Higgs bundle tournaments

based on joint project with Mirko Mauri

Tamás Hausel

Institute of Science and Technology Austria http://hausel.ist.ac.at

Algebra & Geometry Seminar
University of Graz
October 2023

MacMahon on tournaments in 1923

AN AMERICAN TOURNAMENT TREATED BY THE CALCULUS OF SYMMETRIC FUNCTIONS.

By Major P. A. MacMahon.

PART I.

1. In a tournament of n players, where each player plays every other player, there are $\frac{1}{2}n(n-1)$ games. Since each game may be won or lost there are 2 in(n-i) events and I propose to analyse them by means of the powerful calculus of symmetric functions. The final result of the play is that the players are arranged in a definite order, each with a certain number of games to his credit. These numbers constitute a partition of the number $\frac{1}{2}n(n-1)$, and we may ask how many of the $2^{\frac{1}{2}n(n-1)}$ events will yield a given partition of $\frac{1}{2}n(n-1)$ when the players are or are not in an assigned order.

2. Consider the symmetric function

$$(\alpha_1 + \alpha_2)(\alpha_1 + \alpha_3)(\alpha_2 + \alpha_3)...(\alpha_{n-1} + \alpha_n)$$

of the *n* quantities $\alpha_1, \alpha_2, \alpha_3, \ldots, \alpha_n$. It involves $\frac{1}{2}n(n-1)$ factors, and the terms, after carrying out the multiplication, are grouped together in monomial symmetric functions.

Score sequences of tournaments

- tournament:= orientation of complete graph on $[n] := \{1, ..., n\}$
- score of a vertex:= its outdegree
- score vector:= vector of scores
- score sequence:= non-decreasing sequence of the scores
- transitive tournament:= $a \rightarrow b \& b \rightarrow c \Rightarrow a \rightarrow c$ \Leftrightarrow its score sequence is (0, 1, ..., n-2, n-1)
- strong tournament:= $[n] = A \coprod B$, $A \to B \Rightarrow A = \emptyset$ or $B = \emptyset$ \Leftrightarrow there exists a Hamiltonian circuit
- for any tournament there is unique [n] = ∐ A_i such that
 A₁ → A₂ → ··· → A_k & restricted tournament on A_i is strong,
 e.g. A₁ = V for strong, |A_i| = 1 for transitive tournaments

Theorem (Landau 1953)

 $(s_1 \le \cdots \le s_n)$ is the score sequence of a strong (tournament) $\Leftrightarrow \sum_{i=1}^n s_i = \binom{n}{2}$ and $\sum_{i=1}^k s_i \ge \binom{k}{2}$ for k < n

Semi-stable type (1, ..., 1)-Higgs bundles

- *C* complex smooth projective curve $D \in S^d(C)$ eff. divisor (E, Φ) *Higgs bundle*, rank *n* vector bundle *E* and $\Phi \in H^0(\operatorname{End}(E) \otimes K(D))$ *Higgs field* (semi)-stable: \forall proper Φ -invariant $F \subset E \Rightarrow \frac{\deg F}{\operatorname{rank} F} \leq \frac{\deg E}{\operatorname{rank} F}$
- $E = L_1 \oplus \ldots \oplus L_n$ and $0 \neq \Phi(L_i) \subset L_{i+1}K(D) \Rightarrow$ • $(E, \Phi) \cong (E, \lambda \Phi)$ type (1, ..., 1)-Higgs bundle

(semi)-stable
$$\Leftrightarrow$$
 for $\ell_i := \deg(L_i)$ and $1 < k < n$

$$\frac{\ell_k + \dots + \ell_n}{2n + 1} \le \frac{\ell_1 + \dots + \ell_n}{2n}$$

• when $C = \mathbb{P}^1$ and |D| = 3 then $\deg(K(D)) = 1$ and $\deg(E) = \ell_1 + \cdots + \ell_n = 0$ choosing $s_i = i - 1 - l_i \rightsquigarrow$

Theorem

{score sequences $(s_1, ..., s_n)$ of strong (tournaments) on [n]} \leftrightarrow {degree sequences $(\ell_1, ..., \ell_n)$ of degree 0 rank n (semi)-stable type (1, ..., 1)-Higgs bundles}

- e.g. transitive tourn. $(0, 1, ..., n-1) \leftrightarrow (0, ..., 0)$ trivial bundle
- $(\deg(E), n) = 1 \rightarrow \text{similar combinatorics by}$ (Villegas 2011, 2023, Reineke 2012, Rayan 2018)

Generating score sequences as Weyl character formula

• MacMahon's gf for $n(s):=\#\{\text{tournaments of score sequence }s\}$ $\prod_{1\leq i< j\leq n}(x_i+x_j)=\sum_{s=(s_1\leq \cdots \leq s_n)}n(s)\sum_{\substack{s'=(s_1',\ldots,s_n')\\ \{s'\}=\{s\}}}x^{s'}$

•
$$\Lambda := \mathbb{Z}^n/\langle e_1 + \dots + e_n \rangle$$
 weight lattice $\Im W := S_n$ Weyl group $R := \{\pm (e_i - e_j)\}_{1 \le i < j \le n} = R_+ \coprod R_- \subset \Lambda$ type A_{n-1} root system $\omega_j = \sum_{i=1}^j e_i \in \Lambda$ fundamental weight $\Lambda^+ := \bigoplus_{i=1}^{n-1} \mathbb{N} \omega_i \subset \Lambda$ dominant weights $\cong \Lambda/W$

$$\rho := \left(\sum_{\alpha \in R_+} \alpha\right)/2 = \sum_{i=1}^{n-1} \omega_i \in \Lambda^+$$

half-sum of positive roots

• Weyl character formula for $\mathfrak{sl}_n \to \operatorname{End}(V^{\rho})$ of highest weight ρ

$$\sum_{\lambda \in \Lambda} \dim(V_{\lambda}^{\rho}) x^{\lambda} = \frac{\sum_{w \in W} \det(w) x^{w(\rho + \rho)}}{\sum_{w \in W} \det(w) x^{w(\rho)}} = \frac{\prod_{\alpha \in R_{+}} (x^{\alpha} - x^{-\alpha})}{\prod_{\alpha \in R_{+}} (x^{\alpha/2} - x^{-\alpha/2})} = \prod_{\alpha \in R_{+}} (x^{\alpha/2} + x^{-\alpha/2}) = \prod_{1 \le i < j \le n} (x_{i} + x_{j})$$

• \leadsto { weights in V^{ρ} } \leftrightarrow {score vectors} { dominant weights in V^{ρ} } \leftrightarrow {score sequences} {monomial basis in V^{ρ} } \leftrightarrow { $\Delta \subset R : |\Delta \cap \{\alpha, -\alpha\}| = 1 \, \forall \alpha \in R$ } \leftrightarrow {tournaments on [n]}

Bottom Lagrangian

$$\mathfrak{M} := \mathbb{M}_{\mathrm{PGL}_n}^{\mathrm{ss},0} \ni (E,\Phi); \Phi \in H^0(C; \mathrm{End}_0(E) \otimes K), \deg(E) = 0$$

$$h : \mathbb{M} \to \mathbb{A} := H^0(K_C^2) \times \cdots \times H^0(K_C^n) \dots \dots$$

• $h: \mathbb{M} \to \mathbb{A} := H^0(K_C^2) \times \cdots \times H^0(K_C^n)$ Hitchin map $\det(x - \Phi)$

• $\mathcal{E}_{triv} := (O^n, 0)$ trivial Higgs bundle, bottom Lagrangian:

 $B := \{(O^n, \Phi) : \Phi \in H^0(C; \operatorname{End}_0(O^n) \otimes K_C)\} \subset \mathbb{M}$ singular Lagrangian subvariety

$$B \cong \operatorname{End}_0(\mathbb{C}^n) \otimes H^0(K_C) // \operatorname{PGL}_n$$

• $g(C) = 2$, $h^0(K_0) = 2 \rightsquigarrow \pi : C \to \mathbb{P}^1$ hyperelliptic \rightsquigarrow

 \leftrightarrow dominant weights in V^{ρ}

$$\pi^*(O(1)) = K_C \rightsquigarrow \overline{B} \cong \mathbb{M}^0_{\mathbb{P}^1, O(1)}$$
 moduli of semi-stable (E, Φ)
 $\deg(E) = 0$, $\operatorname{rank}(E) = n$, $\Phi \in H^0(\mathbb{P}^1; \operatorname{End}_0(E)(1))$

• components of $\overline{B} \cap h^{-1}(0) \cong$ nilpotent cone in $\mathbb{M}^0_{\mathbb{P}^1, O(1)} \leftrightarrow$ components of stable type (1, ..., 1) O(1)-Higgs bundles on $\mathbb{P}^1 \leftrightarrow$ score sequences of strong tournaments on [n]

Expectations:

 ① geometry of h|_B should reflect SL_n → GL(V^ρ)

② geometry of
$$h_{G^{\vee}}|_{\overline{B}_{G^{\vee}}}$$
 should reflect $G \to GL(V^{\rho})$

3 should be compatible with folding $\sigma: G \to G$

Root system tournaments

- $R \subset \Lambda \cong \mathbb{Z}^r$ finite root system in weight lattice, Weyl group W, $R_+ \subset R$ set of positive roots

 - 2 $\alpha, \beta \in R_+$ and $\alpha + \beta \in R \Rightarrow \alpha + \beta \in R_+$
- R-tournament: $T \subset R$ s.t. $|T \cap \{\alpha, -\alpha\}| = 1 \forall \alpha \in R$
- example: positive roots $R_+ \subset R$ transitive R-tournament
- notion used by (Calderbank–Hanlon, 1986) to give a combinatorial proof for the Weyl denominator identity $\prod_{\alpha \in R_+} (x^{\alpha/2} x^{-\alpha/2}) = \sum_{w \in W} \det(w) x^{w(\rho)}$
- in types B, C, D after (Gessel, 1979) in type A

• Weyl character formula for
$$g_R \to \operatorname{End}(V^\rho)$$
, $\rho = (\sum_{\alpha \in R_+})/2$
 $\sum_{\lambda \in \Lambda} \dim(V^\rho_\lambda) x^\lambda = \frac{\sum_{w \in W} \det(w) x^{w(\rho + \rho)}}{\sum_{w \in W} \det(w) x^{w(\rho)}} = \frac{\prod_{\alpha \in R_+} (x^{\alpha - x^{-\alpha}})}{\prod_{\alpha \in R_+} (x^{\alpha/2} - x^{-\alpha/2})} = \prod_{\alpha \in R_+} (x^{\alpha/2} + x^{-\alpha/2})$

- {R-tournaments} \leftrightarrow {monomial basis in V^{ρ} }
- R-score vector:= weight in V^ρ
 R-score sequence:= dominant weight in V^ρ

Folding

•

- $R \subset \Lambda \supset W$ finite root system, weight lattice, Weyl group
- Dynkin diagram automorphism $\rightsquigarrow \sigma : \Lambda \rightarrow \Lambda$ s.t. $\sigma(R) = R$
- folding procedure \rightsquigarrow root system R^{σ} := $R/\sigma \subset \Lambda^{\sigma}$ (except A_{2n})
- defining property: $\mathfrak{g}_{R^{\sigma}}^{\vee} \cong (\mathfrak{g}_{R}^{\vee})^{\sigma} \subset \mathfrak{g}_{R}^{\vee}$

R R^{σ} $\mathfrak{g}_{\mathsf{R}^{\sigma}}^{\vee} \subset \mathfrak{g}_{\mathsf{R}}^{\vee}$ A_{2n-1} A_{2n} D_n D_4 G_2 $\mathfrak{g}_2\subset\mathfrak{so}_8$ E_6 f₄ ⊂ e₆

Tournament folding $A_{2n-1} \rightsquigarrow B_n$

- $\sigma : [2n] := \{1, ..., 2n\} \rightarrow [2n] \text{ by } \sigma(i) = 2n i$
- orbits $[2n]/\sigma$:= married couples
- tournament on [2n] is marriage balanced: $a \rightarrow b \Rightarrow \sigma(b) \rightarrow \sigma(a)$
- score vector of m.b. tournament is (s_1, \ldots, s_{2n}) satisfies $s_i + s_{\sigma_i} = 2n 1$
- score sequence of m.b. tournament: $(s'_1 \leq \cdots \leq s'_n \leq n-1)$

Theorem

 $\{R^{\sigma} = B_n - \text{tournaments}\} \leftrightarrow \{\text{marriage balanced tournaments on } [2n]\} \text{ with generating function:} \prod_{i=1}^n (y_i + x_i) \prod_{1 \le i < j \le n} (y_i y_j + x_i x_j) (x_i y_j + x_j y_i)|_{y_i=1} = \sum_{\lambda \in \Lambda} \dim V_{\lambda}^{\rho} x^{\lambda} \{\text{score vectors of m.b. tournaments}\} \leftrightarrow \{\text{weights in } V^{\rho}\} \{\text{score sequences of m.b. tournaments}\} \leftrightarrow \{\text{dominant weights in } V^{\rho}\}$

- $[2n] \supset W = S_n \ltimes (\mathbb{Z}/2)^n \subset S_{2n}$ preserving couples
- games between spouses correspond to short roots of B_n

Tournament folding $D_n \rightsquigarrow C_{n-1}$

- $\sigma : [2n] := \{1, \dots, 2n\} \rightarrow [2n] \text{ by } \sigma(i) = 2n i$
- marriage balanced couple(=:m.b.c.) tournament on [2n] everyone plays everyone except their spouses and $a \rightarrow b \Rightarrow \sigma(b) \rightarrow \sigma(a)$
- $[2n] \supset W = S_n \ltimes (\mathbb{Z}/2)^{n-1} \subset S_{2n}$ preserving couples flipping even
- g.f. for score vectors of m.b.c. tournaments

$$\prod_{1 \le i < j \le n} (y_i y_j + x_i x_j) (x_i y_j + x_j y_i)|_{y_i = 1} \stackrel{D_n \text{-Weyl}}{=} \sum_{\lambda \in \Lambda} \dim V_{\lambda}^{\rho} x^{\lambda}$$

$$D_n \text{ Dynkin auto: } \tau := (n, n + 1) : [2n] \rightarrow [2n], [2n]/\tau = [2n - 1]$$

- $\sigma: [2n-1] \to [2n-1]$ by $\sigma(i) = 2n-1-i$
- $[2n-1]/\sigma$ has n-1 couples and one singleton $\{n\}$
- marriage balanced single(=:m.b.s.) tournament on [2n-1] everyone plays everyone except their spouses, the single n plays twice with everyone and $a \rightarrow b \Rightarrow \sigma(b) \rightarrow \sigma(a)$
- g.f. for score vectors of m.b.s. tournaments

$$\prod_{i=1}^{i-1} (y_i^2 + x_i^2) \prod_{1 \le i < j < n} (y_i y_j + x_i x_j) (x_i y_j + x_j y_i)|_{y_i = 1} \stackrel{C_{n-1}\text{-Weyl}}{=}$$

• compatible with tournament folding $A_{2n-2} \rightsquigarrow C_{n-1}$