, they are contained in a Lie algebra b, of some Borel
subgroup B c G. Let T be a maximal torus within B such that d € t = Lie(T). Then from Lemma
(take H = B) we get that P contains a simultaneous zero x of t. It is also a zero of v, hence we have
(t+ C-v) x {&} < Zio. Note that t contains a regular element, and as the regular elements within g form
an open subset, the regular elements of t + C - v form an open nonempty subset, hence they are dense.
This means that (t + C-v) x {2} © Z,q, hence in particular (v,z) € Zeq, and (v, ) € {v} x P, where

{v} x P is a projective subvariety of Z., therefore we are done. ]

Proof of Theorem[5.71 The isomorphism follows from Lemmas [5.§ and
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For the grading, we just have to show that the defined action of C* descends under the restriction
C[Zt0t]¢ — C[Z¢] to the action defined in Theorem Let f be a G-invariant function on Z.;. Then
for any t € C* the pullback t* f of f by ¢ is defined by

1
t*fv,z) = f <t—2v,x> .
As f is G-invariant, this means
t*fv,z) = f <ti2 Adpe v,H%) .

When we restrict to Zg, the group C* acts precisely by (:z Adg+, H') (Theorem [4.10)). Therefore the

actions agree. ]

Ezample 5.14. Assume that G is a reductive group acting on a partial flag variety X = G/P. Then the
zero scheme is

gp = {(x,p") € g x G/Plz e p'},
which agrees with the partial Grothendieck-Springer resolution. Thus we get that as a C[g]¢ = HE-module,
the ring of invariant functions C[gp]® is equal to H¥(G/P) = H} = C[t]W>.

Figure 7: Affine parts of the total zero scheme for the action of By on P'. The left part misses a line (over

b = 0), the right part misses the blue component.

Ezample 5.15. There is one example that we are able to draw. It is the action of By on P! (see Example
3.20). The total zero scheme is not affine, but we can cover it with two affine pieces, coming from affine
cover of P!. First one will be the part contained in by x {[1 : z]|x € C} and the other will be the part

contained in by x {[y : 1]|y € C}. If we consider coordinates (a,b) on by that correspond to matrices

a b cb
0 —a 2,

then the surface has the equations 2az + bx? = 0 in (a, b, z)-plane (the first piece) and 2ay + b = 0 in

(a,b,y)-plane (the second piece). The scheme has two irreducible components and the pieces are drawn in
Figure [7]
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One sees that the Bo-invariant functions on the blue part depend only on a, hence they form C|a].
Analogously on the orange part the Bo-invariant functions only depend on a = bx, as for a # 0 any two
points with the same a are conjugate, and for a = 0 we get b = 0 or x = 0. The former line is a projective
line on which an invariant function must attain the same value, and the latter lies in the blue part. This
leaves us with two functions from C[a] with the same constant term. One easily sees that this ring is

isomorphic to e.g. Cla,z]/z(x + 2a).

5.3 Equivariant cohomology of GKM spaces via total zero scheme

We suspect that the description of equivariant cohomology as the ring of regular functions on the total
zero scheme might still hold in a larger generality. For example, one could presume that a sufficiently
regular torus action might lead to such a description, even without embedding torus in a larger solvable
group (as in Section . Here we prove this equality for GKM (Goresky—Kottwitz—MacPherson) spaces

([32]), whose equivariant cohomology we know.

Theorem 5.16. Let a torus T =~ (C*)" act on a smooth projective complex variety X with finitely
many zero and one-dimensional orbits. In other words, the T-action makes X a GKM space. Let
Z = Zior € t X X be the reduced total zero scheme of this action (Definition[5.6). Then C[Z] = H}(X)

as algebras over C[t] ~ H¥:
C[2] —— H}(X;0)

| |

Clt] —=— Hx.

Let us denote the T-fixed points by (i, (o, ..., (s and the one-dimensional orbits by E1, Fs, ..., Ey.
Closure of any F; is an embedding of P! and contains two fixed points ¢;, and ¢;_, which for any = € E;
are equal to the limits lim;_,qg tx and lim;_, tz. The action of T on FE; has a kernel of codimension 1,

which is uniquely determined by its Lie algebra €;. We then have the following result ([32] Theorem 1.2.2]):

Theorem 5.17 (Goresky—Kottwitz—MacPherson, 1998). Assume that a torus T acts on a smooth GKM
space X . Then the restriction H%(X,C) — Hi(XT,C) = C[t]® is injective and its image is

H = {(flvf?a"'afs) € C[t]s fi0|{’,i = flgo|E, fOTj = 1725"'56} .

We will proceed by finding an injective map p : Hf(X) — C[Z] and an injective left inverse
r:C[Z] - H = H:(X). We will use Lemma with Y = Z as defined above and Z = t x XT. Take
any (v,p) € £. The point p lies in the zero scheme Z, of the vector field on X corresponding to v. As T
is a commutative group, and hence acts trivially on its Lie algebra, it preserves zeros of v € t. Therefore
{v} x T-pc Z and {v} x T - pis a closed projective subvariety of Z. As T acts on it, then by Borel fixed
point theorem it contains a fixed point of T, hence intersects Z nontrivially. Therefore this choice of Y
and Z satisfies the conditions of the Lemma.

We know that there are finitely many distinct types of orbits of the T-action on X. This can be seen by
embedding X equivariantly in a projective space with a linear action of T, see [26, Theorem 7.3]. Therefore
there exists a one-parameter subgroup {H'},ccx = T that is not contained in any proper centraliser.
Then the fixed points of H? are automatically the fixed points of T. Consider the Biatynicki-Birula

minus—decomposition, consisting of cells
W, = {xeX:tIim H' 2= ¢}
—00

for 1, (o, ..., (s being the fixed points of T.
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We first define the map p : Hf(X) — C[Z]. We will define it on closed points, using reducedness of Z.
Let c € H¥(X). Assume that (v,z) € Z, i.e. the vector field v is zero at . We know that « € W, for
some i € {1,2,...,s}. The restriction c|¢, is an element of H¥(pt) = C[t]. Define then

p(e) (v,2) = clc,(v).

We first have to prove that this defines a regular function for each c.

Lemma 5.18. Let £ be a T-equivariant bundle on X. Then
p(cr(€))(v,2) = Trpr(e,) (A ().
In particular, p(cx(£)) is a regular function on Z.

Proof. Let ¢ = c¢x(€). Consider the curve C' = H* - z. In particular let ¢; = lim;_,o, H' - x € C. We then
defined p(c)(v, z) = ¢|¢, (v). But we know that this is equal to

Ck(g)

¢ (v) = Traxe, ) (A*0).

However, as T is commutative, the action of any of its elements, in particular of H?, on X is T-equivariant,
therefore
k k
TrAk(gw)(A 1}) = TrAk(gHt_w)(A U)

for any t € C*. Therefore the equality stays true also in the limit, hence

TrAk(gz)(Ak'U) = TrAk(gCi)(Akv) = ,O(C)(U,ZE).
u

Proof of Theorem[5.16. We have defined the map p, we just have to prove that it is an isomorphism. For
injectivity, note that t x X is contained in Z. By definition, if p(c) is zero on this subspace, then all
localisations to T-fixed points vanish. But by theorem the localisation is injective, hence ¢ = 0.
The set t x XT < Z is closed and considering it as a reduced subvariety, by Lemma we get that
the restriction map
r:C[Z] - Clt x XT] = C[{]*

is injective. We need to prove that the image lies in H and that r o p is the localisation map H¥(X) — H.

a(v).
Now we need to prove that for any F; and v € ¢ and f € C[Z] we have f(v,(;,) = f(v,¢., ). Note

that as the infinitesimal action of €; is trivial on E;, we have ¢ x E; < Z. This means that over each

The latter comes directly from the definition, as p(c)(v,¢;) = ¢

v € €; there is a closed subset {v} x E; = Z. As the reduced subscheme structure makes this is a projective

variety (P!, precisely), every global function on Z needs to be constant along this subvariety. As it
contains (v, ;) and (v,¢;, ), we get f(v,(y) = f(v,¢iy)- |

Remark 5.19. Thus the ring of regular functions on the total scheme is isomorphic to the equivariant
cohomology for regular actions of principally paired group on smooth projective varieties, by Theorem [5.7}
as well as for GKM spaces by Theorem We expect this to hold for a larger class of group actions on
smooth projective varieties, including spherical varieties.

In the above, we used the fact that the torus-fixed points are isolated, but we also needed the GKM
cohomology result, i.e. Theorem [5.17] This way we know that any function on the zero scheme will be a

cohomology class, as it will determine an element that already lies in H. Note that for arbitrary torus
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actions, every l-orbit defines a similar condition on the image of localisation, but the image of localisation
will be in general stricty smaller than similarly defined H.

We can see that it is not enough to assume for the torus to act with isolated fixed points. Indeed, let
us consider X = P2, but we restrict the standard action of the two-dimensional torus to one-dimensional
C*. Take e.g. the action ¢ - [z :y: 2] = [z : t?y : t*2]. The only fixed points are [1:0:0] and [0: 1 : 0]
and [0:0: 1] and hence if we consider any nonzero v € C =~ Lie(C*), the associated vector field only has
those three zeros. On the other hand, for v = 0 the zero scheme is the whole P2. Therefore Zo; = C x X
will consist of a vertical P? and three horizontal lines. The action of ¢t € C* multiplies by t~2 on each of
those lines.

Any global function on Zi.; determines polynomials f1, fo, f3 on those lines. Then C[Z] =
{(f1, f2, f3) € C[z]?|f1(0) = f2(0) = f3(0)}. There is an injective map HJ, (P?) — C[Zi], but it is
not surjective. From Example we have HY, (P?) = Clz,v]/(z(z + 2v)(z + 4v)). Geometrically,
we see the map Zioy — Spec H, (P?) which contracts P? to the point. We see that hZ, (P?) = 2, but
C[Z01)? = {(az,bx, cx)|a, b, c € C} is three-dimensional.

A work is ongoing to determine under what assumptions this result holds. For example for many
affine Bott-Samelson varieties Lowit [52] proves H (X, C) = C[Zot], as well as a version for equivariant

K-theory. Other examples and applications can be found in [40, §4].

6 Appendix: Graded Nakayama lemma
For the sake of completeness we provide here the proof of the version of graded Nakayama Lemma that
we need (see also [27], Corollary 4.8, Exercise 4.6]).

Let R be an Zx¢-graded ring R = @,,, Rn and I = D

degree.

n>0 Itn the ideal generated by elements of positive

Lemma 6.1. If a Z>¢-graded R-module M satisfies M = IM, then M = 0.

Proof. Suppose on contrary that a € M is a nonzero homogeneous element of minimal degree d € Z>q

present in M. By assumption M = IM we have that

k
a= Z ria;
i=1

for some r; € I, a; € M. But as r; € I, the minimal degree present in r; is at least 1. As a; € M, the
minimal degree present in a; is at least d. Therefore the elements r;a; have zero part in degrees less than

d + 1. In particular, we cannot get a as a sum of them, as it has nonzero part in degree d. |

Corollary 6.2. Let M be an Zxq-graded R-module M. Suppose that elements (a;)jes of M generate the
R/I-module M/IM. Then they generate M as R-module.

Proof. Let us consider the map of R-modules ¢ : RY — M defined by the elements aj. We have the exact
sequence
RIS M- coker ¢ — 0.

As tensor product is right exact, by tensoring with R/I we get an exact sequence of R/I-modules:
(R/T)) — M/IM — (coker ¢) ®z R/I — 0.

By assumption the first map is an epimorphism, hence (coker ¢) ® g R/I = 0. In other words, coker ¢

satisfies the conditions of lemma. Therefore coker ¢ = 0, hence ¢ is surjective. ]
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