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Abstract
In this paper we investigate locally free representations of a quiver Q over a com-
mutative Frobenius algebra R by arithmetic Fourier transform. When the base field is
finite we prove that the number of isomorphism classes of absolutely indecomposable
locally free representations of fixed rank is independent of the orientation of Q. We
also prove that the number of isomorphism classes of locally free absolutely indecom-
posable representations of the preprojective algebra of Q over R equals the number of
isomorphism classes of locally free absolutely indecomposable representations of Q
over R[t]/(t2). Using these results together with results of Geiss, Leclerc and Schröer
we give, when k is algebraically closed, a classification of pairs (Q,R) such that the
set of isomorphism classes of indecomposable locally free representations of Q over
R is finite. Finally when the representation is free of rank 1 at each vertex of Q, we
study the function that counts the number of isomorphism classes of absolutely inde-
composable locally free representations of Q over the Frobenius algebra Fq [t]/(tr ).
We prove that they are polynomial in q and their generating function is rational and
satisfies a functional equation.
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1 Introduction

Let R be a commutative Frobenius k-algebra over a field k (which will be either finite
or algebraically closed). This means that R is finite dimensional as a k-vector space
and equipped with a Frobenius 1-form λ : R → k, i.e. one which is non-zero on
any nontrivial ideal of R. Examples to keep in mind are the truncated polynomial
rings kd := k[t]/(td), in particular k2 = k[ε]/(ε2) which we usually abbreviate to
k[ε] the algebra of dual numbers. More generally if R is a Frobenius k-algebra so is
R[ε] := R[ε]/(ε2) (see Sect. 2 for more details).

We fix Q = (I , E) a finite quiver, with set of vertices I and set of arrows E .
A representation of Q over the ring R is given by an R-module Mi at each vertex
i ∈ I together with a R-module homomorphism Ma : Mi → Mj for any arrow
a : i → j ∈ E . The category of representations of Q over R is equivalent to
the category RQ-Mod where RQ denotes the path algebra of Q. According to [18,
Definition 1.1], a representation {Mi , Ma}i∈I ,a∈E of Q is said to be locally free if the
R-modules Mi are all free. If we denote by ei ∈ RQ the idempotent corresponding
to vertex i ∈ I , locally free representations of Q correspond to RQ-modules M such
that for all i ∈ I , the R-module Mi = ei M is free.

When R = k is a field Gabriel [14] in 1972 followed by Kac in [27] in 1982 ini-
tiated the detailed study of the representation category kQ-Mod. They discovered a
deep connection with the representation theory of Kac–Moody algebras with symmet-
ric Cartan matrices. To find the analogue connection with Kac–Moody algebras with
symmetrizable but non-symmetric Cartan matrices, Gabriel [15] in 1974 followed by
Dlab and Ringel [10] in 1974 introduced the notion of modulated graphs, in particular
allowed various finite field extensions attached to the vertices of the graph. To get
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a uniform theory working over any, for example algebraically closed, fields Geiss–
Leclerc–Schröer [18] in 2015 introduced the study of representations of quivers over
R = kd the truncated polynomial ring over a field k. Here they managed to find
the desired connection with non-simply laced Kac–Moody algebras. Later in 2016
Geuenich [16] extended results of [18] to the case when R is a Frobenius algebra.
Finally other recent papers [30, 32, 39, 40] study different approaches to representa-
tions of quivers over various Frobenius algebras.

Many of the results mentioned above have been achieved by use of reflection func-
tors. In this paperwewill concentrate on the subcategoryof locally free representations.
It is not stable under reflection functors, which use kernels and cokernels. Thus usual
techniques will not be available. Instead we will use arithmetic harmonic analysis
and prove results showing that locally free representations behave better when chang-
ing orientations of the quiver, and have interesting connections to representations of
preprojective algebras.

Let α ∈ Z
I≥0 (elements of Z

I≥0 will be called rank vectors) and put

Repα(Q,R) :=
⊕

i→ j∈E
HomR(Rα(i),Rα( j))

the R-module of locally free R-representations of the quiver Q of rank α. The group

Gα(R) :=
�

i∈I
GL(Rα(i))

acts on Repα(Q,R) and so gives a homomorphism

ρ : Gα(R) → AutR(Repα(Q,R)). (1.1)

Finally let gα(R) = ⊕i∈gl(Rα(i)) be the Lie algebra of Gα(R) and � : gα(R) →
End(Repα(Q,R)) the derivative of (1.1), the infinitesimal action. The set of isomor-
phism classes of locally free R-representations of Q of dimension α, can be identified
with the orbit space Repα(Q,R)/Gα(R).

If k is a finite field we put

mα(RQ) := card(Repα(Q,R)/Gα(R))

the number of isomorphism classes of locally free R-representations of Q of dimen-
sion α.

If k is algebraically closed, the number of isomorphism classes could be infinite
and so instead we consider the positive integers (cf. Sect. 5.2 for more details)

d := dim {(x, g) ∈ Repα(Q,R) × Gα(R) | g · x = x} − dimGα(R)
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and the number c of irreducible components of {(x, g) ∈ Repα(Q,R)×Gα(R) | g ·x =
x} of maximal dimension (here our R-schemes are regarded as k-schemes). The pair
(c, d) gives us thus an estimation of the size of the orbit space Repα(Q,R)/Gα(R).
Note that if d = 0, then the orbit space is finite of cardinality c. By abuse of notation
we also use the notation mα(RQ) to denote the pair (c, d) in the algebraically closed
field case.

Given two representations of Q over R we can form their direct sum. We define
an indecomposable representation of Q over R as one which is not isomorphic with a
direct sum of two non-trivial representations. If we assume that R is local then the cat-
egory of locally free representations is Krull-Schmidt. Therefore when talking about
indecomposable representations we will always assume that R is a local Frobenius
k-algebra which we will further assume to be split (see Sect. 2). When M is a repre-
sentation of Q over R then it is absolutely indecomposable if the representation given
by

Ma ⊗R R : Mi ⊗R R → Mj ⊗R R

is indecomposable over R := R ⊗k k, where k is the algebraic closure of k. Let
us denote by Repα

a.i.(Q,R) the subset of Repα(Q,R) of absolutely indecomposable
representations.

If k is a finite field we put

aα(RQ) := card(Repα
a.i.(Q,R)/Gα(R)).

Otherwise k is algebraically closed, absolutely indecomposable just means indecom-
posable and we define aα(RQ) as the pair (c, d) where c is the number of irreducible
components of {(x, g) ∈ Repα

a.i.(Q,R) × Gα(R) | g · x = x} of maximal dimension
and d is

dim {(x, g) ∈ Repα
a.i.(Q,R) × Gα(R) | g · x = x} − dimGα(R).

Denote by |α| the integer∑i∈I α(i).

Theorem 1.1 Assume that R is a Frobenius algebra over a finite or algebraically
closed field k. Let Q be a quiver and let Q′ be another quiver obtained from Q by
changing the orientation of some of the arrows. Then

mα(RQ) = mα(RQ′).

If moreover R is local, split and if k contains a primitive |α|-th root of unity then

aα(RQ) = aα(RQ′).
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The version of this theorem when R = k was called the fundamental lemma in [29]
in Kac’s characterization [27] of roots in terms of aα(kQ).

To formulate our second main result consider the double quiver Q = (I , E ∪ E∗)
obtained from Q by adjoining a new arrow a∗ : j ← i for each arrow a : i → j ∈ E ,
and denote by Q∗ the opposite quiver (I , E∗) of Q. Then define the moment map

μR = μR,α : Rep
α(Q,R) → gα(R)

M �→ ∑
a∈E MaMa∗ − Ma∗Ma

(1.2)

The group Gα(R) acts naturally on both sides, and the map μR is equivariant. Now
denote by RQ the path algebra of Q and let σ = ∑

a∈E aa∗ − a∗a ∈ RQ. Then the
points of μ−1

R (0) correspond to the locally free representations of the R-algebra

�R(Q) = RQ/(σ )

of dimension α. The R-algebra �R(Q) is called the preprojective algebra of Q over
R. So μ−1

R (0)/Gα(R) can be thought as the set of isomorphism classes of locally
free representations of �R(Q). We define mα(�R(Q)) as we defined mα(RQ) with
Repα(Q,R) replaced by μ−1

R (0). We also define aα(�R(Q)) similarly as aα(RQ)

with Repα
a.i.(Q,R) replaced by the set of absolutely indecomposable locally free rep-

resentations of �R(Q). Then we have

Theorem 1.2 If R is a Frobenius algebra over a finite or algebraically closed field k
then we have

mα(�R(Q)) = mα(R[ε]Q).

If moreover R is local, split and if k contains a primitive |α|-th root of unity then

aα(�R(Q)) = aα(R[ε]Q).

When R = k is a field this result relates representations of a quiver over k2 = k[ε]
and its preprojective algebra. Thus it unexpectedly bridges two papers [17, 18] of
Geiss–Leclerc–Schröer. Also in the case of the Jordan quiver and R = k a finite field
the first part of Theorem 1.2 is [26, Theorem 1] of Jambor–Plesken, which was the
starting point of our research. In this case Theorem 1.2 amounts to the agreement of the
number of similarity classes of n×nmatrices over k2 with the number of isomorphism
classes of commuting pairs of n × n matrices over k. We will discuss the case of the
Jordan quiver in more detail in a forthcoming publication.

We start in Sect. 2 by introducing Frobenius algebras. In Sect. 3 we discuss the
Fourier transform for finitely generated modules over a finite Frobenius algebra.
In Sect. 4 we apply such Fourier transforms for representations of algebraic group
schemes, culminating in Proposition 4.2 and its many corollaries among them formula
(4.11). In Sect. 4.3 we give counterexamples to (4.11), when R is not a Frobenius alge-
bra. In Sect. 5 we develop the technical machinery to deduce our main Theorems 1.1
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and 1.2 from the finite field versions. In Sect. 6 we classify all quivers and Frobe-
nius algebras with finitely many locally free indecomposable representations. Finally
in Sect. 7 we compute the number of indecomposable representations of a quiver of
rank vector 1 over kd , prove that their generating function is rational and satisfies an
Igusa-type functional equation.

The work on this paper started at a Research in Pairs retreat at the Oberwolfach
Forschunginstitute in 2014. We are grateful for the Institute for the ideal conditions.
Research of T.H. was supported by the Advanced Grant “Arithmetic and physics of
Higgs moduli spaces” no. 320593 of the European Research Council, by grants no.
144119, no. 153627 and NCCR SwissMAP, funded by the Swiss National Science
Foundation. Research of E.L. was supported by ANR-13-BS01-0001-01.

2 Frobenius algebras

Let k be field, which in this paper will be either finite or algebraically closed. Let R
be a commutative k-algebra which is finite dimensional as a k vector space. We say
that R is a Frobenius algebra if we have an R-module isomorphism

R ∼=R R∗, (2.1)

where R∗ := Homk(R, k) is an R-module by rλ(x) = λ(r x) for λ ∈ R∗, r , x ∈ R.
Equivalently to the condition (2.1) a Frobenius algebra is defined by the k-linear

functional λ : R → k, called Frobenius form. It corresponds to 1 ∈ R in the isomor-
phism of (2.1). For (2.1) to be an isomorphism is equivalent with λ not vanishing on
any non-zero ideal of R.

Every Frobenius algebra R can be decomposed as a direct product of local Frobe-
nius algebras R ∼= R1 × · · · × Rn . Local Frobenius algebras are precisely the finite
dimensional local algebras with unique minimal ideal. For a local Frobenius algebra
R we denote by m  R the maximal ideal and by k′ = R/m the residue field. When
k ∼= k′ we call the local Frobenius algebra R split. We know from [12, Theorem 7.7]
that a finite dimensional local algebra always contains its residue field. Thus we can
consider any local Frobenius algebra R as a split local Frobenius k′-algebra.

Example 2.1 Let R be a finite dimensional k-algebra. The trivial extension of R, i.e.
the algebra

T∗R := R∗ × R

given by the multiplication

(q1, a1) · (q2, a2) = (a2q1 + a1q2, a1a2)

is always a Frobenius k-algebra with Frobenius form λ(q, a) = q(1). Indeed if (q, a)

such that a �= 0 we can find q ′ such that q ′(a) �= 0 and so

λ((q, a) · (q ′, 0)) = λ(aq ′, 0) = q ′(a) �= 0.
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Similarly if q �= 0 there is an a′ such that q(a′) �= 0 and so λ((q, a) · (0, a′)) =
q(a′) �= 0. Thus λ is non-zero on any proper ideal in T∗R.

Example 2.2 Let R be a Frobenius algebra over a field k with Frobenius form λ : R →
k. Consider the finitely generated k-algebra Rd := R[t]/(td) with λ′ ∈ Homk(Rd , k)
defined by

λ′(a0 + a1t + · · · + ad−1t
d−1) = λ(ad−1).

As every non-zero ideal I R intersects td−1R non-trivially, λ′ is nonzero on I . Thus
Rd is a Frobenius k-algebra. When d = 2 we will denote R2 = R[ε]/(ε2) by R[ε].
When R is a Frobenius algebra, we have an isomorphism R[ε] ∼= T∗R.

3 Fourier transform

Let M be a finitely generated module over a Frobenius k-algebra R. We define the
dual R-module as

M∨ := HomR(M,R).

The R-module M is then reflexive, namely the canonical map M → (M∨)∨ is an
isomorphism by [20, 4.12.21(a)] as R is a Frobenius ring. As this is crucial for us we
will prove the reflexivity property in the case where k is a finite field.

Define the Pontryagin dual R-module of M as

M∧ := HomGroups(M, C
×).

From now on in this section we assume that k is a finite field and R a Frobenius
k-algebra with 1-form λ : R → k, and that M is a finitely generated R-module.
In particular M is a finite set which will be convenient to do Fourier analysis. We
choose once and for all a non-trivial additive character ψ : k → C

× and we put

 := ψ ◦ λ : R → C

×.
Note that the kernel of the character 
 does not contain non-trivial ideals of R and

so we have the following result.

Lemma 3.1 The additive character 
 is a generator of the R-module R∧.

Proposition 3.2 The map

M∨ → M∧, f �→ 
 ◦ f

is an isomorphism of R-modules.
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Proof Let g ∈ M∧. Consider M as the quotient of some Rr and denote by π the
quotient map Rr → M. Let (x1, . . . , xr ) be the canonical basis of Rr . Then for each
i = 1, . . . , r , let αi ∈ R∧ be defined by αi (h) = (g ◦ π)(hxi ) for h ∈ R. Since 
 is
a generating character of R∧, we get for each i = 1, . . . , r , an element λi ∈ R such
that αi = λi · 
 .

We let f : Rr → R be the R-linear form defined by f (xi ) = λi for all i = 1, . . . , r .
We then have g ◦ π = 
 ◦ f . We now prove that there exists a unique R-linear form
f : M → R making the following diagram commutative

Rr π

f

M
g

f

C
×

R




We need to see that Ker(π) ⊂ Ker( f ). For x ∈ Ker(π), we have (
 ◦ f )(x) = (g◦
π)(x) = 1 and so f (x) ∈ Ker(
). Moreover for all λ ∈ R, we have λ f (x) = f (λx)
and λx ∈ Ker(π), and so Ker(
) contains the ideal generated by f (x). Since the
kernel of 
 does not contain non-trivial ideals of R, we must have f (x) = 0 for all
x ∈ Ker(π). ��
Corollary 3.3 The R-module M is reflexive.

We thus have a natural perfect pairing

〈, 〉 : M × M∨ → R.

For a finite set A, denote by C[A] the C-vector space of all functions A → C. It is
endowed with the inner product

( f , g)A :=
∑

x∈A

f (x)g(x),

for all f , g ∈ C[A].
Let X be a finite non-empty set. Consider the correspondence

X × M × M∨
p12 p13

X × M X × M∨

and define the Fourier transform F : C[X × M] → C[X × M∨] by
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F( f ) := (p13)!
(
(p12)

∗( f ) ⊗ (p23)
∗(
 〈, 〉)) ,

for all f ∈ C[X × M]. Namely

F( f )(x, v) =
∑

u∈M

(〈u, v〉) f (x, u),

for all (x, v) ∈ X × M∨.
We have the following standard proposition.

Proposition 3.4 (1) The rescaled Fourier transform card(M)− 1
2 F is an isometry with

respect to (, )X×M and (, )X×M∨ .
(2) For f , g ∈ C[X × M], we have

F( f ∗ g) = F( f )F(g),

where the convolution f ∗ g of f by g is the function (x, u) �→ ( f ∗ g)(x, u) =∑
u1+u2=u f (x, u1)g(x, u2).

Proof Indeed

(F( f ),F(g))X×M∨ =
∑

(x,v)∈X×M∨

⎛

⎝
∑

u∈M

(〈u, v〉) f (x, u)

⎞

⎠

⎛

⎝
∑

w∈M

(〈−w, v〉)g(x, w)

⎞

⎠

=
∑

x,u,w

f (x, u)g(x, w)
∑

v


(〈u − w, v〉).

We need to see that for any u ∈ M, we have

∑

v∈M∨


(〈u, v〉) =

{
|M| if u = 0,

0 otherwise.

The map M∨ → C
×, v �→ 
(〈u, v〉) is an additive character. Since the kernel of 


does not contain non-zero ideals of R, this map is non-trivial as long as there exists an
element v of M∨ such that 〈u, v〉 �= 0. Since the pairing 〈 , 〉 is non-degenerate such
an element v exists when u �= 0.

For (2) we have

F( f ∗ g)(x, v) =
∑

u∈M

(〈u, v〉)( f ∗ g)(x, u)
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=
∑

u∈M

(〈u, v〉)

∑

u1+u2=u

f (x, u1)g(x, u2)

=
∑

u1,u2∈M

(〈u1 + u2, v〉) f (x, u1)g(x, u2)

=
∑

u1∈M

(〈u1, v〉) f (x, u1)

∑

u2∈M

(〈u2, v〉)g(x, u2)

= F( f )(x, v)F(g)(x, v).

��
We note that if a finite group G acts on X and on M via R-automorphisms, then

the induced G-action on M∨ will make the pairing 〈, 〉 equivariant and so the Fourier
transform F is a G-equivariant isomorphism. Since the dimension of the C-vector
space of G-invariant functions agrees with the number of G-orbits, we deduce the
following lemma.

Lemma 3.5 Let M be a finitely generated module over a finite Frobenius algebra R.
Let a finite group G act on M by via R-automorphisms, and also operate on a finite
set X. Then we have

card((X × M)/G) = card((X × M∨)/G),

i.e. the number of G-orbits on X ×M agree with the number of G-orbits on X ×M∨.
Remark 3.6 When R is a finite field and X is a point, this observation is attributed to
Brauer [29, Remark 5.5]. Also the orbit structure could be very different on the two
sides.

4 Fourier transform for group representations

4.1 Momentmaps associated to group scheme actions

Let k be a field. We denote by Algk and Gr the categories of k-algebras and groups.
Let G be an algebraic affine k-group scheme. By notation abuse we will use the
same letter G to denote the associated k-group functor Algk → Gr, A �→ G(R) =
Homk−alg(k[G],R).

Recall that, as a k-group functor, the Lie algebra g of G is defined by g(R) :=
Ker(G(pR)) where for any k-algebra R we put pR : R[ε] → R, a + εb �→ a. Denote
by e : k[G] → k the counit (the identity element in G(k)) and put I = Ker(e). Then
for any k-algebra R, we have [35, Sect. 10.19]

g(R) ∼= Homk(I/I
2,R).

From this we see that g(R) is an Abelian group in fact an R-module. We have that the
canonical morphism
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g(k) ⊗k R = Homk(I/I
2, k) ⊗k R → Homk(I/I

2,R) = g(R) (4.1)

is an isomorphism [2, Sect. 2, Proposition 2].
By definition g(R) is a normal subgroup of G(R[ε]) and so the latter acts on g(R)

by conjugation. As g(R) is Abelian this action factors through an action of G(R) =
G(R[ε])/g(R) on g(R). This is the so-called adjoint action of G on its Lie algebra,
denoted

Ad : G(R) → Aut(g(R)). (4.2)

Using the section iR : R → R[ε], a �→ a of pR we see that the exact sequence

0 → g(R) → G(R[ε]) → G(R) → 1

splits and so

G(R[ε]) � g(R) � G(R).

From now on we assume that V is a finite-dimensional k-vector space which we
regard as a k-group functor

V(R) := V ⊗k R,

for any k-algebra R.
Denote by GL(V) the k-group scheme with k-group functor

R �→ EndR(V(R))×.

Remark 4.1 Here we collect some simple observations how we can work explicitly
with GL(V)(R[ε]).
(i) We can write the elements of GL(V)(R[ε]) uniquely in the form u + εv where u ∈
GL(V)(R) and v ∈ EndR−mod(V(R)), where for x+εy ∈ V(R[ε]) = V(R)⊕εV(R),
we have

(u + εv)(x + εy) = u(x) + ε(u(y) + v(x)). (4.3)

(ii) The Lie algebra gl(V)(R) is then identified with {1 + εv | v ∈ EndR(V(R))} �
EndR(V(R)) and the adjoint action is the conjugation action of GL(V)(R) on
EndR(V(R)).
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(iii) An element u + εv ∈ GL(V)(R[ε]) corresponds to the element (vu−1, u) ∈
gl(V)(R)�GL(V)(R). For (w, g) ∈ gl(V)(R)�GL(V)(R) and (x + εy) ∈ V(R[ε]),
the equation

(w, g)(x + εy) = g(x) + ε (w(g(x)) + g(y)) ,

corresponds to (4.3) with (w, g) = (vu−1, u).

Consider the k-group functor V
∨ associated with the k-vector space V

∨ =
Homk(V, k). Namely, for any k-algebra R

V
∨(R) := V

∨ ⊗k R � Homk(V,R) � HomR(V(R),R) = V(R)∨.

The first isomorphism is [2, §4, Proposition 2] and the second one follows from the
fact that the restriction map HomR(V(R),R) → Homk(V,R) is the inverse map of
Homk(V,R) → HomR(V(R),R), f �→ (v ⊗ r �→ r f (v)).

Consider a homomorphism of k-group schemes ρ : G → GL(V) with correspond-
ing Lie algebra homomorphism � := Lie(ρ) : g → gl(V) (c.f. [9, Sect. 4.2]).

We have the dual representation ρ∨ of G on V
∨ defined as

ρ∨
R (g)( f )(v) = f (ρR(g−1)(v)),

for all g ∈ G(R), v ∈ V(R) and f ∈ V
∨(R). It is equivalent to ask that

〈
ρR(g)(v), ρ∨

R (g)( f )
〉 = 〈v, f 〉,

for all g, v and f as above, where 〈, 〉 denotes the natural pairingV(R)×V
∨(R) → R.

For a k-algebra R we define the usual moment map

μR : V(R) × V(R)∨ → g(R)∨

by

μR(v, f ) = (δv)
∨( f )

where for v ∈ V(R) we put

δv : g(R) → V(R)

x �→ �R(x)(v)
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which is R-linear, as �R = Lie(ρ)R is R-linear. Thus for any (v, f ) ∈ V(R) × V(R)∨
and x ∈ g(R) we have

μR(v, f )(x) = 〈�R(x)(v), f 〉. (4.4)

We note that μR is equivariant with respect to the natural action of G(R), namely for
g ∈ G(R)

μR
(
ρR(g)(v), ρ∨(g)( f )

)
) = 〈�R(x)(ρR(g)(v)), ρ∨

R (g)( f )
〉

=
〈
ρR(g−1) ◦ �R(x) ◦ ρR(g)(v), f

〉

=
〈
�R(Ad(g−1)(x))(v), f

〉

= μR(v, f )(Ad(g−1)(x)) (4.5)

where Ad denotes the adjoint action of G on g. Hence it makes sense to consider the
orbit space μ−1

R (0)/G(R).

4.2 Fourier transforms

In this section we assume that R is a k-Frobenius algebra with 1-form λ : R → k,
V is a finite dimensional k-vector space and ρ : G → GL(V) a representation with
infinitesimal action � : g → gl(V). In the following we make the identifications
G(R[ε]) � g(R) � G(R) and V(R[ε]) = V(R) × V(R) where the second coordinate
is the ε-coordinate. We also use the simplified notations

g · y := ρR(g)(y),

and

g · f := ρ∨
R (g)( f )

with g ∈ G(R), y ∈ V(R) and f ∈ V
∨(R). By Remark 4.1 (iii), the action of G(R[ε])

on V(R[ε]) reads

(x, g) · (x1, x2) = (g · x1, �R(x)(g · x1) + g · x2), (4.6)

for all (x, g) ∈ G(R[ε]) and (x1, x2) ∈ V(R[ε]).
We will also need the following formula (the first equation follows from (4.4) and

the second one from equivariance of the moment map (4.5))

〈�R(x)(g · x1), g · x3〉 = μR(g · x1, g · x3)(x) = μR(x1, x3)(Ad(g
−1)(x)), (4.7)

for all x ∈ g(R), g ∈ G(R), x1 ∈ V(R) and x3 ∈ V(R)∨, where 〈, 〉 : V(R) ×
V(R)∨ → R is the natural pairing.
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We now assume that k is a finite field and we fix a non-trivial additive character
ψ : k → C

× and we put 
 = ψ ◦ λ : R → C
×. Define an action of G(R[ε]) on the

space of functions C[V(R) × V(R)∨] by

((x, g)−1 · f )(x1, x3) := 

(
−μR(x1, x3)(Ad(g

−1)(x))
)
f (g · x1, g · x3), (4.8)

for all (x, g) ∈ G(R[ε]), (x1, x3) ∈ V(R) × V(R)∨ and f ∈ C[V(R) × V(R)∨].
We now consider the Fourier transformF : C[V(R)×V(R)] → C[V(R)×V(R)∨]

as defined in Sect. 3 with X = V(R) and M = V(R). Namely

F( f )(x1, x3) =
∑

x2∈V(R)


 (〈x2, x3〉) f (x1, x2),

for all f ∈ C[V(R) × V(R)] and (x1, x3) ∈ V(R) × V(R)∨.

Proposition 4.2 F is a G(R[ε])-equivariant isomorphism.
Proof We have

F
(
(x, g)−1 · f

)
(x1, x3) =

∑

x2


(〈x2, x3〉)((x, g)−1 · f )(x1, x2)

=
∑

x2


(〈x2, x3〉) f (g · x1, �R(x)(g · x1) + g · x2)

After the change of variables

x ′
2 = �R(x)(g · x1) + g · x2,

we find

F
(
(x, g)−1 · f

)
(x1, x3) =

∑

x ′
2



(〈x ′

2 − �R(x)(g · x1), g · x3〉
)
f (g · x1, x ′

2)

= 
 (〈−�R(x)(g · x1), g · x3〉)
∑

x ′
2


(〈x ′
2, g · x3〉) f (g · x1, x ′

2)

= 
(−μR(x1, x3)(Ad(g
−1(x))))F( f )(g · x1, g · x3)

=
(
(x, g)−1 · F( f )

)
(x1, x3).

The third identity follows from (4.7). ��
We regard g(R) as a subgroup of G(R[ε]) from which we get an action of g(R) on

C[V(R)×V(R)∨] by restricting the action (4.8). The next result relates the isotypical
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components of C[V(R) × V(R)∨] with respect to linear characters of g(R) and the
fibers of the moment map μR.

First of all notice that any linear (additive) character g(R) → C
× can be written

uniquely in the form 
 ◦ ξ for some ξ ∈ g(R)∨. If H is a finite commutative group
acting on a finite dimensional C-vector space V , and if χ is a linear character of H ,
we denote by Vχ the χ -isotypical component, namely

Vχ = { f ∈ V | h · f = χ(h) f for all h ∈ H}.

Lemma 4.3 Let ξ ∈ g(R)∨. Then

C[V(R) × V(R)∨]
◦ξ = C[μ−1
R (ξ)],

where we identify C[μ−1
R (ξ)] with the C-vector subspace of C[V(R) × V(R)∨] of

functions supported on μ−1
R (ξ).

Proof Suppose f ∈ C[V(R) × V(R)∨]
◦ξ , and let (x1, x3) ∈ V(R) × V(R∨). For
any x ∈ g(R) we have

(x · f )(x1, x3) = (
 ◦ ξ)(x) f (x1, x3).

But also by (4.8) we have

(x · f )(x1, x3) = 
(μR(x1, x3)(x)) f (x1, x3).

If f (x1, x3) �= 0, then for all x ∈ g(R) we have


(ξ(x)) = 
(μR(x1, x3)(x)),

i.e.

ξ(x) − μR(x1, x3)(x) ∈ Ker(
).

As ξ(x)−μR(x1, x3)(x) is R-linear in x the image {ξ(x)−μR(x1, x3)(x) : x ∈ g(R)}
is an ideal of R. Since the kernel of
 does not contain non-trivial ideals of R we must
have

ξ(x) − μR(x1, x3)(x) = 0

for all x ∈ g(R), that is (x1, x3) ∈ μ−1
R (ξ). We proved that C[V(R) × V(R)∨]
◦ξ ⊂

C[μ−1
R (ξ)] and the other inclusion is straigthforward. ��

From Proposition 4.2 and Lemma 4.3 we deduce
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Corollary 4.4 Let ξ ∈ g(R)∨. Then F restricts to an isomorphism of StabG(R)(ξ)-
modules

C[V(R) × V(R)]
◦ξ � C[μ−1
R (ξ)]. (4.9)

If ξ is central, then

card
(
μ−1
R (ξ)/G(R)

)
= dimC[V(R) × V(R)]G(R)


◦ξ , (4.10)

where the right hand side is the dimension of theG(R)-invariant subspace ofC[V(R)×
V(R)]
◦ξ .

In particular for ξ = 0, we have

card
(
μ−1
R (0)/G(R)

)
= card (V(R[ε])/G(R[ε])) , (4.11)

Formula (4.10) is obtained from the isomorphism (4.9) by taking theG(R)-invariant
parts.

Remark 4.5 We can compute the dimension of C[V(R)×V(R)]
◦ξ in (4.9) by taking
inner product of the character χ�̄R of the representation �̄R of the finite additive group
g(R) on C[V(R) × V(R)] with the character 
 ◦ ξ . Recalling that the action �̄R is
induced by restricting (4.6) to g(R) ⊂ G(R[ε]), i.e. setting g = 1, we obtain

dim(C[V(R) × V(R)]
◦ξ ) = 〈χ�̄R ,
 ◦ ξ〉
= 1

|g(R)|
∑

x∈g(R)

Tr (�̄R(−x))(
 ◦ ξ)(x)

= 1

|g(R)|
∑

x∈g(R)

|V(R)|| ker(�R(x))|(
 ◦ ξ)(x).

Thus (4.9) implies that

dim(C[μ−1
R (ξ)]) = |μ−1

R (ξ)| = 1

|g(R)|
∑

x∈g(R)

|V(R)|| ker(�R(x))|(
 ◦ ξ)(x).

(4.12)

When R = k a finite field (4.12) is [21, Proposition 2], which was the count formula
used to determine the Poincaré polynomials of Nakajima quiver varieties. Thus (4.9)
could be considered a categorification of [21, Proposition 2].

4.3 A counter-example

We give counter-examples to Formula (4.11) when R is not a Frobenius k-algebra.



Locally free representations... Page 17 of 50    20 

Consider R = Fq [t1, . . . , tn]/(t1, . . . , tn)2. It is not a Frobenius Fq -algebra for
n > 1. We put

G := Gm = Spec(Fq [t, t−1]),

and we consider the action of G on V = A
1 = Spec(Fq [t]) by multiplication.

Then V(R[ε])/G(R[ε]) is the set of R[ε]×-orbits on R[ε] for the multiplication
action. Then

An(q) :=card
(
R[ε]/R[ε]×)= 1

card
(
R[ε]×)card

{
(a, b) ∈ R[ε]× × R[ε], (a−1)b=0

}
.

Write a = a0 + A + ε(a′
0 + A′) with a0, a′

0 ∈ Fq and A, A′ ∈ (t1, . . . , tn), similarly
for b.

The equation (a − 1)b = 0 is equivalent to the following system in k

{
(a0 + A)(b0 + B) = (b0 + B),

(a0 + A)(b′
0 + B ′) + (a′

0 + A′)(b0 + B) = b′
0 + B ′.

We have the following cases:
(i) If a0 �= 1, then a − 1 is invertible and so we must have b = 0. The number of

solutions of ab = b is thus (q − 2)q2n+1.
(ii) If a0 = 1, a′

0 = 0, A �= 0, then b0 = b′
0 = 0 and B, B ′ can be anything, and

the number of solutions of ab = b is q3n(qn − 1).
(iii) If a0 = 1, a′

0 = 0, A = 0 and A′ �= 0, then b0 = 0 and b′
0, B, B ′ can be

anything. In this case the number of solutions of ab = b is q2n+1(qn − 1).
(iv) If a = 1, then b can be anything, and so the number of solutions of ab = b is

q2n+2.
(v) If a0 = 1, a′

0 �= 0, then b0 = 0 and B is determined, and the number of solutions
of ab = b is (q − 1)q3n+1.

The total number of orbits is then

An(q) = 1

(q − 1)q2n+1

(
(q − 2)q2n+1 + q3n(qn − 1)

+ q2n+1(qn − 1) + q2n+2 + (q − 1)q3n+1
)

= 2 + qn +
n−1∑

i=0

qi+n−1 +
n−1∑

i=0

qi .

We now compute the number of G(R)-orbits of μ−1
R (0). The moment map μR :

V(R)×D(V)(R) → D(g(k))(R) is just the multiplication R×R → R and the action
of G(R) = R× is given by λ · (a, b) = (λa, λ−1b). We compute the number Bn(q) of
R×-orbits of {(a, b) ∈ R × R | ab = 0}.
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Write an element a ∈ R in the form a0 + A with a0 ∈ Fq and A ∈ (t1, . . . , tn). The
equation ab = 0 is equivalent to the system

{
a0b0 = 0,

a0B + b0A = 0.

We have the following cases:
(i) If a0 �= 0 (resp. b0 �= 0), then b = 0 (resp. a = 0), and so there is only one

R×-orbit in this case.
(ii) If a0 = b0 and A, B both non-zero, then there are exactly (qn − 1)2/(q − 1)

orbits.
(iii) If a = 0, b0 = 0 and B �= 0 (resp. b = 0, a0 = 0 and A �= 0) then there are

(qn − 1)/(q − 1) orbits.
(iv) If a = b = 0, there is one orbit.
We then find

Bn(q) = 3 + (q − 1)

(
n−1∑

i=0

qi
)2

+ 2

(
n−1∑

i=0

qi
)

.

A simple calculation shows that Bn−An = (qn−1)(qn−1−1). Therefore the equality
An = Bn holds only for n = 1. In fact only in this case R is a finite Frobenius algebra
and the equality A1 = B1 is hence an instance of our main theorem.

5 Representations of quivers

We use the notation of the introduction.

5.1 The finite field case

Here we prove Theorems 1.1 and1.2 in the finite field case. We thus assume that k is
a finite field and that R is a Frobenius k-algebra.

Proposition 5.1 (i) Assume that Q′ is a quiver obtained from Q by changing the
orientation of some arrows. Then there exists an isomorphism C[Repα(Q,R)] →
C[Repα(Q′,R)] of Gα(R)-modules.
(ii) Let μR = μR,α be the moment map (1.2). There exists an isomorphism
C[Repα(Q,R[ε])]gα(R) → C[μ−1

R,α(0)] of Gα(R)-modules.

Proof The assertion (ii) is a particular case of the first assertion of Corollary 4.4 with
V := Repα(Q, k), G = Gα and ξ = 0. The implication of Assertion (i) on the
dimension of invariants in the case where R = k is a result of Kac. The proof given
in [29, Sect. 5.5] in the finite field case still work in the Frobenius k-algebra case. It
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can actually be simplified as we now see. The proof reduces to the case where Q′ is
obtained from Q by inverting the orientation of one arrow a : i → j only. We then
put

H = Hom(Rα(i),Rα( j)), H′ = Hom(Rα( j),Rα(i)),

K =
⊕

k→l∈E\{a}
HomR(Rα(k),Rα(l)).

We have Repα(Q,R) = K ⊕H and Repα(Q′,R) = K ⊕H′. The assertion (i) is then
a consequence of the results of Sect. 3 with X = K, M = H and where we identified
H′ with H∨ via the perfect pairing

H′ × H → R, ( f , g) �→ Tr(g ◦ f ).

The above pairing is perfect as the multiplication R × R → R is perfect. Indeed, if
ab = 0 for all a ∈ R, then λ(ab) = 0 for all a ∈ R and so λ vanishes on the ideal
generated by b which is impossible as the kernel of λ does not contain non-trivial
ideals of R. ��
Corollary 5.2 (i) Assume that Q′ is a quiver obtained from Q by changing the orien-
tation of some arrows. Then

mα(RQ) = mα(RQ′).

(ii) We have

mα(�R(Q)) = mα(R[ε]Q).

Proof The assertion (ii) is a reformulation of Formula (4.11). The assertion (i) is
obtained by taking the Gα(R)-invariant part of the Gα(R)-equivariant isomorphism in
Proposition 5.1 (i). ��

We now want to prove the analogue of the above corollary for absolutely indecom-
posable representations. Instead of taking the Gα(R)-invariant part (i.e. the isotypical
component of the trivial character) we will take the isotypical component of another
linear character of Gα(R). This approach is very different from Kac’s proof [27] of
independence of the orientation in the finite field case (i.e. when R = k) but is not
new in the finite field case (see [31, Theorem 1.1]).

We assume now in the remainder of this section that R is a split local Frobenius
k-algebra with maximal ideal m.

If M ∈ Repα(Q,R), then

End(M) =
{

(Xi )i∈I ∈
⊕

i∈I
gl(Rα(i))

∣∣∣∣∣ Mi→ j Xi = X j Mi→ j for all i → j ∈ E

}
.
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Note that

End(M)× = StabGα(R)(M).

In the following we put R := R ⊗k k. As R is finite-dimensional over k, any
M ′ ∈ Repα(Q,R) is a finite-dimensional RQ-module and so we have the following
well-known result [3, Theorem 1.15].

Theorem 5.3 Let

M ′ �
r⊕

i=1

miM
′
i

be the decomposition of M ′ ∈ Repα(Q,R) into indecomposables, then

End(M ′) = IM ′ ⊕ K ,

with IM ′ a nilpotent ideal and K a k-subalgebra of End(M ′) isomorphic to∏r
i=1 Matmi (k).

If M ∈ Repα(Q,R), we denote by M the representation of Q over R obtained from
M by extension of scalars from k to k. Theorem 5.3 has the following consequence.

Corollary 5.4 M ∈ Repα(Q,R) is absolutely indecomposable if and only ifEnd(M) =
IM ⊕ z where z = z(k) := {(λ Idα(i))i∈I | λ ∈ k} � k and Idα(i) the identity endomor-
phism of Rα(i).

To speak of Jordan decomposition [35, Theorem 9.18] we regard Gα(R) as an affine
k-algebraic group and Gα(R) as the group of k-points of Gα(R).

More precisely, we consider the affine k-group scheme GR/k
α which represents the

k-group functor

Algk → Gr, R′ �→ Gα(R ⊗k R
′)

so that GR/k
α (k) = Gα(R) and GR/k

α (k) = Gα(R). This functor is indeed representable
as R is finite-dimensional over k (see [1, Theorem 4]).

Let π : GR/k
α → Gα be induced by the k-algebra morphism R → k and denote by

Uα the kernel of π . Then GR/k
α = Uα � Gα and Uα is a unipotent group.

For any k-algebra R′, we denote by Zα(R′) � Gm(R′) the subgroup of Gα(R′) of
elements of the form (λ Idα(i))i∈I for some λ ∈ R′× where Idα(i) denotes the identity
of GL(R′α(i)). The set of semisimple elements of Zα(R) and Zα(R) are respectively
Zα(k) and Zα(k).

Proposition 5.5 Let M ∈ Repα(Q,R). The following assertions are equivalent:
(i) M is absolutely indecomposable.
(ii) The semisimple elements of StabGα(R)(M) all lie in Zα(k).
(iii) The semisimple elements of StabGα(R)(M) all lie in Zα(k).
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Proof The equivalence between (i) and (ii) is a reformulation of Corollary 5.4 using the
fact that StabGα(R)(M) = End(M)×. The implication (ii) ⇒ (iii) is clear as Zα(k) ∩
Gα(R) = Zα(k). For the implication (iii) ⇒ (ii), notice that if (ii) is not true then the
maximal tori of StabGα(R)(M) are of rank at least 2, and so StabGα(R)(M) contains the
k-points of a two-dimensional torus which contradicts (iii).

��
We construct a linear character 1χ of Gα(R) as follows. We need to assume that k

contains a primitive |α|-th root of unity with |α| = ∑
i∈I α(i). Let χ : k× → C

× be
a linear character of order |α|. We consider the linear character 1χ := χ ◦ det ◦π(k) :
Gα(R) → C

× where det : Gα(k) → k× is given by (gi )i∈I �→∏
i∈I det(gi ).

Lemma 5.6 Let X be either Repα(Q,R), Repα(Q,R[ε]) or μ−1
R,α(0) ⊂ Repα(Q,R).

Consider the map

{(M, g) ∈ X × Gα(R) | g · M = M} → X , (M, g) �→ M .

Then 1χ defines a character (by restriction) on the fibers of this map, and this character
is trivial exactly on the fibers of the absolutely indecomposable representations.

Proof Notice that the restriction of 1χ to the subgroup Zα(k) is the trivial character.
Therefore, by Proposition 5.5, the restriction of 1χ to the stabilizer of an absolutely
indecomposable representation of Q over R is trivial. Conversely if M ∈ Repα(Q,R)

decomposes non trivially as M = M1 ⊕ M2 with M1 ∈ Repα1(Q,R) and M2 ∈
Repα2(Q,R), then StabGα(R)(M) contains Zα1(k) × Zα2(k), and so the restriction
of 1χ to StabGα(R)(M) is non-trivial as it is non-trivial on Zα1(k) × Zα2(k). Let us
generalize this argument to non absolutely indecomposable representations. Assume
that M ∈ Repα(Q,R) is not absolutely indecomposable and let M =⊕r

i=1 miM ′
i be

its decomposition into indecomposables with M ′
i ∈ Repαi (Q,R). Denote by F the

Frobenius endomorphism on Repα(Q,R) and Gα(R) associated with the k-structure.
As M is F-stable, the Frobenius permutes the blocks miM ′

i . We now re-decompose
M as N ′

1 ⊕ · · · ⊕ N ′
s with F(N ′

i ) = N ′
i for all i = 1, . . . , s, where F permutes

cyclically the indecomposable blocks inside each N ′
i . Then each N ′

i is of the form Ni

for some Ni ∈ Repαi (Q,R). Hence if s ≥ 2, then M is decomposable over R and
as above we prove that the restriction of 1χ on the stabilizer of M is not trivial. We
thus assume that s = 1 and (without loss of generality) that m1 = · · · = mr = 1.
We must have α1 = · · · = αr =: β and re-indexing if necessary, we can assume
that M ′

i+1 = F(M ′
i ) for i = 1, . . . , r − 1. We thus have Fr (M ′

i ) = M ′
i for all i and

F(StabGβ(R)(M
′
i )) = StabGβ(R)(M

′
i+1). Let k

′ be the subfield of k of elements fixed

by Fr . Therefore for any t ∈ Gm(k′), the element

(t, F(t), . . . , Fr−1(t))∈ Zβ(k) × · · ·×Zβ(k) ⊂ StabGβ (R)(M
′
1)×· · · × StabGβ (R)(M

′
r )

is F-stable and so lives in the stabilizer StabGα(R)(M). Therefore StabGα(R)(M) con-
tains a copy of Gm(k′) and the restriction of 1χ on Gm(k′) (considered as a subgroup



   20 Page 22 of 50 T. Hausel et al.

of the stabilizer of M) is the character t �→ χ(Nk′/k(t)) where Nk′/k is the norm map.
This character is not trivial unless the field extension k′/k is trivial, i.e. unless r = 1
in which case M is absolutely indecomposable. ��
Proposition 5.7 We have
(i) dimC C[Repα(Q,R)]1χ = aα(RQ).
(ii) dimC C[Repα(Q,R[ε])]1χ = aα(R[ε]Q), where we regard 1χ as a linear char-
acter of Gα(R[ε]) using the projection Gα(R[ε]) → Gα(R).
(iii) dimC C[μ−1

R,α(0)]1χ = aα(�RQ).

The idea to express the number of absolutely indecomposable representations in
terms of the dimension of the isotypical componentC[Repα(Q, R)]1χ already appears
in [31, Theorem 1.1] in the finite field case (i.e. when R = k).

Proof The proofs of (i), (ii) and (iii) are completely similar using Lemma 5.6. We
therefore only prove (i). We have

dimC C[Repα(Q,R)]1χ = (C[Repα(Q,R)], 1χ
)
Gα(R)

= 1

|Gα(R)|
∑

g∈Gα(R)

#{x ∈ Repα(Q,R) | g · x = x} 1χ (g)

= 1

|Gα(R)|
∑

x∈Repα(Q,R)

∑

g∈StabGα(R)(x)

1χ (g)

= 1

|Gα(R)|
∑

x∈Repα(Q,R)

|StabGα(R)(x)|
(
1, 1χ

)
StabGα(R)(x)

= 1

|Gα(R)|
∑

x∈Repα
a.i.(Q,R)

|StabGα(R)(x)|

= aα(RQ).

The fifth identity follows from Lemma 5.6. The last identity is Burnside formula
for the counting of orbits of a finite group acting on a finite set. ��
Corollary 5.8 (i) Assume that Q′ is the quiver obtained from Q by changing the ori-
entation of some arrows. Then

aα(RQ) = aα(RQ′).

(ii) We have

aα(�R(Q)) = aα(R[ε]Q).

Proof Take the 1χ isotypical component on both side of the isomorphisms in Propo-
sition 5.1. ��
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5.2 The algebraically closed fields case

We assume that k is an algebraically closed field. Let G be a connected affine k-
algebraic group acting on an affine k-algebraic variety X and let X ind be a G-stable
constructible subset of X (typically X will be an affine algebraic variety constructed
out of quiver representations and X ind will be the analogous one with quiver repre-
sentations replaced by indecomposable quiver representations, see Proposition 5.10).
Let Y be either X ind or X , and put

IY := {(x, g) ∈ Y × G | g · x = x}.

This is a constructible set. We denote by c = c(Y ) the number of irreducible compo-
nents of IY of maximal dimension and we put

d = d(Y ) := dim IY − dimG.

Lemma 5.9 The set of orbits Y/G is finite if and only if d = 0, in which case
card(Y/G) = c.

Proof To see this we remark that

IY =
∐

O∈Y/G

{(x, g) ∈ O × G | g · x = x},

and that for all O ∈ Y/G we have

dim {(x, g) ∈ O × G | g · x = x} = dimG.

��
In the following we define

m(X) := (c(X), d(X)), a(X) := (c(X ind), d(X ind)).

We now come back to quiver representations over a Frobenius algebra R over k.
We consider Repα(Q,R), Repα(Q,R[ε]) and μ−1

R,α(0) as k-algebraic varieties, and

we put mα(RQ) = m(Repα(Q,R)) and mα(�R(Q)) = m(μ−1
R,α(Q)). If d = 0, this

is just the pair (card(Y/G), 0) by Lemma 5.9.
In the next proposition we assume that the Frobenius k-algebra R is local (note that

it is split as k is algebraically closed).
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Proposition 5.10 The subsets of indecomposable representations of Repα(Q,R),
Repα(Q,R[ε]), and μ−1

R,α(0) are constructible sets over k.

Proof The proof is similar to the casewhereR is a field (see for instance [29, Sect. 2.5]).
To see that the same proof works, we need to regard Repα(Q,R), Repα(Q,R[ε]) and
μ−1
R,α(0) as algebraic varieties over k and use that a representation V is indecomposable

if and only if the nilpotent ideal of End (V ) is of co-dimension 1 (see Corollary 5.4).
��

We then put aα(RQ) := a(Repα(Q,R)) and aα(�R(Q)) := a(μ−1
R,α(0)).

5.2.1 The algebraic closure of a finite field

We assume that k = Fq for a prime power q and that G, X ,Y and the action of G are
defined over Fq . Enlarging Fq if necessary we assume that the irreducible components
of IY are also defined over Fq . By Burnside’s formula

card
(
Y (Fq)/G(Fq)

) = card IY (Fq)

card G(Fq)
. (5.1)

We have the following theorem.

Theorem 5.11 For all integers r > 0 we have

card
(
Y (Fqr )/G(Fqr )

)− cqrd ∈ O(qr(d−1/2)).

Proof Using Burnside’s formula (5.1), the statement reduces to constructible sets and
then to algebraic varieties. Let X be an Fq -variety of dimension d such that its irre-
ducible components of dimension d are also defined over Fq . By the Grothendieck
trace formula applied to X we have

card
(
X(Fqr )

) =
∑

i

(−1)i Tr
(
(F∗)r , Hi

c (X , Q�)
)

,

for any integer r > 0, where F : X → X is the geometric Frobenius and Hi
c (X , Q�)

is the i-th �-adic cohomology group with compact support. Now F∗ acts on the top
cohomology H2d

c (X , Q�) � (Q�)
c by multiplication by qd (this is explained for

instance in [43, §6.5]). Moreover all complex conjugates of the eigenvalues of F∗ on

Hi
c (X , Q�), with i < 2d, have absolute values≤ qd− 1

2 by Deligne’s work on theWeil
conjectures [8]. ��
Corollary 5.12 Assume that G ′, X ′,Y ′ is another datum analogously to G, X ,Y . If
for all r > 0 we have

card
(
Y (Fqr )/G(Fqr )

) = card
(
Y ′(Fqr )/G

′(Fqr )
)
,
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then c(Y ) = c(Y ′) and d(Y ) = d(Y ′). In particular, if the orbit set Y (Fq)/G(Fq) is
finite then Y ′(Fq)/G ′(Fq) is also finite and the two cardinalities agree.

Proof FromTheorem 5.11, we can read c(Y ) and d(Y ) from the term of highest degree
in card (Y (Fqr )/G(Fqr )). ��

We now apply the above result to quiver representations.

Theorem 5.13 Assume that R is a Frobenius Fq-algebra.
(i) If Q′ is a quiver obtained from Q by changing the orientation of some arrows. Then

mα(RQ) = mα(RQ′).

(ii) We have

mα(R[ε]Q) = mα(�R(Q)).

Proof The 1-form λ : R → k is defined over some finite subfield κ of k. Namely
there is a finite-dimensional κ-algebra R together with a κ-linear form η : R → κ

that gives back λ after extension of scalars from κ to k. If the kernel of η contains a
non-zero ideal, then so does λ. ThereforeR is a Frobenius κ-algebra. The k-algebraic
varieties Repα(Q,R), Repα(Q,R[ε]), μ−1

R (0) are also defined over κ and the set of
their κ-points are respectively Repα(Q,R), Repα(Q,R[ε]) andμ−1

R (0). The theorem
is thus a consequence of Corollaries 5.2 and 5.12. ��

We now assume that k contains a primitive |α|-th of unity.
Theorem 5.14 Assume that R is a local Frobenius Fq-algebra.
(i) If Q′ is a quiver obtained from Q by changing the orientation of some arrows. Then

aα(RQ) = aα(RQ′).

(ii) We have

aα(R[ε]Q) = aα(�R(Q)).

Proof We consider a finite subfield κ of k that contains an |α|-th root of unity
and such that there is a Frobenius κ-algebra R giving R after extension of scalars
from κ to k (see the proof of Theorem 5.13). The set of κ-points of the con-
structible subsets of indecomposable representations of Repα(Q,R), Repα(Q,R[ε])
andμ−1

R (0) are the sets of absolutely indecomposable representations of Repα(Q,R),
Repα(Q,R[ε]) andμ−1

R (0). Hence the theorem follows fromCorollaries 5.8 and 5.12.
��
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5.2.2 Arbitrary algebraically closed field

We assume that k is an arbitrary algebraically closed field and that R is a
Frobenius k-algebra with Frobenius 1-form λ : R → k. Let us write R in
the form k[x1, . . . , xr ]/( f1, . . . , fs). Let B be a k-basis of R and we denote
by det(λ) the determinant of the non-degenerate bilinear form R × R → k,
(a, b) �→ λ(ab) with respect to B. Let A ⊂ k be a finitely generated Z-
algebra which contains the coefficients of the polynomials f j ’s, the coefficients
of the matrix of λ (with respect to B) and det(λ)−1 (if char(k) = p > 0,
then it is of the form Fq [z1, . . . , zm] for some finite field extension Fq of Fp).
We then denote by R the A-algebra A[x1, . . . , xn]/( f1, . . . , fs). The elements of
B are clearly independent over A (as they are over k). Enlarging A if necessary
we assume that B generates R, i.e. is a basis of the A-module R. Consider the
A-linear map ζ : R → A that gives back λ after extension of scalars from
A to k.

For any ring homomorphism ϕ : A → K , with K a field, we denote by Rϕ the
K -algebra R ⊗A K . Then the matrix of the bilinear form on Rϕ defined from the
1-form ζ ϕ : Rϕ → K , x ⊗ l �→ ϕ(ζ(x))l is invertible and so Rϕ is a Frobenius
K -algebra of same dimension as R.

Lemma 5.15 If R is local, then Rϕ is also local.

Proof If m denotes the maximal ideal of R, we may assume that 1 ∈ B and that
B∗ := B\{1} generates m as a k-vector space. Then the A-submodule ofR generated
by B∗ is closed under multiplication. The K -vector subspace ofRϕ generated by the
elements ofRϕ arising from B∗ is thus also closed under mutliplication, and so is the
maximal ideal ofRϕ . ��

The following theorem, together with Theorems 5.13 and 5.14 implies Theorems
1.1 and 1.2 for an arbitrary algebraically closed field k. Indeed, the residue field of a
closed point of A is a finite field and so we always have ring homomorphisms from A
to the algebraic closure of some finite field.

Theorem 5.16 There exists a finitely generated Z-algebra A ⊂ k as above and an
open dense subset U of Spec(A) such that for any algebraically closed field K and
any ring homomorphism ϕ : A → K such that the image of Spec(K ) → Spec(A) is
in U, we have

mα(RQ) = mα(RϕQ), mα(�R(Q)) = mα(�Rϕ (Q)). (5.2)

If moreover R is local,

aα(RQ) = aα(RϕQ), aα(�R(Q)) = aα(�Rϕ (Q)). (5.3)

The rest of the section is devoted to the proof of Theorem 5.16. We only prove it
for the path algebra RQ as the proof for the preprojective algebra is similar.
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If X is a constructible subset of kr defined by a finite number of equations fi = 0
and inequations g j �= 0, if B ⊂ k is a finitely generated Z-algebra containing the
coefficients of the polynomials f j and g j and if ϕ : B → K is a ring homomorphism
into an algebraically closed field K , then we denote by f ϕ

i , gϕ
j the corresponding

polynomials with coefficients in K , and by Xϕ the constructible subset of Kr defined
by the equations f ϕ

i = 0 and inequations gϕ
j �= 0.

Let us start with the following classical result (we give a proof for the convenience
of the reader).

Proposition 5.17 Let X be a constructible subset of kr defined by a finite number
of polynomial equations fi = 0 and inequations g j �= 0. Let B be a finitely gen-
erated Z-subalgebra of k that contains the coefficients of the polynomials fi and
g j . Then there exists a non-empty open subset U of Spec(B), such that for any
algebraically closed field K and homomorphism ϕ : B → K such that the image
of Spec(K ) → Spec(B) is in U, the constructible subset Xϕ of Kr has the same
dimension and the same number of irreducible components of maximal dimension as
X.

Proof As a constructible subset of kr is a finite union of locally closed subsets of kr

wemay assume that X is a locally closed subset of kr which we regards as a k-scheme.
We put S := Spec(B) and we denote by fS : XS → S the map that gives the structural
map f : X → k after extension of scalars from B to k. Let � be a prime invertible in k.
Recall [7, Proposition 2.5, Chapter 2] that if F is a Q�-sheaf on a Noetherien scheme
Z , there exists a finite partition of Z in locally closed subschemes Zi such that F|Zi is
smooth. We apply this to the Q�-sheaves R

i ( fS)!Q� on S (see [7, Sect. 2.11, Chapter
2]). Therefore there exists an open subset U of S such that for all i , Ri ( fS)!Q�|U is
smooth.

The fibers (Ri ( fS)!F)x � Hi
c (XS ×S K , Q�) over the geometric points x :

Spec(K ) → U , with K algebraically closed, are thus (non-canonically) isomorphic.
Hence for the geometric points so : Spec(k) → U ⊂ S (induced by the inclusion

B ⊂ k) and s : Spec(Fq) → U ⊂ S (above a closed point s of S with residue field
Fq ) we have

Hi
c (X , Q�) � Hi

c (XS ×S Fq , Q�).

If we denote by ϕ : B → Fq the map induced by s, then XS ×S Fq = Xϕ .
We conclude by recalling that the dimension of the top compactly supported �-adic
cohomology equals the number of irreducible components of maximal dimension. ��

For a Frobenius algebra R′ over an algebraically closed field k′ put

X(R′) := {(x, g) ∈ Repα(Q,R′) × Gα(R′) | g · x = x}.

If R′ is local we denote by Indα(Q,R′) the subset of Repα(Q,R′) of indecomposable
representations. By Proposition 5.10, it is a constructible set over k′. The set
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X ind(R
′) := {(x, g) ∈ Indα(Q,R′) × Gα(R′) | g · x = x}

is thus a constructible set over k′.
Let A ⊂ k be a finitely generated Z-algebra as above, i.e. such that Rϕ is a

Frobenius K -algebra for all homomorphism ϕ : A → K , with K a field. Extending
A if necessary we may assume that both X(R) and X ind(R) are defined over A (i.e.
can be defined as the set of solutions in some kr of equations and inequations with
coefficients in A). Theorem 5.16 is thus a consequence of Proposition 5.17 together
with the following result.

Proposition 5.18 For any algebraically closed field K and any ring homomorphism
ϕ : A → K, we have X(R)ϕ = X(Rϕ) and if R is local X ind(R)ϕ = X ind(Rϕ).

Proof The proposition reduces to locally closed subsets of kr . Let X = X/A be an
A-scheme of finite type. If B is an A-algebra, we denote by X/B = X ×A B the B-
scheme obtained by scalar extension. As a functor of points X/B is the composition
of the functor X/A with the functor from the category of B-algebras to the category
of A-algebras induced by the A-algebra structure on B, i.e. for any B-algebra T we
have

X/B(T ) = X/A(T ).

AsR is free over A, the functor

B �→ X/R(R ⊗A B) = X/A(R ⊗A B)

from the category of A-algebras is representable (see [1, Theorem 4]) by an A-scheme
XR/A (called the Weil restriction of X/R with respect to A ⊂ R). We rephrase the
proposition as follows: for any ring homomorphism ϕ : A → K into an algebraically
closed field K we have

XR/A ×A K = XRϕ/K (5.4)

where XRϕ/K is theWeil restriction of theRϕ-scheme X/Rϕ with respect to K ⊂ Rϕ .
Indeed taking the K -points on both sides of (5.4) we get X(R)ϕ = X(Rϕ).

To see (5.4) we verify that the associated functors of points are the same.
For a K -algebra T we have

(XR/A ×A K )(T ) = XR/A(T )

= X/R(R ⊗A T )

= X/A(R ⊗A T ),

while the functor XRϕ/K takes the K -algebra T to

XRϕ/K (T ) = X/K (Rϕ ⊗K T )
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= X/K (R ⊗A T )

= X/A(R ⊗A T ).

��

6 Finite locally free representation type

In this section we let k be an algebraically closed field, R a local Frobenius algebra
over k and Q = (I , E) a connected finite quiver.We are interested to find all examples
such that there are finitely many isomorphism classes of locally free indecomposable
representations of Q over R.

Definition 6.1 The path algebra RQ has finite locally free representation type if there
are finitely many isomorphism classes of locally free indecomposable representations
of RQ.

For d ∈ Z>0 we denote by kd the truncated polynomial ring k[t]/(td) in particular
k1 ∼= k and k2 ∼= k[ε] by identifying t with ε.

Theorem 6.2 RQ has finite locally free representation type if and only if

• R = k and Q is of ADE Dynkin type
• R arbitrary and Q is of type A1
• R = kd for any d > 1 and Q is of type A2
• R = k2 or R = k3 and Q is of type A3
• R = k2 and Q is of type A4

The analogous statement where we dot not restrict to locally free modules can be
found in Geiss-Leclerc-Schröer [18, Sect. 13.3] (when R is a truncated polynomial
ring).

We will need several results to prove Theorem 6.2.

Proposition 6.3 Let R be a local commutative Frobenius algebra over the alge-
braically closed field k. Let Q be a quiver with underlying graph A2. If

Rep(1,1)(Q,R)/G(1,1)(R) = R/R×

is finite of cardinality d + 1 then R ∼= kd = k[t]/(td).
Proof A representation of the quiver Q over R of rank (1, 1) is given by an element
a ∈ R. Two elements a, b ∈ R give the same representation up to isomorphism if
ae = b for some unit e ∈ R× = GL1(R). In particular, in this case (a) = (b).
Conversely if (a) = (b) with a = rb and b = sa then a = ars. If now rs ∈ m then
1 − rs /∈ m thus (1 − rs) is a unit implying a = 0. Then (b) = 0 and so b = 0 as
well. If rs /∈ m then it is a unit so both r and s are. Therefore a = rb differ by the unit
r . Thus we have Rep(1,1)(Q,R)/G(1,1)(R) = R/R× counting the different principal
ideals in R. Assume R/R× is finite. Let a, b ∈ m, where m  R is the maximal ideal.
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As we have finitely many different principal ideals in R and |k| = ∞ there will be
λ1 �= λ2 ∈ k such that I := (a + λ1b) = (a + λ2b). This implies that b, a ∈ I .
Thus any two proper principal ideals are contained in a third one. This means that
there is a maximal proper principal ideal in R. This ideal must contain all non-units
and thus must equal m. If (t) = m then we see that every element in R can be written
as etk for some k ∈ Z≥0 and e ∈ R×. As R is finite dimensional over k there must
be a smallest d ∈ Z≥0 such that td = 0. Then the natural map k[t]/(td) → R is an
isomorphism. Thus R ∼= kd = k[t]/(td) is a t-adic ring and the classes in kd/k×

d have
representatives 1, t, . . . , td−1 and 0. The result follows. ��
Proposition 6.4 There are infinitely many non-isomorphic locally free indecompos-
able representations for a quiver whose underlying graph is not a tree over any local
Frobenius k-algebra R.

Proof This clearly holds over k as such a graph will contain a loop, and we know from
Gabriel’s theorem that a loop has infinitely many non-isomorphic indecomposable
representations. Embedding k ⊂ R as the subalgebra of constants, the same non-
isomorphic indecomposable locally-free representations will have the same property
over R as any isomorphism of quiver representations over R will induce one over the
residue field R/m and k ⊂ R → R/m maps isomorphically onto the residue field as
k is algebraically closed. ��
Proposition 6.5 There are infinitely many non-isomorphic locally free indecompos-
able representations for a quiver of type D4 over kd for d > 1 and k algebraically
closed. In particular, the same is true for any quiver with a vertex with at least three
neighbours.

To prove Proposition 6.5 we need the following

Lemma 6.6 Let d > 1, A ∈ GL2(kd) and

eλ =
[

1
λtd−1

]
∈ k2d

for λ ∈ k. Assume that Ae0 = μ0e0 and Ae1 = μ1e1 for some μ0, μ1 ∈ k×
d . Then,

for all λ ∈ k, there exists μλ ∈ k×
d such that Aeλ = μλeλ.

Proof Let A = [ai j ]i, j∈{1,2}. As Ae0 = μ0e0 we have a21 = 0. Then

Aeλ =
[
a11 + a12λtd−1

a22λtd−1

]
.

If Aeλ = μλeλ then

μλ = a11 + λa12t
d−1

and

a22λt
d−1 = (a11 + a12λt

d−1)λtd−1.
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When λ �= 0 this is equivalent with

a11 − a22 ∈ tkd . (6.1)

By assumption μ1 exists, this implies (6.1), and in turn gives the result. ��
Proof of Proposition 6.5 ByourmainTheorem1.1,we can assume that the arrows in the
D4 quiver are all oriented towards the central vertex labelled by 1. Then a locally free
representation of rank vector (2, 1, 1, 1) can be given by three vectors in k2d . Let Mλ be
the representation of this D4 quiver given by the three vectors e0, e1, eλ ∈ k2d . Clearly
Mλ is indecomposable. Then Mλ1

∼= Mλ2 implies the existence of an A ∈ GL2(kd)
taking (e0, e1, eλ1) to the triple (e0, e1, eλ2) up to scaling by invertible elements in k×

d .
By the above Lemma this implies that eλ1 and eλ2 differ by scaling with an invertible
element in k×

d . This in turn implies λ1 = λ2 showing that Mλ is an infinite family
of pairwise non-isomorphic indecomposable representations of our quiver. The result
follows. ��
Proof of Theorem 6.2 ByProposition 6.3 if the Frobenius k-algebraR is not isomorphic
to kd for some d, then for a quiver Q of type A2 we have infinitely many pairwise
non-isomorphic representations of rank vector (1, 1). The same holds for any quiver
with a proper edge. When there are only edge loops in the quiver Proposition 6.4
shows that there will be infinitely many pairwise non-isomorpic representations over
any local Frobenius k-algebra R.

Thus we can assume that R ∼= kd for some d. If a quiver Q has finite locally free
representation type over kd then by Proposition 6.4 it has to be a tree and in turn by
Proposition 6.5 it has to be linear, in other words of type An for some n ≥ 0.

As aα(kd Q) is independent of the orientation of the quiver by ourmain Theorem1.1
we can assume that our Q is linearly oriented. Then [18, Proposition 11.1] implies1

that the number of isomorphism classes of non-injective locally free indecomposable
representations of kd Q agrees with the number of classes of all (i.e. not neccessarily
locally-free) indecomposable representations of kd Q0 where Q0 is the subquiver of
type An−1 of Q leaving out the final vertex of Q. Then in turn [18, Proposition 13.1]
finishes the proof of Theorem 6.2. ��

Below we discuss the finite locally free representation type quivers of Theorem 6.2
in more detail.

6.1 A2 over kd

When the quiver Q is of type A2, i.e. two vertices with one arrow, say, 1 → 2
then a representation of it over kd of rank (m, n) is given by an n ×m matrix over kd .
Moreover twomatrices correspond to isomorphic representations if and only if they are
equivalent using elementary row and column operations. As kd is a principal ideal ring
we can take thematrix to Smith normal form by [4, Theorem 15.9]. This shows that the
indecomposable representations have rank vector (1, 1), (1, 0) or (0, 1). According to

1 We thank Bernard Leclerc for pointing out to us this argument from [18].



   20 Page 32 of 50 T. Hausel et al.

Proposition 6.3 up to isomorphism the rank (1, 1) indecomposable matrices are given
by the d matrices [t i ] for i = 0 . . . d − 1 and there are the trivial zero representations
of rank (1, 0) and (0, 1). Thus we have

Theorem 6.7 If the quiver Q is of type A2 then

aα(kd Q) =
⎧
⎨

⎩

1 α = (1, 0) or (0, 1)
d α = (1, 1)
0 otherwise

Remark 6.8 We could have deduced the same result by following the argument in the
last paragraph of the proof of Theorem 6.2. According to that the non-injective locally
free indecomposable representations of Q are in bijection with the indecomposable
representations of the subquiver Q0 which in this case is just the A1 quiver. There
are d indecomposable modules over kd and these correspond to the d non-injective
indecomposable locally free representations of Q. One of them has rank vector (0, 1)
this corresponds to the free kd -module. The remaining d − 1 non-injective indecom-

posable locally free representations are the ones kd
[t i ]→ kd for i = 1 . . . d − 1, which

correspond to the kd -modules coker([t i ]) = kd/(t i ). (When i = 0 the representation
is injective.)

6.2 A3 over k2

We can find all locally-free indecomposable representations of a linearly oriented
quiver Q = 1 → 2 → 3 of type A3 over k2 by following the argument in the last
paragraph of the proof of Theorem 6.2. We have the three indecomposable injective
locally free representations of rank vector (1, 0, 0), (1, 1, 0) and (1, 1, 1), where all
the maps are 0 or isomorphisms. The remaining ones are in bijection with the set of
all indecomposable representations of Q0 (of type A2) over k2. We can read them off
from the Auslander–Reiten quiver of k2Q0 in [18, Figure 13.5.4]. We get 0 → kd ,

kd → 0 and k2/(t i )
[t j ]→ k2/(tk) where 0 ≤ i, k < 2 and 2 − k > j ≥ i − k. We

have thus 9 of such. Thus there must be 12 = 3 + 9 indecomposable locally-free
representations of Q. It is easy to find them: we have the three simple ones, four of the

form k2
[t i ]→ k2 → 0 and 0 → k2

[t i ]→ k2 for 0 ≤ i < 2, four of the form k2
[t i ]→ k2

[t j ]→ k2
with 0 ≤ i, j < 2 and one of the form

k2

[
1
0

]

−→ k22
[t,1]→ k2 (6.2)
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Theorem 6.9 When the quiver Q is of type A3 then we have 12 locally free indecom-
posables over k2 as follows

aα(k2Q) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1 α = (1, 0, 0), (0, 1, 0) or (0, 0, 1)
2 α = (1, 1, 0) or (0, 1, 1)
4 α = (1, 1, 1)
1 α = (1, 2, 1)
0 otherwise

Remark 6.10 We can compare Theorem 6.9 to the number of indecomposables
aα(�k(Q)) of the preprojective algebra �k(Q). First by our main Theorem 1.2
aα(�k(Q)) = aα(k2(Q)). Indeedwe find an agreementwhen comparing Theorem6.9
above with the dimension vectors of all indecomposables in the Auslander–Reiten
quiver of �k(Q) in [17, Sect. 20.1].

Remark 6.11 Just as in 6.1 we can reformulate the problem of classifying the represen-
tations of the quiver 1 → 2 ← 3 over k2 as the classification of an n × m matrix and
an n × k matrix over k2 modulo simultaneous row operations and individual column
operations. The indecomposables are identical as above (just reversing the second
arrow) with the exception of the last one (6.2) which needs to be replaced by

k2

[
1
0

]

−→ k22

[
1
t

]

← k2.

This way we get a normal form for the above classification problem, similar to the
Smith normal form in the previous Sect. 6.1. One can prove this directly with row
and column operations, similarly to the proof of Smith normal form. We know from
Theorem 6.2 that there is no such normal form for the same problem over kd for d > 3,
the case of k3 will be discussed in the next section.

Remark 6.12 It is interesting to compare the full representation theories of the two A3
type quivers studied previously, namely the linearly oriented Q = 1 → 2 → 3 and the
one in the previous section Q′ = 1 → 2 ← 3. They both have finite representation
type by [18, Proposition 13.1]. Indeed Q has 36, and Q′ has 42 indecomposable
representations [19], out of which we have 12 locally free in both cases. So there
seems to be no direct relationship between the full representation theories of Q and
Q′, only when one restricts to the locally free ones.

6.3 A3 over k3

To find all indecomposable locally free representations of the linearly oriented A3
type quiver Q over k3 we can proceed the same way as above. First we find all
indecomposable representations of Q0 of type A2 over k3 by reading them off from
the Auslander–Reiten quiver of k3Q0 computed in [19]. There are 27 of them. We
can compute the non-injective, indecomposable and locally free representations of A3
over k3 corresponding to them, by applying the inverse Auslander–Reiten translation
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as in [18, Proposition 11.1]. After some computations and adding the three injective
locally free representations we arrive at the following

Theorem 6.13 When the quiver Q is of type A3 then we have 30 locally free indecom-
posable representations over k3 as follows

aα(k3Q) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 α = (1, 0, 0), (0, 1, 0) or (0, 0, 1)
3 α = (1, 1, 0) or (0, 1, 1)
9 α = (1, 1, 1)
5 α = (1, 2, 1)
2 α = (2, 2, 1) or (1, 2, 2)
1 α = (2, 2, 2)
2 α = (2, 3, 2)
0 otherwise

Remark 6.14 We can observe that the above multiset of rank vectors of indecompos-
able locally free representations over k3 of a quiver of type A3 is symmetric under
reflection through the middle vertex, e.g. the numbers for (2, 2, 1) and (1, 2, 2) agree.
This symmetry follows from our main Theorem 1.1 that the number of locally free
indecomposable representations of a given rank vector is independent of the orien-
tation of the quiver. However this symmetry is a surprise when one arrives at these
rank vectors starting from all indecomposable representations of Q0 over k3 as we
did above. In particular, if we leave out the rank vectors of the three injective repre-
sentations (1, 0, 0), (1, 1, 0) and (1, 1, 1) the symmetry of the remaining multiset is
lost.

6.4 A4 over k2

One can find the locally free indecomposable representations of a linearly oriented
quiver Q of type A4 over k2 by the method mentioned above (c.f. Remark 6.12).
Indeed a program of Crawley-Boevey [6] has determined a list of 40 such rank vec-
tors of indecomposables as in the following Theorem 6.15. However in this case we
could alternatively use aα(k2Q) = aα(�k(Q)) our second main Theorem 1.2 and the
computation of aα(�k(Q)) in [17, 20.2] to deduce

Theorem 6.15 When the quiver Q is of type A4 then we have 40 locally free indecom-
posable representations over k2 as follows

aα(k2Q) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 α = (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0) or (0, 0, 0, 1)
2 α = (1, 1, 0, 0), (0, 1, 1, 0) or (0, 0, 1, 1)
4 α = (1, 1, 1, 0) or (0, 1, 1, 1)
8 α = (1, 1, 1, 1)
1 α = (1, 2, 1, 0) or (0, 1, 2, 1)
2 α = (1, 2, 1, 1) or (1, 1, 2, 1)
6 α = (1, 2, 2, 1)
1 α = (1, 2, 2, 2) or (2, 2, 2, 1)
0 otherwise



Locally free representations... Page 35 of 50    20 

Remark 6.16 Even though we found that a quiver of type A4 over k2 has finite locally-
free representation type with 40 locally-free indecomposable representations, nothing
like this holds for the full representation theory. Indeed, when the quiver is linearly
oriented Skowroński proved [42, Theorem] that the full representation type is tame.
This means that there are infinitely many indecomposable representations, however
they can be parametrized by up to one-dimensional families. Interestingly, when the
orientation is not linear, the full representation type is wild, i.e. infinite and not tame.
Thus while even the representation type of the full representation theory can change
when one changes the orientation of the quiver, the subcategory of locally-free repre-
sentations behaves much more uniformly.

Remark 6.17 The argument in the last paragraph of the proof of Theorem 6.2 can
be combined with Skowroński’s result [42, Theorem] and Theorem 1.1 to find that
the locally-free representation type of a quiver of type A5 over k2 is tame. By our
Theorem 1.2 this shows that the preprojective algebra of type A5 has also tame repre-
sentation type.2 Indeed this was the main studied example of the paper [17, Sect. 14],
where they found that the dimension vectors of the indecomposable representations
are given by a certain elliptic E8 root system.

7 Toric case

7.1 Indecomposable representations

Let Q be a finite quiver. Let V := {1, . . . , n} be the labeled set of vertices and E the set
of edges of Q. For d a positive integer let kd := Fq [t]/(td), where Fq is a finite field of
cardinality q. To alleviate the notation we will denote by Rd instead of Rep1(Q, kd)
the set of representations of Q over kd of dimension 1 at each vertex. We will call
these representations toric. For convenience wewill use the notation Ad(Q, q) instead
of a1(kd Q) for the number of isomorphism classes of such representations that are
(absolutely) indecomposable, and we will use the notation Gd = k×

d × · · · × k×
d

instead of G1(R). In what follows a subgraph of Q will mean a spanning subgraph;
i.e., � ⊆ Q with vertex set V and edge set E(�) ⊆ E . Also, the orientation of Q ends
up not playing a role in what follows and we will mostly ignore it.

To any φ ∈ Rd we can attach two combinatorial data

[φ] := (�, r),

where
i) � ⊆ Q is the subgraph consisting of the same vertex set V with edge set E(�)

those e ∈ E such that φ(e) is non-zero.
ii) r : E(�) → Z>0 is the function that to each edge e ∈ E(�) assigns the number

1 ≤ r(e) ≤ d such that (ε)d−r(e) is the ideal generated by φ(e) ∈ kd or, equivalently,
such that the annihilator of φ(e) in kd is (t)r(e).

2 Tameness in exact subcategories of module categories is not well established, here we simply mean that
their constructible set of 1-dimensional.
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The first observation is the following.

Lemma 7.1 i) The representation φ is indecomposable if and only if � is connected.
ii) The representations φ ∈ Rd with fixed [φ] = (�, r) have the same stabilizer

Gd(�, r) ≤ Gd.

Proof The first statement i) is clear. To prove ii) note that Gd(�, r) consists of those
(u1, . . . , un) ∈ Gd such that for all e ∈ E(�) we have

uiu
−1
j φ(e) = φ(e)

where e is an edge joining the vertices i and j (notation: i
e→ j). This condition is

equivalent to

ui − u j ∈ (t)r(e), (7.1)

which only depends on r(e) and neither on the actual value φ(e) nor on the orientation
of e. ��
Let Rd(�, r) ⊆ Rd be the subset of representations φ with [φ] = (�, r). By
Lemma 7.1 the number of orbits of Gd acting on Rd(�, r) equals #Rd(�, r)/[Gd :
Gd(�, r)]. Then

#Rd(�, r) = (q − 1)#E(�)q
∑

e∈E(�)(r(e)−1), (7.2)

since

(t)d−r = {td−r (x0 + x1t + · · · + xr−1t
r−1) | x0 ∈ F

×
q , x1. . . . , xr−1 ∈ Fq}.

To compute |Gd(�, r)| is a bit more tricky. Let (u1, . . . , un) ∈ Gd(�, r) and let
ae := ui − u j if i

e→ j . Then ae ∈ (t)r(e), independent of the orientation of e.
However, the ae’s are not independent of each other as for a any cycle c in � their sum
over all edges of c is zero.

We have

ae =
d−1∑

k=r(e)

ae,k t
k, ae,k ∈ Fq .

For fixed k each cycle c of � yields a linear equation

∑

e∈c,r(e)≤k

ae,k = 0. (7.3)

Conversely, it is clear that any solution to all (7.3) gives rise to differences ae :=
ui − u j for an element (u1, . . . , un) ∈ Gd(�, r). Let P δ̃k(�, r) be the dimension of
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the vector space of such solutions of (7.3). Since � is connected (by assumption) we
find |Gd(�, r)| = q δ̃(�,r)|k×

d | = q δ̃(�,r)+d−1(q−1), where δ̃(�, r) =∑d−1
k=1 δ̃k(�, r).

In particular, we have the following.

Proposition 7.2 There exists a polynomial in Z[T ] which depends only on d and the
underlying graph of Q (i.e. it does not depend on the orientation of Q), such that for
any finite field Fq , the number Ad(Q, q) is the evaluation at q of that polynomial (for
short we say that Ad(Q, q) is a polynomial in q).

We can give a simple expression for δ̃(�, r) in terms of certain associated graphs.
The function r determines a filtration E of length d on the set of edges E(�) of �.

E : ∅ = E0 ⊆ E1 ⊆ · · · ⊆ Ed = E(�), (7.4)

where Ek := {e ∈ E(�) | r(e) ≤ k}
For 1 ≤ k ≤ d − 1 let �k be the graph obtained from � by contracting every

edge in E(�) \ Ek = {e ∈ E(�) | r(e) > k}. Note that all edges with r(e) = d get
contracted for every k. The edge set of �k is Ek . Then δ̃k(�, r) = #Ek − b1(�k)

where b1(�k) is the first Betti number of the graph �k . Together with (7.2) this gives
#Rd(�, r)/[Gd : Gd(�, r)] = (q − 1)b1(�)qδ(�,r), where

δ(�, r) :=
d∑

k=1

(k − 1)#(Ek \ Ek−1) +
d−1∑

k=1

[#Ek − b1(�k) − n + 1] .

This quantity simplifies to

δ(�, r) =
d−1∑

k=1

[b1(�) − b1(�k)]. (7.5)

In summary we have the following.

Proposition 7.3 The number of isomorphism classes of toric representations of �

where all maps between the 1-dimensional spaces are non-zero scalars has the form
(q − 1)b1(�)Rd(�, q), where

Rd(�, q) :=
∑

r

qδ(�,r) (7.6)

is a polynomial with non-negative integer coefficients, monic of degree (d − 1)b1(�).

Proof To see that Rd(Q, q) is monic of degree (d−1)b1(Q) note that the contributions
in the sum on the right hand side of (7.6) of largest degree are those for which r(e) = d
for every edge. ��

We have the following.
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Proposition 7.4 i) The polynomial Ad(Q, q) is monic with integer coefficients and of
degree db1(Q) and has the following expression

Ad(Q, q) :=
∑

(�,r)

(q − 1)b1(�)qδ(�,r), (7.7)

where the sum is over all pairs (�, r) with � ⊆ Q connected. Equivalently,

Ad(Q, q) =
∑

�

(q − 1)b1(�)Rd(�, q), (7.8)

where the sum is over all connected subgraphs � ⊆ Q.
ii) Let t(Q) be the number of spanning trees of Q then

Ad(Q, 1) = dn−1t(Q).

(In both statements we disregard the orientation of Q.)

Proof i) Formulas (7.7) and (7.8) are immediate from the above discussion. To see
that Ad(Q, q) is monic of degree db1(Q) note that the contribution in the sum on the
right hand side of (7.7) of largest degree is for � = Q. The claim now follows from
the computation of the degree of Rd given in Proposition 7.3.

ii) As for the value at q = 1 the only contributions on the right hand side of (7.7)
are when � is a spanning tree. In that case the corresponding term equals 1 as b1(�) =
b1(�k) = 0 and there are dn−1 choices for r . This finishes the proof. ��
Remark 7.5 An equivalent formula to (7.7) was proved by A. Mellit (private commu-
nication), see also [45, Proposition 4.34].

As an example here is the explicit calculation of the number of isomorphism classes
of (absolutely) indecomposable representations of dimension (13) for the cyclic graph
C3 over k2 using the above ideas. We letCn be the graph on n vertices, say 1, 2, . . . , n,
with a single edge connecting i to i + 1 mod n.

m r12 r23 r31 |G2(�, r)| #R2(�, r) #orbits
1 2 2 2 q(q − 1) q3(q − 1)3 (q − 1)q
3 2 2 1 q(q − 1) q2(q − 1)3 q − 1
3 2 1 1 q2(q − 1) q(q − 1)3 q − 1
1 1 1 1 q3(q − 1) (q − 1)3 q − 1
3 2 2 q(q − 1) q2(q − 1)2 1
6 2 1 q2(q − 1) q(q − 1)2 1
3 1 1 q3(q − 1) (q − 1)2 1

.

The table is a list of connected subgraphs � ⊆ C3 and the value ri j for each edge
i j of � up to symmetry (m denotes the number of such pairs). The other entries are:
|G2(�, r)| = the order of the stabilizer, #R2(�, r) = the number of representations



Locally free representations... Page 39 of 50    20 

and #R2(�, r)/|G2(�, r)| = the number of orbits (isomorphism classes of represen-
tations) of the given type. Adding all the terms we have

A2(C3, q) = q(q − 1) + 3(q − 1) + 3(q − 1) + (q − 1) + 3 + 6 + 3 = q2 + 6q + 5.

In fact, it is not hard to do the calculation using (7.7) for C3 and any depth d. We
obtain the following.

Ad(C3, q) = qd + 6
d−1∑

k=1

(d − k)qk + 3d − 1.

We can extend this calculation to the general cyclic graph Cn .

Proposition 7.6 For n ≥ 1 let Cn be the cyclic graph with vertices labelled 1, 2, . . . , n
and an edge between the vertices i and i + 1 (read modulo n) for i = 1, . . . , n. Then
for d ≥ 1

Ad(Cn, q) = qd +
d−1∑

k=1

[
(d − k + 1)n − 2(d − k)n + (d − k − 1)n

]
qk

+
[
−dn + (d − 1)n + ndn−1

]
, (7.9)

a polynomial with non-negative integer coefficients. In particular,

Ad(C2, q) = qd + 2qd−1 + · · · + 2q + 1, (7.10)

and for the graph C1 consisting of one vertex with a self-loop

Ad(C1, q) = qd .

Proof We use (7.7). Consider first the case� = Cn . If i is the minimum value of r then
b1(�k) = 1 for k ≥ i and b1(�k) = 0 for k < i . Hence the pair (�, r) contributes qi−1

to the sum. The total number of r ′s with minimum value i is (d − i + 1)n − (d − i)n .
Similarly, the total contributions of pairs (�, r) for � a segment obtained from Cn

by removing an edge is easily seen to be ndn−1. A final manipulation of these terms
yields (7.9).

To show that the coefficients are non-negative note that the function f (x) := xn is
concave up for n ≥ 1 and x ≥ 0. Hence, (x +1)n −2xn + (x −1)n ≥ 0 for x ≥ 0. For
the constant term, by Taylor’s theorem f (d − 1) = f (d) − f ′(d) + 1

2 f ′′(θ), where
d − 1 ≤ θ ≤ d. Since f ′′(x) = n(n − 1)xn−2 ≥ 0 for x ≥ 0 this finishes the proof. ��
Remark 7.7 i) Calculations such as these suggest the natural conjecture that in general
Ad(Q, q) has non-negative integer coefficients. This is the analogue for kd of the first
part of Kac’s conjecture (now a theorem [23]) on counting absolutely indecomposable
representations over Fq (the case d = 1).
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ii) The polynomial A1(Q, q) is the specialization of the Tutte polynomial
T (Q; x, y) of the underlying graph at x = 1. Indeed, for d = 1 necessarily r is
identically equal to 1 and hence δ(�, r) = 0. Then (7.7) yields

A1(Q, q) =
∑

�

(q − 1)b1(�) = T (Q; 1, q),

where � runs over connected subgraphs of Q. It is known that the coefficients of the
Tutte polynomial are non-negative integers and therefore the same is true for A1(Q, q).
For generalities on the Tutte polynomial see for example [13].

7.2 Generating functions

We now consider the generating function of both the Ad ’s and the Rd ’s. It will be
convenient to extend their definition to include a term A0 and R0. Since we will need
these independently later we first define the following two functions on connected
graphs.

Definition 7.8 For � a connected graph define

ε(�) :=
{
1 � = •
0 otherwise

(7.11)

and

ε1(�) :=
{
1 � = Sm, for somem ≥ 0

0 otherwise.
(7.12)

where � = Sm is the graph with one vertex and m loops.
We then set

R0(�, q) := ε(�), A0(�, q) := ε1(�).

Note that with this definition the identity (7.8) remains valid for d = 0. We include
also the case m = 0 where S0 = •, the graph consisting of a single vertex with no
edges.

Let

A(Q, q, T ) :=
∑

d≥0

Ad(Q, q)T d , R(�, q, T ) :=
∑

d≥0

Rd(�, q)T d . (7.13)

We record for further reference that as it is easily seen

R(•, q, T ) = 1

1 − T
. (7.14)
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To study these series we introduce some notation. Fix a connected subgraph of
� ⊆ Q. We would like to parametrize all possible functions r keeping track of the
exponent of q in (7.7). To this end, given the function r on edges, let 1 ≤ r1 < r2 <

· · · < rl ≤ d be the distinct values it takes on E(�). We associate with r a strict
filtration F = F(r) of the edges of � of length l

F : ∅ = F0 � F1 � · · · � Fl = E(�). (7.15)

in such a way that r is constant equal to ri on Fi\Fi−1 for i = 1, . . . , l. Let �i be
the graph obtained by contracting all edges of E(�) \ Fi−1 in � for i = 1, . . . , l and
let ci := b1(�) − b1(�i ). For convenience we set c0 := 0. Note that c = c(F) :=
(c0, c1, . . . , cl) depends only on F and not on r itself.

Given a l +1-tuple of non-negative integers c = (c0, c1, . . . , cl) define the rational
function

R(c, q, T ) := q
∑l

i=2 ci T l

(1 − qc0T )(1 − qc1T ) · · · (1 − qcl T )
.

If l = 1 so c = (0, c1) this yields

R(c, q, T ) = T

(1 − T )(1 − T c1)
.

We also extend this definition to the degenerate case where E(�) is empty. By our
running assumption that � is a spanning subgraph of Q it follows that in this case
Q = •. Then l = 0, c = (0) and

R(c, q, T ) = 1

1 − T
.

We have the following.

Proposition 7.9 Fix theabovenotationandhypothesis. Thegenerating functions (7.13)
can be expressed as

A(Q, q, T ) =
∑

�

(q − 1)b1(�)R(�, q, T ), R(�, q, T ) =
∑

F
R(c(F), q, T ),(7.16)

where � runs over all connected subgraphs of Q and F over all strict filtrations of
E(�). In particular, A(Q, q, T ) and R(�, q, T ) are rational functions of q and T .

Proof It will be convenient to set r0 := 1 and define si := ri − ri−1 for i = 1, . . . , l.
Fix a filtration F as in (7.15). Then all r ’s such that F(r) = F can be parametrized
by integers s1, . . . , sl with s1 ≥ 0, s2 > 0, . . . , sl > 0 and s1 + · · · + sl ≤ d − 1. The
exponent of q in (7.7) is then

∑l
i=1 ci si . Summing over all such s and d we get

∑

d≥1

∑

s

xs11 · · · xsll T d = x2 · · · xlT l

(1 − T )(1 − x1T ) · · · (1 − xlT )
.



   20 Page 42 of 50 T. Hausel et al.

Now plugging in xi = qci combined with (7.8) yield (7.16). ��

For example, for Q = C3 spelling out (7.16) we find

A(C3, q, T ) =(q − 1)

(
6T 3

(1 − T )3(1 − qT )
+ 6T 2

(1 − T )2(1 − qT )
+ T

(1 − T )(1 − qT )

)

+ 6T 2

(1 − T )3
+ 3T

(1 − T )2

=(q − 1)
T (T 2 + 4T + 1)

(1 − T )3(1 − qT )
+ 3T (T + 1)

(1 − T )3

= (2q + 1)T 2 + (q + 2)T

(1 − T )2(1 − qT )
.

(7.17)

The first three terms in the sum correspond to strict filtrations of E(C3). There are six
filtrations with c = (0, 1, 0, 0), six with c = (0, 1, 0) and one with c = (0, 1). The
last two terms correspond to the three subgraphs of C3 with two edges. Each subgraph
has two filtrations with c = (0, 0, 0) and one with c = (0, 0).

In general for the cyclic graph the expression (7.9) gives the following for n > 1

A(Cn, q, T ) =(q − 1)
T An(T )

(1 − T )n(1 − qT )
+ n

T An−1(T )

(1 − T )n

=T
∑n−2

j=0 A(n − 1, j) [q( j + 1) + n − 1 − j] T j

(1 − T )n−1(1 − qT )
,

(7.18)

where An(T ) := ∑n−1
j=0 A(n, j)T j with A(n, j) the Eulerian numbers defined, for

example, by the generating function

∑

k≥0

(k + 1)nT k =
∑n−1

j=0 A(n, j)T j

(1 − T )n+1 . (7.19)

Note the duality

A(Cn, q
−1, T−1) = (−1)n A(Cn, q, T ), n > 1, (7.20)

which follows easily from the symmetry A(n, j) = A(n, n − 1 − j) of the Eulerian
numbers. We will see below Sect. 7.4 that this is a general feature of such generating
functions.
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Here are the first few cases of Nn , the numerator of A(Cn, q, T ) divided by T

n Nn

2 q + 1
3 (2q + 1)T + (q + 2)
4 (3q + 1)T 2 + (8q + 8)T + (q + 3)
5 (4q + 1)T 3 + (33q + 22)T 2 + (22q + 33)T + (q + 4)
6 (5q + 1)T 4 + (104q + 52)T 3 + (198q + 198)T 2 + (52q + 104)T + (q + 5)

7.3 Recursion

Proposition 7.10 The following recursion holds

R(�, q, T ) = ε(�) + T
∑

A⊆E(�)

R(�/A, q, qb1(�[A])T ), (7.21)

where �[A] denotes the subgraph of � determined by the subset of edges A and �/A
the graph obtained by contracting all edges in A.

Proof For � �= • the recursion follows from the definition by grouping in the sum
all strict filtrations with the same first term �1 = �/A. For � = • it is a simple
verification, namely

1 + T

1 − T
= 1

1 − T
.

��
As an application of this recursion, consider � = Sm the graph with one vertex and

m loops. Formula (7.21) in this case yields

R(Sm, q, T ) = T

(1 − T )(1 − qmT )
+

m−1∑

i=1

(
m

i

)
T

1 − T
R(Sm−i , q, qi T ), m ≥ 1.

For m ≥ 1 the R(Sm, q, T )’s are rational functions of the form T Fm(q, T )/(T )m+1
for some polynomials Fm , where (T )m := ∏m−1

i=0 (1 − qi T ). Here are the first few
values.

m Fm
1 1
2 qT + 1
3 q3T 2 + (2q2 + 2q)T + 1
4 q6T 3 + (3q5 + 5q4 + 3q3)T 2 + (3q3 + 5q2 + 3q)T + 1.

On the other hand, by (7.3) we have
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Table 1 Rational Functions
� R A

1
[0]

1
[0]

T
[01]

1
[1]

T
[02]

T
[02]

(T+1)T
[021]

(q+1)T
[01]

(qT 2+2qT+2T+1)T
[0212]

(q2+q+1)T
[02]

(T 2+4T+1)T
[031]

(2qT+T+q+2)T
[021]

[0n01n1 · · · ] denotes the polynomial (1 − T )n0 (1 − qT )n1 · · ·

R(Sm, q, T ) = (q − 1)−m
∑

d≥0

(qd − 1)mT d , m ≥ 1.

This shows that Fm is a q-version of the Eulerian polynomial whose coefficients are
the Eulerian numbers A(m, j) of (7.19). These q-Eulerian polynomials were defined
by Carlitz [5]; they have interesting combinatorial interpretations.

In fact, it is trivial to verify that Ad(Sm, q) = qdm for d ≥ 1 as the group Gd acts
trivially on representations in this case. It is also true for d = 0. Hence

A(Sm, q, T ) =
∑

d≥0

qdmT d = 1

1 − qmT

and (7.8) becomes

m∑

i=0

(
m

i

)
(q − 1)i

Fi (q, T )

(T )i+1
= qm

1 − qmT
.

7.4 Duality

We now prove a remarkable duality property of the rational functions R(�, q, T ) and
A(�, q, T ). They both are transformed in a simple way under the inversion (q, T ) �→
(q−1, T−1). Here is a table of the values of R(�, q, T ) and A(�, q, T ) for a few small
graphs.

More precisely, we have the following

Theorem 7.11 Let � be a finite connected graph. Then we have

A(�, q−1, T−1) = ε1(�) + (−1)#V (�)A(�, q, T ), (7.22)
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and

R(�, q−1, T−1) = ε(�) + (−1)#E(�)−1qb1(�)R(�, q, T ), (7.23)

where V (�) and E(�) denotes the set of vertices and edges of � respectively.

Before we start with the proof properly it will be convenient to setup the language of
Hopf algebras we will use (see for example [34] for an introduction). Let H be the
commutative Hopf algebra over Q of linear combination of finite graphs up to isomor-
phism and one-point join, self-loops and multiple edges allowed (see [28, Example
23]). Concretely,H is generated over Q by isomorphism classes of finite graphs mod-
ulo the equivalence �1

∐
�2 � �1 ×v �2. Here �1

∐
�2 denotes disjoint union and

�1 ×v �2 the one-point join of the two graphs at vertices vi ∈ �i for i = 1, 2; namely,
the graph obtained by identifying the two vertices v1 and v2 in �1

∐
�2. We will

denote by �1 � �2 the equivalence of two graphs �1 and �2 if needed but we will
mostly abuse notation and write the graph � for its equivalence class.

The product inH is given by disjoint union and the coproduct by

�(�) :=
∑

A⊆E(�)

�[A] ⊗ �/A,

where �[A] and �/A are as above. The unit 1 ∈ H is the class of the graph • and the
counit is the map ε induced from that previously defined in (7.11). Namely,

ε(�) :=
{
1 if� � •
0 otherw.

We can give H a grading by setting δ(�) := #E(�). Then the degree zero piece
is Q · 1 and hence H is connected. Finally, the convolution of two functions f , g on
graphs up to isomorphism and one-point join with values in a commutative Q-algebra
K is defined as

( f ∗ g)(�) :=
∑

A⊆E(�)

f (�[A]) · g(�/A).

In what follows we will take K := Q[q, q−1]. Convolution gives an associative
product on K -valued functions on equivalence classes of graphs. If f and g are multi-
plicative on disjoint unions of graphs (giving rise to characters of the algebra structure
ofH by extending them by linearity) then the same holds for their convolution f ∗ g.
In fact, the characters of H form a group under convolution with identity element ε

[34, Prop. II.4.1].
For example, the map on classes of graphs induced by the function ε1 defined

in (7.12) is a character and it is easily checked that if we convolve it with itself k ≥ 1
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times we get

(ε1 ∗ · · · ∗ ε1)(�) =
{

(m + 1)k−1 � � Sm, for somem ≥ 0

0 otherwise.

The Rd ’s defined in (7.6) when viewed as functions on graphs also induce characters
of H as

Rd(�, q) = Rd(�1, q)Rd(�2, q)

if � = �1 ×v �2. Finally,

ψ(q)(�) := qb1(�), (−1)δ(�) := (−1)#E(�),

induce characters of H as well. In all the above examples we will denote the corre-
sponding functions on classes of graph with the same symbol and simply drop � from
the notation.

Lemma 7.12 We have

(−1)δψ(q) ∗ ψ(q) = ε.

In other words, the convolution inverse of ψ(q) equals (−1)δψ(q).

Proof By Lemma 7.13 below we have

(
(−1)δψ ∗ ψ

)
(�) =

∑

A⊆E(�)

(−1)#Aqb1(�[A])qb1(�/A) = qb1(�)
∑

A⊆E(�)

(−1)#A = ε(�)

��
We will need the following simple

Lemma 7.13 With the above notation

b1(�) = b1(�[A]) + b1(�/A), δ(�) = δ(�[A]) + δ(�/A)

for any subset A ⊆ E(�))

Proof (of Theorem 7.11) It suffices to prove (7.23) as it is easily seen to imply (7.22).
With our Hopf algebra setup the recursion (7.21) is equivalent to the following

Rd+1 = ψ(qd) ∗ Rd , R0 = ε, d ≥ 0, (7.24)

and hence by induction

Rd(q) = ψ(qd−1) ∗ · · · ∗ ψ(1), d ≥ 1. (7.25)
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Let R̃d(�, q) be the coefficient of T−d in the expansion of R(�, q, T ) in powers
of T−1. Namely,

R(�, q, T ) =
∑

d

R̃d(�, q)T−d ,

where the sum is over integers d ≥ d0 for d0 ∈ Z (recall that R(�, q, T ) is a rational
function). In fact we may take d0 = 1 since R̃d is zero for d ≤ 0 by the following. ��
Lemma 7.14 The rational function R(�, q, T ) vanishes to order at least one at T =
∞.

Proof This follows immediately from the recursion (7.21) by induction on the number
of edges of �. Indeed, for • we have R = (1− T )−1 (see 7.14). Now rewriting (7.21)
as

R(�, q, T ) = ε(�)

1 − T
+ T

1 − T

∑

∅�A⊆E(�)

R(�/A, q, qb1(�[A])T ),

it suffices to note that in the sum on the right hand side each �/A has fewer edges than
� and hence the claim follows. ��

Expanding in powers of T−1 the recursion (7.21) we obtain

∑

d≥1

R̃d(�, q)T−d = ε(�) + T
∑

d≥1

∑

A⊆E(�)

R̃d(�/A, q)
(
qb1(�[A])T

)−d
. (7.26)

Equating constant coefficients on both sides of (7.26) we find that

0 = ε + ψ(q−1) ∗ R̃1(q).

Letting φ(q) be the convolution inverse of ψ(q) and thanks to Lemma 7.12 we can
rewrite this identity as

R̃1(q) = −φ(q−1) ∗ ε = −φ(q−1) = (−1)δ−1ψ(q−1).

In general, comparing the coefficients of T−d+1 we find

R̃d−1(q) = ψ(q−d) ∗ R̃d(q), d > 1, (7.27)

which using φ again we may reformulate as

R̃d(q) = (−1)δψ(q−d) ∗ R̃d−1(q), d > 1. (7.28)

Combined with Lemma 7.13 this gives

R̃d(q) = (−1)δ−1ψ(q−1) ·
(
ψ(q−(d−1)) ∗ · · · ∗ ψ(1)

)
, d ≥ 1.
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(To be clear, here · is just multiplication in K .)
Finally, comparison with (7.25) gives

R̃d(q) = (−1)δ−1ψ(q) · Rd(q
−1), d > 0.

proving (7.23). ��
Remark 7.15 There is a relation between R2(�, q) and the Tutte polynomial of �.
More precisely, we have the following.

Proposition 7.16 For a connected graph �

R2(�, q) = T (�; 2, q + 1) (7.29)

Proof This is a simple verification using that R2(q) = ψ(q) ∗ ψ(1) by (7.25) and the
standard expression of the Tutte polynomial as a sum over A ⊆ E(�) (e.g. see [13,
(3.3)]). ��
The higher invariants Rd(�, q) for d > 2 are not expressible in terms of the Tutte
polynomial as they do not satisfy in general the contraction/deletion property. Indeed,
this fails already for � = . Take e to be any of the edges. Then �\e = and

�/e = . We compute the difference of their rational functions R (the individual

values appear in Table 1) and get

R(�, q, T ) − R(�\e, q, T ) − R(�/e, q, T ) = ((q + 2)T 2 − 1)T

(1 − T )3

= −T + (2q + 1)T 3 + (2q2 + 4q + 2)T 4 + O(T 5).

(7.30)

As expected the coefficient of T 2 vanishes but all the higher ones are non-zero. To
check this we may set say q = 1 and verify that the coefficient of T n is then n(n − 2)
for all n ≥ 1.
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