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Abstract. Among the major mathematical approaches to mirror symmetry
are those of Batyrev-Borisov and Strominger-Yau-Zaslow (SYZ). The first
is explicit and amenable to computation but is not clearly related to the
physical motivation; the second is the opposite. Furthermore, it is far from
obvious that mirror partners in one sense will also be mirror partners in the
other. This paper concerns a class of examples that can be shown to satisfy
the requirements of SYZ, but whose Hodge numbers are also equal. This
provides significant evidence in support of SYZ. Moreover, the examples are
of great interest in their own right: they are spaces of flat SLr-connections
on a smooth curve. The mirror is the corresponding space for the Langlands
dual group PGLr . These examples therefore throw a bridge from mirror
symmetry to the duality theory of Lie groups and, more broadly, to the
geometric Langlands program.

When it emerged in the early 1990s, mirror symmetry was an aspect
of theoretical physics, and specifically a duality between quantum field
theories. Since then, many people have tried to place it on a mathematical
foundation. Their labors have built up a fascinating but somewhat unruly
subject. It describes some sort of relation between pairs of Calabi-Yau
spaces, but there are several quite different formulations of this relation,
with no strong links between them. Notable among these are the toric
approach of Batyrev-Borisov [4,5], leading to a very large class of examples
whose Hodge numbers behave as desired, and the symplectic approach of
Strominger-Yau-Zaslow [38], hereinafter SYZ. The latter is inspired by the
original physics, and holds out the remarkable promise of connecting mirror
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symmetry to the theory of integrable systems. But it is extremely difficult
to find examples.

This paper aims to describe certain pairs of Calabi-Yaus – namely, mod-
uli spaces of flat connections on a curve – which exhibit mirror symmetry
phenomena in two different senses: first, they satisfy the requirements of
SYZ, and second, their Hodge numbers behave more or less as expected.
As far as we know, these are the first non-trivial examples of SYZ mirror
partners of dimension greater than 2, so they significantly corroborate the
SYZ theory.

Furthermore, our examples relate mirror symmetry to another one of
the great dualities of mathematics: the Langlands duality on Lie groups.
If Ĝ is the Langlands dual of a reductive group G, then the pairs we
study are spaces of flat connections on the same base curve with structure
groups G and Ĝ. These spaces are basic objects of study in the geometric
Langlands program, which has many possible points of contact with mirror
symmetry. (For example, although we do not discuss it here, equivalence
of derived categories of coherent sheaves plays a prominent part in both.)
In the present paper we confine ourselves throughout to the case G = SLr ,
and ultimately to the case G = SL2 or SL3, but we hope and expect that the
mirror relationship holds more generally.

The original reason for suspecting that our moduli spaces might be
mirror partners was that they comprise dual pairs of hyperkähler integrable
systems. The hyperkähler metric and the collection of Poisson-commuting
functions determining the integrable system were constructed in two seminal
papers of Hitchin in the late 1980s [23,24]. These structures automatically
produce a family of special Lagrangian tori on the moduli spaces, which is
a key requirement of SYZ. Moreover, the families of tori on the SLr and
PGLr moduli spaces are dual in the appropriate sense, which is the other
requirement of SYZ. The only tricky point is to extend this story to the
moduli spaces of bundles of nonzero degree d, which are technically much
easier to deal with when d and r are coprime.

To deal with this “twisted” case, our moduli spaces alone are not
enough: they must be endowed with extra structures, which physicists
call B-fields and mathematicians call flat unitary gerbes. These appear
whenever mirror symmetry is formulated in sufficient generality. In our
case they arise in a particularly natural way, and indeed they are neces-
sary for things to work properly when the degree is nonzero. For in-
stance, as we see in §3, our case satisfies not the original formulation
of SYZ, but rather an extension proposed by Hitchin [26] to Calabi-
Yaus with B-fields, of which no examples were previously known. Like-
wise, the Hodge numbers in our case must be evaluated in a generalized
sense involving the B-field. We explain in §4 how to do this, adapt-
ing the notion of stringy mixed Hodge numbers as they appear e.g. in
Batyrev-Dais [6]. These in turn are hybrids of the stringy Hodge num-
bers of Vafa [42] and Zaslow [44] with the mixed Hodge numbers of
Deligne [12,13].
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Perhaps this is the moment to confess that the relationship between the
Hodge numbers of our mirror partners is not the usual one. The familiar
identity between Hodge numbers of mirror partners M and M̂ is of the
form h p,q(M̂) = hdim M−p,q(M). We will see, however, that our mirror
partners satisfy an identity of a simpler form: just h p,q(M̂) = h p,q(M).
This seems to reflect the fact that they are hyperkähler and noncompact. At
any rate, compact hyperkähler manifolds (and orbifolds) satisfy h p,q(M) =
hdim M−p,q(M), and hence we expect h p,q(M̂) = h p,q(M) for compact
hyperkähler mirror partners. Apparently this relationship persists in the
noncompact case, even though the familiar mirror identity does not.

A physical explanation of this based on the original quantum field theory
would be gratifying. But we must also bear in mind that, for noncompact
varieties, the mixed Hodge numbers, and hence our Hodge numbers, depend
on the algebraic structure. (Indeed, the spaces of representations of the fun-
damental group – what Simpson [35] calls the Betti spaces – are analytically
but not algebraically isomorphic to our spaces, and their Hodge numbers
will in general be different.) This seems hard to explain from a physical
point of view. It might be preferable to work with some notion of Hodge
numbers depending on the metric and not the algebraic structure.

Nevertheless, the equality of Hodge numbers that we uncover is strik-
ing and totally unexpected from a mathematical viewpoint. At any rate, it
follows from the equality of terms contributed by loci in the moduli space
which seem to be completely unrelated to one another. They are fixed loci of
natural group actions, but on one side, the group acting is C×, while on the
other it is a finite abelian group Γ. So our result illustrates both the power
and the mystery of mirror symmetry.

Here is a sharper outline of the contents of the paper. The first two
sections review the known facts we will need: §1 covers Calabi-Yaus, gerbes,
and the proposal of SYZ, while §2 covers Higgs bundles, flat connections,
and the Hitchin system. The next section is devoted to the proof of our
first main result, Theorem (3.7), showing that the moduli spaces of flat
connections on a curve with structure groups SLr and PGLr are SYZ mirror
partners.

The rest of the paper is devoted to the evaluation of Hodge numbers for
these spaces. In §4 we define the appropriate notion of Hodge numbers:
stringy mixed Hodge numbers with coefficient system provided by a flat
unitary gerbe! This enables us to state our main conjecture, Conjecture (5.1),
on the equality of the Hodge numbers for the SLr and PGLr spaces, which
we then proceed to prove for r = 2 and 3.

It is much easier to work with Higgs bundles than flat connections,
because of the algebraic C×-action on the moduli space. So we begin
our proof by showing in §6 that these two moduli spaces have the same
Hodge numbers, and thereafter we work exclusively with the space of
Higgs bundles. In §7 we describe (following Narasimhan-Ramanan [30])
the fixed points of the action on the SLr moduli space of the group Γ of
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r-torsion points in the Jacobian, and in §8 we use this to compute the Hodge
numbers of the PGLr space. Then in §9 we describe (following Hitchin [24]
and Gothen [17]) the fixed points of the action of C×, and in §10 we use
this to compute the Hodge numbers of the SLr space – in sufficient detail
that, for r = 2 and 3, we get a complete answer.

The main results of this paper were announced in a note in 2001 [22].
The Proposition and Theorem 3 in that announcement correspond roughly
to Theorems (3.7) and (10.6) in the present work. But the latter results
actually represent substantial improvements: in particular, the meaning and
function of the B-field have been greatly clarified. For example, Theorem 3
of the announcement refers to stringy Hodge numbers with discrete torsion;
although the numbers turn out to be the same, we now understand that the
canonical B-field, as defined in §3, is a flat gerbe which may not come from
discrete torsion. Theorems 1 and 2 of the announcement concern the spaces
of flat connections on punctured curves, or equivalently, of parabolic Higgs
bundles; once the B-field is properly understood, this is mostly parallel to
the present case, and we intend to treat it elsewhere.

One word about terminology: we use torsors liberally in the paper, both
for sheaves of groups and for group schemes, so here is a definition. A torsor
for a sheaf of groups T over a base X is a sheaf of T -spaces over X which is
locally isomorphic to T as a sheaf with T -action. The same definition holds
if sheaves are replaced by schemes, or even by families in a C∞ sense. If X
is a point, then a T -torsor is a principal homogeneous space for T : it can be
identified with T up to the choice of a basepoint. In this paper, the relevant
groups are always abelian.

Acknowledgements. We are very grateful to Nigel Hitchin, who suggested the germ of
the idea for this work as long ago as 1996; and to Pierre Deligne, Ron Donagi, Dennis
Gaitsgory, Tony Pantev, Balázs Szendrői and an anonymous referee for helpful remarks. We
also thank Cumrun Vafa for drawing our attention to an earlier paper [7] treating related
ideas in a physical context.

1. Strominger-Yau-Zaslow

Calabi-Yau manifolds and B-fields. We take a Calabi-Yau manifold to be
a complex manifold equipped with a Ricci-flat Kähler metric. On a Calabi-
Yau manifold of complex dimension n, parallel transport defines on any sim-
ply connected neighborhood a covariant constant holomorphic n-form Ω,
unique up to a scalar. Usually – as for example when M itself is simply
connected – this form is defined globally, and we assume this for simplicity.

Mirror symmetry is supposed to relate two such Calabi-Yau manifolds
M and M̂, interchanging the deformation spaces of the Kähler and complex
structures. However, the Kähler forms ω and ω̂ are real 2-forms of type
(1, 1); to allow the Kähler deformations to be complex, we choose auxiliary
fields, say B on M and B̂ on M̂, which are in some sense imaginary parts
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for the Kähler forms. Exactly where the B-field takes values is not entirely
clear in the physics literature, but following a suggestion of Hitchin [26] we
will take it to be an element of H2(M, U(1)), or an isomorphism class of
flat unitary gerbes. By this we mean the following.

Gerbes and their trivializations. Let T be a sheaf of abelian groups over
a variety M (with the complex or étale topology). A Picard category is
a tensor category where all objects and all morphisms are invertible. The
category of T -torsors constitutes a sheaf of Picard categories (or stack)
over M. Sheaf of categories here means roughly what one would expect,
but the precise definition is somewhat technical; a convenient reference is
Donagi-Gaitsgory [14].

A T -gerbe is a sheaf of categories which is a torsor over this sheaf. That
is, the sheaf consisting of T -torsors must act on the gerbe, and be locally
equivalent to it as a sheaf with this action. For us, T will usually be the sheaf
of locally constant functions with values in U(1); then U(1)-torsors are flat
unitary line bundles, and we refer to U(1)-gerbes as flat unitary gerbes.

An isomorphism of T -gerbes is an equivalence of sheaves of categories as
torsors over the sheaf of T -torsors. An automorphism is a self-isomorphism;
since a gerbe is a torsor over the sheaf of T -torsors, its automorphisms are
identified with sections of that sheaf, that is, with T -torsors, acting by
tensorization. A trivialization of a T -gerbe is an isomorphism to the trivial
gerbe. Two trivializations z, z′ are equivalent if the automorphism z′ ◦ z−1

is given by tensorization with a trivial T -torsor. The space of equivalence
classes of trivializations of a (trivial) gerbe B will be denoted TrivT (M, B);
it is naturally an H1(M, T )-torsor over a point.

The key result on gerbes is due to Giraud [9,16]: it asserts that isomorph-
ism classes of T -gerbes are in one-to-one correspondence with H2(M, T ).
Indeed, to construct a Čech cocycle x ∈ C2(M, T ) from a gerbe, choose
a cover {Uα} such that the gerbe is trivialized on each Uα. The overlaps are
then given by tensorizations by T -torsors Lα,β, with Lα,β ⊗ Lβ,γ ⊗ Lγ,α

canonically trivialized on the triple overlaps. After refining the cover if ne-
cessary, trivialize each Lα,β, and then compare with the canonical trivializa-
tions on the triple overlaps to get the cocycle. In this setting, a trivialization
can be regarded as a cochain y ∈ C1(M, T ) with dy = x, and two trivi-
alizations are equivalent if they differ by an exact cocycle. Then it is clear
why equivalence classes of trivializations form an H1(M, T )-torsor.

Note also that T -gerbes on M can be multiplied with one another and
inverted, just like T -torsors. In particular, for any gerbe B and any e ∈ Z,
there is another gerbe Be, the tensor power. The multiplication and inversion
operations are induced by the corresponding sheaf homomorphisms T ⊕
T → T and T → T . Clearly they induce the usual group structure on
H2(M, T ).

Orbifolds. Strictly speaking, the mirror of a Calabi-Yau manifold may not
be a manifold, but rather an orbifold. The notion of a Calabi-Yau orbifold
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is defined in Appendix A of Cox-Katz [10], and on such orbifolds, gerbes
may be defined much as line bundles are.

For the present purposes no difficult theory is needed, as the orbifolds we
encounter are all global quotients of Calabi-Yau manifolds by the actions of
finite groups. If M = X/Γ is a quotient of this kind, and T is a sheaf over
X to which the action of Γ lifts, then a T -gerbe on M is simply a T -gerbe
on X equipped with a lifting of the Γ-action.

For example, if X is a point, then a Γ-equivariant U(1)-gerbe is a homo-
morphism from Γ to the category of U(1)-torsors over a point, which is
nothing but a central extension of Γ by U(1). Such extensions are classified
up to isomorphism by the group cohomology H2(Γ, U(1)). In the physics
literature, this last group is called the discrete torsion of Γ [43]; in the
mathematics literature, it is called the Schur multiplier [27].

Strominger-Yau-Zaslow. With all this understood, the proposal of Stro-
minger-Yau-Zaslow can be described as follows.

A torus L of real dimension n embedded in a Calabi-Yau n-orbifold with
Kähler form ω and holomorphic n-form Ω is said to be special Lagrangian
if ω|L = 0 and Im Ω|L = 0.

Two Calabi-Yau n-orbifolds M and M̂, equipped with flat unitary gerbes
B and B̂, respectively, are said to be SYZ mirror partners if there exist an
orbifold N of real dimension n and smooth surjections µ : M → N and
µ̂ : M̂ → N such that for every x ∈ N which is a regular value of µ

and µ̂, the fibers Lx = µ−1(x) ⊂ M and L̂ x = µ̂−1(x) ⊂ M̂ are special
Lagrangian tori which are dual to each other in the sense that there are
smooth identifications

Lx = TrivU(1)(L̂ x, B̂)

and

L̂ x = TrivU(1)(Lx, B)

depending smoothly on x. Here the right-hand sides, as torsors for
H1(L̂ x, U(1)) and H1(Lx, U(1)) respectively, have canonical smooth struc-
tures. Requiring that the identifications only be smooth is rather weak, but
it is unclear what a stronger condition ought to be. Certainly isometry is too
strong.

The hyperkähler case. Constructing special Lagrangian tori is usually very
difficult. But suppose that M is a hyperkähler manifold: that is, it has
a metric which is simultaneously Kähler with respect to three complex
structures J1, J2, J3 satisfying the commutation relations of the quaternions
i, j, k. Let ω1, ω2, ω3 be the corresponding Kähler forms. Then ω2 + iω3 is
a complex symplectic form on M which is holomorphic with respect to J1.
The associated volume form gives a covariant constant trivialization of the
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canonical bundle, which shows that M is Ricci-flat and hence Calabi-Yau
with respect to J1, and by permuting the indices, with respect to all three
complex structures.

In this case, it is easy to see that any complex submanifold L ⊂ M
which is complex Lagrangian with respect to J1 is special Lagrangian
with respect to J2 [25]. So the desired family of special Lagrangian tori
can be found by holomorphic methods: first find holomorphic maps µ
and µ̂ whose generic fibers are complex Lagrangian tori, then perform
a hyperkähler rotation, that is, change to a different complex structure. The
Hitchin system, to be described below, gives holomorphic maps of precisely
this kind on a hyperkähler manifold.

2. Higgs bundles and local systems

Review of the basic facts. Let us recall some of the theory of Higgs bundles
and local systems on curves, as developed by Hitchin [24] and Simpson [35].

Let C be a smooth complex projective curve of genus g. It will be
convenient to fix a basepoint c ∈ C. A Higgs bundle is a pair (E, φ)
consisting of a vector bundle E over C and a section φ ∈ H0(C, End E⊗K ),
where K is the canonical bundle. It is stable if all proper subbundles F ⊂ E
with φ(F) ⊂ F⊗K satisfy deg F/ rk F < deg E/ rk E. Hitchin and Simpson
then prove the following. (The subscripts Dol, DR and Hod are Simpson’s
notation; they honor Dolbeault, De Rham, and Hodge respectively.)

• There exists a smooth, quasi-projective moduli space Md
Dol of stable

Higgs bundles of rank r and degree d.
• There exists a smooth, quasi-projective moduli space Md

DR of irreducible
local systems (that is, flat vector bundles) on C \ {c} of rank r, with
holonomy e2πid/r around c.

• These two spaces are naturally diffeomorphic; indeed, there exists an
isosingular family Md

Hod over the affine line whose zero fiber is Md
Dol,

but whose fiber over every other closed point is Md
DR. (In fact, Md

Hod
is a moduli space of vector bundles E equipped with a λ-connection,
that is, a number λ ∈ C and an operator φ, taking holomorphic local
sections of E to holomorphic 1-forms with values in E, and satisfying
φ( fs) = λ(d f )s+ fφ(s) for any function f and section s. The morphism
to the affine line is just given by λ. See Simpson [37] for details.)

• There is a C×-action on Md
Hod lifting the standard action on the affine

line, and restricting to Md
Dol as t · (E, φ) = (E, tφ).

• There is a Riemannian metric on Md
Dol for which the Dolbeault and De

Rham complex structures form part of a hyperkähler structure.

More general structure groups. If vector bundles are replaced by principal
bundles, the whole theory generalizes without difficulty. Higgs bundles and
local systems make sense, their moduli make sense, and even the spaces
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MHod make sense. For example, the right notion of a principal Higgs bundle
consists of a principal bundle E and a section φ ∈ H0(C, ad E ⊗ K ). Simp-
son explains why there exists a moduli space of principal Higgs bundles,
stable in the appropriate sense. However, for the purposes of this paper we
only need structure groups GLr , SLr , and PGLr , so we make do with the
direct descriptions of the moduli spaces below. It is easy to check that these
descriptions agree with Simpson’s definitions, but it is even easier to regard
these descriptions as definitions themselves. In each case, we describe MHod;
MDol and MDR are the zero and nonzero fibers, respectively.

• Let Md
Hod(GLr) = Md

Hod as defined above.
• Let Md

Hod(SLr) be the inverse image of a smooth algebraic section
s ⊂ Md

Hod(C
×) under the morphism det : Md

Hod(GLr) → Md
Hod(C

×)
induced by the determinant representation of GLr . It is convenient to
take s(0) = (O(dc), 0) ∈ Md

Dol(C
×), where c ∈ C is the basepoint; then

Md
Dol(SLr) parametrizes stable Higgs bundles (E, φ) with Λr E ∼= O(dc)

and tr φ = 0.
• Let Md

Hod(PGLr) be the geometric quotient of Md
Hod(SLr) by the group

scheme Γ = Pic0 C[r] consisting of isomorphism classes of line bun-
dles whose rth power is trivial. Since such line bundles have structure
group Zr , they have canonical flat connections; the action on Md

Hod(SLr)
is by tensorizing each λ-connection with this flat connection.

In the second item, the existence of a smooth section s follows, for
example, from the Białynicki-Birula decomposition theorem [8,40], taking
a C×-orbit whose closure contains (O(dc), 0). To see that every section s
gives the same space Md

Hod(SLr) up to isomorphism, notice that tensoriza-
tion makes Md

Hod(C
×) into a M0

Hod(C
×)-torsor over the affine line, so any

two sections differ by multiplication by a section of the family of groups
M0

Hod(C
×). Since the rth power map is étale on M0

Hod(C
×), and the base is

simply connected, there exists a smooth rth root of this section, which can
be used to tensorize objects in Md

Hod(GLr).
Incidentally, the use of the notation Md

Hod(SLr) is perhaps slightly mis-
leading, since the objects it parametrizes do not have structure group SLr
unless d = 0 and s is the trivial section.

Everything asserted before for Higgs bundles remains true in this more
general setting, except that the PGLr moduli spaces are not smooth; rather,
they are hyperkähler orbifolds.

The Hitchin system. On each of the Dolbeault spaces Md
Dol(G), there exists

a completely integrable Hamiltonian system, the so-called Hitchin system
or Hitchin map. It is a morphism µ from Md

Dol(G) to an affine space VG

of half the dimension. Here VGLr = ⊕n
i=1 H0(C, Ki) and VSLr = VPGLr =⊕n

i=2 H0(C, Ki). The morphism is evaluated on a Higgs bundle (E, φ) by
applying to φ the invariant polynomials on the Lie algebra g. Hitchin shows
that µ is proper when r and d are coprime. He also shows that the fiber
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over a general point is complex Lagrangian and is (a torsor for) an abelian
variety.

This is exactly the situation discussed at the end of §1. Consequently,
for any integers d, e ∈ Z, the De Rham spaces Md

DR(SLr) and Me
DR(PGLr)

carry families of special Lagrangian tori over the same base, just as the SYZ
definition requires. All that remains to be verified is the statement about
duality of the tori. We will establish this in the next section, but first we
need to review Hitchin’s description of the fibers of µ in more detail.

An element of VG is given by sections βi ∈ H0(C, Ki) for i = 1 to n
(taking β1 = 0 in the SLr and PGLr cases). The equation

zn + β1zn−1 + β2zn−2 + · · · + βn = 0,(2.1)

where z lies in the total space of K , defines a curve π : C̃ → C inside this
total space, called the spectral cover. For (βi ) in the Zariski open set U ⊂ VG

where C̃ is smooth, µ−1(βi) can be canonically identified as follows [24].

• When G = GLr , it is J̃d = Picd C̃. This can be regarded as (the fiber
of) a J̃0-torsor over U .

• When G = SLr , it is Pd = Nm−1(O(dc)), the generalized Prym variety.
Here Nm : Picd C̃ → Picd C is the norm map (see e.g. Arbarello et al. [2,
App. B] for a definition and basic properties). This is a P0-torsor over U .

• When G = PGLr , it is P̂d = Pd/Γ, the quotient of the Prym by the
action of Γ on Md

Dol(SLr), which preserves it. This is a P̂0-torsor over U .

The next two lemmas explain how these torsors are related to one another.

(2.2) Lemma. Let J0 = Pic0 C. Then there is a natural isomorphism

J̃d ∼= Pd × J0

Γ

under which Nm corresponds to the projection to J0/Γ followed by the
isomorphism J0/Γ → J0 given by taking −rth powers.

Proof. Certainly there is a morphism Pd × J0 → J̃d given by (L, M) 
→
L ⊗ π∗M−1, whose composition with Nm is (L, M) 
→ M−r . This mor-
phism is invariant under the action of Γ by tensorization on both factors. It
therefore suffices to show that P0 ∩ π∗ J0 = π∗Γ and that π∗ : J0 → J̃0 is
injective.

Since Nm π∗L = Lr , certainly ker π∗ ⊂ Γ and P0 ∩ π∗ J0 =
ker Nm ∩π∗ J0 = π∗Γ, which proves the first assertion.

For the second, suppose L ∈ Γ has order k and satisfies π∗L ∼= O. The
isomorphism Lk ∼= O determines a k-valued multisection of L; regard this
as a cover of C. Then π : C̃ → C must factor through this cover: indeed, the
trivialization of π∗L gives a trivialization of π∗Lk, so (after multiplication
by an overall constant) it lies in the pullback of, and so defines a morphism
to, the multisection.
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However, the only connected unbranched cover of C through which π
factors is the trivial cover. This is clear when π has a point of total ramifi-
cation, which occurs when all the coefficients βi of (2.1) have a common
zero. But it is also clearly invariant under continuous deformations, hence
true everywhere on the connected base U ⊂ VG .

Therefore k = 1, so π∗ has trivial kernel. �
(2.3) Lemma. The dual of P0 is P̂0 = P0/Γ.

Proof. Just dualize the short exact sequence

0 −→ P0 −→ J̃0 Nm−→ J0 −→ 0

to get

0 −→ J0 π∗−→ J̃0 −→ P̂0 −→ 0,

where P̂0 = J̃0/J0 = P0/Γ by the previous lemma. �

3. Trivializations of the B-fields

With the prerequisites complete, we proceed in this section to our first goal.
This is to show that, when equipped with certain B-fields, the De Rham
moduli spaces with structure groups G and Ĝ are SYZ mirror partners. Our
expectation is that this will hold true for any reductive G, but at present we
confine ourselves to the case G = SLr , Ĝ = PGLr .

In fact, we deduce the smooth identification of special Lagrangian tori
on the De Rham spaces, called for by SYZ, from a stronger statement:
a holomorphic identification of complex Lagrangian tori on the Dolbeault
spaces. The two are related by hyperkähler rotation as discussed at the end
of §1. Moreover, since the smooth parts of these two spaces are diffeo-
morphic, flat unitary gerbes on them can be identified. Therefore, in this
section, we work exclusively with the Dolbeault space and, for brevity,
denote Md

Dol(SLr) simply by Md
Dol.

We will work over U , the Zariski open set in the range of the Hitchin
map µ where the spectral cover C̃ is smooth. The four torsors over U that
concern us are J̃d , Pd, and P̂d , as defined in §2, plus Jd = Picd C, which
we regard as a trivial J0-torsor over U .

Any of the methods used to construct universal families on the moduli
space of ordinary stable bundles adapt without change to the space of Higgs
bundles Md

Dol. For example, one could use descent and the geometric invari-
ant theory construction of Md

Dol given by Nitsure [32]. Provided that r and d
are coprime, one gets a bona fide universal Higgs pair (E,�) → Md

Dol × C.
However, as for stable bundles, the scalars, acting as automorphisms, pro-
vide an obstruction to the existence of E when r and d are not coprime. The



Mirror symmetry, Langlands duality, and the Hitchin system 207

best we can do in general is to construct a universal projective bundle and
a universal endomorphism bundle, abusively denoted PE and End E even
though E does not exist, and a universal Higgs field � ∈ H0(End E ⊗ K ).
Then the restriction PE|Md

Dol×{c} to the basepoint in C is a projective bundle
Ψ on Md

Dol.
Let B be the gerbe of liftings of Ψ, meaning the sheaf of categories on M

taking an étale neighborhood to the category of liftings on that neighborhood
of Ψ to an SLr-bundle. Since any two liftings differ by tensorization by a
Zr-torsor, B is a Zr-gerbe.

(3.1) Lemma. The restriction of B to each regular fiber Pd of the Hitchin
map is trivial as a Zr -gerbe.

Proof. It suffices to show that Ψ|Pd does in fact lift to an SLr-bundle, which
can be regarded as a vector bundle with trivial determinant.

For any universal bundle L̃ → Pd×C̃, the push-forward π∗L̃ → Pd×C̃
admits a family of Higgs fields inducing the inclusion Pd ⊂ M. Indeed, this
is how one shows that Pd is the fiber of the Hitchin map: see Hitchin [24]
for details. So over Pd × {c} there is an isomorphism Pπ∗L̃ ∼= Ψ.

The universal bundle can be normalized so that L̃|Pd×{y} ∈ Pic0(Pd )

for one (hence all) y ∈ C̃. The determinant of π∗L̃ over Pd × {c} is iso-
morphic to

⊗
y∈π−1(c) L̃|Pd×{y}, where ramification points are counted with

the appropriate multiplicity. This has an rth root, tensoring by whose in-
verse will further adjust the normalization of L̃ so that det π∗L̃|Pd×{c} ∼= O,
making π∗L̃|Pd×{c} an SLr-bundle as desired. �

Now that we know that B restricts trivially to each fiber as a Zr-gerbe,
and hence as a U(1)-gerbe, it makes sense to examine the equivalence classes
of U(1)-trivializations. From the discussion of gerbes in §1, we know that
these form a torsor (in the smooth category) for H1(Pd, U(1)) ∼= Pic0 Pd ∼=
Pic0 P0, and from Lemma (2.3) the latter is P̂0.

(3.2) Proposition. For any d, e ∈ Z, there is a smooth isomorphism of
P̂0-torsors

TrivU(1)(Pd, Be) ∼= P̂e.

Proof. The isomorphism classes of torsors over a fixed abelian group
scheme themselves form an abelian group in a natural way, and it is easy to
see that P̂e ∼= (P̂1)e and Triv(P, Be) ∼= (Triv(P, B))e, where the right-hand
sides are eth powers under this group operation. Hence it suffices to take
e = 1.

As seen in the proof of Lemma (3.1), the triviality of B on Pd follows
from the existence of a universal bundle L̃ → Pd × C̃ with det π∗L̃ trivial
on Pd × {c}. Consider the set of isomorphism classes of all such L̃: this
parametrizes the equivalence classes of trivializations of B as a Zr-gerbe,
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which is to say, it forms the torsor TrivZr (Pd, B). It is a P̂0[r]-torsor over U ,
where P̂0[r] = H1(Pd,Zr) are the torsion points of order r in P̂0. This
makes sense, since for L ∈ P̂0 = Pic0(Pd ), the push-pull formula says

det π∗(π∗L ⊗ L̃) = Lr ⊗ det π∗L̃.

We are really interested not only in Zr-trivializations but in all U(1)-
trivializations. These comprise a torsor for P̂0 = H1(Pd, U(1)) containing
the P̂0[r]-torsor above, and indeed this property determines the larger torsor,
since it can be identified with the quotient

TrivZr (Pd, B) × P̂0

P̂0[r] .

An obvious torsor with this property consists of all universal bundles
L̃ → Pd × C̃ with L̃|Pd×{y} ∈ Pic0(Pd) for any y ∈ C̃. It therefore suffices
to show that this torsor is isomorphic to P̂1.

In fact, P̂1 = J̃1/J0, while the torsor of the previous paragraph is also
a quotient by J0, of the torsor consisting of universal bundles as stated
there, except with Pd replaced by J̃d . (The J0-action comes from tensoring
by π∗ Pic J0 ∼= J0.) So it actually suffices to show that the latter torsor is
isomorphic to J̃1 as a J̃0-torsor. To do this, we will exhibit morphisms f1

and f2 from C̃ to the two torsors such that, for any y, y′ ∈ C̃, f1(y′) −
f1(y) = f2(y′) − f2(y) ∈ P̂0. The isomorphism of the two torsors defined
by identifying f1(y) with f2(y) is then independent of y, and hence well-
defined.

The morphism f1 is simply the Abel-Jacobi map C̃ → J̃1. As for f2, it
takes y to the universal bundle whose restriction to Pd × {y} is trivial. The
equality f1(y′) − f1(y) = f2(y′) − f2(y) then means that the restriction
to y of the universal bundle normalized at y′ is the line bundle on J̃d

corresponding to f1(y′) − f1(y) ∈ J̃0 = Pic0 J̃d . This follows readily
from two well-known facts. First, that this universal bundle is of the form
p∗

2 L0 ⊗ F∗P , where p2 is projection on the second factor, L0 ∈ J̃d is fixed,
P is the Poincaré line bundle, and

F : J̃d × C̃ → J̃0 × J̃0

is given by F(L, y) = (L ⊗L−1
0 , f1(y)− f1(y′)). Second, that the involution

of J̃0 × J̃0 exchanging the two factors takes the Poincaré bundle to its
inverse. �

Now turn to the reverse direction. We need a gerbe B̂ on the orbifold
M̂d

Dol = Md
Dol/Γ, or equivalently, a Γ-equivariant gerbe on Md

Dol. This will
just be B equipped with a Γ-action, which we define as follows. Let Lγ

denote the line bundle over C corresponding to γ ∈ Γ. (Here and throughout,
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it will prove convenient to distinguish between the abstract group element γ
and the line bundle Lγ .) Then γ acts on Md

Dol by (E, φ) 
→ (E⊗Lγ , φ). This
lifts to PE: think of PE as the moduli space parametrizing 1-dimensional
subspaces of a stable Higgs bundle, and observe that tensoring by Lγ induces
a natural transformation. Hence Γ acts on PE and on its restriction Ψ to
Md

Dol × {c}. This determines a Γ-action on B, the sheaf of liftings to SLr-
bundles, making it an equivariant flat gerbe B̂.

To prove an analogue of Lemma (3.1) for B̂, we first need a technical
fact. Let

Γ̃ =
⊔

γ∈Γ

Lγ \ 0

be the disjoint union of the total spaces of the line bundles Lγ , minus their
zero sections.

(3.3) Lemma. This has the structure of a group scheme over C whose fiber
at y ∈ C is an abelian extension

1 −→ C
× −→ Γ̃y −→ Γ −→ 0.

If L → J0 × C is the universal bundle which is trivial on J0 × {c}, then
there is an action over C of Γ̃ on the total space of L, lifting the action of Γ
on J0 by translation, so that the scalars C× act with weight 1 on the fibers.

Of course the above extension always splits, but not canonically except
at the basepoint y = c.

Proof. Let A be an abelian variety (which we will shortly take to be J0),
let Â be its dual, and let P → A × Â be the Poincaré bundle trivialized on
(0× Â)∪ (A× 0̂), where 0 ∈ A, 0̂ ∈ Â are the basepoints. It is well-known,
cf. Serre [34, VII 3.16], that Ext1(A,C×) = Â; indeed, Â parametrizes
a family of abelian central extensions of A by C×. If this is regarded as
a group scheme over Â, then its total space is P \ 0, the complement of the
zero section in P . The group operation over Â is given by an isomorphism
over A × A × Â

p∗
13P ⊗ p∗

23P
∼= (m × 1)∗P ,(3.4)

where p13 and p23 are projections on the relevant factors and m : A×A → A
is addition. This is provided by the theorem of the cube [28]. It can be
chosen so that over 0× 0̂ it is 1. Associativity requires the commutativity of
a certain diagram of isomorphisms of line bundles on A × A × A × Â, but
this is automatic since the base is projective and connected, and the desired
commutativity holds automatically over the base points.

In the same way, the action of the group scheme A × Â → Â on itself
by translating the first factor lifts to an action of P \ 0 → Â on the Poincaré
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bundle P → A × Â → Â. Indeed, the action (P \ 0) ×Â P → P is again
given by the isomorphism (3.4). The condition that an action must satisfy
is automatic for the same reason as before.

Now return to our curve C with basepoint c, and use the Abel-Jacobi
map to embed it in its Jacobian J0 so that c maps to the basepoint 0. Let
Γ̃ be the inverse image of Γ × C in the projection P \ 0 → J0 × J0. Then
Γ̃ clearly satisfies the desired properties. The restriction of the Poincaré
bundle on J0 × J0 to J0 ×C is the universal bundle L; this therefore carries
the desired action. �
(3.5) Lemma. The restriction of B̂ to each regular fiber P̂d of the Hitchin
map is trivial as a Zr -gerbe.

Proof. First of all, rather than working on the orbifold M̂d
Dol and restricting

to P̂d , it is equivalent to work with Γ-equivariant objects on Md
Dol and restrict

to Pd .
To show that B̂|Pd is trivial, it suffices to show that the projective bundle

Ψ|Pd lifts to a Γ-equivariant vector bundle with trivial determinant. We
know from Lemma (3.1) that Ψ|Pd is the projectivization of a vector bundle,
but we need to show that Γ acts on this vector bundle.

Take a universal bundle over J̃d × C̃; since by Lemma (2.2)

J̃d ∼= Pd × J0

Γ
,

the pullback of this bundle to Pd × J0 × C̃ has a natural Γ-action, which
of course can be regarded as a Γ̃-action where the scalars C× act trivially.
By the theorem of the cube [28] this pullback is equivariantly isomorphic to
p∗

13L̃ ⊗ p∗
23(1 × π)∗L−1, where p13 and p23 are projections on the relevant

factors, and π : C̃ → C is the spectral cover. By Lemma (3.3), Γ̃ acts on
the second factor in this tensor product, with the scalars acting with weight
−1. Hence it also acts on the first, with the scalars acting with weight 1.
Restricting to the basepoint in J0 gives us a Γ̃-action on L̃ → Pd × C̃, and
hence on π∗L̃ → Pd × C. Since Γ̃c

∼= Γ × C× as mentioned before, this
produces a Γ-action on π∗L̃|Pd×{c}.

Finally, as in the proof of Lemma (3.1), observe that det π∗L̃|Pd×{c} ∈
Pic0

Γ Pd = Pic0 P̂d . So, by tensoring by an equivariant line bundle, the
determinant may be made equivariantly trivial. �

Again we may examine the equivalence classes of U(1)-trivializations,
which now form a torsor for H1(P̂d, U(1)) ∼= P0.

(3.6) Proposition. For any d, e ∈ Z, there is a smooth isomorphism of
P0-torsors

TrivU(1)(P̂d, B̂e) ∼= Pe.
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Proof. First, it suffices as in the proof of Proposition (3.2) to take e = 1.
Second, rather than working on M̂d

Dol, it is equivalent to work Γ-equi-
variantly on Md

Dol. For example, the torsor TrivZr (P̂e, B̂) parametrizing trivi-
alizations over P̂d can be identified with the torsor TrivZr

Γ (Pe, B) parametriz-
ing Γ-equivariant trivializations over Pd . As seen in the proof of the previous
lemma, such trivializations are provided by Γ̃-equivariant universal bundles
L̃ → Pd×C̃ where the scalarsC× ⊂ Γ̃ act with weight 1 and det π∗L̃|Pd×{c}
is trivial. Indeed, the isomorphism classes of such universal bundles form
a torsor for Pic0

Γ Pd[r] = P0[r], which must be precisely TrivZr
Γ (Pe, B).

Now follow the proof of Proposition (3.2): let T be the torsor for
P0 = Pic0

Γ Pd parametrizing bundles L̃ that satisfy all the conditions of
the previous paragraph save that det π∗L̃|Pd×{c} need only lie in Pic0

Γ Pd .
This contains the aforementioned P0[r]-torsor and hence must be isomor-
phic to TrivU(1)(P̂e, B̂).

It remains only to identify T with P1. First, recall that the J̃0-torsor of
all universal bundles L̃ → J̃d × C̃ with L̃| J̃ d×{c} ∈ Pic0 J̃d is isomorphic
to J̃1, as shown in the proof of Proposition (3.2).

Then notice that there is an inclusion of T into this torsor compatible
with the inclusion P0 ⊂ J̃0. It is given simply by tensoring L̃ → Pd × C̃
by the fixed Γ̃-equivariant bundle π∗L−1 → J0 × C̃, L being the universal
bundle on J0 × C, to get a Γ-equivariant bundle over Pd × J0 × C̃, which
descends to a universal bundle on the quotient J̃d × C̃.

So T and P1 are now both P0-subtorsors of J̃1. The quotient by either
is the constant torsor J0. The image of one in the quotient by the other
therefore gives a morphism from the base U to J0, the Jacobian of C. But
U is a Zariski open set in an affine space, so its only morphisms to an
abelian variety are constants. Indeed, any nonconstant morphism would be
nonconstant on some line nontrivially intersecting U; the closure of the
image of this line would then be a rational curve in J0, which doesn’t exist.

Hence T and P1 are translates of one another in J̃1, so they are isomor-
phic. �

We may summarize the results of this section as follows.

(3.7) Theorem. For any d, e ∈ Z, the moduli spaces Md
DR(SLr) and

Me
DR(PGLr), equipped with the flat unitary orbifold gerbes Be and B̂d

respectively, are SYZ mirror partners. �

4. Stringy mixed Hodge numbers

Since the spaces we study are non-compact and singular, their “Hodge
numbers” must be interpreted in a generalized sense: as stringy mixed
Hodge numbers. Mixed Hodge numbers are alternating sums of dimensions
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of the associated graded spaces in Deligne’s mixed Hodge structures on
cohomology. They are defined for any complex algebraic variety, even
incomplete or singular ones. However, for the varieties with orbifold (or
more generally, Gorenstein) singularities arising in string theory, mixed
Hodge numbers are not the appropriate notion: rather, we need a stringy
version to take proper account of the singularities. For complete smooth
varieties, these stringy mixed Hodge numbers coincide with the ordinary
Hodge numbers. For complete Gorenstein varieties, they coincide with the
Hodge numbers of a crepant resolution, if this exists [11].

It is convenient to encode the mixed Hodge numbers as coefficients of
a polynomial: the so-called E-polynomial, or virtual Hodge polynomial. We
will define a stringy E-polynomial in terms of the ordinary one.

The stringy E-polynomial. The stringy E-polynomial is defined for any
Gorenstein variety, but it is expressed by a particularly simple formula
in the case of a quotient M/Γ, where M is a quasi-projective Calabi-Yau
n-manifold on which the finite group Γ acts preserving the holomorphic
n-form Ω. We will treat this formula as a definition, and present a general-
ization for M equipped with a flat unitary orbifold gerbe B. The problems
of how to interpret this generalization in terms of smoothings of M, and
how to extend it to arbitrary Gorenstein varieties, are of the utmost interest,
but we do not pursue them here.

To any complex variety X, not necessarily smooth or projective, Deligne
[12,13] has associated a canonical mixed Hodge structure on the compactly
supported cohomology H∗

cpt(X,C), and hence, passing to the associated
graded, complex vector spaces H p,q;k(X). These agree with H p,q(X) in
the smooth projective case, but in general they can be nonzero even when
p + q �= k. If a finite group Γ acts on X, it acts as well on each H p,q;k(X);
denote by h p,q(X)Γ the alternating sum over k of the dimensions of the
Γ-invariant subspaces.

Then define E(X)Γ to be the polynomial in u and v given by

E(X)Γ =
∑

p,q

h p,q(X)Γu pvq.

When Γ = 1, this is the virtual Hodge polynomial E(X) as defined by,
for example, Batyrev-Dais [6]. A practical method of determining E(X)Γ,
which we adopt in the proof of Proposition (8.2), is to regard E(X) as
a polynomial with coefficients in the characters of Γ, and then compute
E(X)Γ as the average value over Γ.

The beauty of E(X)Γ, like E(X), is that it is additive for disjoint unions
and multiplicative for Zariski locally trivial fibrations: the proofs given
by Batyrev-Dais [6, 3.4, 3.7], for example, adapt without change to the
equivariant case. This allows us to compute effectively in many cases even
where we know nothing about the mixed Hodge structures.
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For M as above, we may now define the stringy E-polynomial to be

Est(M/Γ) =
∑

[γ ]
E(Mγ )C(γ)(uv)F(γ).

Here the sum runs over the conjugacy classes of Γ; C(γ) is the centralizer
of γ ; Mγ is the subvariety fixed by γ ; and F(γ) is an integer called the
fermionic shift, which is defined as follows. The group element γ has finite
order, so it acts on TM|Mγ as a linear automorphism with eigenvalues
e2πiw1 , . . . , e2πiwn , where each w j ∈ [0, 1). Let F(γ) = ∑

w j ; this is an
integer since, by hypothesis, γ acts trivially on the canonical bundle. (Purely
for convenience of notation, we have assumed that F(γ) is the same on all
components of Mγ ; otherwise we would have to write a further sum, over
these components, in the definition of Est.)

Turning on the B-field. A twisted version of this expression can be for-
mulated in the following way. Let B be an orbifold U(1)-gerbe on M/Γ,
or equivalently, a Γ-equivariant U(1)-gerbe on M. Such a gadget induces
a flat C(γ)-equivariant line bundle L B,γ on the fixed-point set of γ . Indeed,
B|Mγ ∼= γ ∗ B|Mγ = B|Mγ , where the isomorphism is given by the Γ-action
on B, and the equality is because γ acts trivially on Mγ . This gives an
automorphism of B restricted to Mγ , and moreover, it is C(γ)-equivariant.
Any automorphism of a U(1)-gerbe is given by tensorization by a unique
U(1)-torsor, and this remains true equivariantly. Thus is determined a C(γ)-
equivariant U(1)-torsor on Mγ , which is L B,γ .

We then propose the definition

E B
st (M/Γ) =

∑

[γ ]
E

(
Mγ ; L B,γ

)C(γ)
(uv)F(γ),(4.1)

where the E-polynomial is defined in terms of mixed Hodge numbers as
before, but on the cohomology with local coefficients in L B,γ . A mixed
Hodge structure on cohomology with local coefficients in a flat unitary
bundle is defined by Arapura [1] and Timmerscheidt [41].

Note that when γ = 1, the flat line bundle L B,γ is equivariantly trivial.
So we can regard the formula as saying

E B
st (M/Γ) = E(M)Γ + · · ·

where the dots denote the “higher terms” obtained from the fixed points
of γ �= 1. In particular, viewing a smooth M as M/{1}, we find that
E B

st (M) = E(M) for any flat gerbe B. That is, the B-field affects the Hodge
numbers only in the singular case.

The case where B is pulled back from a point is already nontrivial.
Indeed, we saw in §1 that Γ-equivariant gerbes on a point are classified up
to isomorphism by the discrete torsion H2(Γ, U(1)). For such a gerbe B,
each bundle L B,γ is trivial and hence is determined by a U(1)-representation
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of C(γ). This turns out to be δ 
→ ν(δ, γ)/ν(γ, δ), where ν is any group
cocycle representing B. The stringy E-polynomial therefore agrees in this
case with the one defined by Ruan [33]. But we will never use this fact. Our
gerbes are not generally pulled back from a point, and in any case we will
construct the line bundles L B,γ directly. It does so happen, though, that we
get the same answer as we would from a certain element of discrete torsion
(cf. [22]).

5. The main conjecture

Our purpose is to study the stringy mixed Hodge numbers of the moduli
spaces Md

DR(SLr) and Md
DR(PGLr). We will assume, now and henceforth,

that r and d are coprime. Since Md
DR(SLr) is Γ-equivariantly diffeomorphic

to Md
Dol(SLr), we may regard Md

DR(SLr) and Md
DR(PGLr) as being equipped

with the flat unitary gerbes B and B̂ defined in §3. We then conjecture the
following.

(5.1) Conjecture. For all d, e ∈ Z coprime to r,

E Be

st

(
Md

DR(SLr)
) = E B̂d

st

(
Me

DR(PGLr)
)
.

Since Md
DR(SLr) is smooth, the left-hand side actually equals

E(Md
DR(SLr)), which of course is independent of e.

The rest of the paper is devoted to proving this conjecture for r = 2
and 3. In fact much of what we prove is valid for general r. The broad
outline of the argument is as follows.

First, we show in §6 that the stringy Hodge numbers of the De Rham and
Dolbeault spaces are the same. Thereafter we may work exclusively with
the Dolbeault space, which has the advantage of admitting a C×-action. So
we wish to show

E
(
Md

Dol(SLr)
) = E B̂d

st

(
Me

Dol(PGLr)
)
.

In fact both sides are cumbersome to write down in full due to the
presence of a complicated “leading term” E(Me

Dol(SLr))
Γ: the part invariant

under the Γ-action. But the remaining terms are more tractable. So we will
actually subtract it off and verify that

E
(
Md

Dol(SLr)
) − E

(
Me

Dol(SLr)
)Γ

= E B̂d

st

(
Me

Dol(PGLr)
) − E

(
Me

Dol(SLr)
)Γ

.
(5.2)

To compute the right-hand side, we need to know about the fixed-point
set of the Γ-action. This is described in §7, and the computation is carried
out for r prime in §8. To compute the left-hand side, we need to know
about the fixed-point set of the C×-action. This is described in §9, and the
computation is carried through far enough to settle the cases r = 2 and 3 in
§10.
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6. Equality of Est-polynomials of the Dolbeault and de Rham spaces

For brevity, in this section Md
Hod(SLr) and Md

Hod(PGLr) will be denoted
simply by MHod and M̂Hod, respectively, and likewise for the Dolbeault and
de Rham spaces.

(6.1) Lemma. There exists a proper family MHod → C containing a divisor
X × C → C whose complement is MHod. It is a smoothly trivial family of
orbifolds in the sense that it is an orbifold, diffeomorphic to an orbifold
times C.

Proof. As seen in §2, C× acts on MHod over the action on the base C by
scalar multiplication. Let C× also act on C2 by t · (x, y) = (tx, y). Then
(x, y) 
→ xy is a C×-equivariant map C2 → C. Let M′ be the base change
of MHod given by pulling back by this map; then C× acts on M′. Regarded
as a scheme over the second factor C, the fiber of M′ over y �= 0 is MHod,
but the fiber over y = 0 is MDol × C, with the diagonal action of C×.

For any p ∈ M′, the limit limt→0 t · p exists by Corollary 10.5 of
Simpson [37]. Moreover, the fixed-point set is MC

×
Dol × C → {0} × C,

which is proper over C by Lemma 10.6 of Simpson [37]. The hypotheses
of Theorem 11.2 of Simpson [37] therefore hold, implying that the open set
U ⊂ M′ of those p ∈ M′ having no limt→∞ t · p has a geometric quotient,
proper and separated over C. This open set is the complement of N ×C ⊂
MDol ×C→ {0} ×C, where N is the so-called nilpotent cone in MDol, the
zero fiber of the Hitchin map. The quotient U/C× is the disjoint union of two
pieces: an open set is the quotient of M′ \ (MDol ×C) ∼= MHod ×C×, which
of course is just MHod. The remainder is the quotient of (MDol \N ) × C,
which is of the form X ×C, where X is the geometric quotient of MDol \N .

Hence the quotient is a proper family of schemes over Cwhose nonzero
fiber is a compactification of MDR by adding X as a divisor at infinity, and
whose zero fiber is a compactification of MDol by adding X as a divisor at
infinity. In fact these compactifications are precisely those constructed by
Simpson [37] and the first author [20], respectively.

Certainly MHod is an orbifold, as a geometric quotient of a smooth variety
by a C×-action with finite stabilizers. A neighborhood of any point in the
zero fiber is diffeomorphic to a trivial family of orbifolds: just note that C×
acts trivially on the base C and use the usual local model. Then the standard
argument showing that a submersion of compact manifolds is locally trivial
applies in this orbifold situation: choose a Riemannian metric and flow in
a perpendicular direction to the projection. So the family is smoothly trivial
in an analytical neighborhood of the zero fiber. But the C×-action can be
used to retract all of MHod into this neighborhood. �
(6.2) Theorem. For r and d coprime, E(MDol) = E(MDR).

Proof. The family constructed in the lemma above is a family of compact
“rational homology manifolds” in the sense of Deligne [13, (8.2.4)]. The
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mixed Hodge structures of the fibers are therefore pure, that is, H p,q;k = 0
unless p+q = k, and Poincaré duality identifies the mixed Hodge structures
on the ordinary and compactly supported cohomology. Because of the topo-
logical triviality, the restriction from MHod to any fiber is an isomorphism
on cohomology, and hence an isomorphism of mixed Hodge structures [12,
3.2.5]. Hence the mixed Hodge structures of H∗

cpt(MDol) and H∗
cpt(MDR)

are isomorphic, and so E(MDol) = E(MDR). But MDol is a disjoint union
MDol ∪ X, while MDR is a disjoint union MDR ∪ X. Since the E-polynomial
is additive under disjoint union, it follows that E(MDol) = E(MDR). �
(6.3) Lemma. For any γ ∈ Γ, M

γ

Hod is a smoothly trivial family of orbifolds
with M

γ

Hod ∩ (X ×C) = Xγ × C.

Proof. The whole argument of Lemma (6.1) goes through provided that
Mγ

Hod is the geometric quotient by C× of Uγ , where U ⊂ M′ is the open
set in the proof of Lemma (6.1). In other words, we want to know that
(U/C×)γ = Uγ /C×. This means that if a C×-orbit is preserved by γ , then
it is fixed pointwise. This is obvious if the orbit does not lie over the y-axis
in C2, since Γ acts trivially on C2 while C× acts by t · (x, y) = (tx, y). On
the other hand, the part of U lying over any point on the y-axis is MDol \N ,
the complement of the zero fiber of the Hitchin map. But the Hitchin map
µ : MDol → Vr takes the C×-action on MDol to a linear action on the vector
space Vr with positive weights, while it takes the γ -action to the trivial
action on Vr . So the only way for a C×-orbit outside the zero fiber to be
preserved by γ is to be fixed pointwise. �
(6.4) Theorem. For any e ∈ Z,

E B̂e

st (M̂DR) = E B̂e

st (M̂Dol).

Proof. Both sides are sums over γ ∈ Γ by definition; it will be shown that
the terms agree, that is,

Est

(
M̂γ

DR, L Be,γ

) = Est

(
M̂γ

Dol, L Be,γ

)
.

(The equality of the fermionic shifts is clear since the representations of the
finite group Γ are rigid.)

We wish to argue as in the proof of Theorem (6.2), but first we need
to show that L Be,γ → Mγ

Hod extends over M
γ

Hod as a Γ-equivariant flat
line bundle. Since MHod is constructed in the proof of Lemma (6.1) as
a geometric quotient of the open set U ⊂ M′ described there, for this it
suffices to establish two statements: first, that the Γ- and C×-actions on
L Be,γ commute, and second, that the isotropy of the C×-action on U acts
trivially on L Be,γ .

The first statement is easy: just notice that since Be is a Zr-gerbe,
L Be,γ has disconnected structure group Zr , whereas C× is connected. Since
1 ∈ C× certainly commutes with the Γ-action, the whole of C× must.
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As for the second statement, note that for any p ∈ U , the isotropy
group of the limit limt→0 t · p ∈ M′ is C×, and by the same connectedness
argument as in the previous paragraph this isotropy group acts trivially on
L Be,γ . Hence by continuity the isotropy groups of t · p, even though they
may be disconnected, must also act trivially.

Now proceed as in the proof of Theorem (6.2), using the mixed Hodge
structure on cohomology with local coefficients [1,41]. Lemma (6.3) guar-
antees that the same scheme Xγ gets added at infinity to compactify both
the De Rham and the Dolbeault fibers. �

7. Fixed points of the Γ-action

The action of Γ on the moduli space of stable bundles was studied in
a wonderful paper of Narasimhan and Ramanan [30]. The arguments in §3
of their paper carry over without change to the space of Higgs bundles.

Fix γ ∈ Γ and let m be its order. Let π : C̃ → C be the unbranched
cyclic cover consisting of the mth roots of unity in the total space of Lγ .
A bundle on C is equivalent to a Zm-equivariant bundle on C̃, where Zm is
the Galois group.

Let (E,�) be a universal Higgs bundle on M̃d
Dol(GLr/m) × C̃, where the

tilde denotes a moduli space of bundles on C̃. Then � induces a Higgs field
on π∗E; call it π∗�, and regard (π∗E, π∗�) as a family of Higgs bundles
on C parametrized by M̃d

Dol(GLr/m). More precisely, note that as families of
Zm-equivariant bundles on C̃

π∗π∗E ∼=
m⊕

i=1

(1 × ξ i)∗E,

where ξ , the standard generator of Zm , acts on the right-hand side by cycli-
cally permuting the factors; then the block-diagonal Higgs field⊕m

i=1(1 × ξ i)∗� on the right-hand side descends to the Higgs field we
have called π∗�. There is therefore an induced morphism M̃d

Dol(GLr/m) →
Md

Dol(GLr). Moreover, if δ ∈ Γ acts on M̃d
Dol(GLr/m) by tensorization by

π∗Lδ, then this morphism is Γ-equivariant.

(7.1) Proposition. The action of Zm on M̃d
Dol(GLr/m) is free, and the mor-

phism to Md
Dol(GLr) induced by (π∗E, π∗�) descends to a Γ-equivariant

regular embedding

M̃d
Dol(GLr/m)/Zm → Md

Dol(GLr)

whose image is the fixed-point set Md
Dol(GLr)

γ .

Proof. This proposition is analogous to Proposition 3.3 of Narasimhan-
Ramanan, and the proof is entirely similar. The open set U that appears in
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their statements is unnecessary for us, since we are assuming that r and d
are coprime. �

Our next task is to “fix the determinant,” that is, pass from structure group
GLr to SLr . This requires some basic facts about the Prym variety of an
unbranched cyclic cover. The proofs of the following are pleasant exercises,
and copious hints can be found in Arbarello et al. [2, Appendix B2].

• Let J̃d = Picd C̃ and Jd = Picd C. Then the kernel of π∗ : J0[m] →
J̃0[m] is generated by γ [Exercise 14 in Arbarello et al.].

• The kernel of the norm map Nm : Pic C̃ → Pic C has m components
[Exercise 19]. Call the identity component the Prym variety P.

• The map Pic C̃ → ker Nm given by L 
→ L−1 ⊗ ξ∗L , where ξ ∈ Zm is
the standard generator, is surjective [Exercise 20].

• For δ ∈ J0[m], π∗Lδ is in the image of J̃d if and only if 〈γ, δ〉 =
ξd , where 〈 , 〉 is the Weil pairing or intersection form on J0[m] =
H1(C,Zm) [Exercise 23].

• For L ∈ Jd with (m, d) = 1, the Galois group Zm of C̃ → C acts
transitively on the set of components of Nm−1(L) [30, Proposition 3.5].

There are natural splittings Md
Dol(C

×) = Picd C × H0(C, K ) and
M̃d

Dol(C
×) = Picd C̃ × H0(C̃, K ). Define Π : M̃d

Dol(C
×) → Md

Dol(C
×)

to be det π∗ on the first factor and the obvious sum map on the second
factor. It is easy to see that det π∗ equals Nm if m is odd, and Nm com-
posed with tensorization by Lm/2

γ if m is even: see Narasimhan-Ramanan
for details. Hence the fibers of Π are torsors for T ∗ ker Nm (over a point).

(7.2) Lemma. The map induced by (π∗E, π∗�) lies in the following com-
mutative diagram:

M̃d
Dol(GLr/m) −→ Md

Dol(GLr)

det



det

M̃d
Dol(C

×)
Π−→ Md

Dol(C
×).

Proof. This is analogous to Lemma 3.4 of Narasimhan-Ramanan. �
(7.3) Corollary. If m = r, then the fixed-point set Md

Dol(SLr)
γ is the quo-

tient by Zm of Π−1(L, 0) for L ∈ Jd, which can be identified with a con-
nected component of Π−1(L, 0), or with the total space of the cotangent
bundle of a connected component of Nm−1(L). It is a torsor for T ∗ P (over
a point).

Proof. Since by definition Md
Dol(SLr) = det−1(L, 0), this follows immedi-

ately from the lemma and the facts preceding it. �
The identification in the corollary above is certainly convenient, but it

complicates the Γ-action slightly. Tensorization by a line bundle of the form
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π∗Lδ may interchange the components of the fiber of π, and we then have
to act by an element of Zm to get back into our chosen one. The following
result clarifies how this works.

(7.4) Proposition. (i) Let L ∈ Jd where (m, d) = 1, and let q ∈ Z satisfy
qd ≡ 1 (mod m). Then the action by tensorization of J0[m] on Nm−1(L) is
transitive on the set of components, and δ ∈ J0[m] acts on the components
in the same way as 〈γ, δ〉q ∈ Zm. (ii) The Galois group Zm acts on the Lie
algebra of the Prym as g − 1 copies of the regular representation of Zm
minus its trivial factor.

Proof. The most enjoyable proof is topological. Identify J0[m] with
H1(C,Zm); then Nm corresponds to the push-forward, and π∗ to the pull-
back of the Poincaré dual or inverse image, which we denote by π−1. Since
the intersection form is nondegenerate and γ has order m, one can choose
a set of generators for H1(C,Zm) starting with γ so that the intersection
form is standard. Consequently, there exists a handle presentation of C so
that γ is represented by a loop around the first handle. The cover C̃ can then
be depicted as in the diagram.

δ

γ

C̃

C

π

The map whose image is the Prym is L 
→ L−1 ⊗ ξ∗L; its restriction
to J̃0[m] = H1(C̃,Zm) is better expressed in additive notation as a 
→
ξ−1(a) − a. So we need to find an element δ ∈ H1(C,Zm) such that neither
π−1(δ) nor any of its nonzero multiples are in the image of this map.

The loop marked δ on the diagram clearly satisfies this requirement. On
the other hand, the inverse images of all loops on the last g − 1 handles,
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equally clearly, are in the image of this map. So the powers of δ act transi-
tively on the set of components, and the loops on the last g − 1 handles act
trivially. Since 〈γ, δ〉 = ξ ∈ Zm it now suffices for (i) to show that δ acts
as ξq. Since the Γ- and Zm-actions clearly commute, δ must act as some
power of ξ . But according to the penultimate basic fact, there exists M ∈ J̃1

such that M−1 ⊗ξ−1 M ∼= π∗Lδ, and hence ξ∗Md ∼= π∗Ldδ⊗ Md. Tensor M
by a line bundle pulled back from J0 so as to arrange that Md ∈ Nm−1(L).
Then the actions of ξ and dδ agree on the component containing Md, and
hence on all components. Therefore the same is true of ξq and δ. This
proves (i).

The Lie algebra of the Prym can be identified with H1(C̃, R)/H1(C, R).
This is spanned by the loops on the last m(g − 1) handles of C̃, modulo the
inverse images of the loops from the last g − 1 handles of C, and (ii) is now
clear. �
(7.5) Corollary. Let L and q be as above, and identify Md

Dol(SLr)
γ with

the cotangent bundle of a connected component of Nm−1(L). Then the Γ-
action on Md

Dol(SLr)
γ is induced by the following action on that connected

component: δ ∈ Γ acts by tensorization by π∗Lδ followed by the action of
〈γ, δ〉−q ∈ Zm. This acts on H1(Md

Dol(SLr)
γ , R) as stated in (ii) above. �

8. Calculation for PGLr

Suppose that r is prime and that d and e are coprime to r. Then we can work
out the right-hand side of (5.2) completely. By abuse of notation we refer
henceforth to the fixed-point set Md

Dol(SLr)
γ as T ∗ P, although it is really

a torsor for T ∗ P over a point.

(8.1) Proposition. The Γ-equivariant flat line bundle L B,γ → T ∗ P is triv-
ial, and the Γ-action is given by the character δ 
→ 〈γ, δ〉−q, where Zr is
identified as usual with the complex rth roots of unity.

Proof. Since we are studying a flat line bundle, instead of working with
T ∗ P we may work just with the zero section. This is convenient, since the
Higgs field vanishes there, so we may forget it and think of the universal
family as merely a bundle.

We abusively call the zero section P, but it is really a component of
Nm−1(L) ⊂ J̃d , which is a torsor for P. According to Corollary (7.5), δ ∈ Γ
acts on it by tensorization by π∗Lδ followed by the action of 〈γ, δ〉−q ∈ Zm .
We now explain how to lift both of these actions to (projective) actions on
the universal bundle.

First, let ξ = e2πi/m ∈ Zm act as an element of the Galois group, both on
Nm−1(L) ⊂ J̃d and on C̃ itself. Take a universal line bundle L → J̃d × C̃;
then by the universal property, (ξ × ξ)∗L ∼= Q ⊗ L for some line bundle
Q → J̃d .
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The push-forward π∗L is the desired universal bundle. Since π : C̃ → C
is a Galois cover, there is an isomorphism of Zm-equivariant bundles

π∗π∗L ∼=
m⊕

i=1

(1 × ξ i)∗L,

where on the right-hand side the factors are cyclically permuted by the
action.

Hence there are isomorphisms of Zm-equivariant bundles

(ξ × 1)∗π∗π∗L ∼=
m⊕

i=1

(ξ × ξ i)∗L

∼=
m⊕

i=1

(1 × ξ i−1)∗(ξ × ξ)∗L

∼=
m⊕

j=1

(1 × ξ j)∗(Q ⊗ L),

∼= Q ⊗ π∗π∗L,

where the penultimate step makes the change of variables j = i − 1. This
descends to the desired isomorphism (ξ × 1)∗π∗L ∼= Q ⊗ π∗L.

Restricting to P × {c}, we find that the projective bundle Ψ|P involved
in the definition of the gerbe B|P is in fact the projectivization of the vector
bundle

V =
⊕

y∈π−1(c)

Ly

where Ly = L|P×{y}, and that the projective action of ξ cyclically permutes
the summands.

Second, let Tδ : J̃d → J̃d denote tensorization by π∗Lδ, which preserves
Nm−1(L). If L is chosen to be trivial over a basepoint in C̃, then by the
universal property, (Tδ ×1)∗L ∼= π∗Lδ ⊗L. Hence there are isomorphisms
of Γ-equivariant bundles

(Tδ × 1)∗π∗π∗L ∼=
m⊕

i=1

(
Tδ × ξ i

)∗
L

∼=
m⊕

i=1

(1 × ξ i)∗(π∗Lδ ⊗ L
)

∼= π∗Lδ ⊗
m⊕

i=1

(1 × ξ i)∗L,

∼= π∗Lδ ⊗ π∗π∗L

descending to an isomorphism T ∗
δ π∗L ∼= Lδ ⊗ π∗L.
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Restricting again to P ×{c}, we find that Tδ acts on V as an isomorphism
on each summand. For example, if δ = γ , then π∗Lγ is the trivial bundle,
with ξ acting by multiplication by e2πi/m ; so for each y ∈ π−1(c), the
isomorphism Lξ·y → Lξ·y is e−2πi/m times the isomorphism Ly → Ly. In
particular, the automorphism of Ψ|P induced by the action of γ lifts to an
automorphism of V : in other words, it takes this lifting to an isomorphic
lifting. This means that the flat line bundle L B,γ defined by the automorphism
of the gerbe of liftings B|P is trivial.

However, the action of Γ on this flat line bundle is not trivial. Indeed,
the action of δ as described in Corollary (7.5) lifts to a projective action on
π∗L via the isomorphisms above. This leads to a diagram

V
γ−→ L B,γ ⊗ V

δ






δ

V
γ−→ L B,γ ⊗ V

but, to make the diagram commutative, we must multiply L B,γ by a scalar
factor. Since δ cyclically permutes the summands as 〈γ, δ〉q ∈ Zm and γ
acts on each successive summand as e−2πi/m times the previous one, this
factor is 〈γ, δ〉−q , as desired. �
(8.2) Proposition. When r is prime, the right-hand side of (5.2) equals

1
r (r

2g − 1)(uv)(r2−1)(g−1)

×
(

(1 − u)(r−1)(g−1)(1 − v)(r−1)(g−1) −
(

(1 − ur)(1 − vr)

(1 − u)(1 − v)

)g−1
)

.

Proof. The definition (4.1) of stringy Hodge numbers calls for adding up
a contribution from the fixed-point set of each nontrivial γ ∈ Γ. As seen
in Corollary (7.3), this fixed-point set is (a torsor for) T ∗ P. The compactly
supported cohomology of T ∗ P ∼= C(r−1)(g−1) × P splits according to the
Künneth formula, and that of the first factor is of course Γ-invariant, so

E(T ∗ P, L B,γ )
Γ = E(C(r−1)(g−1))E(P, L B,γ )Γ

= (uv)(r−1)(g−1)E(P, L B,γ )
Γ.

To evaluate the right-hand side, note that by Corollary (7.5), any δ ∈ Γ
acts on H1(P, R), and hence on H0,1(P), with eigenvalues 〈γ, δ〉k , for k = 1
to r − 1, each repeated g − 1 times. Since

Hk(P,C) = Λk
(
H0,1(P) ⊕ H1,0(P)

)
,

as a polynomial with coefficients in the characters of Γ,

E(P) =
(

r−1∏

i=1

(1 − ρiu)(1 − ρiv)

)g−1
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where ρ(δ) = 〈γ, δ〉, and E(P, L B,γ ) = ρ−e E(P). The invariant part is the
average value:

E(P, L B,γ )Γ = 1

|Γ|
∑

δ∈Γ

ρ−1(δ)

(
r−1∏

i=1

(1 − ρi(δ)u)(1 − ρi(δ)v)

)g−1

= 1
r

r−1∑

i=0

ξ−ei

(
r−1∏

i=1

(1 − ξ iu)(1 − ξ iv)

)g−1

= 1
r

(

(1 − u)(r−1)(g−1)(1 − v)(r−1)(g−1) −
(

(1 − ur)(1 − vr)

(1 − u)(1 − v)

)g−1
)

,

where ξ = e2πi/r .
To compute the fermionic shift, note that γ acts with nontrivial weights

on the normal bundle to T ∗ P in Md
Dol(SLr). The action of γ preserves the

holomorphic symplectic structure, since on the dense open set in Md
Dol(SLr)

isomorphic to the cotangent bundle to the moduli space of stable bundles it
corresponds to the tautological symplectic structure. Hence every eigenvalue
e2πiα is accompanied by an eigenvalue e2πi(1−α), so the fermionic shift is half
the rank of the normal bundle, namely r(r − 1)(g − 1). Summing over the
r2g − 1 identical terms yields the grand total in the statement. �

9. Fixed points of the C×-action

The Betti numbers of Md
Dol(SLr) are computed by Hitchin [24] and Gothen

[17] for ranks 2 and 3 respectively, and the E-polynomials can be calculated
in the same way. But the complete formula is complicated and unilluminat-
ing. All we want to know, as was explained in §5, is the Hodge polynomial
of what we like to call the variant cohomology: the part not invariant under
the action of Γ. This is given by the left-hand side of (5.2).

For convenience, in this section denote Md
Dol(SLr) simply by MDol. To

describe its variant cohomology, we shall consider the action of the multi-
plicative group C× on MDol given by λ · (E, φ) = (E, λφ). This commutes
with the Γ-action. Let F be the fixed-point set.

(9.1) Proposition. As polynomials with coefficients in the characters of Γ,

E(MDol) = (uv)dim MDol/2 E(F ).

Proof. The C×-action satisfies the property that for all x ∈ M, λ · x has
a limit as λ → 0. This follows directly from the properness of the Hitchin
map, since it takes this C×-action to a linear action on V with positive
weights.

Now there is an algebraic version of the Morse stratification called the
Białynicki-Birula stratification [8,40]. Indeed, in this case it is nothing but
the Morse stratification for the moment map for the action of U(1) ⊂ C×.
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It implies that MDol is a Γ-invariant union of Zariski locally trivial fiber
bundles whose fibers are affine spaces, whose bases are the components
of F , and whose projections are given by x 
→ limλ→0 λ · x. Not only that,
the dimension of the affine space is always dim MDol/2. One could prove this
directly by looking at theC×-action on the deformation space [21]. A lazier
proof, however, is just to quote Ginzburg’s result [15] that the downward
flow from each critical set is Lagrangian, and hence has dimension equal to
half that of MDol. The same is therefore true of the upward flow from each
point in the critical set, which is the affine space.

The desired formula follows from the additivity of the E-polynomial for
disjoint unions and its multiplicativity for Zariski locally trivial fibrations [6,
3.4, 3.7]. �
Lemma 9.2 (Simpson). If (E, φ) ∈ F , then there exists a decomposition
E = ⊕

Ei with φ(Ei) ⊂ K ⊗ Ei+1. Moreover, the ranks and degrees of the
Ei are locally constant on F .

Proof. Fix t ∈ C× which is not a root of unity. If (E, φ) is to be in F ,
then there must be an isomorphism f : E → E such that fφ = tφ f .
Such an f is unique up to a scalar, since two such maps f and f ′ give
rise to an automorphism f −1 f ′ of the stable pair (E, φ), which must be
a scalar. The roots of the characteristic polynomial form an r-fold cover
of C in C × C, so they and their multiplicities are constant on C. This
gives a decomposition of E into generalized eigenspaces Eλ, the kernels
of ( f − λ)r . These Eλ constitute subbundles of the universal bundle E
restricted to each connected component of F . For locally on F , f extends
to an automorphism of E|F ×C ; indeed, the hypercohomology H0 of the
two-term complex End E → K ⊗ End E on C with f 
→ fφ − tφ f is one-
dimensional and generated by the f mentioned above, so the hyper-direct
image on F (R0π)∗(End E → K ⊗ End E) is locally free of rank 1. Hence
the ranks and degrees of the Eλ are locally constant on F .

Now ( f − tλ)rφ = trφ( f −λ)r , so φ maps the λ-generalized eigenspace
Eλ to the tλ-generalized eigenspace Etλ. Since t is not a root of unity, the
eigenvalues break up into finite strings λ, tλ, . . . , tkλ, but as stable Higgs
bundles are irreducible, there is only one such string. �

It will be convenient to refer to the finite sequence (rk E1, rk E2, . . . ) as
the type of the component of F containing (E, φ). One possibility is the
type (r) consisting of a single number only. This means that the Higgs field
vanishes, so the corresponding component is simply the moduli space of
stable vector bundles of rank r and fixed determinant.

10. Calculation for SLr

Now suppose once again that r is prime. We will calculate the contribution
to the variant cohomology of the fixed points of type (1, 1, . . . , 1). Then we
will show that in ranks 2 and 3, these are the only nonzero contributors.
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(10.1) Proposition. When r is prime, the fixed components of type (1, 1,
. . . , 1) contribute to the variant part of E(Md

Dol(SLr)) exactly the polynomial
given in Proposition (8.2).

Proof. A Higgs bundle of type (1, 1, . . . , 1) has the form E = ⊕r
i=1 Li

with φi : Li → Li+1 ⊗ K . We assume that the determinant is fixed to be
O(dc) where c is our basepoint, so

∏
Li

∼= O(dc). Let Di be the divisor of
zeroes of φi and Mi = O(Di). Then Mi

∼= L−1
i ⊗ Li+1 ⊗ K and so

r−1∏

i=1

Mi
i
∼= Lr

r ⊗ Kr(r−1)/2(−dc).(10.2)

Denote li = deg Li and mi = deg Mi ; then mi = li+1 − li + 2g − 2, and

r−1∑

i=1

imi ≡ −d (mod r).(10.3)

By the way, this last constraint is accidentally overlooked in the paper of
Gothen [17], leading to some incorrect formulas.

AC×-invariant Higgs bundle is unstable if and only if it is destabilized by
a C×-invariant Higgs subbundle: indeed, this follows immediately from the
uniqueness of the Harder-Narasimhan stratification for Higgs bundles. Since
the only such subbundles are of the form

⊕r
i=k Li , stability is equivalent to

lk + lk+1 + · · · + lr

r − k + 1
<

d

r

for each k. It is a simple exercise to show that these inequalities are satisfied
if 0 ≤ mi ≤ 2g − 2. These are the only values that will contribute to the
variant cohomology.

Given effective divisors Di whose degrees satisfy (10.3), all that is
needed to construct a Higgs bundle of the type described above is a choice
of Lr , which by (10.2) is determined up to multiplication by an rth root
of unity, that is, an element of Γ. Consequently, each type (1, 1, . . . , 1)
component of the fixed-point set is a fibered product of the form

Nm1,...,mr =
(

r−1∏

i=1

Smi C

)

×Pic
∑

imi C Piclr C,

where the morphism from
∏r−1

i=1 Smi C is (Di) 
→ O(
∑

iDi) and the mor-
phism from Piclr C is L 
→ Lr ⊗ Kr(r−1)/2(−dc).

The terms in the Hodge decomposition, as representations of Γ, can be
computed by pushing forward to

∏r−1
i=1 Smi C first, as in Hitchin [24] and
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Gothen [17]. It turns out that

H∗(Nm1,...,mr ,C) =
⊕

γ∈Γ

H∗
( ∏

i

Smi C,
⊗

i

π∗
i Li

γ

)

=
⊕

γ∈Γ

⊗

i

Λmi H1
(
C, Li

γ

)
,

where the right-hand side denotes cohomology with local coefficients, and
Lγ → Sm1C is the flat line bundle obtained either by symmetrizing Lγ → C
or by pulling back the corresponding flat line bundle over Pic0 C via the
Abel-Jacobi map. The variant part consists of the terms where γ �= 1. Since
r is prime, Li

γ is then a nontrivial flat bundle for each i from 1 to r − 1, and
hence H1(C, Li

γ ) has Hodge type (g − 1, g − 1); indeed, its (0, 1) part can
be identified with the Dolbeault cohomology of Li

γ on C.
The contribution of Nm1,...,mr to the variant part of the E-polynomial is

therefore

(r2g − 1)(uv)(r2−1)(g−1) Coeff∏
t
mi
i

(
∏

i

(1 − tiu)(1 − tiv)

)g−1

.

Here the factor of r2g − 1 is the number of nontrivial group elements in Γ,
and the power of uv is the contribution of the normal bundle, as described
in (9.1). To sum mi from 0 to 2g − 2 subject to the constraint (10.3), let
ξ = e2πi/r and take the average value, over the powers of ξ , of the above
multiplied by ξd: that is,

1
r (r

2g − 1)(uv)(r2−1)(g−1)

r∑

j=1

ξ jd

(
r−1∏

i=1

(1 − ξ ij u)(1 − ξ ijv)

)g−1

= 1
r (r

2g − 1)(uv)(r2−1)(g−1)

×
(

((1 − u)(1 − v))(r−1)(g−1) −
(

(1 − ur)(1 − vr)

(1 − u)(1 − v)

)g−1
)

.

This is indeed the polynomial given in Proposition (8.2). �
(10.4) Lemma. In any rank r, the fixed component of type (r) has no variant
cohomology.

Proof. This fixed component is the moduli space of stable vector bundles
of rank r and determinant O(dc), c ∈ C being our chosen basepoint. So
the desired fact is exactly Theorem 1 of Harder-Narasimhan [19], cf. also
Newstead [31] and Atiyah-Bott [3]. �
(10.5) Lemma. In rank 3, the fixed components of type (1, 2) and (2, 1)
have no variant cohomology.
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Proof. Gothen [17] shows that each such fixed component is a smooth
family over Pic0 C whose fiber is the moduli space of stable rank 2 Bradlow
pairs with a certain fixed determinant and a fixed Bradlow parameter τ .
As such, this family can be obtained, starting from a projective bundle
over Pic0 C, by a sequence of blow-ups and blow-downs whose centers are
projective bundles over Pic0 C times symmetric products of C, in the manner
prescribed by the second author [39]. Gothen explains how all the spaces in
this sequence can be regarded as parametrizing families of (not necessarily
stable) rank 3 Higgs bundles, and it follows that Γ acts on all the spaces,
compatibly with all the morphisms between them. Furthermore, it acts on
the projective bundles by bundle maps, and on their bases by translation
of the factor Pic0 C: this is readily apparent from Gothen’s description.
Consequently, it acts trivially on the cohomology of each projective bundle
in the sequence. The standard description of the cohomology of a blow-up
(see e.g. Griffiths-Harris [18, p. 605]) implies that, when a finite group Γ
acts on a smooth X preserving a smooth Y ⊂ X, it acts trivially on the
cohomology of the blow-up along Y if and only if it acts trivially on the
cohomology of X and of Y . Hence Γ acts trivially on the cohomology of
the fixed component. �
(10.6) Theorem. Conjecture (5.1) holds true for r = 2 and 3.

Proof. First of all, when r = 2 or 3, and d and e are both coprime to r, there
is of course an isomorphism Md

Dol(SLr) ∼= Me
Dol(SLr): it is given simply

by dualizing (in the case when r = 3 and d �≡ e mod 3) and tensorizing
by a line bundle of the appropriate degree. Hence we may substitute d for
e on the left-hand side of (5.2) with impunity. It is then just a question of
studying the variant part of the E-polynomial for Md

Dol(SLr).
The contribution of the (1, 1) or (1, 1, 1) components to this variant part,

given by Proposition (10.1), agrees with the calculation for PGLr given in
Proposition (8.2). The contributions of the remaining components vanish
by the two lemmas above. �

More generally, for any prime r, Conjecture (5.1) would follow from
two further conjectures. First, that E(Md

Dol(SLr)) = E(Me
Dol(SLr)) for all d

and e coprime to r. Second, that no fixed component besides those of type
(1, 1, . . . , 1) contributes to the variant cohomology. We hope to return to
these conjectures in the future.
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