
Enhanced mirror
symmetry for
Langlands dual
Hitchin systems
Tamás Hausel

Abstract

The first part of this paper is a survey of mathematical results on mirror symmetry phe-
nomena between Hitchin systems for Langlands dual groups. The second part introduces
and discusses multiplicity algebras of the Hitchin system on Lagrangians, and considers
corresponding conjectural structures on their mirror.
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1. Introduction

Considering the 2-dimensional reduction of the Yang–Mills equations in 4 dimen-
sions, Hitchin [34] in 1987 introduced and studied the moduli space of solutions to cer-
tain self-duality equations on a Riemann surface. The moduli space turns out to have an
“extremely rich geometric structure.”

Themoduli spaceM of solutions for a complex reductive structure groupG (Hitchin
first considered G D SL2), carries a canonical hyperkähler metric g with complex structures
I; J , and K, and corresponding Käher forms !I , !J , and !K . In complex structure I , it
agrees with the moduli space MDol of Higgs bundles—or Hitchin pairs—.E; ˆ/, where E

is a G-bundle and the Higgs field ˆ 2 H 0.C I ad.E/ ˝ K/ is a section of the adjoint bundle
twisted by the canonical bundle on a complex curve C :

.M; I / Š MDol:

Under an isomorphism induced by multiplying the Higgs field with i , the Kähler manifolds
.M; J; !J / and .M; K; !K/ are isomorphic. In turn, they are both isomorphic with the
moduli space MDR of flat G-connections on the curve C :

.M; J / Š .M; K/ Š MDR: (1.1)

The notation MDol for Dolbeault and MDR for de Rham nonabelian cohomologies follows
[48] who introduced the viewpoint of nonabelian Hodge theory in the study of M.

In turn, Hitchin [35] introduced the Hitchin map

h W M ! A:

In the G D GLn case, this is just the characteristic polynomial of the Higgs field

h.E; ˆ/ D det.x � ˆ/ 2 A WD

nM
iD1

H 0.C I Ki /:

For general G, one needs to consider invariant polynomials on g WD Lie.G/ and compute
them on the Higgs field. He proved in [35] that h is an algebraically completely integrable
Hamiltonian system with respect to the I -holomorphic symplectic form !C WD !J C i!K .
Thus h is sometimes referred to as theHitchin system. This means that dim.A/ D dim.M/=2

and that the component functions of h are independent and Poisson commute. Additionally,
the Hitchin map is proper, which was proved by Hitchin for SL2 in [35], for GLn by Nitsure
[46] and Simpson [48], and by Faltings [16] for general G. The complete integrability and
properness of the Hitchin map together imply that its generic fiber is a torsor over an abelian
variety. In particular, topologically they are isomorphic to compact tori.

Due to the flexibility of their constructions (choice of curves and structure groups—
but also various types of ramification data) Hitchin systems have been related to most of the
known integrable systems [11, 12]. They thus play a central role in the field of integrable
systems.

Our main interest in this survey will be howmirror symmetry and Langlands duality
relate to the Hitchin system. In 2003 the paper [33]mathematically related the Hitchin system

2229 Enhanced mirror symmetry for Langlands dual Hitchin systems



for Langlands dual groups to mirror symmetry. In particular, it formulated a topological
mirror symmetry conjecture for certain SLn and PGLn Hitchin systems.

In 2007 Kapustin–Witten [38] placed the Hitchin system in the framework of a
certain supersymmetric 4-dimensional Yang–Mills theory reduced to 2 dimensions. It also
offered a detailed understanding ofmirror symmetry and the geometrical Langlands program
as a reduction of S -duality in 4 dimensions. This led to many papers, such as [2,8,29,31,36]

discussing pairs of mirror branes in Langlands dual Hitchin systems. The last two papers
emphasized a further structure on M, namely a canonical T-action given by .E; ˆ/ 7!

.E; �ˆ/.
In 2010 Ngô [45] proved the Fundamental Lemma in the Langlands program, via a

detailed understanding of the cohomology of certain singular fibers of the Hitchin map. In
[28] similarities between the topological mirror symmetry conjecture of [33] and such coho-
mological results of Ngô were discussed and were conjecturally related. In [24] Gröchenig–
Wyss–Ziegler proved the topological mirror symmetry conjecture of [33] using an arithmetic
p-adic integration technique. In turn, in [23] the same authors managed to reprove Ngô’s
cohomological results with these new p-adic techniques. More recently Maulik–Shen [42]

managed to complete some of the suggestions of [28] and derived a proof of the topological
mirror symmetry conjecture from Ngô’s results.

First we will discuss some of the background to these developments, and then in
Section 3 we will explain some unpublished results about enhanced mirror symmetry for
Langlands dual groups at the tip of the nilpotent cone.

2. Background

2.1. Mirror symmetry
Three aspects of mirror symmetry will be relevant for us: topological and homolog-

ical mirror symmetry and Strominger–Yau–Zaslow mirror symmetry.
Mirror symmetry in a nutshell relates the complex geometry of a Calabi–Yau X

with complex structure IX and Kähler, in particular symplectic, 2-form !X to the sym-
plectic geometry of a same dimensional mirror Calabi–Yau .Y; IY ; !Y /. Originally [22]

3-dimensional examples of such a correspondence appeared in string theory and mirror sym-
metry as the statement that the physics of a certain 2-dimensional type A nonlinear sigma
model with target .X; !X / matches that of a 2-dimensional type B nonlinear sigma model
with target .Y; IY /.

The study of mathematical aspects of this mirror symmetry has been one of the
central subjects in modern symplectic/ complex algebraic geometry. The first mathematical
aspect of the mirror relationship is the agreement of Hodge numbers hn�p;q.X/ D hp;q.Y /,
which we call topological mirror symmetry.

The formulation of Kontsevich [39] in 1994 of homological mirror symmetry

Fuk.X; !X / Š Db.Y; IY /
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— the agreement of the Fukaya category of X and the derived category of coherent sheaves
on Y—gave a profound mathematical conjecture for what mirror symmetry should mean.

The early 1990s saw several constructions of conjectured mirror pairs in [3,5,9]. In
1996 Strominger–Yau–Zaslow [49] suggested a way to construct the mirror of a Calabi–Yau
3-fold X out of the geometry of X . They argued that there should be fibrations of X and Y

over the same base B Š S3:

X Y

& .

B

(2.1)

so that the generic fibers are dual special Lagrangian 3-tori. Here L � X special Lagrangian
means that L is Lagrangian !X jL D 0 and additionally Im.�X /jL D 0 the imaginary part
of the Calabi–Yau volume form vanishes on L. In turn, then Y should be thought of as the
moduli space of certain objects in Fuk.X; !X /, generically defined by special Lagrangian
3-tori equipped with a U.1/-local system. A mathematical formulation of Strominger–
Yau–Zaslow was pursued by Gross–Siebert [26], with many accomplishments and recent
breakthroughs [25,27].

Between mirror Calabi–Yau 3-folds, a complete construction of the dual special
Lagrangian fibrations (2.1) is still missing. The Higgs bundle moduli spaces for Lang-
lands dual groups, where the Hitchin systems will automatically give us such dual special
Lagrangian fibrations, is a natural example, albeit in a geometrically different scenario from
the original [49].

2.2. Geometric Langlands correspondence
In the works of [6,14,40], a geometric version of the Langlands correspondence has

been proposed. Recall that the Langlands program in number theory (see [18, 19] for some
introductory ideas) for a reductive group G over a number field relates automorphic data
for G (like modular forms for SL2) with spectral data (like a Galois representation on the
cohomology of an elliptic curve for SL2) for a Langlands dual GL group. The conjectures
can be formulated over the other kind of global field as well: the function field of a curve over
a finite field. The conjectures become more tractable in this case as the algebraic geometry
of curves can be efficiently used. Here we will consider the even more geometric version of
this program for function fields of a curve over the complex numbers.

Over C the Langlands dual G_ WD GL of a complex reductive group G is simple
to construct. The classification of complex reductive groups is via their root datum .X; ˆ;

X_; ˆ_/—consisting of a rank n lattice X , a root system and coroot system ˆ � X and
ˆ_ � X_ in the dual lattice X_, satisfying certain properties—attached to all rank n com-
plex reductive groups G. The Langlands dual of G then is the reductive group G_ whose root
datum is the dual root datum .X_; ˆ_; X; ˆ/. For example, GL_

n Š GLn and SL_
n Š PGLn.

The geometric Langlands correspondence of Beilinson–Drinfeld [6] for a smooth
projective curve C proposes to construct from a G-local system on C (a geometric analogue
of a Galois representation) a holonomic D-module on the moduli stack of bundles BunG_
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(a geometric analogue of an automorphic form). The main property of this construction is
that the holonomic D-module must be an eigensheaf of certain Hecke operators. Beilinson–
Drinfeld [6] succeed in this construction for a certain set of G-local systems on C , the so-
called opers.

We will see below how Beilinson–Drinfeld’s picture can be understood also as
enhanced mirror symmetry between the hyperkähler, and thus in particular Calabi–Yau,
moduli space of flat G connections on MDR and the moduli space of flat G_ connec-
tions M_

DR.

2.3. SYZ mirror symmetry for Langlands dual Hitchin systems
The starting point of [33] was the observation that for G D SLn and G_ D PGLn

the two Hitchin systems h W MDol ! A for G-Higgs bundles and M_
Dol ! A_ for G_ Higgs

bundles have the same base A Š A_ and in the diagram
MDol M_

Dol

h& .h_

A

(2.2)

the generic fibers are dual abelian varieties. The fibers are holomorphic Lagrangian with
respect to the holomorphic symplectic forms !C WD !J C i!K , i.e., !C D 0, thus both
!J D !K D 0, along the fibers because of the complete integrability of the Hitchin sys-
tems.

The same maps in complex structure J then yield
MDR M_

DR

h& .h_

A

(2.3)

where the generic fibers are special Lagrangian fibrations. This means that !J vanishes
on the fibers, thus they are Lagrangian. Additionally, !K and the imaginary part of the
J -holomorphic Calabi–Yau form .!K C i!I /2d also vanish along the fibers.

To find a mathematically testable form of mirror symmetry, the paper [33] formu-
lated topological mirror symmetry between the mirror Calabi–Yau’s, MDR and M_

DR.

2.4. Topological mirror symmetry for Langlands dual Hitchin systems
To formulate this version of mirror symmetry from [33], we will be a bit more pre-

cise about our moduli spaces. For SLn, we consider M WD MDol the moduli space of stable
Hitchin pairs of rank n fixed bundles E on C of fixed determinant line bundle of degree 1

with trace-free Higgs fieldsˆ 2 H 0.C IEnd0.E/ ˝ K/. For PGLn, we consider the action of
� WD JacC Œn�, the group of order n line bundles onC , on the SLn moduli spaceM and define
M_ WD M=� . Then M will be a smooth quasiprojective variety, while M_ is a quasipro-
jective orbifold. For our considerations, we will need extra twisting structure on the moduli
spaces in the form of a gerbe

˛ 2 H 2
�
M_;U.1/

�
Š H 2

�
M;U.1/

��

which can be constructed using the universal bundle on M.
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One can then define certain mixed Hodge numbers

hp;q.M/ D hp;q
�
H pCq

c .M/
�

for the smooth M and ˛-twisted stringy Hodge numbers for the orbifold M_ D M=�:

h
p;q
st;˛.M_/ WD

X
2�

hp�F ./Iq�F ./
�
H pCq�2F ./.M

I L˛/�
�
;

where F./ is the fermionic shift, defined from the action of  on the tangent space of M at
a  -fixed point.

With these we can formulate our topological mirror symmetry conjecture:

Conjecture 2.1 ([33]). We have an agreement of Hodge numbers hp;q.M/ D h
p;q
st;˛.M_/.

Note that, as it stands, the conjecture is about the Hodge numbers of the Higgs
moduli spaces M D MDol. However, it was proved in [33] that the Hodge numbers of MDol

and MDR agree, and so (2.1) is also about the agreement of (mixed) Hodge numbers of the
proposed mirrors MDR and M_

DR. This way we can interpret Conjecture 2.1 as topological
mirror symmetry for our SYZ mirror pair MDR and M_

DR.
Conjecture 2.1 was proved for SL2 and SL3 in [33]. More recently, in 2020, the

general case of SLn was settled by Gröchenig–Wyss–Ziegler [24]. They used an arithmetic
p-adic integration technique, pioneered by Denef–Loeser [10] and used by Batyrev [4] to
check some topological mirror symmetry conjectures in the usual mirror symmetry.

In [28]we observed a curious similarity. Namely, Ngô in his proof [45] of the Funda-
mental Lemma in the Langlands program reduced the Fundamental Lemma to the agreement
of the number of points of certain singular Hitchin fibers over finite fields and in turn to the
agreement of certain Hodge numbers of singular fibers of theHitchin fibration. In [28, §5.4]we
argued that Ngô’s cohomological result is a relative version of the topological mirror symme-
try conjecture along theHitchin fibration. A strategywas also proposed to deduce topological
mirror symmetry using Ngô’s techniques. This proposal has been recently completed by
Maulik–Shen in [42] in 2020, giving a new proof of the topological mirror symmetry Con-
jecture 2.1 using Ngô’s techniques.

Finally, in 2020, Gröchenig–Wyss–Ziegler in [23] managed to extend their p-adic
integration techniques from [24] for Higgs moduli spaces of general reductive groups G and
in turn they found a new proof of Ngô’s cohomological result.

2.5. Geometric Langlands as enhanced homological mirror symmetry
In 2007 Kapustin–Witten [38] put forward a detailed circle of ideas amounting to a

physics derivation of the geometric Langlands Correspondence as an enhanced mirror sym-
metry. They argued that a well-studied S -duality (or electro-magnetic or Montonen–Olive
duality [43]) in a certain four-dimensional N D 4 supersymmetric Yang–Mills theory, when
reduced to two dimensions, yields an enhanced mirror symmetry, which in turn recovers the
geometric Langlands correspondence as formulated by [6].

In this two-dimensional reduction, Montonen–Olive duality becomes an equiva-
lence of a type B sigma model with target the moduli space MDR of flat G-connections

2233 Enhanced mirror symmetry for Langlands dual Hitchin systems



on a complex curve C and a type A sigma model with target M_
DR, the moduli space of flat

G_-connections on C . As a consequence, the category of boundary conditions in the two
theories should be equivalent,

S W Db.MDR/ ' Fuk.M_
DR/; (2.4)

which can be interpreted as Kontsevich’s homological mirror symmetry conjecture applied
to the mirror pair MDR and M_

DR.
Kapustin–Witten [38] explained that this equivalence of categories has more struc-

ture due to the hyperkähler targets, and more symmetries due to their origin in 4-dimensions
than the usual homological mirror symmetry, which arises from an equivalence of two
2-dimensional sigmamodels. They use these additional ideas to construct from a flat connec-
tion ˛ in MDR, considered by its skycraper sheaf O˛ 2 Db.MDR/, an element of Fuk.M_

DR/

which they interpret as a D-module on the moduli space of G_-bundles on our curve C .
The Hecke eigensheaf property then in turn is deduced from the extra symmetry stemming
from the 4-dimensional origin.

First, due to the hyperkähler targets, Kapustin–Witten talk about more structured
branes (also known as boundary conditions) by proposing that a brane should be either type
A or B with respect to all the three complex structures I; J , and K. This way they consider
type .B; A; A/, .A; B; A/, .A; A; B/ and type .B; B; B/ branes on hyperkähler manifolds.
For example, a type .B;A;A/ brane could be an I -holomorphic!C D !J C i!K Lagrangian
subvariety together with a local system. Or a type .B; B; B/ brane should be a hyperkähler
submanifold together with a hyperholomorphic connection on a bundle over it.

In their framework, Kapustin–Witten [38] argue that the mirror (S-dual) of an
.B; A; A/ brane on the hyperkähler M should be a .B; B; B/ brane on M_. In particu-
lar, if we just concentrate on complex structure J , that of MDR, we see that the mirror of an
A brane should be a B brane. The mirror relationships are slightly more subtle [38, Table 2,

p. 74] in that the A-model in complex structure J should be mirror to the B-model in com-
plex structure K, which in turn, by (1.1), yields our version. This more refined version of
mirror symmetry matches a type B brane in complex structure I to another type B brane in
complex structure I on the mirror.

This latter correspondence was also formulated by Donagi–Pantev [13] as a classical
limit—a first approximation of (2.4)—as

S W Db.MDol/ ' Db.M_
Dol/ (2.5)

of the homological mirror symmetry (2.4). First, [13] checks that (2.2) generically gives dual
abelian varieties as fibers, for every reductive group G. Second, they check that generically
the Fourier–Mukai transform [44] relative to the Hitchin base gives an equivalence like (2.5)
which satisfies the additional intertwining of Hecke–Wilson symmetries discussed below. It
is expected that (2.5) will have to be modified when extended over certain singular points of
the moduli spaces.

Another direction of research—motivated by [38]’s consideration of hyperkähler
branes—lead to new understandings of Lagrangian subvarieties inMDol andMDR and hyper-
holomorphic sheaves on M. For example, [2, 8, 36] studied various constructions of such
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hyperkähler branes in all four different types, and contemplated what their mirror should be.
In particular, Hitchin [36] proposed pairs of a .B; A; A/ brane on M and .B; B; B/ brane on
M_ for which he could show that generically over the Hitchin base they are Fourier–Mukai
dual. The G D GL2 case of Hitchin’s suggestion was the starting point of [31], where an addi-
tional structure, the T-action, played an important role. This point of view will be explained
below in more detail.

Second, due to the 4-dimensional origin of their derivation of (2.4), Kapustin–
Witten considered extra symmetries on these categories, arising from line operators in the
4-dimensional theory. Namely, Wilson operators W � attached to representations � of G act
on Db.MDR/ via tensoring with the vector bundle in the representation � of the G-bundle
underlying the universal G flat connection. On the other hand, Hecke operators (or t’Hooft
operators for the physicists) H � attached to irreducible representations � of G act on the
moduli space of G_ bundles and in turn on D-modules on them. The extra symmetry obser-
vation of [38] is that these operators should intertwine the mirror symmetry of (2.4). We will
spell out these operators in a more detailed way in the more symmetric classical limit (2.5)
of [13] in Section 3.4 below.

The homological mirror symmetry (2.4) with these two additional structures: match-
ing of hyperkähler branes under mirror symmetry, and the Wilson–Hecke symmetry is what
we call enhanced mirror symmetry. These go beyond the usual homological mirror symmetry
of Kontsevich and stem from the supersymmetric and 4-dimensional origins of S -duality.

3. Enhanced mirror symmetry at the tip of the nilpotent

cone

The original motivation for the considerations below is to find a way to test the
conjectured mirror pairs of .B; A; A/ and .B; B; B/ branes put forward in [2,8,36]. The only
tests so far—which were often carried out in [2, 8, 36]—are to check if the proposed mirror
pairs are indeed Fourier–Mukai dual relative to the Hitchin maps. This can only be checked
generically over the Hitchin base. We would like to see more global checks, in particular
ones which can verify mirror symmetry proposals over the 0-fibers of the Hitchin maps, the
global nilpotent cones.

We introduced a technique in [29,31] which can verify mirror symmetry proposals
over the nilpotent cone by considering the effect of mirror symmetry on morphisms in the
corresponding categories. The difficulty to consider the morphisms in our categories arises
from the noncompactness of our moduli spaces. For example, the vector spaces of mor-
phisms in the derived category D.MDol/ are typically infinite dimensional. To measure their
size, we will be looking at the T-equivariant structure on them. Recall that the multiplica-
tive group T WD C� of the complex numbers acts on M by � W .E; ˆ/ 7! .E; �ˆ/, scalar
multiplication of the Higgs field. Here we will be interested in a T-equivariant extension of
the classical limit (2.5) of the geometric Langlands correspondence, which should be as a
first approximation an equivalence S W DT.MDol/ � DT.M_

Dol/ between the T-equivariant
derived categories of MDol and M_

Dol. The morphisms between two objects F1 and F2 in
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DT.MDol/ can be identified with the graded vector space Ext�.X I F1; F2/. To measure this
graded vector space, we note that T acts on it, and assuming that the weight spaces are
finite dimensional and vanish for large enough weights (which we expect for semiprojective
varieties) we can define the equivariant Euler form as

�T.X I F1; F2/ D

X
k;l

dim
�
H k

�
RHom.F1; F2/

�l�
.�1/kt�l

D

X
k;l

dim
�
HomDcoh.X/

�
F1; F2Œk�

�l�
.�1/kt�l

D

X
k;l

dim
�
Extk.X I F1; F2/l

�
.�1/kt�l

2 C
�
.t/

�
:

With this we expect that S is an isometry,

�T
�
S .F /; S .G /

�
D �T.F ; G /:

In [31] we managed to check this isometry for several pairs of conjectured mirror
branes from [36], while in [29] we checked this isometry for the conjectured mirror pairs rel-
evant here; see below. In the second part of this paper, wewill recall some results of [29] about
the mirror of very stable upward flows, introduce and study the multiplicity algebras of the
Lagrangian upward flows following [30], and finally we will consider what the multiplicity
algebra should correspond to on the mirror.

3.1. Very stable Higgs bundles and mirror symmetry
The starting point is the recent paper [29]. First we recall its formalism.

3.1.1. Białynicki-Birula decomposition of semiprojective varieties
Let the multiplicative group T WD C� of the complex numbers act on a (possibly

reducible) variety (a reduced separated scheme of finite type over C). We say that the action
is semiprojective [32, §1] if the following three conditions hold:

(1) the action is linear, i.e., there is a locally closed T-equivariant embedding of X

into PN with a linear action of T (for example when X is normal and quasi-
projective);

(2) the fixed point subvariety XT is proper and thus projective;

(3) lim�!0 � � x exists for all x 2 X .

For ˛ 2 XT, we define W C
˛ WD ¹x 2 X j lim�!0 � � x D ˛º, the upward flow from ˛, and

W �
˛ WD ¹x 2 X j lim�!1 � � x D ˛º, the downward flow from ˛. Then we have

X D

a
˛2XT

W C
˛ ;

the Białyinicki-Birula partition of X , and we define the projective variety

C WD

a
˛2XT

W �
˛

to be the core of X . We then have the following
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Theorem 3.1 ([7], [29, Propositions 2.1 and 2.10]). When ˛ 2 .X s/T, a T-fixed point on the
smooth locus, then W ˙

˛ � X are locally closed subvarieties and W ˙
˛ Š T ˙

˛ X as T-varieties.
Moreover, when ! 2 �2.X s/ is a homogeneity 1 symplectic form, W C

˛ � X and C � X are
Lagrangian subvarieties.

We call ˛ 2 .X s/T and W C
˛ very stable when W C

˛ \ C D ¹˛º. Equivalently,
˛ 2 .X s/T is very stable if and only if W C

˛ \ W �
ˇ

¤ ; implies ˇ D ˛. More generally,
one can show that the relation ˛ � ˇ when W C

˛ \ W �
ˇ

¤ ; induces a partial ordering. Then
˛ 2 .X s/T is very stable if it is maximal with respect to this ordering. We then have

Theorem 3.2 ([29, Proposition 2.14]). ˛ 2 .X s/T is very stable if and only if W C
˛ � X is

closed.

3.1.2. Białynicki-Birula partition for Higgs bundles
We will work with G D GLn. We will denote by M the moduli space of semistable

rank n degree d Higgs bundles .E; ˆ/ on a smooth projective curve of genus g. Here E is
a rank n vector bundle of degree d on C and the Higgs field ˆ 2 H 0.C IEnd.E/ ˝ K/.

We have the Hitchin map [35] given by the characteristic polynomial of the Higgs
field:

h W M ! A WD �
n
iD1H 0.C I Ki /;

.E; ˆ/ 7! det.x � ˆ/:

Then h is a proper map [34,46,48] and a completely integrable Hamiltonian system
[16,35]with respect to a natural holomorphic symplectic form onM. In particular, the generic
fibers are Lagrangian abelian varieties, Jacobians of certain spectral curves.

The T-action on M is given by .E; ˆ/ 7! .E; �ˆ/. This makes the Hitchin map
T-equivariant if we let T act on H 0.C I Ki / with weight i . As these weights are all posi-
tive on A Š �n

iD1H 0.C I Ki /, it is semiprojective, and as the Hitchin map is proper and
T-equivariant we get that our T-action on M is also semiprojective. Additionally, we get that
the core of A, i.e., the origin 0 2 A pulls back to the core of M. For M, the core agrees with
the nilpotent cone h�1.0/red D C .

Generalizing the notion of very stable bundle of Drinfeld and Laumon [15,41], we
can thus define a very stable Higgs bundle as a stable T-fixed Higgs bundle E 2 MsT for
whichW C

E
\ h�1.0/ D ¹Eº the only nilpotent Higgs bundle in its upward flow is itself. Thus

by Theorem 3.2, we know E 2 MsT is very stable exactly when its upward flow is closed.
To reformulate in terms of the Hitchin map, we have an alternate version of Theorem 3.2.

Theorem 3.3 ([30], cf. [51]). E 2 MsT is very stable if and only if h�1.0/ \ W C

E
D ¹Eº if

and only hE WD W C

E
! A is proper if and only if it is finite.

Definition 3.4. For E 2 MsT, define the rational function

mE.t/ WD
�T.Sym.T C�

E
//

�T.Sym.A�//
2 Z.t/:

We call it the equivariant multiplicity of W C

E
.
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We have the following

Theorem 3.5 ([29, Corollary 5.4]). When E 2 MsT is very stable, mE.t/ is a polynomial

• with nonnegative coefficients, which is

• palindromic and

• monic, such that

• mE.1/ D mFE
is the multiplicity of the component NFE

� N in the nilpotent cone.

Let ` 2 Z, mi 2 Z�0 and

ı WD .ı0; ı1; : : : ; ın�1/ 2 Jac`.C / � C Œm1�
� � � � � C Œmn�1�

be a vector of representative divisors on C . To this we can construct a type .1; : : : ; 1/ T-fixed
Higgs bundle Eı D .Eı ; ˆı/ where

Eı D M0 ˚ � � � ˚ Mn�1

is a rank n vector bundle
Mi WD O.ı0 C � � � C ıi /K

�i

and
ˆı jMi

W Mi ! MiC1K � EıK

is given by the defining section of

H 0.C I M �1
i MiC1K/ Š H 0

�
C I O.ıi /

�
:

The following classifies all very stable T-fixed type .1; : : : ; 1/ Higgs bundles and
gives their equivariant multiplicity.

Theorem 3.6 ([29, Theorem 4.16, (5.18)]). Let ı be as above and suppose that Eı is a stable
Higgs bundle. Then Eı is very stable if and only if the effective divisor ı1 C � � � C ın�1 is
reduced. Its equivariant multiplicity is given by

mEı
.t/ D

n�1Y
iD1

"
n

i

#mi

t

;

product of t -binomial coefficients.

3.2. Multiplicity algebra and explicit Hitchin system on Lagrangians
The main idea is to study, for E 2 MsT, the restricted Hitchin map

hE WD hjW C

E
W W C

E
! A

in the framework of the Arnold school [1]. It is a T-equivariant Lagrangian map between
semiprojective vector spaces (i.e., only positive T-weights) of the same dimension. Such
maps are called quasihomogeneous in [1, §12.3].
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We recall from Theorem 3.3 that E is very stable if and only if h�1
E

.0/ D ¹Eº if
and only if hE is proper. For such maps—called nondegenerate—[1, §4,5,12] introduces and
studies its local multiplicity algebra.

Definition 3.7. When E 2 MsT is very stable, define

QE WD QhE
WD C

�
W C

E

�
=
�
h�1

E .m0/
�

D C
�
W C

E

�
=.h1; : : : ; hN /;

the local multiplicity algebra of hE at E . Here m0 � CŒA� is the maximal ideal at 0 2 A and

hE D .h1; : : : ; hN / W CN
Š W C

E
! CN

Š A

in some homogeneous coordinates.

Scheme-theoretically, QE is just the coordinate ring of the scheme-theoretical fiber
of hE over 0 or the scheme-theoretical intersection of W C

E
\ h�1.0/ of the upward flow with

the nilpotent cone. Because hE is T-equivariant, we will get a T-action, and thus a grading
on QE . Because of this, sometimes we call QE the equivariant multiplicity algebra of hE

at E .

Remark 3.8. Note that determining the algebra QE explicitly by N generators and N rela-
tions gives us coordinates on W C

E
such that the Hitchin map is given explicitly by the rela-

tions.

Using results of [1, §4,5,12], we have the following

Theorem 3.9 ([30]). Let E 2 Ms be very stable. Then its local multiplicity algebra is

(1) finite dimensional,

(2) graded QE WD
Lm

kD0 Qk
E

such that Q0
E

Š C,

(3) Gorenstein, with socle Qm
E

Š CJhE
, which is one-dimensional and spanned by

the Jacobian JhE
of hE D .h1; : : : ; hN / and

(4) a Poincaré duality ring, that is, it has a natural bilinear pairing .�; �/ W

QE � QE ! C inducing a perfect pairing Qk
E

� Qm�k
E

! C for all k.

(5) Finally, its Poincaré polynomial
Pm

kD0 dim.Qk
E

/tk D mE.t/ agrees with the
equivariant multiplicity.

This result gives a satisfactory explanation of all the properties of the equivariant
multiplicity polynomial we observed in Theorem 3.5. The following then gives an explana-
tion for the appearance of quantum binomial coefficients—which is well known to be the
Poincaré polynomial of a Grassmannian—for the equivariant multiplicity.

Theorem 3.10 ([30]). Let ı D .ı0; ı1; : : : ; ın�1/ 2 J`.C / � C Œm1� � � � � � C Œmn�1� be a vector
of divisors. Assume that ı1 C � � � C ın�1 is reduced, then Eı is very stable from Theorem 3.6
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and its equivariant multiplicity algebra is

Qı Š

n�1Y
iD1

H �
�
Gr.i; n/I C

�mi
;

the product of the complex cohomology rings of Grassmanians Gr.i; n/ of i -dimensional
subspaces in Cn.

Our attack on Theorem 3.10 starts with understanding the map hı W W C

ı
! A using

Hecke transformations. We explain it here in the first nontrivial case when

ık
c WD .ı0; : : : ; ın�1/

where ıi D 0 unless i D k and the divisor ık D c is one point. For this, we consider the kth
fundamental Hecke correspondence over the Hitchin section W C

0 WD W C

E0
which coincides

with the upward flow of the canonical uniformizing Higgs bundle E0 D .E0; ˆ0/. Recall
[29, (3.16)] that it is given in chain notation as

.E0; ˆ0/ D .O ˚ K�1
˚ � � � ˚ K1�n; ˆ0/ D O

1
! K�1 1

! � � �
1

! K1�n;

where morphisms on the arrows are twisted by K. The canonical uniformizing Higgs bundle
is at the top of the nilpotent cone. We will use Hecke transformations to generate all other
type .1; : : : ; 1/ upward flows from the Hitchin section W C

0 .
We let

Hk WD
®
.Ea; V / 2 W C

0 � Gr.k; E0jc/jˆajc.V / � V
¯

� W C
0 � Gr.k; E0jc/: (3.1)

It can be constructed étale locally over A as the fixed point scheme of the self-map of
Gr.k; E0jc/ induced by the invertible ˆajc � �I W E0 ! E0 where � 2 C is not an eigen-
value of ˆa. By performing a Hecke transformation of Ea at V for a point .Ea; V / 2 Hk ,
we get that Hk Š W C

ık
c
and, moreover, have the commutative diagram

Hk

Š
�! W C

ık
c

�k# #hık
c

W C
0

h0
�! A:

Hence Qık
c

Š Q�k
. In turn, the computation of Q�k

can be done in the Grassman-
nian Gr.k; E0jc/ and will yield in two different ways the two isomorphisms

H �
�
Gr.k; E0jc/I C

�
Š Q�k

Š
CŒp1; : : : ; pk ; q1; : : : ; qn�k �

..pk C � � � C p1xk�1 C xk/.qn�k C � � � C q1xn�k�1 C xn�k/ D xn/
: (3.2)

Of course, the isomorphism of the first and third rings gives the well-known presentation of
the cohomology ring of the Grassmannian.

In effect, we can think of the determination of themultiplicity algebra in (3.2) to give
coordinates on the upward flowW C

ık
c
so that the Hitchin map hık

c
becomes explicit—basically

given by the relations in the cohomology ring of the Grassmannian.
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3.3. Explicit Hitchin system for wobbly Lagrangians
Herewe show howone can generalize the technique above to understandmultiplicity

algebras of wobbly, i.e., not very stable, upward flows using the affine Grassmannian [21,52].
We start with a generalized notion of the kth fundamental Hecke correspondence over the
Hitchin section. Recall the affine Grassmannian

Gr WD GLn..z//=GLnŒŒz��;

where GLn..z// WDGLn.C..z/// and GLnŒŒz�� WDGLn.CŒŒz��/. It is a projective ind scheme,
in particular its reduced is a nested union of projective varieties. It parametrizes higher Hecke
transformations of a vector bundle at a point on a curve.

Let
� D .�1 � �2 � � � � � �n/ 2 P C

� P Š Zn

be a dominant weight and

z�
WD

0BBBB@
z�1 0 : : : 0

0 z�2 : : : 0
:::

:::
: : :

:::

0 0 : : : z�n

1CCCCA 2 GLn

�
C

�
.z/

��
:

We note that GLnŒŒz�� acts from the left on Gr with orbit decomposition

Gr D

a
�2P C

Gr� D

a
�2P C

GLnŒŒz��
�
z�

�
;

where Gr� are labeled by dominant weights � 2 P C as they are the orbits of Œz��. We have
a natural map

Gr� ! GLn

�
z�

�
Š GLn=P� (3.3)

given by setting z D 0. We note that GLnŒz�� Š GLn=P� is a partial flag variety and the
map (3.3) is a finite-rank vector bundle on GLn=P�. We denote by Gr� the reduced of the
closure of Gr� in Gr. We then have

Gr� D

a
���2P C

Gr�; (3.4)

where � � � is meant in the dominance order on P C, i.e., when � � � is some sum of
positive roots (possibly with multiplicity).

One important example is when � D !k D .1; : : : ; 1„ ƒ‚ …
k

; 0; : : : ; 0/ is the kth funda-

mental weight. Then !k is minuscule (minimal in dominance order) and

Gr!k
D Gr!k Š Gr.k; n/;

the classical Grassmannian.
For a dominant �, we can now define the Hecke correspondence of type � over the

Hitchin section as

H �
WD

®
.Ea; V / 2 W C

0 � Gr� such that ˆaj�c .V / � V
¯

� W C
0 � Gr�; (3.5)
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where �c ! C is the formal neighborhood of c in C . In particular, �c Š Spec.CŒŒz��/.
We fix a trivialization E0j�c Š On

�c
and a trivialization Kj�c Š O�c , then we can think of

a WD ˆaj�c 2 glnŒŒz��. Then if V D Œg� 2Gr� is represented by g 2GLn..z// the condition
ˆaj�c 2 glnŒŒz�� translates as

ag�1
2 glnŒŒz��: (3.6)

For a fixed a 2 A, this defines the affine Springer fiber of a.
By performing a type � Hecke transformation of E0 at V 2 Gr�, this will yield

a new vector bundle together with a Higgs field, thanks to the invariance condition (3.6).
Provided some stability conditions are satisfied, the new Higgs bundle will be stable and on
the upward flow of Eı

�
c
, where

ı�
c D .˛nc; ˛n�1c; : : : ; ˛1c/; (3.7)

by writing� D
P

i ˛i !i in terms of the fundamental weights and ˛i 2 Z�0 for 1 � i � n � 1

and ˛n 2 Z. We claim that such a Hecke transformation will induce an isomorphism, and so
we get the following diagram:

H � Š
�! W C

ı
�
c

��# #hı
�
c

W C
0

h0
�! A:

(3.8)

This way we get Q�� Š Qh
ı

�
c
. Thus we reduced the computation of the equivariant mul-

tiplicity algebra for a computation inside Gr� by studying the equations describing H � �

W C
0 � Gr�. It turns out that this reduces to a relatively simple linear algebra computation.

We have the following results and conjectures. In order to formulate them, we will need to
introduce the notion of dominant upward flows and their multiplicity.

Definition 3.11. Let E 2 MsT. We call the upward flow W C

E
dominant if the Hitchin map

hE W W C

E
! A is dominant. In this case the inducedmap on algebra of functions h�

E
W CŒA� !

CŒW C

E
� is injective and thus we get a extensionC.A/ � C.W C

E
/ of function fields. We define

its degree to be the multiplicity of W C

E
,

mE WD
�
C.W C

E
/ W C.A/

�
:

We note that mE also agrees with the rank

mE D dimC.A/

�
ME ˝CŒA� C.A/

�
of the CŒA�-module ME given by h�

E
and also with the cardinality of the generic fiber

mE D #
�
h�1

E .a/ \ W C

E

�
for generic a 2 A. Notice that the latter two definitions make sense for all upward flows.
Dominance in turn then will be equivalent to nonzero multiplicity.

We have the following results:
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Theorem 3.12 ([30]). Let � D .d C 1/!k 2 P C for d 2 Z>0 and 1 � k � n � 1 and c 2 C .
When Eı

�
c

2 MsT, the following hold:

(1) Hecke modification of type � of W C
0 induces an isomorphism H � ! W C

ı
�
c

;

(2) W C

E
ı

�
c

is dominant;

(3) mE D jW � �j is the order of the Weyl orbit of �;

(4) we have

Q� Š C
�
Jd .Q!k

/
�

Š C
�
Jd

�
Spec

�
H �

�
Gr.k; n/; C

����
;

where for a scheme X we denote by Jd .X/ the .d � 1/th jet scheme of Spec.R/.
In particular, Jd .X/.C/ D Hom.Spec.CŒz�=.zd //; X/ is the set of d � 1 jets
in X .

Remark 3.13. We conjecture that (1), (2) and (3) hold for any � 2 P C.

Remark 3.14. As examples in the n D 2 case, let us give themultiplicity algebra for d D 1;2,
and 3. First we have

Q
ı

!1
c

Š CŒa0�=.a2
0/ Š H �.P1; C/: (3.9)

Then we have

Q
ı

2!1
c

Š CŒa0; a1�=.a2
0; a0a1/: (3.10)

Note that .a2
0; a0a1/ D .a0; a1/2 \ .a0/, thus the scheme-theoretical intersection

Spec.Q
ı

2!1
c

/ of the upward flow W C

ı
2!1
c

and the nilpotent cone h�1.0/ is the line .a0/ with a
double embedded point at the origin. Note that this upward flow was studied in [29, §8.2].

For d D 3, we have the multiplicity-2 algebra

Q
ı

3!1
c

Š CŒa0; a1; a2�=.a2
0; a0a1; a0a2 C a2

1/: (3.11)

Both (3.10) and (3.11) follow from Conjecture 3.12.4, and both can be proved by direct
computation in Gr� as explained above.

Remark 3.15. It is surprising how complex Jd .Spec.H �.Gr.k; n/; C/// can be. In partic-
ular, in the k D 1 case (i.e., jet schemes of the cohomology ring of projective space) there is
only a conjecture about its multiplicity in [50, Conjecture III.21].

Remark 3.16. Finally, we remark that already for type .2/ we have new phenomena. As
discussed in [37, §5.4], there are multiplicity algebras depending on continuous parameters,
in particular they cannot be isomorphic to cohomology rings, because cohomology rings are
integral.

3.3.1. Lagrangian closure of W C

ı

Definition 3.17. Let E 2 MsT. The Lagrangian closure W C

E
of W C

E
is the smallest closed

union of upward flows containing W C

E
. In other words, the Lagrangian closure is the closure

in the quotient space by the BB partition.
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Using (3.8) and (3.4), we can deduce the following

Theorem 3.18 ([30]). Let � 2 P C and c 2 C . Recall ı
�
c from (3.7). Assume Eı

�
c

2 MsT.
Then

W C

E
D

a
���2P C

W C

ı�
c

;

i.e., the upward flows correspond to dominant weights � less than or equal to � in dominance
order.

3.4. Towards a classical limit of the geometric Satake correspondence
Finally, we will formulate some conjectures which were the original motivation of

much of the previous ideas. In particular, they hint at a new construction of the irreducible
representations of GLn.C/, and more generally of any complex reductive group G.

The general setup comes from the classical limit (2.5) of the geometric Langlands
program, as formulated in [13]. Here we sketch some of the expectations of this classical limit
in a schematic (not completely well defined) manner. It should be an equivalence of some
sort of derived categories of coherent sheaves

S W Db.MDol/ ! Db.M_
Dol/:

Several properties of this equivalence were proposed and some established in [13]. In particu-
lar, S should be a relative Fourier–Mukai transform along the generic locus in AG Š AG_ .
Another crucial property [38], which we called enhanced mirror symmetry in Section 2.5
above, is that S should intertwine the actions of certain Hecke operators on Db.MDol/ and
the Wilson operators on Db.MDol/. Let � 2 XC.G_/ D XC.G/ be a dominant character of
G_. We denote by

H �
WD

®
.E; ˆ/ 2 MDol; Œg� 2 Gr� j g�1ˆcg 2 G

�
Œz�

�¯
� MDol � Gr�

some space of Hecke correspondences at a point c 2 C . Indeed, this gives us
H �

�� . & f �

MDol MDol

two maps to MDol, first the projection �� to the first factor, and second f �, the Hecke trans-
formation1 of .E; ˆ/ by the compatible Hecke transform Œg� 2 Gr�, which is expected to
induce

H �
WD f �

� ı ��
� W Db.MDol/ ! Db.MDol/

a Hecke (or the physicists’ t’Hooft) operator.
On the other hand, we can consider the so-called Wilson operators

W �
W Db.M_

Dol/ ! Db.M_
Dol/;

F 7! F ˝ ��.EjM_
Dol�¹cº/

given by tensoring with the universal G_ bundle E in the representation �� WG_ !GL.V��/.

1 Here we ignore stability issues.
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We then expect [13,38] that

W �
ı S D S ı H �: (3.12)

There are two more expectations for the classical limit S , both are motivated from
Fourier–Mukai transform where the analogous statements hold. First, we expect that for any
F 2 Db.MDol/ we should have

.hG/�.F / Š S .F /jW C
0

: (3.13)

Second, the structure sheaf of the Hitchin section should be mirror to the structure sheaf of
the mirror Higgs moduli space,

S .OW C
0

/ Š OM_
Dol

: (3.14)

Combining (3.12) with (3.14), we can deduce that

S
�
H �.OW C

0
/
�

D W �
�
S .OW C

0
/
�

D W �.OM_
Dol

/:

On the one hand, we should have

supp
�
H �.OW C

0
/
�

D W C
� ;

where W C
� is the upward flow from a certain E� maximally split G-Higgs bundle of type �

at c 2 C . On the other hand,

W �.OM_
Dol

/ D ��.E/c DW ƒ�;

the vector bundle associated to the principal bundle Ec in the representation ��.
Thus Kapustin–Witten’s (3.12) implies

S
�
H �.OW C

0
/
�

D ƒ�:

We can test this by (3.13) as

ƒ�jLW C
0

D S
�
H �.OW C

0
/
�
jLW C

0
D .hG/�

�
H �.OW C

0
/
�
:

In [29] we have argued that the mirror of the structure sheaf of a very stable type
.1; : : : ; 1/ upward flow Wı is

ƒı WD

n�1O
iD1

miO
j D1

ƒi Ecij
;

where .E; I/ is a universal Higgs bundle on M � C and

ıi D ci1 C ci2 C � � � 2 C Œmi �:

In particular, one expectation of mirror symmetry is that

h�.OW C

ı
/ Š ƒı jW C

0
:

This follows from Theorem 3.6 and a direct computation for �T.Ec/.
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In [29, §8.2] we proposed that for n D 2 the mirror of Sym2.Ec/ should be the struc-
ture sheaf of the Lagrangian closure W C

ı2
c
where ı2

c D .0; 2c/. We can generalize this as
follows.

Conjecture 3.19. Let c 2 C and G a reductive group. Then we have the following conjec-
tures:

(1) For any � 2 XC.G_/, the support of the mirror of ��.Ec/ is W C

ı
�
c

.

(2) Let � 2 XC.G_/ such that the corresponding irreducible G_ representation ��

is multiplicity free. Then the mirror of ��.Ec/ is O
W C

ı
�
c

.

(3) In the latter case, the multiplicity algebra of the restricted Hitchin map hG W

W C

ı
�
c

! A is isomorphic with the cohomology ring of Gr�.

Remark 3.20. In [17], studying opers in the geometric Langlands program, the authors con-
struct a canonical Poincaré duality ring structure on the underlying vector space V� of all
irreducible representation �� of G_. In the case when �� is multiplicity-free, this ring is
isomorphic with the cohomology ring H �.Gr�/. Note that, according to [20, Theorem 1.5],
these are precisely the cases when

H �.Gr�/ Š IH �.Gr�/;

when the cohomology ring satisfies Poincaré duality. In this case, this ringwasmore carefully
studied in [47].
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