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Astérisque

370, 2015, p. 113–156

COHOMOLOGY OF LARGE SEMIPROJECTIVE

HYPERKÄHLER VARIETIES

by

Tamás Hausel & Fernando Rodriguez Villegas

À Gérard Laumon à l’occasion de son 60éme anniversaire

Abstract. — In this paper we survey geometric and arithmetic techniques to study

the cohomology of semiprojective hyperkähler manifolds including toric hyperkähler
varieties, Nakajima quiver varieties and moduli spaces of Higgs bundles on Riemann

surfaces. The resulting formulae for their Poincaré polynomials are combinatorial and
representation theoretical in nature. In particular we will look at their Betti numbers

and will establish some results and state some expectations on their asymptotic shape.

Résumé (Cohomologie des variétés hyperkähleriennes semiprojectives grandes). — Dans

cet article, nous passons en revue les techniques géométriques et arithmétiques pour
étudier la cohomologie des variétés hyperkählériennes semiprojectives, en particulier

les variétés hyperkählériennes toriques, les variétés de carquois de Nakajima et les

espaces de modules de fibrés de Higgs sur les surfaces de Riemann. Les formules ob-
tenues pour leurs polynômes de Poincaré sont de nature combinatoire et liées à la

théorie des représentations. En particulier, nous étudions leurs nombres de Betti et

nous établissons des résultats et formulons quelques hypothèses sur leur comporte-
ment asymptotique.

At the conference “De la géométrie algébrique aux formes automorphes: une con-

férence en l’honneur de Gérard Laumon” the first author gave a talk, whose subject

is well-documented in the survey paper [Ha4]. Here, instead, we will discuss tech-

niques, both geometrical and arithmetic, for obtaining information on the cohomology

of semiprojective hyperkähler varieties and we will report on some observations on

the asymptotic behaviour of their Betti numbers in certain families of examples.

We call X a smooth quasi-projective variety with a C×-action semiprojective when

the fixed point set XC× is projective and for every x ∈ X and as λ ∈ C× tends to 0

the limit limλ→0 λx exists.

2010 Mathematics Subject Classification. — 53C26, 14L30, 14C30,14D20, 14D10, 20G05, 05E05,
62E17.

Key words and phrases. — Cohomology, Betti numbers, quiver variety, hyperkähler variety, Hard

Lefschetz Theorem.
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114 T. HAUSEL & F. RODRIGUEZ VILLEGAS

Varieties with these assumptions were originally studied by Simpson in [Si2, §11]

and varieties with similar assumptions were studied by Nakajima in [Na3, §5.1].

The terminology semiprojective in this context appeared in [HS], which concerned

semiprojective toric varieties and toric hyperkähler varieties. In particular, a large

class of hyperkähler varieties, which arise as a hyperkähler quotient of a vector space

by a gauge group, are semiprojective. These include Hilbert schemes of n-points on C2,

Nakajima quiver varieties and moduli spaces of Higgs bundles on Riemann surfaces.

It turns out that despite their simple definition we can say quite a lot about the

geometry and cohomology of semiprojective varieties. We can construct a Bialynicki-

Birula stratification (§1.2), which in §1.3 will give a perfect Morse stratification in the

sense of Atiyah-Bott. This way we will be able to deduce that the cohomology of a

semiprojective variety is isomorphic with the cohomology of the fixed point set XC×

with some cohomological shifts. Also, the opposite Bialynicki-Birula stratification will

stratify a projective subvariety C ⊂ X of the semiprojective variety, the so-called core,

which turns out to be a deformation retract of X. This way we can deduce that the

cohomology H∗(X;C) is always pure. Furthermore, we can compactify X = X
∐
Z

with a divisor Z, to get an orbifold X. Finally in §1.4 we will look at a version of a

weak form of the Hard Lefschetz theorem satisfied by semiprojective varieties.

We will also discuss arithmetic approach to obtain information on the cohomology

of our hyperkähler varieties. It turns out that the algebraic symplectic quotient

construction of our hyperkähler varieties will enable us to use a technique we call

arithmetic harmonic analysis to count the points of our hyperkähler varieties over

finite fields. With this technique we can effectively determine the Betti numbers of

the toric hyperkähler varieties and Nakajima quiver varieties as well as formulate a

conjectural expression for the Betti numbers of the moduli space of Higgs bundles.

To test the range in which the Weak Hard Lefschetz theorem of §1.4 might hold, we

will look at the graph of Betti numbers for our varieties when their dimension is very

large. The resulting pictures are fairly similar and we observe that asymptotically

they seem to converge to the graph of some continuous functions. We will see, for

example, the normal, Gumbel and Airy distributions emerging in the limit in our

examples. We will conclude the paper with some proofs and heuristics towards

establishing such facts.
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COHOMOLOGY OF LARGE SEMIPROJECTIVE HYPERKÄHLER VARIETIES 115

1. Semiprojective varieties

1.1. Definition and examples. — We start with the definition of a semiprojective

variety, first considered in [Si2, Theorem 11.2].

Definition 1.1.1. — Let X be a complex quasi-projective algebraic variety with a

C×-action. We call X semiprojective when the following two assumptions hold:

1. The fixed point set XC× is proper.

2. For every x ∈ X the limλ→0 λx exists as λ ∈ C× tends to 0.

The second condition could be phrased more algebraically as follows: for every

x ∈ X we have an equivariant map f : C→ X such that f(1) = x and C× acts on C
by multiplication.

First example is a projective variety with a trivial (or any) C×-action. For a

large class of non-projective examples one can take the total space of a vector bundle

on a projective variety, which together with the canonical C×-action will become

semiprojective.

A good source of examples arise by taking GIT quotients of linear group actions

of reductive groups on vector spaces. Examples include the semiprojective toric vari-

eties of [HS] (even though the definition of semiprojectiveness is different there, but

equivalent with ours) and quiver varieties studied by Reineke [Re1].

1.1.1. Semiprojective hyperkähler varieties. — In this survey we are interested in

semiprojective hyperkähler varieties. Examples arise by taking the algebraic sym-

plectic quotient of a complex symplectic vector space M by a symplectic linear action

of a reductive group ρ : G → Sp(M). In practice M = V × V∗ and ρ arises as the

doubling of a representation ρ : G → GL(V). If g denotes the Lie algebra of G, we

have the derivative of ρ as % : g→ gl(V). This gives us the moment map

µ : M −→ g∗, (1.1.1)

at x ∈ g by the formula

〈µ(v, w), x〉 = 〈%(x)v, w〉. (1.1.2)

By construction µ is equivariant with respect to the coadjoint action of G on g∗.

Taking a character σ ∈ Hom(G,C×) will yield the GIT quotient Mρ
σ := µ−1(0)//σG

using the linearization induced by σ. Sometimes σ can be chosen generically so that

Mρ
σ becomes non-singular (and by construction) quasi-projective. We assume this

henceforth. By construction of the GIT quotient we have the proper affinization map

Mρ
σ −→M

ρ
0 (1.1.3)

to the affine GIT quotient Mρ
0 = µ−1(0)//G.

The C×-action on M given by dilation will commute with the linear action of G

on it so that the moment map (1.1.1) will be equivariant with respect to this and the

weight 2 action of C× on g∗. This will induce a C×-action on Mρ
σ, such that on the

affine GIT quotient Mρ
σ it will have a single fixed point corresponding to the origin
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116 T. HAUSEL & F. RODRIGUEZ VILLEGAS

in µ−1(0) ⊂M. This and the fact that the affinization map (1.1.3) is proper implies,

that Mρ
σ is semiprojective.

An important special case is when Z(GL(V)) ⊂ imρ. In this case we can take a

square root of the C× action above by acting only on V∗ by dilation and trivially

on V. This action will also commute with the action of G on M = V × V∗ and will

indeed reduce to a C×-action on the quotient Mρ
σ whose square is the C×-action

we considered in the previous paragraph. In particular this new action also makes

Mρ
σ semiprojective. In fact, it will have an additional property. Namely, the natural

symplectic form ωM on M will be of homogeneity 1 with respect to the C× action; in

other words, it will satisfy

λ∗(ωM) = λωM (1.1.4)

under this action. This property will be inherited by the quotient Mρ
σ. Follow-

ing [Ha2] we make the following

Definition 1.1.2. — A semiprojective hyperkähler variety with a symplectic form of

homogeneity one as in (1.1.4) is called hyper-compact.

When G is a torus,Mρ
σ are the toric hyperkähler varieties of [HS]; these always can

be arranged to become hyper-compact. When the representation ρ arises from a quiver

with a dimension vectorMρ
σ is a quiver variety as constructed by Nakajima in [Na2].

When the quiver has no edge loops, one can always arrange thatMρ
σ becomes hyper-

compact. When the quiver is the tennis-racquet quiver, i.e., two vertices connected

with a single edge and with a loop on one of them, and the dimension vector is 1

in the simple vertex and n on the looped one, the Nakajima quiver variety becomes

isomorphic with (C2)[n] the Hilbert scheme of n points on C2. This semiprojective

hyperkähler variety however is not hyper-compact as we will see later.

Finally, the following hyper-compact examples originally arose from an infinite

dimensional analogue of the above construction. In [Hi1] Hitchin constructs the mod-

uli space of semistable rank n degree d Higgs bundles on a Riemann surface as an infi-

nite dimensional gauge theoretical quotient. A Higgs bundle is a pair (E, φ) of a rank

n degree d vector bundle E on the Riemann surface C and φ ∈ H0(C; End(E)⊗KC).

Nitsure [Ni] constructed such moduli spacesMd
n in the algebraic geometric category,

which are non-singular quasi-projective varieties when (n, d) = 1. There is a natural

C× action on Md
n given by scaling the Higgs field (E, φ) 7→ (E, λφ). Hitchin [Hi1]

when n = 2 and Simpson [Si2, Corollary 10.3] in general showed thatMd
n is semipro-

jective. A nice argument to see this is similar to that given for Mρ
σ above. Namely,

the affinization

χ :Md
n −→ A (1.1.5)

turns out to be the famous Hitchin map [Hi2], which by results of Hitchin [Hi1] when

n = 2 and Nitsure [Ni] for general n is a proper map. It is also C×-equivariant which

covers a C×-action on the affine A with a single fixed point. This implies thatMd
n is

indeed semiprojective.
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COHOMOLOGY OF LARGE SEMIPROJECTIVE HYPERKÄHLER VARIETIES 117

1.2. Bialynicki-Birula decomposition of semiprojective varieties. — Much

in this section is due to Simpson [Si2], Nakajima [Na2] and Atiyah-Bott [AB].

Let X be a non-singular semiprojective variety. Let XC× =
∐
i∈I Fi be the decom-

position of the fixed point set into connected components. Then I is finite and Fi are

non-singular projective subvarieties of X. According to [Dol, Corollary 7.2] we can

linearize the action of C× on a very ample line bundle L on X. On each Fi then C×
will act on L through a homomorphism C× → C× with weight αi ∈ Z which we can

assume, by suitably changing the linearisation, are always non-negative αi ∈ Z>0. We

introduce a partial ordering on I by setting

i < j ⇐⇒ αi > αj . (1.2.1)

Introduce Ui ⊂ X as the set of points x ∈ X for which limt→0 tx ∈ Fi. Similarly,

as above, we can define Di as the points x ∈ X for which limt→∞ tx ∈ Fi. These are

locally closed subsets and Bialynicki-Birula [Bia, Theorem 4.1] proves that both Ui
and Di are subschemes of X which are isomorphic to certain affine bundles (so-called

C×-fibrations) over Fi.

It will be convenient to make the following

Definition 1.2.1. — The core of the semiprojective variety X is

C := ∪i∈IDi ⊂ X

By assumption 2 of Definition 1.1.1 we get the Bialynicki-Birula decomposition

X =
∐
i∈I Ui. This decomposition satisfies that

Ui ⊂ ∪j>iUi. (1.2.2)

To see this we note that using the linearisation on the very ample line bundle L we

can equivariantly embed X into some projective space PN with a linear C× action.

(1.2.2) follows from the corresponding statement for the linear action of C× on PN ,

where it is clear.

It follows from the Hilbert-Mumford criterium for semistability that Xss =

X \
∐
i∈I Di with respect to our linearisation. Thus we have a geometric quotient

Z := Xss/C×, which is proper according to [Si2, Theorem 11.2] and is, in fact, an

orbifold as there are no fixed points of C× on Xss. Using this construction for the

semiprojective X × C where C× acts via the diagonal action (with the standard

multiplication action on the second factor) we get

X := (X × C)ss/C×, (1.2.3)

which decomposes as X = X
∐
Z corresponding to points in (X×C)ss with non-zero

(respectively zero) second component. This thus yields an orbifold compactification

of X, the algebraic analogue of Lerman’s symplectic cutting [Ler], as studied in [Ha1].

An immediate consequence of this compactification is the following:

Corollary 1.2.2. — The core C of a semiprojective variety X is proper.
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118 T. HAUSEL & F. RODRIGUEZ VILLEGAS

Proof. — The proper X has two Bialynicki-Birula decompositions. One of them is

X = D∞ ∪
∐
i∈I

Di

where

D∞ = (X \ C) ∪ Z ⊂ X.

Thus by property (1.2.2) the core C =
∐
i∈I Di is closed in the proper X. The claim

follows.

1.3. Cohomology of semiprojective varieties

1.3.1. Generalities on cohomologies of complex algebraic varieties. — We denote

by H∗(X;Z) the integer and by H∗(X;Q) the rational singular cohomology of a CW

complex X. H∗(X;Z) is a graded anti commutative ring; while H∗(X;Q) is a graded

anticommutative Q-algebra.

When X is a complex algebraic variety there is further structure on its rational

cohomology. Motivated by the Frobenius action on the l-adic cohomology of a variety

defined over an algebraic closure of a finite field Deligne in 1971 [De] introduced mixed

Hodge structures on the cohomology of any complex algebraic variety X.

Here we only recall the notion of the weight filtration on rational cohomology. It

is an increasing filtration:

W0(Hk(X;Q)) = 0 ⊂ · · · ⊂Wi(H
k(X;Q)) ⊂ · · · ⊂W2k(Hk(X;Q)) = Hk(X;Q)

by Q-vector spaces Wi(H
k(X;Q)). It has many nice properties. For example it is

functorial,

Wk−1(Hk(X;Q)) = 0 (1.3.1)

for a smooth X, and

Wk(Hk(X;Q)) = Hk(X;Q) (1.3.2)

for a projective variety X. We say that the weight filtration on H∗(X;Q) is pure when

both (1.3.1) and (1.3.2) holds for every k. In particular a smooth projective variety

always has pure weight filtration. We will see in Corollary 1.3.2 that semiprojective

varieties also have pure weight filtration.

We denote by

H(X; q, t) =
∑
i,k

dim(GrWi H
k(X;Q))qi/2tk ∈ Z[q1/2, t]

the mixed Hodge polynomial. It has two important specializations. The polynomial

P (X; t) = H(1, t) =
∑
k

dim(Hk(X;Q))tk ∈ Z[t]
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COHOMOLOGY OF LARGE SEMIPROJECTIVE HYPERKÄHLER VARIETIES 119

is the Poincaré polynomial of X, while the specialization

E(X; q) = qdimXH(X; 1/q,−1)

=
∑
i,k

(−1)k dim(GrWi H
k(X;Q))qdimX−i/2 ∈ Z[q1/2] (1.3.3)

the virtual weight polynomial. In the case when the weight filtration is pure on

H∗(X;Q) we have the relationships

H(X; q, t) = P (X; q1/2t) = E(X; qt2). (1.3.4)

In the general case however there is no such relationships.

1.3.2. The case of semiprojective varieties. — Let X =
∐
i∈I Ui the Bialynicki-Birula

decomposition of a semiprojective variety, with index set I given a partial ordering

as in (1.2.1) . Following [AB, pp 537]let J ⊂ I such that

j ∈ I and i < j implies i ∈ J. (1.3.5)

Then by UJ := ∪j∈JUj is open in X by (1.2.2). Let λ ∈ I \ J be minimal and let

J+ := J ∪ λ, this also satisfies (1.3.5) so UJ+ is also open in X and Uλ is closed in

UJ+ . Furthermore the open subvarieties UJ and UJ+ of X are both semiprojective

with core

DJ :=
∐
j∈J

Dj ⊂ UJ

and

DJ+ =
∐
j∈J+

Dj = DJ ∪Dλ ⊂ UJ+ .

We now have the following commutative diagram:

−−−−→ Hj−kλ(Uλ;Z) −−−−→ Hj(UJ+ ;Z) −−−−→ Hj(UJ ;Z) −−−−→yi∗λ yi∗J yJ+∗

−−−−→ Hj−kλ(Fλ;Z) −−−−→ Hj(DJ+ ;Z) −−−−→ Hj(DJ ;Z) −−−−→

. (1.3.6)

Here the top row is the cohomology long-exact sequence of the pair (UJ+ , UJ) and

Hj−kλ(Uλ,Z) ∼= Hj(UJ+ , UJ ;Z)

is excision followed by the Thom isomorphism theorem, where kλ = codimUλ. The

bottom row is the cohomology long-exact sequence of the pair (DJ+ , DJ), where again

Hj−kλ(Fλ,Z) ∼= Hj(DJ+ , DJ ;Z)

is the Thom isomorphism. Finally iλ : Fλ → Dλ, iJ : DJ → UJ and iJ+ : DJ+ → UJ+

denote the corresponding imbeddings.
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120 T. HAUSEL & F. RODRIGUEZ VILLEGAS

Clearly i∗λ is an isomorphism. So if we know that i∗J is an isomorphism, so will

be i∗J+ by the five lemma. If Jmin = {λmin} denotes a minimal element in I, then

DJmin
∼= Fλmin

and so i∗Jmin
: H∗(UJmin ;Z) ∼= H∗(DJmin ;Z). Therefore by induction

we get that

i∗J : H∗(UJ ;Z) ∼= H∗(DJ ;Z)

is an isomorphism for all J satisfying (1.3.5). Thus in particular we have:

Theorem 1.3.1. — The embedding i : C ∼= DI → X ∼= UI induces an isomorphism

i∗ : H∗(X;Z) ∼= H∗(C;Z).

Corollary 1.3.2. — A smooth semiprojective variety has pure cohomology.

Proof. — As X is non-singular all the non-trivial weights in Hk(X;Q) are at least k

by (1.3.1). By Theorem 1.3.1, Corollary 1.2.2 and (1.3.2) all the weights in Hk(X;Q)

are at most k. The statement follows (1).

Interestingly our techniques can also be used to prove the purity of the cohomology

of certain, typically affine, varieties which are deformations of semiprojective varieties

as in the following corollary.

Corollary 1.3.3. — Let X be a non-singular complex algebraic variety and f : X → C a

smooth morphism, i.e., a surjective submersion. In addition, let X be semiprojective

with a C× action making f equivariant covering a linear action of C× on C with

positive weight. Then the fibers Xc := f−1(c) have isomorphic cohomology supporting

pure mixed Hodge structures.

Proof. — The proof can be found in [HLV1, Appendix B]. It proceeds by proving

that the embedding of every fiber of f induces an isomorphism

H∗(Xc;Q) ∼= H∗(X;Q), (1.3.7)

which implies the statement in light of Corollary 1.3.2. This is clear for c = 0 ∈ C
as Xc is itself semiprojective and it shares the same core C ⊂ X0 ⊂ X with X.

The proof of (1.3.7) for 0 6= c ∈ C is more difficult and is using a version of the

compactification technique as in (1.2.3) and Ehresmann’s theorem for proper smooth

maps; in particular the proof is not algebraic.

Remark 1.3.4. — In fact Simpson’s [Si2] main example for a semiprojective variety

was MHod, the moduli space of stable rank n degree 1 λ-connections on the curve

which comes with f : MHod → C satisfying the conditions of Corollary 1.3.3. Here

f−1(0) ∼=MDol =Mg
n is our moduli space of Higgs bundles while fλ =MDR is the

moduli space of certain holomorphic connections. The Corollary 1.3.3 then shows that

H∗(MDR;Q) ∼= H∗(MDol;Q) have isomorphic and pure cohomology. This argument

was used in [HT, Theorem 6.2] and [Ha3, Theorem 2.2] in connection with topological

mirror symmetry.

1. This argument is folklore yoga of weights; we learned it from Gérard Laumon.
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COHOMOLOGY OF LARGE SEMIPROJECTIVE HYPERKÄHLER VARIETIES 121

Remark 1.3.5. — Another crucial use of this Corollary 1.3.3 is in our arithmetic har-

monic analysis technique explained in §2. We will be able to compute the virtual

weight polynomial E(Xλ; q) of an affine symplectic quotient, and to deduce that it

gives the Poincaré polynomial we will put Xλ in a family f : X → C satisfying the

conditions of Corollary 1.3.3.

The following result was discussed in [HS, Theorem 3.5] in the context of semipro-

jective toric varieties, and the proof was sketched in [Ha7].

Corollary 1.3.6. — The core C is a deformation retract of the smooth semiprojective

variety X.

Proof. — First we note that replacing cohomology with homology in the proof of

Theorem 1.3.1 yields that that i∗ : H∗(X;Z) ∼= H∗(C;Z) induced by the embedding

i : C → X is also an isomorphism. By the homology long exact sequence this is

equivalent with

H∗(X, C;Z) = 0. (1.3.8)

We also claim that i∗ : π1(X) ∼= π1(C) induces an isomorphism on the fundamental

group (from whose notation we omitted the base-point for simplicity). This follows

by induction similarly as in the proof of Theorem 1.3.1. First note by [Bia, Theorem

4.1] that Uλmin
retracts to Fλmin

∼= Dλmin
thus have isomorphic fundamental group.

Then by induction we assume (iJ)∗ : π1(DJ) ∼= π1(UJ) is an isomorphism for an index

set J ⊂ I satisfying (1.3.5). Take λ ∈ I \ J minimal and cover UJ+ = UJ ∪ Uλ with

open sets UJ and a small tubular neighborhood U tub
λ of Uλ, small in the sense that

U tub
λ ∪DJ = ∅ it is disjoint from the proper DJ (DJ is the core of the semiprojective

UJ ; thus proper by Theorem 1.2.2). This implies that F tub
λ := U tub

λ ∩DJ+ ⊂ Dλ is a

tubular neighborhood of Fλ. Then we have two commutative diagrams:

π1(U tub
λ ∩ UJ) −−−−→ π1(U tub

λ )x∼= x∼=
π1(F tub

λ ∩ (UJ ∩DJ+)) −−−−→ π1(Dtub
λ )

π1(U tub
λ ∩ UJ) −−−−→ π1(UJ)x∼= x∼=

π1(F tub
λ ∩ (UJ ∩DJ+)) −−−−→ π1(DJ)

(1.3.9)

where the maps are all induced by the embedding of the indicated spaces in each

other. The four vertical arrows are all isomorphisms. The last one because of the

induction hypothesis. The second one as both U tub
λ and Dtub

λ retract to Fλ. Finally,

the first and the third because these spaces all retract to F tub
λ \ Fλ.

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2015



122 T. HAUSEL & F. RODRIGUEZ VILLEGAS

Using the diagrams (1.3.9) and the Seifert-van Kampen theorem applied to both

the open covering

UJ+ = U tub
λ ∪ UJ

and

DJ+ = F tub
λ ∪ (UJ ∩DJ+)

we see that

π1(UJ+) ∼= π1(DJ+).

By induction we get the desired

π1(X) ∼= π1(C).

In particular, the homotopy long exact sequence of the pair (X, C) implies that

π1(X, C) = 0 as well as that π2(X, C) is a quotient of π2(X) and so abelian. From this

and (1.3.8) the relative Hurewitz theorem [Whi, Theorem IV.7.3] implies πk(X, C) = 0

for every k, thus

i∗ : πk(X)
∼=−→ πk(C)

is an isomorphism. Therefore X and C are weakly homotopy equivalent, and as

varieties they are CW complexes and so by Whitehead’s theorem [Whi, Theorem

V.3.5] i is a homotopy equivalence.

Theorem 1.3.7. — The Bialynicki-Birula decomposition X =
∐
i∈I Ui of a semipro-

jective variety is perfect. In particular P (X; t) =
∑
λ∈I P (Fλ; t)t2kλ .

Proof. — This follows from studying the top long-exact sequence of (1.3.6) considered

with rational coefficients. Here we assume the same situation as there:

Hq(UJ+ , UJ ;Q) −→ Hq(UJ+ ;Q) −→ Hq(UJ ;Q) −→ Hq+1(UJ+ , UJ ;Q). (1.3.10)

This is a sequence of Mixed Hodge structures, and the weights are pure according to

Corollary 1.3.2 in the cohomology of the semiprojective varieties UJ and UJ+ , and

in Hq(UJ+ , UJ ;Q) by the Thom isomorphism. Therefore the connecting morphism

Hq(UJ ;Q) ∼= W q(Hq(Uj ;Q)) → Hq+1(UJ+ , UJ ;Q) must be trivial. Therefore the

long exact sequence splits, the stratification is perfect, and the formula for Poincaré

polynomials follow by induction.

1.4. Weak Hard Lefschetz. — Fix a very ample line bundle L on a smooth

semiprojective variety X and let α = c1(L) ∈ H2(X;Q). Then we have

Theorem 1.4.1 (Weak Hard Lefschetz). — Let X be a semiprojective variety X with

core C = ∪λ∈IDλ. Assume C is equidimensional of pure dimension k = dim C. Then

the Hard Lefschetz map

Li : Hk−i(X,Q)→ Hk+i(X,Q)

Li(β) = β ∧ αi (1.4.1)

is injective for 0 6 i < k.
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Proof. — It follows from Corollaries 1.3.6 and 1.3.2 that the core C has pure cohomol-

ogy. Then the result follows from [BE, Theorem 2.2] as we have assumed C is equidi-

mensional. Their argument goes by first showing that the natural map H∗(C;Q) →
IH∗(C;Q) is injective, and then concludes by using [BBD, Theorem 5.4.10] for the

Hard Lefschetz theorem for IH∗(C;Q).

Remark 1.4.2. — An immediate consequence of the injectivity of (1.4.1) for 0 6 i < k

are the inequalities

bi(X) 6 bi+2j(X) for all 0 6 j 6 k − i (1.4.2)

for the Betti numbers of the smooth semiprojective variety. As a consequence both

sequences of odd and even Betti numbers grow until k and satisfy bk−i(X) 6 bk+i(X).

Remark 1.4.3. — Possibly the analogous result to (1.4.1) holds when C is not equidi-

mensional and k is the smallest dimension of the irreducible components of C. It was

proved in the case of smooth semiprojective toric varieties in [HS]. There however

it was used that the components of the core are smooth; but conceivably this can be

avoided.

Remark 1.4.4. — Of course a general semiprojective toric variety could have a non-

equidimensional core (as it corresponds to the complex of bounded faces of a non-

compact convex polyhedron). However, we do not know of an example of a semipro-

jective hyperkähler variety whose core is not equidimensional.

When the semiprojective variety is hyper-compact (Definition 1.1.2) one finds

that Dλ is Lagrangian. In other words, dimDλ = dimX
2 and hence k = dimX

2 as

codimUmin = 0. Examples include toric hyperkähler manifolds, Nakajima quiver

varieties (from quivers without edge-loops) and the moduli space of Higgs bundles.

The fact that the nilpotent cone, which agrees with the core of Mg
n, is Lagrangian

was first observed by Laumon [Lau]. Retrospectively, this can also be considered

as a consequence of the completely integrability of the Hitchin system [Hi2]. In the

hyper-compact case Theorem 1.4.1 appeared as [Ha2, Corollary 4.3].

However, when the quiver contains an edge loop the Nakajima quiver varieties are

not hyper-compact. Examples include (C2)[n] and more generally the ADHM spaces

Mn,m. Nevertheless, in these cases we know by [Br] and respectively [ElL] and [Ba]

that the cores are irreducible and in particular equidimensional of dimension n − 1

and mn− 1 respectively.

We do not know if equidimensionality or even irreducibility of the core of Nakajima

quiver varieties for quivers with edge loops holds in general.

Remark 1.4.5. — In the case of smooth projective toric varieties Y , the Hard Lefschetz

theorem, together with the fact that H2(Y ) generates H∗(Y ), famously [St1] gives a

complete characterization of possible Poincaré polynomials of smooth projective toric

varieties, and in turn the face vectors of rational simple complex polytopes.
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The above Weak Hard Lefschetz theorem was used in [HS] and [Ha2] to give

new restrictions on the Poincaré polynomials of toric hyperkähler varieties and, in

turn, on the face vectors of rational hyperplane arrangements. However a complete

classification in this case has not even been conjectured.

Remark 1.4.6. — For the moduli space of Higgs bundles Mg
n Theorem 1.4.1 is a

consequence of the Relative Hard Lefschetz theorem [dCHM] using the argument

of [HV, 4.2.8].

Thus it is interesting to ask the following:

Question 1.4.7. — For semiprojective hyperkähler varieties is there a stronger form of

the Weak Hard Lefschetz theorem or the inequalities (1.4.2)? In particular how do the

Betti numbers of semiprojective hyperkähler varieties behave after k = dim C?

This question was the original motivation to look at the Betti numbers of examples

of large semiprojective hyperkähler varieties to find how the Betti numbers behave

after the critical dimension k = dim C.
It turns out that partly due to an arithmetic harmonic analysis technique to eval-

uate such Betti numbers we have now efficient formulas to compute Poincaré polyno-

mials. This allows us to investigate numerically the shape of Betti numbers of large

semiprojective hyperkähler manifolds in several examples. We explain this arithmetic

technique and the resulting combinatorial formulas for the Poincaré polynomials in

the next section.

2. Arithmetic harmonic analysis on symplectic quotients:

the microscopic picture

In the previous section we collected results on the cohomology of a general semipro-

jective variety X. In this section we show that when X arises as symplectic quotient

of a vector space, we can use“arithmetic harmonic analysis” to count points on X over

a finite field, and in turn to compute Betti numbers. Counting points of varieties over

finite fields is what we call microscopic approach to study Betti numbers of complex

algebraic varieties.

2.1. Katz’s theorem. — From Katz’s [HV, Appendix] we recall the definition

that a complex algebraic variety X is strongly-polynomial count. This means that

there is polynomial PX(t) ∈ Z[t] and a spreading out (2) X over a finitely generated

commutative unital ring R such that for all homomorphism φ : R → Fq to a finite

field Fq (where q = pr is a power of the prime p) we have

#Xφ(Fq) = PX(q).

We then have the following theorem of Katz from [HV, Theorem 6.1, Appendix].

2. I.e., a homomorphism R→ C such that X = X ⊗R C.
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Theorem 2.1.1 (Katz). — Assume that X/C is strongly-polynomial count with count-

ing polynomial PX ∈ Z[t]. Then

E(X; q) = PX(q).

This result gives the Betti numbers of a strongly polynomial count variety X, when

additionally it has a pure cohomology. In that case (1.3.4) will compute the Poincaré

polynomial from the virtual weight polynomial. This will be the case for many of our

semiprojective varieties, where we will be able to use an effective technique to find

the count polynomial PX(t). This technique from [Ha5, Ha6] we explain in the next

section.

2.2. Arithmetic harmonic analysis. — We work in the setup of §1.1.1 but change

coefficients from C to a finite field Fq. For simplicity we denote with the same letters

ρ,G, g,M,V, µ the corresponding objects over Fq. We define the function a% : g →
N ⊂ C at X ∈ g as

a%(X) := | ker(%(X))|. (2.2.1)

In particular aρ(X) is always a q power. Our main observation from [Ha5, Ha6] is

the following:

Proposition 2.2.1. — Let ξ ∈ g∗ and fix a non-trivial additive character Ψ : Fq → C×.

The number of solutions of the equation µ(v, w) = ξ over the finite field Fq equals:

#{(v, w) ∈M | µ(v, w) = ξ} = |g|−1|V|
∑
X∈g

a%(X)Ψ(〈X, ξ〉) (2.2.2)

Thus in order to count the Fq points of µ−1(ξ) we only need to determine the

function a% as defined in (2.2.1) and compute its Fourier transform as in (2.2.2). In

turn we assume that ξ ∈ (g∗)G and we use this to count the Fq points of the affine GIT

quotients X := µ−1(ξ)//G, in cases when G acts freely on µ−1(ξ), when the number

of Fq points on µ−1(ξ)//G is just #µ−1(ξ)/|G|. In our cases considered below this

quantity will turn out to be a polynomial in q, yielding by (2.1.1) a formula for the

virtual weight polynomials of affine GIT quotient µ−1(ξ)//G.

Finally we can connect the affine GIT quotient to the GIT quotients with generic

linearization as in §1.1.1 by considering X := µ−1(C×ξ)//σG a non-singular semipro-

jective variety with a projection f : X → C ∼= C×ξ ⊂ g∗ with generic fiber Xλξ =

f−1(λξ) = µ−1(λξ)//σG = µ−1(λξ)//G the affine GIT quotient when λ 6= 0 and

X0 = µ−1(0)//σG the GIT quotient with linearization σ. Now Corollary 1.3.3 can be

applied to show that X0 and Xξ have isomorphic pure cohomology, and so our compu-

tation by Fourier transform above gives the Poincaré polynomial of our semiprojective

varieties, which arise as finite dimensional linear symplectic quotients.

2.3. Betti numbers of semiprojective hyperkähler varieties

2.3.1. Toric hyperkähler varieties MH. — Let H ⊂ Qn be a rational hyperplane

arrangement. In this case the toric hyperkähler varietyMH arises as linear symplectic
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quotient, with generic linearization, induced by a torus action ρH : T → GL(V )

constructed from H as in [HS, §6]. The varietyMH is an orbifold and is non-singular

when H is unimodular. In the unimodular case it was first constructed in [BD] by

differential geometric means.

As explained in [Ha5] the above arithmetic harmonic analysis can be used to

compute the Betti numbers of the semiprojective MH; we get

P (MH; t) =
∑

hi(H)t2i, (2.3.1)

where the Betti numbers hi(H) are the h-numbers of the hyperplane arrangement H;

a combinatorial quantity. In the unimodular case (2.3.1) was first determined in [BD]

and in the general case it was proved in [HS].

As explained in [HS, §8] one can construct the so-called cographic arrangement

HQ from any graph Q. ThenMHQ is just the Nakajima quiver varietyMQ
1 of §2.3.3

below attached to Q and constant dimension vector 1. In this case the h-polynomial

of (2.3.1) can be computed from the Tutte polynomial as follows:

P (MQ
1 ; t) = tdimMQ

1 RQ(1/t2) = tdimMQ
1 TQ(1, 1/t2), (2.3.2)

Here the Tutte polynomial TQ of a graph Q is a two variable polynomial invariant,

universal with respect to contraction-deletion of edges. It can be defined explicitly as

follows

TQ(x, y) :=
∑
A⊆E

(x− 1)k(A)−k(E)(y − 1)k(A)+#A−#V , (2.3.3)

where k(A) denotes the number of connected components of the subgraph QA ⊆ Q

with edge set A and the same set V = V (Q) of vertices as Q. Note that the exponent

k(A) + #A−#V equals b1(QA), the first Betti number of QA.

We will only consider the external activity polynomial RQ of Q obtained by spe-

cializing to x = 1. For Q connected, we have

RQ(q) := TQ(1, q) =
∑
Q′⊆Q

(q − 1)b1(Q′), (2.3.4)

where the sum is over all connected subgraphs Q′ ⊆ Q with vertex set V . (This

polynomial is related to the reliability polynomial of Q by a simple change of variables,

hence the choice of name.) A remarkable theorem of Tutte guarantees that TQ, and

hence also RQ, has non-negative (integer) coefficients.

For example, the Tutte polynomial of complete graphs Kn was computed in [Tu],

cf. also [Ar, Theorem 4.3]. This implies the following generating function of the

Poincaré polynomials P (MKn
1 ; t) = RKn(t2) of Nakajima toric quiver varieties at-

tached to the complete graphs Kn∑
n>1

RKn(q)
Tn

n!
= (q − 1) log

∑
n>0

q(
n
2) (T/(q − 1))n

n!
(2.3.5)
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2.3.2. Twisted ADHM spaces Mn,m and Hilbert scheme of points on the affine

plane (C2)[n]. — Here G = GL(V ), where V is an n-dimensional K vector space (3).

We need three types of basic representations of G. The adjoint representation

ρad : GL(V ) → GL(gl(V )), the defining representation ρdef = Id : G → GL(V )

and the trivial representations ρWtriv = 1 : G → GL(W ), where dimK(W ) = m. Fix

m and n. Define V = gl(V ) × Hom(V,W ), M = V × V∗ and ρ : G → GL(V) by

ρ = ρad × ρdef ⊗ ρWtriv. Then we take the central element ξ = IdV ∈ gl(V ) and define

the twisted ADHM space as

Mn,m =M////ξG = µ−1(ξ)//G,

where

µ(A,B, I, J) = [A,B] + IJ,

with A,B ∈ gl(V ), I ∈ Hom(W,V ) and J ∈ Hom(V,W ).

The space Mn,m is empty when m = 0 (the trace of a commutator is always

zero), diffeomorphic with the Hilbert scheme of n-points on C2, when m = 1, and is

the twisted version of the ADHM space [ADHM] of U(m) Yang-Mills instantons of

charge n on R4 (cf. [Na3]). As explained in [Ha5, Theorem 2] the arithmetic Fourier

transform technique of §2 yields the following generating function for the Poincaré

polynomials of Mn,m (originally due to [NY, Corollary 3.10]):

∞∑
n=0

P (Mn,m; t)Tn =

∞∏
i=1

m∏
b=1

1

(1− t2(m(i−1)+b−1)T i)
. (2.3.6)

In particular when m = 1 this gives for the generating function of Poincaré poly-

nomials of Hilbert schemes of points on (C2)[n]

∑
n=0

P ((C2)[n]; t)Tn =

∞∏
i=1

1

(1− t2(i−1)T i)
, (2.3.7)

Göttsche’s formula from [Göt], which by Euler’s formula reduces to

b2i
(
(C2)[n]

)
= #{λ | |λ| = n, l(λ) = i} (2.3.8)

where l(λ) is the number of parts in the partition λ of n; this was the original com-

putation of Ellingsrud-Stromme in [ElS].

2.3.3. Nakajima quiver varieties MQ
v,w and Mv. — Here we recall the definition of

the affine version of Nakajima’s quiver varieties [Na2]. LetQ = (V, E) be a quiver, i.e.,

an oriented graph on a finite set V = {1, . . . , n} with E ⊂ V×V a finite set of oriented

(perhaps multiple and loop) edges. To each vertex i of the graph we associate two finite

dimensional K vector spaces Vi and Wi. We call (v1, . . . ,vn,w1, . . . ,wn) = (v,w) the

3. Here K = C when we study the complex semiprojective varieties and K = Fq when we do

arithmetic harmonic analysis on them.
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dimension vector, where vi = dim(Vi) and wi = dim(Wi). To this data we associate

the grand vector space:

Vv,w =
⊕

(i,j)∈E

Hom(Vi, Vj)⊕
⊕
i∈V

Hom(Vi,Wi),

the group and its Lie algebra

Gv =
�
i∈V

GL(Vi) gv =
⊕
i∈V

gl(Vi),

and the natural representation

ρv,w : Gv −→ GL(Vv,w),

with derivative

%v,w : gv −→ gl(Vv,w).

The action is from both left and right on the first term, and from the left on the

second.

We now have Gv acting on Mv,w = Vv,w × V∗v,w preserving the symplectic form

with moment map µv,w : Vv,w × V∗v,w → g∗v given by (1.1.1). We take now ξv =

(IdV1 , . . . , IdVn) ∈ (g∗v)Gv , and define the affine Nakajima quiver variety [Na2] as

MQ
v,w = µ−1

v,w(ξv)//Gv.

As explained in [Ha5] and [Ha6] the arithmetic harmonic analysis technique

of §2 translates to the formula (2.3.9) below. We first introduce some notation

on partitions following [Mac]. We let P(s) be the set of partitions of s ∈ Z>0.

For two partitions λ = (λ1, . . . , λl) ∈ P(s) and µ = (µ1, . . . , µm) ∈ P(s) we de-

fine n(λ, µ) =
∑
i,j min(λi, µj). Writing λ = (1m1(λ), 2m2(λ), . . . ) ∈ P(s) we let

l(λ) =
∑
mi(λ) = l be the number of parts in λ. For any λ ∈ P(s) we have

n(λ, (1s)) = sl(λ).

Theorem 2.3.1. — Let Q = (V, E) be a quiver, with V = {1, . . . , n} and E ⊂ V×V, with

possibly multiple edges and loops. Fix a dimension vector w ∈ ZV>0. The Poincaré

polynomials P (MQ
v,w) of the corresponding Nakajima quiver varieties are given by the

generating function:∑
v∈ZV>0

Pt(MQ
v,w)t−d(v,w)Tv =

∑
v∈ZV>0

Tv
∑
λ1∈P(v1) . . .

∑
λn∈P(vn)

(∏
(i,j)∈E t

−2n(λi,λj)
)(∏

i∈V t
−2n(λi,(1wi ))

)
∏
i∈V

(
t−2n(λi,λi)

∏
k

∏mk(λi)

j=1 (1−t2j)
)

∑
v∈ZV>0

Tv
∑
λ1∈P(v1) . . .

∑
λn∈P(vn)

∏
(i,j)∈E t

−2n(λi,λj)∏
i∈V

(
t−2n(λi,λi)

∏
k

∏mk(λi)

j=1 (1−t2j)
) ,

(2.3.9)

where d(v,w) = 2
∑

(i,j)∈E vivj + 2
∑
i∈V vi(wi − vi) is the dimension of MQ

v,w and

Tv =
∏
i∈V T

vi
i .
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Example 2.3.2. — We will look at the case of Q = A1 a single vertex with no edges. In

this case the semiprojective quiver variety MA1
n,m is isomorphic [Na1, Theorem 7.3]

with the cotangent bundle T ∗Gr(n,m) of the Grassmanian of m planes in Cn. In

this case we can directly count points on Gr(n,m) over finite fields and we get the

following well known formula for its Poincaré polynomial:

P (T ∗Gr(n,m); t) =

[
n

k

]
t2

=

k∏
i=1

1− t2(n+1−i)

1− t2i
(2.3.10)

The combination of (2.3.10) and (2.3.9) gives a curious q-binomial type of theorem.

Example 2.3.3. — When the quiver is the Jordan quiver, i.e., one loop on a single

vertex, then MQ
v,w = Mn,m the twisted Yang-Mills moduli spaces from §2.3.2. The

formula (2.3.9) then reduces to (2.3.6).

We also consider Nakajima quiver varieties MQ
v attached to a single dimension

vector v = (v1, . . . ,vn) on the same quiver Q. We construct

Vv :=
⊕

(i,j)∈E

Hom(Vi, Vj),

which will also carry a natural representation

ρv,w : Gv −→ GL(Vv,w).

In the framework of (1.1.1) this gives rise to the symplectic vector space Mv := Vv×V∗v
and the moment map µv : Mv → g∗v leading to the quotient MQ

v := µ−1(0)//ξGv

where ξ ∈ Hom(Gv,C×) is a character of Gv. When v is indivisible (i.e., the equation

v = kv′ for an integer k and dimension vector v′ implies k = 1) it is known that ξ can

be chosen so thatMQ
v is smooth semiprojective hyperkähler variety. For v indivisible

it is proved in [CBvdB] that

P (MQ
v ; t) = tdvAQ(v; t−2), (2.3.11)

where AQ(v; q) ∈ Z[q] is the Kac polynomial [Kac], which counts absolutely indecom-

posable representations of the quiver Q and dv = dimMQ
v . A generating function

formula was obtained for AQ(v; q) by Hua [Hua], and it takes the following combi-

natorial form:∑
v∈Zr>0

\{0}

Av(q)Tv =

(q − 1)Log

( ∑
π=(π1,...,πr)∈Pr

∏
i→j∈Ω q

〈πi,πj〉∏
i∈I q

〈πi,πi〉∏
k

∏mk(πi)
j=1 (1− q−j)

T |π|

)
, (2.3.12)

where Log denotes the plethystic logarithm, as explained in [HLV1, §2.3.3]. The

formula (2.3.11) was proved by the arithmetic harmonic analysis technique of §2
in [HLV2] for all quivers, with a cohomological interpretation of AQ(v, q) in the

case when v is a divisible dimension vector, settling Kac’s conjecture [Kac] that the

A-polynomial AQ(v, q) ∈ Z>0[q] has non-negative coefficients.
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2.3.4. Moduli of Higgs bundles Mg
n. — Denote by Mg

n the moduli spaces of rank n

degree 1 stable Higgs bundles on a smooth projective curve of genus g. The con-

struction of the moduli space can be done by algebraic geometric techniques using

GIT quotients as in [Ni] or by gauge theoretical means using an infinite dimensional

hyperkähler quotient construction as was done in the original paper [Hi1]. This latter

construction is not algebraic, and so it is unclear how our arithmetic harmonic analy-

sis of §1.1.1 would extend to this case. The cohomology ofMg
n is the most interesting

(due to various connections to a variety of subjects) and the least understood. There

are various results on its Betti numbers available [Hi1, Go, GHS] but we only have

a conjectured formula. First we introduce rational functions Hn(z, w) ∈ Q(z, w) by

the generating function:

∞∑
n=0

Hn(z, w)Tn = (1− z)(1− w)Log

(∑
λ∈P

∏ (
z2l+1 − w2a+1

)2g
(z2l+2 − w2a)(z2l − w2a+2)

T |λ|

)
(2.3.13)

Then we have the following conjecture [HV, Conjecture 4.2.1]

P (Mg
n; t) = tdnHn(1,−1/t), (2.3.14)

where already part of the conjecture is that Hn(w, z) ∈ Z[w, z] is a polynomial in w, z.

Remark 2.3.4. — This conjecture was obtained via a more elaborate version of the

arithmetic harmonic analysis technique of §1.1.1. Namely a non-abelian version of the

arithmetic harmonic analysis allows us [HV] to count points on certain GLn-character

varieties; and the conjecture (2.3.13) is a non-trivial extension of that result, and the

non-abelian Hodge theorem of [Si1] which shows that this GLn-character variety is

canonically diffeomorphic with Mg
n thus shares its cohomology.

Remark 2.3.5. — As Mg
n is semiprojective by [Si2, Corollary 10.3] its cohomology is

pure by Corollary 1.3.2. Therefore counting the Fq rational points ofMg
n would lead

to its Betti numbers. However we do not know how to extend our arithmetic harmonic

analysis of §1.1.1 to this case. There are recent works of Chaudouard and Laumon

[CL, Ch] where a different kind of harmonic analysis is used to count #Mg
n(Fq) but so

far only the n = 3 case is complete where those results confirm the conjecture (2.3.13).

Remark 2.3.6. — One last observation is that the similarity of (2.3.12) and (2.3.13)

is not accidental. In fact it was proved in [HV, Theorem 4.4.1] that Hn(0,
√
q) =

ASg ((n), q) where Sg is the g loop quiver on one vertex. In particular a certain subring

of H∗(Mg;Q) is conjectured to have graded dimensions with Poincaré polynomial

ASg ((n), q). This and more general versions of such conjectures [HLV3, Conjec-

ture 1.3.2] show that the cohomology of Nakajima quiver varieties for comet-shaped

quivers should be isomorphic with subrings of the cohomology of certain Higgs mod-

uli spaces. This maybe relevant when we compare the large scale asymptotics of the

Betti numbers of these varieties, as will be done in the remaining of this paper.
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3. Visual distribution of Betti numbers: the big picture

Motivated by Question 1.4.7 in this section we will be studying pictures of the

distribution of Betti numbers of our semiprojective hyperkähler manifolds. The reason

we can look at very large examples are the combinatorially tractable formulas in the

previous §2.3.

3.1. Toric quiver varietyMK40
1 . — Using formula (2.3.5) one can efficiently com-

pute the Betti numbers of the toric quiver variety MK40
1 for the complete graph K40

on 40 vertices. This is a hyper-compact semiprojective hyperkähler variety of real

dimension dimension 2964. The top non-trivial Betti number therefore is the middle

one b1482 ≈ 2 × 1046. The sequence of Betti numbers is unimodal (4) and the largest

Betti number is b1288 ≈ 8 × 1058. In Figure 1 we plotted only the non-trivial even

Betti numbers (5).

Figure 1. Distribution of even Betti numbers of the toric quiver variety MK40
1

3.2. Hilbert scheme (C2)[500]. — We can efficiently compute Betti numbers of

Hilbert schemes of n points on C2 for large n using (2.3.7). When n = 500, Figure 2

shows the distribution of even Betti numbers. We have dimR(C2)[500] = 2000. The

Hilbert scheme (C2)[500] is a semiprojective hyperkähler manifold, but not hyper-

compact, and the top non-trivial Betti number is b998 = 1. Again the sequence of

Betti numbers is unimodal. The maximal Betti number is b896 ≈ 5.5× 1019.

4. Meaning it has single local maximum.
5. This means that one needs to double the value on the x-axis to get the correct degree for the

Betti number.
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Figure 2. Distribution of even Betti numbers of the Hilbert scheme

(C2)[500] of 500 points on C2

3.3. Twisted ADHM space MÂ0
40,20. — The Nakajima quiver variety MÂ0

m,n at-

tached to the Jordan quiver Â0 and dimension vectors v = (m) and w = (n) is a

semiprojective hyperkähler variety, which is not hyper-compact. When m = 40 and

Figure 3. Distribution of even Betti numbers of ADHM space MÂ0
40,20
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n = 20, Figure 3 shows the distribution of even Betti numbers. The top non-zero Betti

number is b1598 = 1. There are only even Betti numbers and they form a unimodal

sequence. The maximal Betti number is b1086 ≈ 9.6× 1017.

3.4. Cotangent bundle of Grassmannian MA1
30,100

∼= T ∗Gr(100, 30). — As was

discussed earlier in §2.3.3 the Nakajima quiver variety MA1
30,100

∼= T ∗Gr(100, 30) for

the trivial A1 quiver with dimension vectors v = (30) and w = (100) is the cotan-

gent bundle to the Grassmannian of 30 dimensional subspaces in C100. This is a

semiprojective hyperkähler manifold which is hyper-compact. Of course in this case

the core is the zero section of the cotangent bundle, thus it is the smooth pro-

jective Grassmannian Gr(100, 30). It only has even cohomology and satisfies Hard

Lefschetz. In particular the sequence of even Betti numbers is unimodal and sym-

metric. The top non-zero Betti number is b4200 = 1 while the maximal one is

b2100 ≈ 8.7× 1022.

Figure 4. Distribution of even Betti numbers of cotangent bundle to

Grassmannian T ∗Gr(100, 30)

3.5. A quiver varietyMQ
(15,7). — We include a smooth quiver variety of typeMQ

v

where Q is the graph on two vertices, with 10 loops on the first vertex, and a connect-

ing edge to the second vertex, and furthermore v = (15, 7). This is a smooth (because

(15, 7) is indivisible) semiprojective hyperkähler variety, which is not hypercompact,

due to the presence of loops on the first vertex. We have dimRMQ
(15,7) = 8328 and

top non-trivial Betti number b3862 = 1. Again, there are only even Betti numbers and

their sequence is unimodal, with maximal Betti number b3036 ≈ 2.1× 1022.
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Figure 5. Distribution of even Betti numbers of the quiver variety MQ
(15,7)

3.6. Cotangent bundle of Jacobian M100
1
∼= T ∗Jac(C100). — When n = 1 the

moduli space of rank 1 degree 1 Higgs bundles is isomorphic with Mg
1
∼= T ∗Jac(Cg)

the cotangent bundle to the Jacobian of the curve Cg of genus g. Of course this is

also a semiprojective hyperkähler manifold, which is hyper-compact. Just like in the

Grassmannian case above, the Jacobian Jac(Cg) as the zero section of its cotangent

bundle is the core of the semiprojective variety, that is the core is a smooth projective

variety. The Poincaré polynomial then is just

P (Mg
1; t) = (1 + t)2g.

Figure 6 shows the distribution of all non-trivial Betti numbers when g = 100. The

top non-trivial one is b200 = 1. The sequence of Betti numbers is unimodal, with

maximal value b100 ≈ 8.7× 1022.

3.7. Moduli space of Higgs bundlesM2
8. — The moduli space of rank n degree 1

stable Higgs bundles on a smooth projective curve of genus g is smooth semiprojective,

hyper-compact hyperkähler manifold. We can use (2.3.13) and (2.3.14) to compute the

conjectured Betti numbers of Mg
n for small values of n and g. In fact this formula is

the most computationally demanding, and we could only evaluate the g = 2 and n = 8

case. Part of the reason of the computational difficulty is because the calculation goes

through evaluating the two variable polynomial H8(q, t) from (2.3.13) which already

has 11786 terms. At any rate in this particular case dimRM2
8 = 252, thus the top

non-trivial Betti number is b126 which equals 12300. An important difference between
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Figure 6. Distribution of all Betti numbers of cotangent bundle to Jaco-

bian T ∗Jac(C200)

Figure 7. Distribution of all conjectured Betti numbers of moduli of

rank 8 Higgs bundles M2
8

this case and the previous ones, is that M2
8 has non-trivial odd Betti numbers. The

full sequence is not unimodal but both sequences of odd and even Betti numbers are

unimodal. The maximal Betti number is b106 ≈ 1.7× 1010.
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4. Asymptotic shape of Betti numbers: the macroscopic picture

In the previous section we have plotted the distributions of Betti numbers of some

large examples of our semiprojective hyperkähler varieties. Originally we were mo-

tivated by studying potential extensions of the Weak Hard Lefschetz Theorem 1.4.1.

Surprisingly, the plots in the previous section behave in a rather peculiar manner.

First, we note that the sequence of even Betti numbers is always unimodal. Second,

and more puzzling, is the apparent asymptotic behavior of the distribution of Betti

numbers: the plots above seem to suggest the existence of a certain continuous limit-

ing distribution (6). Furthermore it seems that the distributions on Figures 6, 4 and 3

are the same while the remaining ones on Figures 1, 2, 5 and 7 also look similar.

In this section we will prove some rigorous results about such limiting distributions,

in particular we will determine this distribution in the case of Figures 6, 4, 2 and 1

and offer conjectures in the remaining cases.

First we discuss what we mean by a limiting distribution of Betti numbers of a

family of varieties.

4.1. Generalities. — In this section we consider sequences of varieties X0, X1, . . .

whose Betti numbers bi(Xn) approach a limiting distribution as n → ∞. For sim-

plicity, we will typically assume that the all varieties X under consideration satisfy

b2i+1(X) = 0 and let

E(X, q) :=

dimX∑
i=0

b2i(X) qdimX−i.

If X is a polynomial count variety with pure mixed Hodge structure then by Theo-

rem 2.1.1 E(X, q) = P(q), where P is a polynomial such that #X(Fq) = P(q) for

generic q.

To a Laurent polynomial E(q) =
∑
i eiq

i with non-negative real coefficients we

associate the discrete measure dµE on [−∞,∞] such that∫ ∞
−∞

φ(x) dµE :=
∑
i

φ(i)ei.

Definition 4.1.1. — Given a measure µ on [−∞,∞] its moments are the real numbers

Mk :=

∫ ∞
−∞

xk dµ

and its factorial moments are the real numbers

mk :=

∫ ∞
−∞

(
x

k

)
dµ.

6. Even a C∞ one: one can also plot the higher discrete derivatives of the distributions above

and still get some continuous looking distributions.
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Clearly these two kinds of moments are linearly related and since the leading term

in
(
x
k

)
is xk/k!, typically the asymptotic behavior of mk and Mk/k! for a sequence of

measures is the same. It depends on the situation which set of moments is easier to

deal with.

For a measure dµ on [−∞,∞] we define the generating function of moments

Mµ(t) :=
∑
k>0

Mk
tk

k!
, mµ(η) :=

∑
k>0

mk η
k. (4.1.1)

If dµE is a discrete measure associated to the Laurent polynomial E =
∑
i eiq

i then

MµE (t) = E(et), mµE (η) = E(1 + η). (4.1.2)

If dµ1, dµ2 are two measures then

Mµ1
(t)Mµ2

(t) = Mµ(t), mµ1
(t)mµ2

(t) = mµ(t),

where dµ := dµ1 ∗ dµ2 (additive convolution in R). If dµ1, dµ2 have density functions

ω1, ω2 respectively then dµ has density function

ω1 ∗ ω2(x) :=

∫ ∞
−∞

ω1(y)ω2(x− y) dy.

If dµ is a measure on [−∞,∞] then for any real number a we have

e−atMµ(t) =
∑
k>0

M
(a)
k

tk

k!
, (4.1.3)

where M
(a)
k denotes the k-th moment of the translated measure dµ(x+ a).

Let dµn for n = 1, 2, . . . and dµ be measures on [−∞,∞]. We say that dµn
converges in distribution to dµ as n→∞ if

lim
n→∞

Φn(x) = Φ(x)

at all points x of continuity of Φ, where Φn and Φ are the cumulative density function

associated to dµn and dµ respectively. I.e.,

Φn(x) =

∫ x

−∞
dµn, Φ(x) =

∫ x

−∞
dµ.

Typically a proof of such convergence goes by proving that the appropriately scaled

sequence of moments of dµn converges to those of dµ by means of the following

Theorem 4.1.2. — Suppose that dµ is determined by its moments, that dµn has mo-

ments of all orders, and that limn→∞Mk(dµn) = Mk(dµ) for k = 0, 1, . . . Then dµn
converges in distribution to dµ.

Proof. — This is Theorem 30.2 in [Bil].
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The kind of statement we look for is the following.

Definition 4.1.3. — The sequence of varieties Xn has limiting Betti distribution dµ if

up to rescaling and translation dµn, the measure associated to E(Xn, q), converges

to dµ in distribution. More precisely, if there exist real constants αn, βn, γn with

αn, γn > 0 such that

lim
n→∞

1

γn
Φn(αnx+ βn) = Φ(x)

at all points x of continuity of Φ, where Φn and Φ are the cumulative density function

associated to E(Xn, q) and dµ respectively. I.e.,

Φn(x) =

∫ x

−∞
dµn, Φ(x) =

∫ x

−∞
dµ.

Remark 4.1.4. — Note that the limiting distribution dµ itself is only determined up

to rescaling and translation. This will suffice for the kind of qualitative analysis that

we are interested in.

4.2. Large Tori and Grassmannians. — When Xn = Mn
1 = T ∗Jac(Cn) it has

the topology of a 2n-dimensional split torus. Then

bi(Xn) =

(
2n

i

)
.

It follows from the Central Limit theorem that the sequence X0, X1, . . . has Gaussian

limiting Betti distribution. This we could observe in Figure 6 for n = 100.

Now fix a positive integer r and consider the Grassmanian variety Xn := Gr+nr

parametrizing r-dimensional planes in an ambient space of dimension r+n. It is well

know that the number of points of the Grassmanian over a finite field is given a by a

q-binomial number. Explicitly,

En(q) := #Gr+nr (Fq) =

[
n+ r

r

]
=

∏r
j=1(qn+j − 1)∏r
j=1(qj − 1)

. (4.2.1)

Consider the j-th factor of this product and assume that n = jm for some integer m.

Then

qn+j − 1

qj − 1
= qn/2

q(n+j)/2 − q−(n+j)/2

qj/2 − q−j/2
= qn/2

m∑
i=0

qj(i−m/2). (4.2.2)

If we now replace q by q1/n and ignore the power of q prefactor we obtain

m∑
i=0

qi/m−1/2.

As m approaches infinity the associated density function converges to χ(1) :=

χ[−1/2,1/2], the characteristic function of the interval [−1/2, 1/2].
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Therefore, if n is divisible by all j = 1, 2, . . . , r then En(q) has associated density

function that scaled appropriately approximates the r-th iterated convolution of χ(1):

χ(r) := χ(1) ∗ · · · ∗ χ(1)︸ ︷︷ ︸
r

.

Consequently, we should expect Xn to have limiting Betti distribution χ(r). To prove

this for the full sequence Xn (and not just for the subsequence of n’s in the previous

argument) we consider the moment generating function E(et) (see (4.1.1)). By (4.2.2)

we have

e−rt/2En(et/n) =

r∏
j=1

e
1
2 (1+j/n)t − e−

1
2 (1+j/n)t

e
1
2 (j/n)t − e−

1
2 (j/n)t

.

Taking the limit as n→∞ we obtain

lim
n→∞

r!

nr
e−rt/2En(et/n) =

(
et − e−t

t

)r
. (4.2.3)

The function (et/2 − e−t/2)/t is precisely the moment generating function for χ(1).

Hence (4.2.3) shows that indeed the Xn have limiting Betti distribution χ(r) by

Theorem 4.1.2.

The density functions χ(r) have a long history. In approximation theory they are

called central B-splines (see [Butz] for details). The support of χ(r) is the interval

[−r/2, r/2], it is a Cn−2 function and a polynomial of degree n−1 in each subinterval

[m−r/2,m+1−r/2] for m = 0, 1, . . . , r−1. By the central limit theorem the distribu-

tion χ(r) approaches a Gaussian distribution as r → ∞. More precisely [Butz, (4.7)],

lim
r→∞

√
r/6χ(r)

(√
r/6x

)
=

1√
π
e−x

2

.

4.3. Large Hilbert schemes of points on C2. — Consider the sequence of vari-

eties X [n] the Hilbert scheme of n points on X = C2. It follows from (2.3.8) that if

dµn denotes the discrete measure associated to X [n] then

Φn(x) =

∫ x

−∞
dµn = #{λ | |λ| = n, l(λ) 6 x}. (4.3.1)

By a theorem of Erdős and Lehner [ErL, Theorem 1.1]

lim
n→∞

1

p(n)
Φn(αnx+ βn) = e−c

−1e−cx , (4.3.2)

where p(n) is the total number of partitions of n, c := π/
√

6 and

αn :=
√
n, βn := 2c−1

√
n log n.
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It follows from this result that the sequence X [n] has limiting Betti distribution given

by an instance of the Gumbel distribution. These appear as universal distributions

when considering the maximum of samples (rather than the average as in the central

limit theorem). Such extreme value distributions are of relevant in the prediction

extreme natural phenomena like earthquakes, floods, etc. In our concrete case the

density function is ω(x) := exp(−c−1e−cx − cx) (the derivative of the right hand side

of (4.3.2)) whose graph is given in Figure 8. This should be compared, after scaling

and reflection in the y-axis, to Figure 2.

Figure 8. Gumbel distribution exp(−c−1e−cx − cx)

It is far from clear a priori why such a distribution would appear as a limiting

Betti distribution of the Hilbert scheme of points on C2. It would be interesting to

see what other limiting Betti distributions occur for the sequence S[n] for an arbitrary

smooth surface S.

On the other hand, it is not hard to convince ourselves of the relevance of extreme

value distributions for our problem given (4.3.1). Indeed, l(λ) = λ′1, where λ′ is the

partition dual to λ. In other words, the length of a partition equals the largest part

of its dual.

4.4. Large toric hyperkähler varieties. — Take Xn = MKn
1 the hyperkähler

toric quiver variety associated to the complete graph Kn on n-vertices. As mentioned

in § 2.3 we have that E(Xn, q) equals a polynomial invariant, the external activity

polynomial of the graph Kn.
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We claim that Xn has a limiting Betti distribution known as the Airy distribution

(for another instance of this phenomenon see [Re2]). This distribution appears in

several different combinatorial and physical problems and has its origin as the distri-

bution of the area of a Brownian excursion. Its density function is rather complicated

to describe explicitly (its graph is given in Figure 9). In particular, its relation to the

classical Airy function, from where the distribution gets its name, is not that straight-

forward to state. We will work instead with the moments which luckily determine the

Airy distribution uniquely (see [Ta2, Thm. 3]).

There is a sizable literature on the Airy distribution; we will use the survey [Jan]

as our main reference and point to the interested reader to the works cited there for

more details. But we should warn the reader that there exists a different but related

distribution called in the literature the map-Airy distribution.

Figure 9. Airy distribution density function

We start by defining the rational constants ck by means of the following expansion

∑
k>1

ckT
k := log

∑
n>0

(1/6)n(5/6)n
n!

(
3

2
T

)n
, (4.4.1)

where (a)n := a(a+ 1) · · · (a+n−1) is the Pochhammer symbol. The first few values

are

k 1 2 3 4 5

ck 5/24 5/16 1105/1152 565/128 82825/3072
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We call ck the Wright constants. There is a large number of different normalizations

of these constants in the literature; see [Jan] for a comprehensive comparison between

these. It is not hard to show that we have

ck =
∑
Q

1

Aut(Q)
,

where Q runs over all connected trivalent graphs on k (unlabeled) vertices and Aut(Q)

denotes its group of automorphisms.

Now we define the constants ρk by [Jan, (34)]

ρ−1 := 1, ρ0 :=

√
2π

4
, ρk :=

√
π

2
1
2 (3k−1)Γ

(
3
2k
)ck, k > 1. (4.4.2)

Then the k-th moment Mk of the Airy distribution is k!ρk−1 [Jan, (36)]; concretely,

M0 = 1, M1 =

√
2π

4
= 0.626657068 . . . M2 =

5

12
= 0.416666666 . . . , etc.

(more numerical values are listed in [Ta2, Table 4]).

To connect back to the external activity polynomial of Kn note that by (2.3.4)

RKn(q) =
∑
k>0

Cn,n+k−1(q − 1)k, (4.4.3)

where Cn,m denotes the number of connected graph on n labeled vertices with m

edges. It follows from (4.1.2) that

mµEn
(η) = RKn(1 + η) =

∑
k>0

Cn,n+k−1η
k.

Hence the k-th factorial moment mn,k of µEn is precisely Cn,n+k−1.

By a standard result Cn,n−1, the number of trees on n labeled vertices, is nn−2.

Wright proved [Jan, (20)] that for fixed k > 0 we have

Cn,n+k−1 ∼ ρk−1n
n−2+

3
2k, n→∞. (4.4.4)

Therefore,
mn,k

mn,0
∼ ρk−1n

3
2k, n→∞. (4.4.5)

Our claim on the limiting Betti distribution of Xn now follows from Theorem 4.1.2.

Consider now the varieties Xm,n associated to the complete bipartite graph Km,n.

(Details of the proof of the assertions below can be found in the appendix §6.) By [HS]

Em,n(q) := E(Xm.n, q) is the external activity polynomial of Km,n. Denote by Mm,n
k

de the k-th moment of µEm,n . For fixed k and n, the quantity Mm,n
k /nm is a polyno-

mial in m of degree n+ k − 1 and

Mm,n
k ∼ αn,knm−n−k+1mn+k−1, m→∞. (4.4.6)
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for some constants αn,k. We have

βn,k :=

(
n+ k − 1

k

)
αn,k = n

∑
|λ|=n

(−1)l(λ)−1 (l(λ)− 1)!∏
i>1mi!i!mi

n(λ′)n+k−1, (4.4.7)

where the sum is over all partitions λ of n, mi := mi(λ) is the multiplicity of i in λ

and

n(λ′) :=
∑
i>1

(
i

2

)
mi.

Here is a table with the first few values of βn,k, which are non-negative integers.

n\k 0 1 2 3 4 5

1 1 0 0 0 0 0

2 1 1 1 1 1 1

3 3 12 39 120 363 1092

4 16 156 1120 7260 45136 275436

5 125 2360 30925 353500 3795225 39474960

Note that βn,0 = αn,0 = nn−2. We have the following generating function identity∑
k>0

αn,k
tk

k!
=

(
et − 1

t

)n−1

RKn(et), (4.4.8)

where RKn is the external activity polynomial of the complete graph Kn. It follows

that αn,k is the k-th moment of

ω̃n := χ[0,1]dx ∗ · · · ∗ χ[0,1]dx︸ ︷︷ ︸
n−1

∗dµn,

where χ[0,1] is the characteristic function of the interval [0, 1] and dµn is the measure

dµEn for En := E(Xn, q) and Xn the variety of 4) associated to Kn. We deduce

that the sequence of varieties Xm,n for fixed n has limiting Betti distribution ω̃n
as m→∞.

As in the case of the Grassmanian the density function ω̃n is a spline of degree

n− 2. For example, for n = 3 we find that

α3,k

α3,0
=

3k+1 − 1

(k + 2)(k + 1)

are the moments of the density function
0 x < 0
2
3x 0 6 x < 1

− 1
3x+ 1 1 6 x < 3

0 3 6 x

.
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Figure 10. Spline approximation to the scaled Airy distribution

This is, up to scaling, a continuous piecewise linear approximation to the density

function of the Airy distribution (its graph is given in Figure 10).

On the other hand the coefficients of the external activity polynomial for the graph

K3,100 are shown in Figure 11.

Figure 11. External activity polynomial of K3,100
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The first factor on the right hand side of (4.4.8) has the expansion(
et − 1

t

)n−1

=:
∑
k>0

γn,kt
k, γn,k :=

(n− 1)!

(k + n− 1)!

{
n+ k − 1

n− 1

}
where

{
a
b

}
denotes the Stirling numbers of the second kind. We have for fixed k > 0

γn,k ∼
nk

2kk!
, n→∞.

It follows that coefficientwise

lim
n→∞

(
et/n

3/2 − 1

t/n3/2

)n−1

= 1.

Hence combined with (4.4.3) and (4.4.4) we deduce from (4.4.8) that

lim
n→∞

αn,k
n3/2kαn,0

= Mk

the k-th moment of the Airy distribution. Therefore, appropriately scaled, the dis-

tributions ω̃n converge to the Airy distribution as n → ∞. We actually expect that

the double sequence Xm,n (rather than the iterated limit limn limm we considered)

should have the Airy distribution as its limiting Betti distribution.

4.5. Large quiver varieties: heuristics. — LetQ = (V, E) be a quiver (see 2.3.3).

Given a dimension vector v = (v1, . . . , vn), let Av(q) be the Kac polynomial for Q,v.

Recall (2.3.11) that for v indivisible Av(q) is the reverse of the Poincaré polynomial

of a certain smooth quiver varietyMQ
v v

Q. We may consider the collection of all such

Nakajima quiver varieties associated to indivisible dimension vectors v for a fixed

quiver Q. We expect that when v tends to infinity generically the corresponding

varieties MQ
v have the Airy distribution as limiting Betti distribution independently

of the quiver Q.

In this section we present some heuristics in support of this expected universality

property of the Airy distribution. Concretely, we have Hua’s formula (2.3.12) for

Av(q), which though somewhat unwieldy, has a structure quite similar to (2.3.5) for

computing the external activity polynomial of all complete graphs. We have already

shown in § 4.4 that in this case we have the Airy distribution as the limit. The key

fact is the asymptotic calculation of the moments (4.4.5), which in turn boils down

to (4.4.4).

Flajolet and his collaborators [Fl] use a saddle point analysis to prove (4.4.4). In a

future publication we hope to apply to (2.3.12) this saddle point analysis to prove the

expected universality of the Airy distribution for quiver varieties. We outline below

the key ingredients of the saddle point approach following closely [Fl], to which we

refer the reader for details, and end with a brief discussion on how it could be applied

to the case of quiver varieties.
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Using the standard Gaussian integral

e−
1
2y

2

=
1√
2π

∫ ∞
−∞

eixy−
1
2x

2

dx

we rewrite the sum on the right hand side of (2.3.5) with q = 1 + η = e−t and t > 0

as

F (η, T ) :=
1√
2πt

∫ ∞
−∞

e−
1
2 t
−1x2 ∑

n>0

e

(
ix+

1
2 t
)
n (T/η)n

n!
dx =

1√
2πt

∫ ∞
−∞

eφ(x,η,T ) dx,

where

φ(x, η, T ) := − 1
2 t
−1x2 + eix+

1
2 t(T/η).

Note that by (2.3.5) and (4.4.3)

η logF (η, T ) = C0(T ) + C1(T )η + · · · , (4.5.1)

where

Ck(T ) :=
∑
n>0

Cn,n+k−1
Tn

n!

is the exponential generating function for connected graphs on n vertices with a fixed

n+ k − 1 first Betti number.

In order to study the asymptotics of Cn,n+k−1 and prove (4.4.4), we compute the

asymptotic behavior of F (η, T ) as η approaches zero by using the saddle point method.

For this purpose we compute the critical points of φ−1(x), where

φ(x, η, T ) = φ−1(x, T )η−1 + φ0(x, T ) + φ1(x, T )η + · · · .

We have

φ−1(x, T ) = 1
2x

2 + eixT

and the critical points are the solutions x = x(T ) of the equation eixT = ix. In a

neighborhood of T = 0 we can solve this equation with ix = w = w(T ) where

w(T ) =
∑
n>1

nn−1T
n

n!
,

is the tree function satisfying what we call the saddle point equation

Tew = w. (4.5.2)

In terms of the saddle point parameter w the expansion coefficients Ck(T ) of (4.5.1)

have the following form

C0 = w − 1
2w

2, (4.5.3)

C1 = − 1
2 log(1− w) + 1

2w + 1
4w

2 (4.5.4)

Ck =
Ek−1(w)

(1− w)3(k−1)
, k > 1 (4.5.5)
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for certain polynomials Ek. It follows from [KP, Lemma 2] that the asymptotics

of Cn,n+k−1 for large n and k > 1 fixed is of the form

Cn,n+k−1 ∼ Ek−1(1)

√
2π nn+

3
2k−2

2
3
2 (k−1) Γ( 3

2 (k − 1))
, (4.5.6)

if Ek−1(1) does not vanish. As we will now see, in fact,

Ek(1) = ck, (4.5.7)

the Wright constants defined in (4.4.2). Equivalently, as w approaches 1

Ck ∼ ck(1− w)−3(k−1) + · · · , k > 1.

Hence, (4.5.6) is the same as (4.4.4).

We make the change of variables x = y − iw in the integral and get

φ−1(x, T ) = − 1
2w

2 + w + ψ(y, w),

where ψ(y, w) = 1
2 (1− w)y2 + (eiy − 1− iy + 1

2y
2)w. Therefore,

F (η, T ) = e
η−1

(
− 1

2w
2+w

)
1√
2πt

∫
C
eη
−1ψ(y,w)h(y, η, w) dy (4.5.8)

for a certain function h(y, η, w) holomorphic in η and an appropriate contour C.
To prove (4.5.7) and get (4.5.6) one studies the behavior of Ck as w approaches

1. Note however that the critical point y = 0 of

ψ(y, w) = 1
2 (1− w)y2 − i

6wy
3 +O(y4)

becomes degenerate for w = 1. It is well known that in this situation the standard sad-

dle point method has to be modified to incorporate higher order terms. We have here

the simplest case of this phenomenon known as the coalescing of saddle points [CFU].

We homogenize by letting y∗, w∗, η∗ be new variables defined by

w = 1− w∗, y = w∗y∗, η = w3
∗η∗.

Then

η−1ψ(y, w) = η−1
∗ y2

∗(1− i
3y∗ + w∗y∗r(y∗, w∗))

for some power series r(y∗, w∗) in y∗ with coefficients polynomial in w∗. Now we can

let w∗ approach zero and check that up to a tractable factor the integral in (4.5.8)

can be replaced by
1√

2πη∗

∫ ∞
−∞

e
1
2η
−1
∗

(
y2
∗−

i
3y

3
∗

)
dy∗.

Since the asymptotic expansion of this integral is precisely∑
n>0

(1/6)n(5/6)n
n!

(
3

2
η∗

)n
(4.5.7) follows.
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To summarize, we prove that we have Betti limiting distribution the Airy distri-

bution by computing the limiting moments. To do this, we

1. Express the generating function of all moments as an integral.

2. Find the critical points of the dominant exponential factor of the integrand,

which satisfy saddle point equations.

3. Show that in terms of the saddle point parameters the generating function Ck
of the k-th moment (for k > 1) becomes a rational function whose leading term

involves the Wright constants ck, due to a coalescing of saddle points.

4. Deduce that the limiting moments are those of the Airy distribution.

As mentioned, we expect that these same steps can be applied to Hua’s for-

mula (2.3.12) to study the limiting distribution of quiver varieties for a fixed but

arbitrary quiver as mentioned earlier. The first two steps are fairly routine. In gen-

eral the saddle point equations however will determine an algebraic variety of higher

dimension (equal to the number of nodes in the quiver). Carrying through the last two

steps then becomes more of a challenge but at least the generic behaviour, when the

dimension vector components increase to infinity independently, should be as above.

It is conceivable that the non-generic behavior of the asymptotics could involve higher

order singularities and hence distributions other than the Airy distribution. We will

revisit this issue in a later publication.

5. Results and speculations on the asymptotics of discrete distributions

In the previous section we proved and gave heuristics for some asymptotical results

on the distribution of Betti numbers of certain families of semiprojective hyperkähler

varieties. Not surprisingly, we found in §4.2 that the Gaussian distribution appears

in several examples. The classical binomial distribution, given for us as the Betti

numbers of tori, is the most well known example of such asymptotic behavior. We

also found in §4.2 that the Betti numbers of certain families of Grassmannians also

have Gaussian limiting distributions. The same behavior was already observed by

Takács [Ta1] in his studies of coefficients of q-binomial coefficients. More recent work

of Stanley and Zanello [SZ] gives new results on asymptotics of these quantities, as

well as studies unimodality properties of various sequences; not unlike our sequences

of (even) Betti numbers of semiprojective hyperkähler varieties.

In fact, in our computed examples we observed that the sequence of even (similarly

odd) Betti numbers form a unimodal sequence. This result follows from the Hard

Lefschetz theorem for a smooth projective variety; or a semiprojective variety with

core which is smooth projective. However it is unclear why this property may hold in

larger generality. Clearly the even Betti numbers of smooth affine varieties will not

necessarily be unimodal, as the case of SL(5,C) shows. In fact starting with Stanley’s

studies [St2] several combinatorial sequences have been conjectured and some proved

to be unimodal. In particular recently Huh in [Huh] proved that the h-vector of a
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representable matroid is log-concave and thus unimodal, in particular proving a long-

standing conjecture of Colbourn on log-concavity of the external activity polynomial.

This implies that the Betti numbers of toric hyperkähler varieties (which are the

h-vectors of rationally representable matroids) form a unimodal sequence.

However, some combinatorial counterexamples are relevant for us too. For exam-

ple, in our geometric language, Stanton [Sta] found examples of Poincaré polynomials

of closures of Schubert cells in Grassmannians, which are not unimodal. It could be

relevant for us as the closure of the Schubert cell is an equidimensional, in fact irre-

ducible, proper variety with a paving, and thus has pure cohomology. Thus potentially

it could be the core of a semiprojective hyperkähler variety.

The sequence of graphs, such as the complete graphs Kn, we studied in §4.4 is con-

vergent in the sense of Lovász-Szegedy [LSz]. The continuous limit for their extremal

activity polynomial we found there could possibly be related to some invariants of

the limiting objects. This also raises the possibility of existence of a limiting object

to our sequences of hyperkähler manifolds, whose “Poincaré series” in the appropriate

sense would agree with our limiting distribution.

The Airy distribution in §4.4, governing the limit of Betti numbers of the toric

quiver varieties attached to complete graphs and possibly sequences of more general

quiver varieties as discussed in §4.5 was earlier noticed to be the limiting distribution

of Betti numbers of certain non-commutative Hilbert schemes by Reineke in [Re2,

Theorem 6.2]. In fact, our heuristics in §4.5 were motivated by an effort to systematize

a proof of such results.

It is worthwhile noticing that the graphs of the Gumbel (Figure 8) and Airy (Fig-

ure 9) distributions seem very similar to the naked eye. In fact, they are really different

(for example, they have different decay rate at the tails). However, looking at the dis-

tribution of Betti numbers in the case of the toric quiver varietyMK40
1 (Figure 1) and

the Hilbert scheme (C2)[500] (Figure 2) one might easily believe they are approaching

a common limit.

We also mention two recent appearances of the Gaussian distribution as a limit of

series of discrete distributions. First in [EEL] it is conjectured that sequences of ranks

of certain syzygies of a smooth projective variety also have Gaussian distribution in

the limit. More directly relevant for us is the recent work of Morrison [Mo]. It

was proved there that the sequence of discrete distributions given by the motivic DT

invariants of (C3)[n] is also normally distributed in the limit. In fact the generating

function [BBS] of such motivic DT-invariants is similar, at least in the limit m→∞,

to generating functions of the twisted ADHM spaces Mn,m we discussed in §2.3.2.

Thus it is conceivable, that in an appropriate limit the Betti numbers of Mn,m will

also be distributed normally; Figure 3 seems to support this possibility.

Very recently Bringmann and Dousse in [BD] have proved a long-standing con-

jecture of Dyson on the limiting shape of the crank generating function, which is

important in the number theory of integer partitions. [BD] deduce this conjecture
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from an asymptotic study of certain type of integer partitions, which will in partic-

ular imply, that the Poincaré polynomial Pt(S
[n]) of the Hilbert scheme of n-points

of a simply-connected projective smooth complex surface S has limiting distribution
1

cosh2(x) , the so-called logistic distribution. Note that when S is a K3 surface S[n] is

a compact hyperkähler manifold. The surprise here is that S[n], being smooth and

projective, satisfies Poincaré duality, while the limiting distribution is not Gaussian.

On the other hand the appearance of the logistic distribution is less surprising in

light of the fact that it is the distribution of the difference of two independent random

variables, which are distributed according to the Gumbel distribution. This latter dis-

tribution we found earlier to govern the limit of the Poincaré polynomials of Hilbert

scheme of n points on C2.

Finally we mention a few potential connections to ideas from mathematical physics.

The paper [BM] gives an asymptotic study of certain number theoretical quantitates

which are related to Betti numbers of Hilbert schemes of surfaces. This study was

partly motivated by counting BPS states in black hole physics. Interestingly, very

similar analysis to the saddle point method in §4.5 has been used in [DGLZ] to study

the asymptotic properties of coloured SU(2) Jones polynomials. Also the large N or

t’Hooft limit of various U(N) gauge theories, studied extensively by string theorists,

involves asymptotic studies not unlike ours. Maybe in these contexts we will find

an explanation of the continuous looking limit distribution (Figure 7) of the Betti

numbers of the moduli space of rank n Higgs bundles Mg
n as n→∞.

6. Appendix

Here we give more details of the arguments in § 4.4. Let Rm,n be the external

activity polynomial of the complete bipartite graph Km,n. The generating function

identity analogous to (2.3.5) is∑
m,n>1

Rm,n(q)
xm

m!

yn

n!
= (q − 1) logF (x/(q − 1), y/(q − 1)), (6.0.9)

where

F (x, y) :=
∑
m,n>0

qmn
xm

m!

yn

n!
.

Note that for i = 0, 1, . . .

∂iF

∂yi

∣∣∣∣
y=0

= eq
ix

Combining this with Fa di Bruno’s formula [Mac, p. 31] we obtain

Rm,n(q) =
1

(q − 1)n−1

∑
|λ|=n

cλrλ(q)m, (6.0.10)
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where mi is the multiplicity of i in λ,

rλ(q) :=
∑
i>1

[i]mi, [r] := 1 + q + · · ·+ qr−1

and

cλ :=
(−1)l(λ)−1(l(λ)− 1)!n!∏

i>1mi!i!mi
.

Consider

Cn(q, T ) :=
∑
m>0

Rm,n(q)Tm.

By (6.0.10) this power series is the Taylor expansion of the rational function

Cn(q, T ) =
1

(q − 1)n−1

∑
|λ|=n

cλ
1− rλ(q)T

. (6.0.11)

It follows that

Cn,k(T ) :=

(
q
∂

∂q

)k
Cn(q, T )

∣∣∣∣∣
q=1

=
∑
m>0

Mm,n
k Tm (6.0.12)

is a rational function of T with the denominator dividing a power of 1 − nT (since

rλ(1) = |λ| for all partitions λ). In particular, for fixed n and k, Mm,n
k /nm is a

polynomial in m, say fn,k(m). Note that

Cn(et, T ) =
∑
k>0

Cn,k(T )
tk

k!
. (6.0.13)

From (6.0.11) we obtain upon replacing t by n(1− nT )t

nn(1− nT )nCn(q, T )|T=1/n = n

(
n(1− nT )

q − 1

)n−1
∣∣∣∣∣
T=1/n

·
∑
|λ|=n

cλ
1− nT

1− rλ(q)T

∣∣∣∣∣∣
T=1/n

.

The first factor on the right hand side equals n/tn−1; the term corresponding to λ in

the second factor equals cλ/(1− n(λ′)t), where

q
d

dq
rλ(q)

∣∣∣∣
q=1

= n(λ′) :=
∑
i>1

(
i

2

)
mi.

Therefore, in combination with (6.0.13) we find

nn+k−1

k!
(1− nT )n+kCn,k(T )

∣∣∣∣
T=1/n

=
∑
|λ|=n

cλ n(λ′)n+k−1. (6.0.14)

On the other hand, for any positive integer r

1

(1− nT )r
=
∑
m>0

nm
(
r +m

r

)
Tm.
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Hence fn,k(m) is at most of degree n+ k − 1. Denote by δn,k its coefficient of degree

n+ k − 1. Then

δn,k =
k!

(n+ k − 1)!nn+k−1

∑
|λ|=n

cλ n(λ′)n+k−1

Again by Fra di Bruno’s formula the sum equals(
q
d

dq

)n+k−1

Gn(q)

∣∣∣∣∣
q=1

,

where Gn is given by the expansion

log
∑
n>0

q(
n
2) xn

n!
=
∑
n>1

Gn(q)
xn

n!
.

Note that by (2.3.5) Gn(q) = (q − 1)n−1Rn(q), where Rn is the external activity

polynomial of the complete graph Kn.

It follows that∑
k>0

δn,k n
n+k−1 t

k

k!
=
Gn(et)

tn−1
=

(
et − 1

t

)n−1

Rn(et).

In particular, since both factors on the right hand side have positive coefficients in

their Taylor expansion in t we conclude that δn,k is also positive. Hence fn,k has degree

n+k−1 and δn,k is its leading coefficient. We also see that δ0,n = Rn(1)/nn−1 = n−1

by Cayley’s theorem.

Finally, it follows that

Mm,n
k ∼ δn,kmn+k−1, m→∞

proving (4.4.6) and (4.4.7) with αn,k = δn,k n
n+k−1.

References

[Ar] F. Ardila – “Computing the Tutte polynomial of a hyperplane arrangement”,
Pacific J. Math. 230 (2007), no. 1, p. 1–26.

[AB] M. F. Atiyah & R. Bott – “The Yang-Mills equations over Riemann surfaces”,
Philos. Trans. Roy. Soc. London Ser. A 308 (1983), no. 1505, p. 523–615.

[ADHM] M. F. Atiyah, V. G. Drinfeld, N. J. Hitchin & Y. I. Manin – “Construction
of instantons”, Phys. Lett. A 65 (1978), no. 3, p. 185–187.

[Ba] B. Baranovsky – “On Punctual Quot Schemes for Algebraic Surfaces”, arXiv:
math.AG/9703038.
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[Bia] A. Bia lynicki-Birula – “Some theorems on actions of algebraic groups”, Ann. of
Math. (2) 98 (1973), p. 480–497.

[BD] R. Bielawski & A. S. Dancer –“The geometry and topology of toric hyperkähler
manifolds”, Comm. Anal. Geom. 8 (2000), no. 4, p. 727–760.

[Bil] P. Billingsley – Probability and measure, third ed., Wiley Ser. Probab. Stat.,
John Wiley & Sons, Inc., New York, 1995.

[BE] A. Björner & T. Ekedahl – “On the shape of Bruhat intervals”, Ann. of
Math. (2) 170 (2009), no. 2, p. 799–817.
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