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1. Introduction

This paper is a write-up of the second author’s talk [12] at the conference “Moduli
spaces and geometric structures” in honor of Oscar Garćıa-Prada on the occasion
of his 60th birthday at ICMAT Madrid in September 2022.

In [14], motivated by mirror symmetry, the notion of very stable Higgs bundle
was introduced. Let C be a smooth projective curve. Let M denote the moduli space
of rank n degree d semistable Higgs bundles (E, Φ), where E is a rank n degree

∗Corresponding author.
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vector bundle and Φ ∈ H0(C; End(E)⊗K) is a Higgs field. There is a T-action on
M by scaling the Higgs field, i.e. λ ∈ T acts by sending (E, Φ) to (E, λΦ). A fixed
point E ∈ MsT is called very stable, if the upward flow

W+
E :=

{
F ∈ M : lim

λ→0
λ · F = E

}
⊂ M

is closed. In Sec. 2, we recall the basic properties of very stable upward flows in
general as well as for the moduli space of Higgs bundles M.

One of the main results of [14] is the classification of very stable Higgs bundles
(E, Φ) ∈ MT of type (1, . . . , 1). A fixed point is of type (1, . . . , 1) when the vector
bundle E = L0 ⊕ · · · ⊕ Ln−1 is a direct sum of line bundles, and the Higgs field
Φ|Li : Li → Li+1K ⊂ EK, which we denote by

bi := Φ|Li ∈ Hom(Li, Li+1K) ∼= H0(C; L−1
i Li+1K).

Then we have the following theorem.

Theorem 1.1 ([14, Theorem 4.16]). The type (1, . . . , 1) Higgs bundle (E, Φ) ∈
MT is very stable if and only if the divisor div(b1) + · · · + div(bn−1) is reduced.

We recall this classification in Theorem 2.1, and a reformulation of it in
Remark 2.1 in terms of minuscule dominant weights of GL(n, C).

Garcia-Prada and Ramanan in [9] study involutions on the moduli space of Higgs
bundles. One important involution θ : M → M is given by θ(E, Φ) := (E,−Φ).
In [9], it is shown that the fixed points Mθ correspond to U(p, n−p)-Higgs bundles
(including the case p = 0, where U(0, n) := U(n)). We recall these notions in Sec. 3.

In this paper, we will be interested in the so-called even upward flows W 2+
E

for any E ∈ MsT ⊂ Mθ which are defined to be the upward flows E in the semi-
projective Mθ, or equivalently, the intersection W 2+

E := W+
E ∩Mθ. Then we can

define even very stable Higgs bundles E ∈ MT for which the even upward flow
W 2+

E ⊂ Mθ is closed. One of the main results of this paper is the following theorem.

Theorem 1.2. The type (1, . . . , 1) Higgs bundle (E, Φ) ∈ MT is even very stable,
if and only if the divisors div(b2) + · · · + div(bn−2) and div(bi) + div(bi+2k+1) for
1 ≤ i ≤ i + 2k + 1 ≤ n − 1 are all reduced.

To clarify the meaning of this complicated looking set of divisors, we reformulate
this theorem in Theorem 3.1 in terms of so-called even minuscule dominant weights
using positive weights of even height.

As the Hitchin map restricted to very stable upward flows is finite flat and
T-equivariant between affine spaces, with positive T-action of the same dimension
it is susceptible of explicit description. In the type (1, . . . , 1) very stable case, the
second author found such an explicit description in [13] in terms of the spectrum
of equivariant cohomology of the Grassmannian Grk(Cn). We will recall this in
Sec. 4.2.

Finally, in Sec. 4.3, we study the problem of modeling the Hitchin map on
certain even very stable upward flows, in terms of the equivariant cohomology of
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homogeneous spaces. We will find in Theorem 4.1 that for GL2n the equivariant
cohomology of quaternionic Grassmannians, for SO4n+2 the equivariant cohomology
of the 4n-sphere and finally for E6 the equivariant cohomology of the real Cayley
plane should model the Hitchin map on some specific even very stable flows. The
appearance of these symmetric spaces is interesting, partly because they are not of
Hermitian type, and also because they are quotients of the Nadler group [22] of the
quasi-split real form of Hodge type (see [9, Sec. 2.3] for the definition).

In this paper, we are concentrating on type (1, . . . , 1) very stable and even very
stable upward flows. By now there are many interesting results about other types
of very stable or wobbly Higgs bundles see e.g. [20] for multiplicity algebras of type
(2) very stable Higgs bundles, [6] for many wobbly Higgs bundles — both papers in
this conference proceedings — and [25] for a classification of all type (n1, n2) very
stable components.

2. Bialynicki–Birula Decomposition

In this section, we first recall the definition of a semi-projective variety and then
collect the basics of the Bialynicki–Birula decomposition associated to such a
variety.

Definition 2.1. Let X be a normal complex quasi-projective variety equipped with
a T := C

× action. X is semi-projective if the fixed point locus XT is projective, and
for every x ∈ X there is a p ∈ XT such that limλ→0 λx = p.

The latter is to be understood as the existence of a T-equivariant morphism
f : A1 → X such that f(1) = x and f(0) = p. Semi-projective varieties are
endowed with a stratification in affine subvarieties known as the Bialynicki–Birula
decomposition [3], which we now recall. We refer to [14, Sec. 2] for further details.

Definition 2.2. Let X be a semi-projective variety and α ∈ XT. The upward flow
from α is defined to be

W+
α :=

{
x ∈ X : lim

λ→0
λx = α

}
.

Similarly, the downward flow from α is

W−
α :=

{
x ∈ X : lim

λ→∞
λx = α

}
.

The Bialynicki–Birula partition is X =
⊔

α∈XT W+
α . The core of X is defined to

be C :=
⊔

α∈XT W−
α .

Definition 2.3. For a connected component of the fixed locus, F ∈ π0(XT), we
define its attractor as W+

F :=
⋃

α∈F W+
α , and its repeller as W−

F :=
⋃

α∈F W−
α . The

Bialynicki–Birula decomposition is X =
⊔

F∈π0(XT) W+
F .

Given a smooth fixed point α ∈ XsT, the T-action on X induces a representation
of T on the tangent space TαX . We denote, for k ∈ Z, the weight space (TαX)k ⊂
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TαX where λ ∈ T acts via multiplication by λk. This leads to a decomposition
TαX =

⊕
k∈Z

(TαX)k in weight spaces. We denote T +
α X :=

⊕
k>0(TαX)k the

positive part and T−
α X :=

⊕
k<0(TαX)k the negative part. We have:

Proposition 2.1. Given a smooth fixed point α ∈ XsT, the upward flow W+
α

(respectively, the downward flow W−
α ) is a locally closed T-invariant subvariety of

X which is isomorphic to T +
α X (respectively, T−

α X) as varieties with T-action.

The proof was originally given in [3] for smooth complete X . A proof for the
general case is given in [14, Proposition 2.1].

Finally, suppose further that Xs is equipped with a symplectic form ω ∈ Ω2(Xs)
such that, for λ ∈ T, we have λ∗(ω) = λω. This supposition is motivated by
the fact that the semi-projective variety we will be studying, the moduli space of
semistable Higgs bundles, is endowed with such a form. Then, we have the following
proposition.

Proposition 2.2. For a smooth point α ∈ XsT, the subspaces T +
α X and T≤0

α X :=
(TαX)0 ⊕ T−

α X of TαX are Lagrangian. Moreover, the subvarieties W+
α and W−

Fα

are also Lagrangian.

The proof is given in [14, Proposition 2.10]. The main idea is that, for v ∈
(TαX)k and w ∈ (TαX)l, we have

λω(v, w) = λ∗(ω)(v, w) = ω(λ · v, λ · w) = ω(λkv, λlw) = λk+lω(v, w),

so that ω(v, w) can only be nonzero in the situation k + l = 1, which does not
happen if k, l > 0 or if k, l ≤ 0.

Definition 2.4. We say that α ∈ XsT is very stable if W+
α ∩ C = {α}.

This definition was introduced in [14, Definition 4.1], where it was proven [14,
Lemma 4.4] that α ∈ XsT is very stable if and only if W+

α ⊂ X is closed.

2.1. Lagrangian upward flows in M
In this section, we introduce Higgs bundles and show how the previous theory of
Bialynicki–Birula applies to the moduli space of semistable Higgs bundles. For this,
we fix a smooth projective curve C over the complex numbers with genus g ≥ 2
and canonical line bundle K.

Definition 2.5. A Higgs bundle is a pair (E, Φ) where E is a holomorphic vector
bundle over C and Φ ∈ H0 (C, End(E) ⊗ K).

Such an object can be defined in more generality for a real reductive Lie group
G [7, Definition 3.1], giving G-Higgs bundles. The above definition is recovered by
setting G = GLn(C) for n = rankE. Recall that a Higgs bundle (E, Φ) is stable if,
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for every nonzero proper vector subbundle F ⊂ E such that Φ(F ) ⊆ F ⊗ K, we
have

μ(F ) :=
deg F

rankF
< μ(E) :=

deg E

rankE

and it is semistable if for the same subbundles we have μ(F ) ≤ μ(E). We denote
by M := Md

n the moduli space of semistable Higgs bundles of fixed rank n and
degree d. It was constructed via gauge theory in [18] and by algebraic geometric
methods in [23, 27]. It is a normal [28] quasi-projective variety with a hyperkhler
metric at its smooth points, which are the stable Higgs bundles. In particular, it
has a symplectic structure ω ∈ Ω2(Ms).

This space also carries a natural T-action defined by (E, Φ) �→ (E, λΦ) which
turns it into a semi-projective variety and such that λ∗(ω) = λω. Thus, the
Bialynicki–Birula theory from the previous section applies. The fixed locus MT

can be identified as follows. We have, for any λ ∈ T, an isomorphism of vector
bundles fλ ∈ Aut(E) such that

Φ ◦ fλ = fλ ◦ (λΦ). (2.1)

In other words, we have an action of T on E which is linear on each fiber. Hence
we can decompose E = L0⊕· · ·⊕Lk into weight spaces, where fλ|Li = λwi ·IdLi . The
compatibility condition (2.1) shows that, if vi ∈ Li, then fλ(λ·Φ(vi)) = Φ(fλ(vi)) =
λwiΦ(vi), thus fλ(Φ(vi)) = λwi−1Φ(vi). Hence, Φ maps the space for weight wi into
the space for weight wi − 1. In particular, the weights can be chosen to be of the
form wi = w0 − i and the Higgs field has the property Φ(Li) ⊆ Li+1 ⊗ K. From
this, we can associate an invariant (rankL0, . . . , rankLk) to the fixed point, known
as the type.

The previous decomposition shows that, in fact, a Higgs bundle fixed by the
T-action is nilpotent, since Φk+1 ≡ 0. Another way of seeing this is via the Hitchin
map:

h : M → A :=
n⊕

i=1

H0(C, Ki)

defined by the coefficients ai ∈ H0(C, Ki) of the characteristic polynomial det(Φ−
xIn) = xn+

∑n
j=1 ajx

n−j . This map is a proper, completely integrable Hamiltonian
system [17, 23] whose fibers are Lagrangian at their smooth points, and the generic
fibers are abelian varieties [26]. Moreover, by letting T act on H0(C, Ki) with weight
i, the Hitchin map is T-equivariant. Thus, MT ⊆ h−1(0) so that fixed points (E, Φ)
have characteristic polynomial xn and are nilpotent.

The upward and downward flows from the Bialynicki–Birula partition have been
characterized in [14, Propositions 3.4 and 3.11]:

Proposition 2.3. Let E = (E′, Φ′) ∈ MsT and (E, Φ) ∈ M. We have (E′, Φ′) ∈
W+

E if and only if there exists a filtration

0 = E0 ⊂ E1 ⊂ · · · ⊂ Ek = E

2441009-5
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such that Φ(Ei) ⊆ Ei+1 ⊗ K and the associated graded object verifies
(GrE, Gr(Φ)) � (E′, Φ′). The same is true replacing W+

E with W−
E and the ascend-

ing filtration with a descending filtration.

The downward flows have a concrete characterization via the Hitchin map. Since
the action of T on A is by positive weights, the core is just CA = {0}. Because h is T-
equivariant, this shows that C := CM ⊂ h−1(0). On the other hand, the properness
of h shows that h−1(0) is projective and thus C = h−1(0). This is typically called
the nilpotent cone in this context. Note that T-equivariance of h implies MT ⊆ C.
From this, the notion of being very stable becomes:

Definition 2.6. A Higgs bundle E = (E, Φ) ∈ MsT is very stable if the only
nilpotent Higgs bundle in W+

E is E itself. Otherwise, it is wobbly.

One interesting aspect of such objects is that the Hitchin map restricts nicely
to the upward flow [14, Lemma 4.6]:

Proposition 2.4. If E ∈ MsT is very stable then h : W+
E → A is finite, flat,

surjective and generically tale.

2.2. Examples of very stable Higgs bundles

In this section, we recall from [14] some examples of very stable Higgs bundles. First
we consider the fixed point component of type (n). The fixed points of this type are
elements of the form (E, 0) with E a semistable Higgs bundle. Thus, this component
is just the moduli space of semistable rank n degree d vector bundles, N . The
upward flow for E = (E, 0) is given by W+

E = {(E, Φ) : Φ ∈ H0(C, End(E)⊗K)}, so
that E is very stable if and only if the only nilpotent Higgs field Φ ∈ H0(C, End(E)⊗
K) it admits is Φ ≡ 0. This is the notion of very stable vector bundle introduced
by Drinfeld and Laumon [21], for which they prove that very stable bundles form
an open dense subset of the component.

Next, we shall focus on the type (1, 1, . . . , 1) case. The starting example of very
stable Higgs bundle in this component is the canonical uniformising Higgs bundle,
E0 = (E0, Φ0), where

E0 = O ⊕ K−1 ⊕ · · · ⊕ K1−n,

and, given a = (a1, . . . , an) ∈ A = H0(C, K) ⊕ · · · ⊕ H0(C, Kn), the Higgs field

Φa =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 0 . . . 0 an

1 0 . . . 0 an−1

0 1 . . . 0 an−2

...
...

. . .
...

...
0 0 . . . 1 a1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
is given by the companion matrix. The map a �→ (E0, Φa) provides a section of the
Hitchin map, known as the Hitchin section [19]. By means of Proposition 2.3, it
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follows that {(E0, Φa) : a ∈ A} ⊆ W+
E0

. Moreover, since both are affine spaces of
equal dimension dimM/2, the upward flow is precisely the Hitchin section, hence
E0 is very stable.

It is possible to completely classify very stable Higgs bundles of this type by
starting with this example and performing Hecke transformations. First, we note
that the data of a type (1, 1, . . . , 1) fixed point is equivalent to the choice of a
line bundle L0 over C (that is, a divisor δ0 up to principal divisor), as well as
effective divisors δ1, . . . , δn−1 on C. Indeed, such a fixed point (E, Φ) is of the form
E = L0 ⊕ · · · ⊕ Ln−1, where for all j we have rankLj = 1, and Φ|Lj−1 = bj−1 for
nonconstant maps bj : Lj−1 → Lj ⊗ K, 1 ≤ j ≤ n − 1. Thus, L0 is given, and
δi is obtained as the zero locus of bi with multiplicities. On the other hand, given
(δ0, δ1, . . . , δn−1) we construct E by setting Li := L0 ⊗ O(δ1 + · · · + δi−1) ⊗ K−i

and bi := sδi ∈ O(δi) = O(L∗
j−1 ⊗ Lj ⊗ K) the canonical section. We shall denote

the bundle corresponding to δ := (δ0, . . . , δn−1) by Eδ = (Eδ, Φδ).
Another convenient way of labeling these points is via choosing a dominant

weight of GL(n, C) at each point of C, that is, a map

μ : C → Λ+(GL(n, C)) =

{
n∑

i=1

aiωi : a ∈ Z
n−1
≥0 × Z

}
,

where the ωi are the fundamental weights. We require that the set C \ {μ = 0} is
finite. We then define

δμ :=

⎛⎝∑
c∈C

〈μ(c), ω∨
n 〉c,

(∑
c∈C

〈μ(c), ω∨
i 〉c

)
i=1,...,n−1

⎞⎠,

and Eμ := Eδμ . Conversely, we can retrieve the map μ from δ as

μδ(c) = δ0(c)ωn +
n−1∑
i=1

δi(c)ωi ∈ Λ+,

where D(c) for a divisor D means the coefficient of c in D.

2.3. Hecke transformations

Now, we explain Hecke transformations for Higgs bundles. These play a key role
since they allow to relate the upward flows of the different fixed points in the type
(1, 1, . . . , 1) component. In order to define Hecke transformations of (E, Φ), we start
by choosing a point c ∈ C and a subspace V ∈ Gr(k, E|c) which is Φ|c-invariant,
that is, Φ|c(V ) ⊂ V ⊗ K|c. The Hecke transformation HV (E, Φ) := (E′, Φ′) is
defined by diagram

0 → E′ → E → E|c/V → 0,

Φ′ ↓ Φ ↓ Φc ↓
0 →E′ ⊗ K →E ⊗ K →E|c/V ⊗ K → 0,

2441009-7
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where E|c/V is to be regarded as a skyscraper sheaf at c. More details of the
construction of this diagram can be found in [14, Definition 4.10].

It is possible to reach any Eμ from successive Hecke transformations that start
at E0. This is due to the following fundamental operation: starting with E0 and
selecting the natural invariant subspace Vk = (Lk ⊕ · · · ⊕ Ln−1)|c, the resulting
Hecke transformation gives Eμc,k

, where μc,k(c) = ωk and zero otherwise. This is
explained in [14, Example 4.13]. For arbitrary μ it suffices to iterate the previous
operation for every c ∈ C, at the ωk indicated by μ(c). One of the main results
of [14] is that the upward flows are also related by Hecke transformations, from
which the following classification can be deduced:

Theorem 2.1 ([14, Theorem 4.16]). A stable fixed point of type (1, 1, . . . , 1),
(Eδ, Φδ) ∈ MsT, is very stable if and only if the divisor δ1 + · · · + δn−1 is reduced.

Remark 2.1. The previous statement can be rephrased as (Eμ, Φμ) being very
stable if and only if for every c ∈ C, either μ(c) = anωn or μ(c) = anωn +ωk where
k ∈ {1, . . . , n − 1} and an ∈ Z. In other words, the point is very stable if and only
if for every c ∈ C, the weight μ(c) is minuscule, that is, minimal with respect to
the partial ordering in Λ+(GL(n, C)) given by μ1 ≥ μ2 ⇐⇒ μ1 − μ2 ∈ Φ+ =
{∑α∈Δ+ aαα : aα ∈ Z≥0}, where Δ+ denotes the set of positive roots.

3. Even Very Stable Upward Flows

In this section, we extend the results summarized above to the subspace Mθ ⊂ M
of the moduli space defined by the fixed points of the subgroup C2 = {1,−1} ⊆ T,
acting as the involution θ : (E, Φ) �→ (E,−Φ). Clearly, this subspace contains all the
fixed points by the T-action, so the previous concepts can be extended naturally.
Moreover, by [9, Theorem 6.3], the space Mθ contains the images of the maps
MU(p,q) → M, given by extension of structure group, of the moduli spaces of
U(p, q)-Higgs bundles (for the different U(p, q) with p + q = n, p ≤ q) into the
moduli space of GL(n, C)-Higgs bundles. The stable locus Mθ,s is covered by these
images, which are the Higgs bundles that we will consider.

We start by recalling the following definition from [4, Definition 3.3].

Definition 3.1. A U(p, q)-Higgs bundle (E, Φ) is a holomorphic vector bundle E

of the form E = V ⊕ W , where V and W are vector bundles of ranks p and q,
respectively, and Φ ∈ H0(End(E) ⊗ K) is a section satisfying Φ(V ) ⊂ W ⊗ K,
Φ(W ) ⊂ V ⊗ K.

We denote by Ms
U(p,q) the moduli space of stable U(p, q)-Higgs bundles, where

stability is defined as for GL(n, C)-Higgs bundles. As explained before, this space
sits inside M as the fixed point locus of the involution θ, that is, a stable
Higgs bundle (E, Φ) is a U(p, q)-Higgs bundle (for some p and q) if and only if
(E, Φ) � (E,−Φ) [9, Theorem 6.3]. We will often use interchangeably the moduli
space MU(p,q) and its image inside M.
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Note that every fixed point E = (E, Φ) of the T-action is in particular fixed by −1
and hence a U(p, q)-Higgs bundle for some p and q. This can be seen more explicitly
by observing that, in the decomposition E = E0⊕· · ·⊕Ek−1 with Φ(Ei) ⊂ Ei+1⊗K,
the Higgs field Φ interchanges the summands with odd indices by those of even
indices. In particular, type (1, 1, . . . , 1) fixed points are Higgs bundles for the quasi-
split group U(p, p) or U(p, p + 1).

Moreover, recall from Bialynicki–Birula theory in Sec. 2 that the upward flow
W+

E is an affine space isomorphic to the subspace of positive weights T +
E M ⊂ TEM.

It is easy to identify the subspace of U(p, q)-Higgs bundles.

Remark 3.1. The U(p, q)-Higgs bundles in W+
E , that is, MU(p,q) ∩W+

E , corre-
spond via the isomorphism W+

E � T +
E M to the vector subspace of positive, even

weights T 2+
E M ⊂ TEM.

This is because the even weights are precisely the vector subspace fixed by multi-
plication by −1, and the previous isomorphism is T-equivariant. In other words, we
can view the locus of U(p, q)-Higgs bundles at the upward flow of a fixed point as
a subspace:

Definition 3.2. The even upward flow at E is the subspace of W+
E corresponding

to T 2+
E M and is denoted by W 2+

E .

Note that this coincides with the standard upward flow when defined in Mθ

instead of M. Hence, we also have the following natural definition of very stable
points:

Definition 3.3. We say that E is even very stable if W 2+
E ∩ C = {E}, where

C = h−1(0) ⊆ M denotes the locus of nilpotent Higgs bundles. Otherwise, it is
said to be even wobbly.

We remark, as one of the main interests for this study, that the subspaces of even
weights T 2

EM ⊂ TEM that we are considering are Lagrangian, since the symplectic
form ω pairs the subspace of weight k with that of 1− k, as explained at the end of
Sec. 2, so that the subspaces of even weights are paired with those of odd weights.
In fact, the subvariety Mθ ⊂ M itself is Lagrangian, as explained in [9, Theorem
8.10].

Obviously, a very stable fixed point is also even very stable. However, a wobbly
fixed point E can either remain even wobbly or instead be even very stable, depend-
ing on whether the nontrivial intersection (W+

E ∩C)\{E} happens at even weights or
not. We will classify the even very stable Higgs bundles of type (1, 1, . . . , 1), reveal-
ing that both situations already arise in this case. We follow the same notation of
Sec. 2.2.

Proposition 3.1. Let E = (E, Φ) be a smooth fixed point of type (1, 1, . . . , 1).
Suppose that there is some point c ∈ C such that bi(c) = bj(c) = 0 for some i, j of
different parity. Then E is even wobbly.
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Proof. The proof follows the approach of constructing a curve via Hecke trans-
formations followed in the proof of [14, Theorem 4.16]. We will see that, in
this situation, the curve can be constructed along even weights. We have that
bk(c) = bk+l(c) = 0 where l > 0 and odd. We start by performing a Hecke
transformation at the Φc-invariant subspace (L0 ⊕ · · · ⊕ Lk−1)|c ⊂ E|c, yielding

E′ = L0 ⊕ · · · ⊕ Lk−1 ⊕ Lk(−c) ⊕ · · · ⊕ Ln−1(−c),

Φ′ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 . . . 0 . . . 0 0
b1 0 . . . 0 . . . 0 0
0 b2 . . . 0 . . . 0 0
...

...
. . .

...
. . .

...
...

0 0 . . .
bk

sc
. . . 0 0

...
...

. . .
...

. . .
...

...
0 0 . . . 0 . . . bn−1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

where sc ∈ H0(O(c)) is the canonical section. This bundle is still stable [14, Lemma
4.17]. We have that V0 = (Lk(−c) ⊕ · · · ⊕ Ln−1(−c))|c ⊂ E′|c is the (n − k)-
dimensional Φ′

c-invariant subspace that transforms (E′, Φ′) back into (E(−c), Φ).
Now, let {v0, . . . , vn−1} be a basis of E′|c, each vj taken in the corresponding
component. We define the following (n − k)-dimensional subspace:

V := 〈vk−1 + vk+l, vk, vk+1, . . . , vk+l−1, vk+l+1, vn−1〉 ⊂ E′|c.
This is another Φ′

c-invariant subspace, since Φ′
c(vk−1 + vk+l) ∈ 〈vk, vk+l+1〉,

Φ′
c(vm) ∈ 〈vm+1〉 for m ∈ {k, . . . , k + l−2}∪{k + l + 1, . . . , n−1}, and Φ′

c(vk+l−1) =
0 (in this analysis we take vj = 0 for any j > n − 1). Now, recall that there is an
induced T-action on Grn−k(E′|c) given by the T-action on E′ with weight −i on
the ith summand of E′. With this, given λ ∈ T we define Vλ := λV , that is

Vλ =
〈
λl+1vk−1 + vk+l, vk, vk+1, . . . , vk+l−1, vk+l+1, vn−1

〉
.

Note that this subspace is always n − k-dimensional. This yields a curve
within the connected subvariety Sn−k(Φ′|c) ⊂ Grn−k(E′|c) of vector subspaces
of the fiber E′|c which are invariant by Φ′|c. As argued in the proof of [14,
Theorem 4.16], this translates into a curve in the moduli space of Higgs bun-
dles, defined by HVλ

(E′, Φ′) � λHV (E′, Φ′). This curve connects HV0(E′, Φ′) =
(E(−c), Φ) with a different fixed point, given by HV∞(E′, Φ′), where V∞ =
〈vk−1, vk, vk+1, . . . , vk+l−1, vk+l+1, vn−1〉. This fixed point is also stable [14, Lemma
4.18].

Moreover, since l is odd, then l + 1 is even and we have that Vλ = V−λ, hence
λHV (E′, Φ′) � −λHV (E′, Φ′) so that this curve is fixed by the action of −1 and
hence it lies in W 2+

(E(−c),Φ). This shows that (E(−c), Φ) is even wobbly thus (E, Φ)
as well.
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There are still more examples of even wobbly stable Higgs bundles of type
(1, 1, . . . , 1), which are covered by the following proposition.

Proposition 3.2. Let E = (E, Φ) be a smooth fixed point of rank n ≥ 4. Suppose
that b := bn−2 ◦ · · · ◦ b2 has a multiple zero at c ∈ C. Then E is even wobbly.

Proof. The proof is identical to that of Proposition 3.1, with the only difference
being the construction of the invariant subspace V ∈ Sn−k(Φ′|c).

Let 1 < i1 < i2 < · · · < im < n − 1 be all the indices other than 1 and n − 1
such that bik

(c) = 0. We can assume that all of them are of the same parity since
otherwise we apply the previous proposition. We start again with a Hecke transform
at (L0 ⊕ L1 · · · ⊕ Lim−1)|c. This yields (E′, Φ′) with the same form as in the proof
of Proposition 3.1.

Now, we will construct a basis {v0, v1, . . . , vn−1} of E′|c as follows. We start
with any nonzero v0 ∈ L′

0|c, then apply Φ′|c until a zero vector is obtained. This
will produce a string: v1 = Φ′|c(v0), v2 = Φ′|c(v1) . . . all the way up to vi1−1, if
b1(c) �= 0, or just v0 if b1(c) = 0. The process then iterates: we pick vi1 (or v1 if
b1(c) = 0) nonzero in the corresponding summand and iterate, repeating until vn−1.
By construction, the basis is partitioned in strings inside of which each element maps
to the next one and the last one maps to zero. Also, each vi is in the corresponding
summand L′

i|c. Let V0 = 〈vim , . . . , vn−1〉.
Now, recall that im < n − 1 and i1 ≥ 2. Note that if m = 1, it is possible that

i1 = im, meaning a multiple zero of bi1 at c. In any case, we define the following
(n − im)-dimensional subspace:

V = 〈vim + vi1−2, vim+1 + vi1−1, vim+2, . . . , vim+i1−1, vim+i1 , . . . , vn−1〉 .

It is Φ′|c-invariant: each generator is taken to the next, and the last one to zero.
Note that it is important that im < n − 1 since otherwise we get a 1-dimensional
space that does not work, for 〈vim + vi1−2〉 �→ 〈vi1−1〉. Also notice that if bn−1(c)= 0
then the second generator might map to zero instead of vim+2, but this is not a
problem for the invariance. We compute λV :

λV = 〈vim + λνvi1−2, vim+1 + λνvi1−1, vim+2, . . . , vim+i1−1, vim+i1 , . . . , vn−1〉 ,

where ν := im − i1 + 2. Once again this gives a curve in Sn−k(Φ′|c) connecting V0

with a different V∞ such that the Hecke transform is a new fixed point and, since
im − i1 + 2 is even, it follows that λV = −λV , as desired.

We now prove that these constitute all even wobbly cases.

Proposition 3.3. Let Eδ = (E, Φ) be a smooth fixed point of type (1, 1, . . . , 1).
Suppose that for every c ∈ C we have that bi(c) = bj(c) = 0 implies i ≡ j mod 2,

and bn−2 ◦ · · · ◦ b2 has at most a single zero at c. Then, E is even very stable.

Proof. We argue by induction on deg(δn−1 + · · · + δ1), as we already know from
Sec. 2.2 that the degree 0 case, which is the canonical uniformising Higgs bundle,
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is even very stable. Suppose that (E′, Φ′) ∈ W+
E ∩ C is a nilpotent element in the

upward flow of E , with the full filtration

0 = W0 ⊂ W1 ⊂ · · · ⊂ Wn−1 ⊂ Wn = E′

given by Proposition 2.3. Take one of the points c ∈ C with μδ(c) �= 0, and suppose
first that bn−1(c) = 0. This means that V ′ := (Wn−1)|c is Φ′|c-invariant, and,
as explained in [14, Sec. 4], the Hecke transformation (E′

1, Φ
′
1) = HV ′(E′, Φ′) is

stable, nilpotent and lies in the upward flow of (E1, Φ1) := HV (E, Φ), where V =
(L0 ⊕ · · · ⊕Ln−2)|c ⊆ E|c. We have that (E1, Φ1) is another type (1, 1, . . . , 1) point
given by δ1 = (δ1

0 , . . . , δ1
n−1) with the only difference being that δ1

n−1 = δn−1 − c.
Thus, by the induction hypothesis it follows that (E1, Φ1) is even very stable, which
results in the following two options:

• If (E′
1, Φ′

1) �� (E1, Φ1), since the latter is even very stable, we have that (E′
1, Φ′

1)
lies in an odd weight space of T(E1,Φ1)M and, by using the invariant subspaces
V ′

1 ⊆ E′
1|c and V1 ⊆ E1|c such that HV ′

1
(E′

1, Φ′
1) = (E′, Φ′) and HV1(E1, Φ1) =

(E, Φ) (up to twisting by a fixed line bundle), it follows that (E′, Φ′) also has
odd weight in the upward flow for (E, Φ) and hence (E′, Φ′) /∈ W 2+

Eδ
.

• If (E′
1, Φ

′
1) � (E1, Φ1), then the one-dimensional subspace V ′

1 ⊆ E′
1|c such that

HV ′
1
(E′

1, Φ
′
1) = (E′, Φ′) is one of the Φ1|c-invariant subspaces in the pair (E1, Φ1),

which we know well since it comes from a Hecke transformation of the starting
(E, Φ). Indeed, we have:

E1 = L0 ⊕ · · · ⊕ Ln−2 ⊕ Ln−1(−c),

Φ1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 . . . 0 0 0

b1 0 . . . 0 0 0

0 b2 . . . 0 0 0
...

...
. . .

...
...

...

0 0 . . . bn−2 0 0

0 0 . . . 0
bn−1

sc
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Let V = {v0, . . . , vn−1} be a basis of E1|c. From the starting hypotheses about
(E, Φ), the only basis vectors that could vanish via Φ1|c are {v0, vj−1, vn−2, vn−1}
where j is the only index with 2 ≤ j ≤ n − 2 such that bj(c) = 0, if it exists.
Necessarily, j ≡ n−1 mod 2. Also, if v0 vanishes then b1(c) = 0 and hence n ≡ 0
mod 2. Finally, vn−2 vanishes if and only if bn−1 had a multiple zero at c.

Since Φ1 is nilpotent, the desired invariant 1-dimensional subspace must be of
the form V ′

1 = 〈v〉 where Φ1|c(v) = 0, that is, v = αv0 + βvj−1 + γvn−2 + δvn−1.
Moreover,

λ · V ′
1 =

〈
αλn−1v0 + βλn−jvj−1 + γλvn−2 + δvn−1

〉
2441009-12
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must verify that limλ→0 λV ′
1 = V1 = 〈vn−1〉, which implies that δ �= 0. Hence,

because of the parity of the exponents of λ appearing in the expression for λ·V ′
1 , if

(E′, Φ′) = HV ′
1
(E′

1, Φ
′
1) were in an even weight space, that is, if λ ·V ′

1 = −λ ·V ′
1 , it

would be necessary that α = β = γ = 0, thus V ′
1 = V1, meaning (E′, Φ′) � (E, Φ).

This concludes the analysis for the bn−1(c) = 0 case. Now, if bn−1(c) �= 0, we
may also assume that b1(c) �= 0. This is because the involution (E, Φ) �→ (E∗, Φt) of
M naturally bijects fixed points and upward flows, sending a point with b1(c) = 0
to a point with bn−1(c) = 0. Hence, the remaining case is when the only bj(c) = 0
happens at a single j with 2 ≤ j ≤ n− 2 and multiplicity one. This case is treated
exactly as in the proof of [14, Theorem 4.16], which we now recall.

We have the Φ′|c-invariant j-dimensional subspace V ′ := (Wj−1)|c giving a
nilpotent (E′

1, Φ
′
1) = HV ′(E′, Φ′) in the upward flow of (E1, Φ1) = (E1, Φ1) :=

HV (E, Φ), where V = (L0 ⊕ · · · ⊕ Lj−1)|c ⊆ E|c. Exactly as before, if (E′
1, Φ′

1) ��
(E1, Φ1), the induction hypothesis gives (E′, Φ′) /∈ W 2+

Eδ
. Otherwise, notice that

Φ′
1|c is now a regular nilpotent, so the only Φ′

1|c-invariant (n − j)-dimensional
subspace is V ′

1 = V1 = (Lj ⊕ · · · ⊕Ln−1)|c. Hence (up to tensoring everything by a
fixed line bundle) we have (E′, Φ′) = HV1(E1, Φ1) = (E, Φ).

3.1. Even minuscule weights in GL(n, C)

We will now see how the conditions found before arise naturally in the context of the
root system of the structure group GL(n, C) of E. We have ω1, . . . , ωn−1, ωn ∈ Λ+

the fundamental weights. Recall that the height of a root is the number of simple
roots in its decomposition. In terms of the fundamental weights the positive roots
of height k ∈ {1, . . . , n − 1} can be indexed by p ∈ {1, . . . , n − k} and given by

αk,p := −ωp−1 + ωp + ωp+k−1 − ωp+k,

where ω0 is understood as 0. In particular, the simple roots are the positive
roots of height 1 of the form α1,p = −ωp−1 + 2ωp − ωp+1 for p = 1, . . . , n − 1. The
highest root αn−1,1 = ω1 + ωn−1 − ωn has height n − 1.

Definition 3.4. For dominant weights λ, μ, we define the even partial ordering as

λ ≥2 μ ⇐⇒ λ − μ ∈ Φ2+,

where

Φ2+ =

⎧⎪⎪⎨⎪⎪⎩
∑

k even,
1≤p≤n−k

ck,pαk,p : ck,p ∈ Z≥0

⎫⎪⎪⎬⎪⎪⎭
is the set of positive linear combinations of even positive roots. Minimal elements
for this ordering are called even minuscule.

We will say for a weight λ that its ith coordinate/entry, λi, is the coefficient of
ωi when λ is written in the basis {ω1, . . . , ωn}. The position of the ith coordinate

2441009-13

In
t. 

J.
 M

at
h.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 M
ig

ue
l G

on
zá

le
z 

on
 0

5/
09

/2
4.

 R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



2nd Reading

April 3, 2024 20:20 WSPC/S0129-167X 133-IJM 2441009
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will be just i. Now, we will characterize the even minuscule weights, seeing that the
conditions exactly match those for even very stable Higgs bundles. The characteri-
zation will be carried out solely via combinatorial arguments.

Proposition 3.4. Let λ be a dominant weight such that at least one of these holds:

(1) The weight λ has nonzero coordinates at two positions 1 ≤ i < j ≤ n − 1 with
i �≡ j mod 2.

(2) The weight λ verifies λ2 + · · · + λn−2 ≥ 2.

Then λ is not even minuscule.

Proof. For the first situation, if λ has nonzero coordinates at i and j, where
j − i := k is an odd positive number, then consider μ := λ − αi,k+1. Because of
the nonzero coordinates at i and j it follows that μ is dominant. By construction,
μ < λ.

If λ2 + · · · + λn−2 ≥ 2, choose indices i, j such that 2 ≤ i ≤ j ≤ n − 2 with
either i �= j and λi, λj ≥ 1, or i = j and λi ≥ 2. We can assume the positions are
of the same parity, since otherwise we apply the previous. Hence write k := j − i a
nonnegative even number. Defining μ := λ − (αk+2,i + αk+2,i−1) works as before,
since αk+2,i + αk+2,i−1 = −ωi−1 + ωi + ωj+1 − ωj+2 − ωi−2 + ωi−1 + ωj − ωj+1 =
−ωi−2 + ωi + ωj − ωj+2.

Remark 3.2. Notice in the last part of the previous proof that 2 ≤ i, j ≤ n− 2 is
indeed required: for example, if i = 1 we cannot take p = i − 1 = 0. Similarly, we
need for αk+2,i to make sense that i ≤ n − (k − 2) = n − k + 2 which is equivalent
to j ≤ n − 2.

As an example for the proof, take n = 9 and λ = (0, 1, 0, 0, 0, 1, 0, 0, 0).
Following the proof, we can consider α6,2 + α6,1 = (−1, 1, 0, 0, 0, 0, 1,−1, 0) +
(1, 0, 0, 0, 0, 1,−1, 0, 0) = (0, 1, 0, 0, 0, 1, 0,−1, 0), so that μ = (0, 0, 0, 0, 0, 0, 0, 1, 0)
is lower than λ.

For the reciprocal, the combinatorial arguments will be easier if we stop consid-
ering ω0 as zero and rather see it as an extra linearly independent vector. That is,
we view the weight space W := 〈ω1, . . . , ωn−1, ωn〉 as a subspace of a new vector
space W̃ := 〈ω0, ω1, . . . , ωn−1, ωn〉 which is a dimension higher. We have a projec-
tion π : W̃ → W . We define α̃k,p := −ωp−1+ωp+ωp+k−1−ωp+k as before but in W̃

(i.e. we do not consider ω0 = 0 in that expression anymore), so that π(α̃k,p) = αk,p.
We also lift the even positive lattice as

Φ̃2+ =

⎧⎪⎪⎨⎪⎪⎩
∑

k even,
1≤p≤n−k

ck,pα̃k,p : ck,p ∈ Z≥0

⎫⎪⎪⎬⎪⎪⎭,

so that π(Φ̃2+) = Φ2+.
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For example, in this new vector space the simple positive roots have the following
lifts: α̃1 = (−1, 2,−1, 0, 0, . . .), α̃2 = (0,−1, 2,−1, 0, 0, . . .), etc. As can be seen, this
avoids the situation of the negative coordinate being truncated at the beginning.
In this setting, we have the following facts about Φ̃2+, which will be the only ones
we will need for our proof:

Lemma 3.1. Take a nonzero x̃ = (x0, x1, . . . , xn−1, xn) ∈ Φ̃2+, we have

(1) The values x0 and xn are not positive.
(2) The values

∑n
j=0 xj ,

∑
jeven xj and

∑
jodd xj are all zero.

(3) The value
∑n−2

j=2 xj is not negative.
(4) The first and last nonzero coordinates of x̃ are negative.

Proof. Immediate, by induction on the number of positive even roots into which
x̃ decomposes. First, it is clear that any α̃k,p for even k has all those properties.
Second, it is easy to check that the sum of any two vectors with those properties
keeps satisfying them. Hence the result follows.

Proposition 3.5. Let λ be a dominant weight that is not even minuscule. Then at
least one of these hold:

(1) The weight λ has nonzero coordinates at two positions 1 ≤ i < j ≤ n − 1 with
i �≡ j mod 2.

(2) The weight λ verifies λ2 + · · · + λn−2 ≥ 2.

Proof. Take μ < λ. Denote x := λ−μ ∈ Λ2+. Since λ = x+μ and the coordinates
of μ at positions between 1 and n − 1 are non-negative, it suffices to check that
either x has positive coordinates at positions between 1 and n−1 of different parity,
or that the sum of the positive coordinates in positions {2, . . . , n − 2} of x, which
we shall denote S from now on, verifies S ≥ 2.

In order to do this we can work with a lift x̃ ∈ Λ̃2+ of x by lifting each of the
positive even roots in some decomposition. We will prove that x̃ has at least one of
the two desired properties, and, since x0, xn ≤ 0 by Lemma 3.1, then x = π(x̃) will
also have them and the proof will be complete.

Assume that x̃ has every positive coordinate between 1 and n − 1 at even
positions. We will show that S �= 0 and S �= 1, hence S ≥ 2.

If S = 0 this means there are no positive entries in positions {2, . . . , n −
2}. By Lemma 3.1(3) there are no negative entries either. So, we have x̃ :=
(x0, x1, 0, . . . , 0, xn−1, xn). Now, if n is even then by Lemma 3.1(2), we have
x0 + xn = 0 hence x0 = xn = 0, the latter by Lemma 3.1(1). But, since
x1 = −xn−1 this contradicts Lemma 3.1(4) reaching a contradiction. If n is odd
then x0 + xn−1 = 0 and x1 + xn = 0. By assumption that positive entries are in
even positions, we have x1 = xn = 0 and we reach the same contradiction.

If S = 1 there will be exactly one positive entry in positions {2, . . . , n − 2} of
value 1, say the ith one. By assumption i is even. By Lemma 3.1(3), from positions
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2 to n − 2 there could either be no negative entries or one negative entry of value
−1 at position j. Now, a case by case analysis follows.

• If n is odd, the case j odd is excluded because we would get, summing odd
entries, that x1 + xn − 1 = 0 and we have x1, xn ≤ 0, the first by assumption
and the second by Lemma 3.1(1). So, we have x1 = xn = 0 and either j is
even or there is no j at all. In either case we find, summing the even entries,
that x0 + xn−1 ∈ {0,−1}, from which it is impossible that both are negative,
contradicting Lemma 3.1(4).

• If n is even, the case j odd is again excluded since, summing odd entries, we
get x1 + xn−1 − 1 = 0, but by assumption both x1 and xn−1 are not positive.
Hence x1 = xn−1 = 0 and j is even or there is no j at all. In this case, we have
to distinguish: if there is no j then x0 + xn = −1 so both cannot be negative
at the same time, and since the only other nonzero entry is the 1 at the ith
position, Lemma 3.1(4) is contradicted. If there is a j then x0 + xn = 0, so that
x0 = xn = 0 and once again we have a contradiction with Lemma 3.1(4).

The only remaining task to complete the proof is to work out the case where all
positive entries of x̃ are at odd positions instead of even ones. There is a symmetry
in Φ̃2+ via ωk �→ ωn−k that will change odd positions and even positions if n is
odd. So, the only remaining cases are for even n, which can be approached exactly
the same as before:

• If S = 0 then the previous argument for even n did not use the positions of
positive entries being even so it still works when they are odd.

• If S = 1 we now have that i is odd. If j were even, summing the even entries we
get x0+xn−1 = 0 which is not possible (x0, xn ≤ 0) so that j is either odd or does
not exist. If it is odd, we sum the odd entries to get x1 + xn−1 = 0, which yields
a contradiction with Lemma 3.1(4). If it does not exist, we get x1 + xn−1 = −1,
from which they cannot both be negative and we reach the same contradiction.

Thus, we can rephrase the condition for even wobbliness as follows.

Theorem 3.1. Let μ : C → Λ+. Then Eμ ∈ MsT is even very stable if and only if
for every c ∈ C, the dominant weight μ(c) is even minuscule.

As an example, the fixed point in rank n = 4 associated to μ(c) = ω1 + ω3 and
μ(d) �= 0 for d �= c is even very stable, while being wobbly in the usual sense. In
rank n = 2 every fixed point is even very stable, which can be deduced more easily
by the lack of even weights in downward flows. This is because the only weights
appearing in the upward flows in rank n = 2 are those appearing in the Hitchin
base, which are 1 and 2. We then know that a negative weight k is paired to a
nonnegative one, 1− k, via the symplectic form ω, hence the only possible negative
weight is k = −1.
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As a final remark, it is possible to work with higher order automorphisms defined
by (E, Φ) �→ (E, ζrΦ), where ζr is a primitive rth root of unity, giving subspaces
Mr ⊂ M and the corresponding notions of r-very stable bundles. Most of the
results presented here naturally generalize to that situation (by using r-minuscule
weights), however in this case there is no longer an associated real group and the
subspaces considered are not Lagrangian.

4. Hitchin Map on Upward Flows

One important motivation to consider very stable upward flows in [14] was the
observation that the Hitchin map

hE := h|W+
E

: W+
E → A

restricted to them is proper. Furthermore, W+
E ∼= T +

E M as T-varieties. Thus, in
the very stable case hE is a proper, even finite flat [14, Lemma 4.6], T-equivariant
morphism between semi-projective affine spaces of the same dimension. As such it
is susceptible for explicit description.

4.1. Equivariant cohomology of homogeneous spaces

We will describe the Hitchin map explicitly on some very stable upward flows in
terms of equivariant cohomology. First, we recall some of the basic properties of
equivariant cohomology see e.g. [1] for more details.

Let G be a connected complex affine (or compact Lie) group. Consider the clas-
sifying G-bundle EG → BG, where EG is contractible. BG is called the classifying
space, and its cohomology ring can be computed as follows:

H∗
G := H∗(BG; C) ∼= H∗(BT; C)WG ∼= C[t]WG ,

where t = Lie(T) is the Lie algebra of a maximal torus T ⊂ G and WG is the Weyl
group of G.

Let now G act on a variety (or manifold) X . We can form the Borel, or homotopy,
quotient XG := (EG × X)/G, by the diagonal action of G, which is an X-bundle
over BG. Its cohomology ring is what is taken to be its equivariant cohomology

H∗
G(X ; C) := H∗(XG; C).

As XG is an X-bundle over BG we get a ring map H∗
G → H∗

G(X ; C), making
H∗

G(X ; C) an H∗
G-algebra.

Let now T < H < G be a connected closed subgroup containing the maximal
torus T of G. Because EG is contractible, we have EG/H ∼ EH/H so we can
compute the G-equivariant cohomology of the homogeneous space G/H as follows:

H∗
G(G/H; C) ∼= H∗((EG × G/H)/G; C) ∼= H∗(EG/H; C) ∼= H∗

H,

with the ring map H∗
G → H∗

H from the natural map BH → BG induced from
the embedding H ⊂ G. This way we have a simple way to compute equivariant
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cohomology of a homogeneous space explicitly as in the following diagram of graded
algebras:

H∗
G(G/H; C)∼= C[t]WH

↑ ↑
H∗

G
∼= C[t]WG .

(4.1)

Note that the structure maps above are finite free, meaning that they define a finite
free module. This is because the equivariant cohomology of equal rank homogeneous
spaces are equivariantly formal [10, (1.2)], for example because they have no odd
cohomology [11, Theorem VII, p. 467].

We will see below that on certain very stable upward flows the Hitchin map can
be modeled by the spectrum of equivariant cohomology of appropriate homoge-
nous spaces. For this reason, we also take the spectrum of (4.1) and record the
corresponding diagram:

Spec(H∗
G(G/H; C))∼= t//WH

↓ ↓
Spec(H∗

G) ∼= t//WG.

(4.2)

We note that half the grading on cohomology will induce the T-action on t//WH,
which agrees with the T-action induced from weight one action on t. The down
arrows in the diagram then become T-equivariant finite flat (ultimately because of
equivariant formality), in particular proper, morphisms.

Because we will also consider how certain involutions act on the equivariant
cohomology of homogeneous spaces, here we record the following lemma. To for-
mulate it recall that for a unital commutative ring R with 2 invertible and with
involution θ : R → R, the coinvariant ring is defined as

Rθ := R/(r − θ(r))r∈R
∼= R/(r ∈ R : θ(r) = −r).

While if A is a commutative R-algebra and θ : A → A also acts on A, compatibly
with the action on R, then Aθ is naturally an Rθ-algebra, called the coinvariant
algebra. Their relevance is in forming the fixed point scheme of the affine R-scheme
Spec(A) under the involution Spec(θ) : Spec(A) → Spec(A), which we also denote
by θ. We get that the fixed point scheme

Spec(A)θ ∼= Spec(Aθ) (4.3)

is an affine Rθ-scheme. Using arguments from [24] we have the following lemma.

Lemma 4.1. Let G be a connected complex reductive group (or a connected compact
Lie group), and τ : G → G a complex algebraic (smooth) involution, with T ⊂ G a
τ-stable torus. Let Gτ

0 denote the identity component of the fixed point group Gτ .
Assume that

H∗
G � H∗

Gτ
0

(4.4)
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is surjective. Let θ := τ∗ : H∗
G → H∗

G denote the induced action on the cohomology
of BG. Then we have that the coinvariant algebra

(H∗
G)θ

∼= H∗
Gτ

0
.

Moreover, if T ⊂ H ⊂ G is a τ-invariant closed connected subgroup, such that
H∗

H � H∗
Hτ

0
is surjective, then we have the commutative diagram:

H∗
G(G/H; C)θ

∼= (H∗
H)θ

∼= H∗
Hτ

0
∼= H∗

Gτ
0
(Gτ

0/Hτ
0 ; C)

↑ ↑ ↑ ↑
(H∗

G)θ
∼= (H∗

G)θ
∼= H∗

Gτ
0
∼= H∗

Gτ
0
.

Proof. We know that H∗
G

∼= C[t]W, the algebra of invariant polynomials on t by
the Weyl group W of G. By [29, Lemma 6.1], we can choose algebra generators
p1, . . . , pr in C[t]W such τ(pi) = εipi, where εi = ±1. By [29, Lemma 6.5], the
generators with εi = 1 give the generators of C[tτ ]W

τ

, where W τ is the subgroup
of W fixed by τ , itself a reflection group on tτ . Thus the number of pi’s with εi = 1
is exactly the dimension of tτ , which in turn agrees with the rank of Gτ

0 .
Finally, all pi’s with εi = −1 restrict trivially to tτ . Thus by the assumption (4.4)

the restriction of those with εi = 1 generate C[tτ ]WGτ
0 ∼= H∗

Gτ
0
, and as there are

rank(Gτ
0) of them, they should restrict algebraically independent. Thus, the kernel

of the surjection is generated by the anti-invariant generators, showing the claim
(H∗

G)θ
∼= H∗

Gτ
0
.

The second statement follows from the first and (4.1).

Remark 4.1. The assumption of surjection (4.4) is quite restrictive. For simple G
it only happens [24, after (4.1)] for the symmetric pairs

(G, Gτ
0) ∼= (SL2n+1, SO2n+1), (SL2n, Spn), (SO2n, SO2n−1), and (E6, F4).

All these examples will appear in Sec. 4.3.

4.2. Explicit Hitchin map on very stable upward flows

First, we recall from [13] how to describe hk := hEk
for the very stable upward flows

W+
k := W+

Ek
explicitly, where Ek := Eμk

c
, c ∈ C fixed and μk

c : C → Λ+ is defined by
μk

c (c) = ωk and 0 otherwise.
Let us define the evaluation map at c ∈ C

evc : A → C
n

sending the characteristic polynomial (a1, . . . , an) ∈ A to

(a1(c), . . . , an(c)) ∈ K1
c × · · · × Kn

c
∼= C

n

after identifying the fiber K ∼= C. We can further identify

C
n ∼= gln//GLn

∼= tn//Sn
∼= Spec(H∗(BGLn, C)),
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where gln = Lie(GLn) and tn = Lie(Tn) the Lie algebra of the maximal torus
Tn ⊂ GLn, and the symmetric group Sn is the Weyl group of GLn. Then with the
notation H∗

GLn
:= H∗(BGLn; C) for the cohomology ring of the classifying space

BGLn we have the following pullback diagram from [13]:

W+
k � Spec(H2∗

GLn
(Grk(Cn), C)),

hk ↓ � ↓
A evc� Spec(H2∗

GLn
),

where Grk(Cn) is the Grassmannian of k-dimensional subspaces in Cn with the
usual action of GLn. Additionally, all maps are T-equivariant with respect to the
usual T-action on W+

k ⊂ M and A, and the one induced by the grading on
H2∗

GLn
(Grk(Cn); C) and H2∗

GLn
. In other words, the Hitchin map hk can be mod-

eled by the equivariant cohomology of the Grassmannian Grk(Cn).

4.3. Explicit Hitchin map on even very stable upward flows

We can then ask what models the even Hitchin map hθ
k : W2+

k → Aθ. We can note
that θ acts on M as −1 ∈ T in the natural T-action, thus we can induce an action
of θ on H2∗

GLn
(Grk(Cn); C) and H2∗

GLn
as −1 ∈ T. Therefore, we have

W 2+
k � Spec(H2∗

GLn
(Grk(Cn), C))θ

hθ
k ↓ � ↓
Aθ

evc� Spec(H2∗
GLn

)θ

, (4.5)

and, as a result, the even Hitchin map hθ
k can be modeled on the θ-fixed point

scheme

Spec(H2∗
GLn

(Grk(Cn), C))θ.

For simplicity, we will start with GL2n and an even number 0 < 2k < 2n. To
understand the fixed point scheme Spec(H2∗

GLn
(Gr2k(C2n), C))θ we recall a presen-

tation of the equivariant cohomology of the Grassmannian. In practice it can be
done by following through the restriction of invariant polynomials in (4.1).

Let e1, . . . , e2k, f1, . . . , f2n−2k, c1, . . . , c2n be variables of degree given by
their index. Then we have the following presentation of the graded ring
H2∗

GLn
(Gr2k(C2n), C) ∼=

C[e1, . . . , e2k, f1, . . . , f2n−2k, c1, . . . , c2n]
((t2k +

∑
eit2k−i)(t2n−2k +

∑
fit2n−2k−i) − (t2n +

∑
cit2n−i))

,

where the ideal is generated by the coefficients of the given polynomial in t. It
is naturally an algebra over H∗

GL2n

∼= C[c1, . . . , c2n]. The action of θ is easy to
figure out in this presentation, namely, all elements of degree i will get multiplied
by (−1)i. To compute the fixed point scheme (4.3) we will have to determine the
coinvariant algebra of this θ-action. To form the coinvariant algebra we add to the
ideal the algebra elements which are acted upon by θ as −1, that is we add the odd
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degree generators to the ideal. This way we get the following presentation of the
coinvariant algebra: H2∗

GL2n
(Gr2k(C2n), C))θ

∼=
C[e2, . . . , e2k, f2, . . . , f2n−2k, c2, . . . , c2n]

((t2k +
∑

e2it2k−2i)(t2n−2k +
∑

f2it2n−2k−2i) − (t2n +
∑

c2it2n−2i))
,

where all generators have even degree, and the ideal is generated by the coefficients
of the indicated polynomial in t2. This is an algebra over C[c2, . . . , c2n] which we
can and will identify with H∗

Sp(n) := H∗(BSp(n), C) the cohomology ring of the
classifying space of the compact unitary symplectic group. In turn, we can identify
H2∗

GL2n
(Gr2k(C2n), C))θ with the equivariant cohomology H∗

Sp(n)(Grk(Hn), C) of the
quaternionic Grassmannian Grk(Hn) of k-dimensional H-subspaces of Hn, which is a
non-Hermitian compact homogeneous space isomorphic to Sp(n)/Sp(k)×Sp(n−k).

We can summarize our observation in the following diagram:

Spec(H2∗
GL2n

(Gr2k(C2n), C))θ ∼=Spec(H2∗
Sp(n)(Grk(Hn), C)),

↓ ↓
Spec(H2∗

GL2n
)θ ∼= Spec(H2∗

Sp(n)).
(4.6)

Thus, in light of (4.5), the Hitchin map hθ
2k on the even upward flow W 2+

2k can
be modeled by the spectrum of the equivariant cohomology of the quaternionic
Grassmannian Grk(Hn).

In fact, we can find similar coincidences of coinvariant algebras of the equiv-
ariant cohomology of cominuscule flag varieties in some other types. Cominuscule
flag varieties correspond to maximal parabolic subgroups associated to minuscule
coweights, or equivalently to simple roots, which occur with coefficient 1 in the
highest root (see also [14, §8] for more context). For example, we can consider the
action of θ on

H2∗
SO(4n+2)(SO(4n + 2)/SO(2) × SO(4n), C) (4.7)

given by (−1)deg, where deg = ∗ is the degree of the grading on (4.7). The Hermitian
symmetric space SO(4n+2)/SO(2)×SO(4n) is an even quadric, a cominuscule flag
variety for the special orthogonal group SO4n+2. The corresponding coinvariant
algebra

H2∗
SO(4n+2)(SO(4n + 2)/SO(2) × SO(4n), C)θ

∼= H2∗
SO(4n+1)(SO(4n + 1)/SO(4n), C),

can be identified with the SO(4n + 1)-equivariant cohomology ring of the sphere

S4n ∼= SO(4n + 1)/SO(4n).

In fact we have the following diagram:

H2∗
SO(4n+2)(SO(4n + 2)/SO(2) × SO(4n), C)θ

∼= H2∗
SO(4n+1)(SO(4n + 1)/SO(4n), C),

↑ ↑(
H2∗

SO(4n+2)

)
θ

∼= H2∗
SO(4n+1).

(4.8)
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In other words, we can expect that the Hitchin map on even cominuscule upward
flows in the SO4n+2 Higgs moduli space — equivalently the Hitchin map on comi-
nuscule upward flows in the SO(2n + 2, 2n)-Higgs moduli space — to be modeled
by the spectrum of the equivariant cohomology of the sphere S4n.

For our final example, we can consider the unique cominuscule flag variety for
the exceptional E6. It is the complex Cayley plane E6/Spin(10) × U(1) which is a
compact Hermitian symmetric space. We can identify the coinvariant algebra of the
θ = (−1)deg action on its equivariant cohomology ring:

H2∗
E6

(E6/Spin(10) × U(1), C)θ
∼= H2∗

F4
(F4/Spin(9), C),

↑ ↑(
H2∗

E6

)
θ

∼= H2∗
F4

.

(4.9)

Thus, we expect to model the Hitchin map on even cominuscule upward flows
in the E6 Higgs moduli space — equivalently on the cominuscule upward flows in
the E6(2)-Higgs moduli space — by the spectrum of equivariant cohomology of the
real Cayley plane F4/Spin(9).

Mysteriously, in the above examples the symmetric spaces whose equivariant
cohomology we found to give the θ-coinvariant algebra of the equivariant cohomol-
ogy of the cominuscule flag variety are homogeneous spaces for the Nadler group
[22, Table 1] of the corresponding quasi-split real form of Hodge type. That is

U(n, n)∨ ∼= Spn, SO(2n + 2, 2n)∨ ∼= SO4n+1, and E∨
6(2)

∼= F4.

Conjecturally, [2, §7] the Higgs bundle moduli space for the Nadler group should
give the support of the mirror of the Lagrangian brane given by the Higgs moduli
space attached to a real form. However these appearances of the Nadler group
remain to be understood.

Even more surprising is that the Nadler groups in the above examples hap-
pen to be the fixed point subgroups of an involution of the ambient Langlands
dual group. The corresponding anti-holomorphic involution can then be used to
construct [5] an anti-holomorphic involution in the cominuscule flag varieties in the
above examples, and show that the Lagrangian fixed point manifold is isomorphic to
the corresponding non-Hermitian compact symmetric spaces we have found above.
Thus by uniformly denoting this anti-holomorphic involution by τ we get that

Gr2k(C2n)τ ∼= Grk(Hn),

(SO(4n + 2)/SO(2) × SO(4n))τ ∼= SO(4n + 1)/SO(4n)

and

(E6/Spin(10) × U(1))τ ∼= F4/Spin(9).

Using Lemma 4.1, it can be shown — by observing that precisely the even degree
generators of invariant polynomials survive for the τ -fixed groups — that in each
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of these cases τ induces our

τ∗ = θ = (−1)deg (4.10)

on equivariant cohomology, where again deg is half the degree of a homogeneous
cohomology class. In turn, this observation and again Lemma 4.1 can be used to
geometrically prove our final.

Theorem 4.1. The diagrams in (4.6), (4.8), (4.9)commute and are induced by the
involution τ .

Remark 4.2. Because of (4.10) we can deduce, by the Lefschetz fixed point theo-
rem, that the signatures of our Hermitian symmetric spaces X = G/H agree

sign(X) = tr(θ : H∗(X) → H∗(X)) = χ(Xτ ) (4.11)

with the Euler characteristic of the corresponding non-Hermitian symmetric spaces
Xτ . The quantity sign(X) is relevant in our considerations as it agrees with the rank
of the coinvariant algebra H∗

G(X)θ, which in turn should compute the multiplicity
of the even Hitchin map on the corresponding even cominuscule upward flow.

It is interesting to note that a very similar approach to (4.11) was studied
in [16, Remark (1) p. 337 ] to determine the signature of our Hermitian symmetric
spaces as the Euler characteristic of Xσ, using the involution σ : X → X induced
by the split real form — instead of our real form given by the Nadler group. The
fixed point sets are different in the type A-case — certain real Grassmannians —
from our quaternionic Grassmannians but the induced actions on the cohomology
σ∗ = τ∗ = θ agree, because the real forms σ and τ are inner to each other.

Remark 4.3. The involution σ however suggests a solution for modeling the even
Hitchin system inside the equivariant cohomology of the last family of cominuscule
flag varieties with non-zero signature. Namely, we can consider the anti-holomorphic
action of σ on Gr2k(C2n+1) with fixed point set Gr2k(C2n+1)σ ∼= Gr2k(R2n+1). Then
it appears that we have σ inducing

H2∗
SL2n+1

(Gr2k(C2n+1), C)θ
∼= H2∗

SO2n+1
(Gr2k(R2n+1), C),

↑ ↑(
H2∗

SL2n+1

)
θ

∼= H2∗
SO2n+1

.

(4.12)

The subtlety of this case is that Gr2k(R2n+1) is no longer simply connected, thus
the usual computation of its equivariant cohomology (4.1) does not apply. One
can proceed by first determining the equivariant cohomology ring of its universal
double cover — the oriented Grassmannian — from (4.1), and then take invariants
of the cover map. In fact, recently the equivariant cohomology of Gr2k(R2n+1) was
computed in [15, Theorem 5.23], and the result matches the coinvariant algebra
H2∗

SL2n+1
(Gr2k(C2n+1), C)θ. We note that in this example the group SO2n+1 is the
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Langlands dual of the Nadler group Spn of our quasi-split real form SU(n, n + 1)
of Hodge type. In particular, their classifying spaces have isomorphic cohomology

H∗
SO2n+1

∼= C[tSO2n+1 ]
WSO2n+1 ∼= C[tSpn

]WSpn ∼= H∗
Spn

, (4.13)

because WSO2n+1
∼= WSpn

, tSO2n+1
∼= t∗Spn

and the two representations in (4.13) can
be identified by the Killing form.

Remark 4.4. The final example of symmetric pairs from Remark 4.1 we have not
discussed yet is (SO4n, SO4n−1). In this case, τ will induce on the cohomology of
our cominuscule flag variety an involution

θτ := τ∗ : H∗
SO4n

(SO4n/SO2 × SO4n−2; C) → H∗
SO4n

(SO4n/SO2 × SO4n−2; C),

which is different from the usual Hodge type (−1)deg unlike in the previous
cases (4.10). In fact we expect that this θτ will be the involution corresponding
to the (only) quasi-split real form SO(2n + 1, 2n− 1) which is not split or of Hodge
type. Thus, we expect that the spectrum of the diagram we get from Lemma 4.1

H2∗
SO4n

(SO4n/SO2 × SO4n−2; C)θτ
∼=H2∗

SO4n−1
(SO4n−1/SO4n−2; C),

↑ ↑(
H2∗

SO4n

)
θτ

∼= H2∗
SO4n−1

(4.14)

models the Hitchin map on a cominuscule upward flow in the SO(2n + 1, 2n − 1)-
Higgs moduli space.

Remark 4.5. Oscar Garćıa-Prada has pointed out to us that the symmetric pairs
in Remark 4.1 precisely correspond to the complexifications of the maximal split
subgroups of the non-split quasi-split real forms in [8, Table 1. p. 2914]. They are
used [8, Theorem 6.13(1)] to construct the Hitchin–Kostant–Rallis section in the
quasi-split real form cases. This demystifies their appearance in our descriptions
of the Hitchin maps on cominuscule upward flows in the quasi-split Higgs moduli
spaces in the diagrams (4.6), (4.8), (4.9), (4.12) and (4.14).
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Oscar Garćıa-Prada for engineering the internship, and for constant support. We
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