On the center of classical family algebras

Vladyslav Zveryk Hausel group, ISTernship Summer Program

Lie algebras

A Lie algebra over \mathbb{C} is a \mathbb{C} -vector space \mathfrak{g} equipped with a bilinear map $[\cdot, \cdot] : \mathfrak{g} \times \mathfrak{g} \to \mathfrak{g}$, called the Lie bracket, satisfying

- antisymmetricity: [x, x] = 0 for all $x \in \mathfrak{g}$;
- Jacobi identity: [[x, y], z] + [[z, x], y] + [[y, z], x] = 0.

For example, if A is an associative algebra over \mathbb{C} , then it can be checked that the bilinear map defined by [a, b] = ab - ba for $a, b \in A$ makes A a Lie algebra over \mathbb{C} . We will always endow algebras with this Lie bracket. We define maps of Lie algebras $\pi : \mathfrak{g} \to \mathfrak{h}$ to be linear maps such that $\pi([X, Y]) = [\pi(X), \pi(Y)]$ for all $X, Y \in \mathfrak{g}$.

A more general setting

Our approach to studying classical family algebras is to consider the following generalized construction. Let \mathfrak{g} be a finite-dimensional Lie algebra over \mathbb{C} . Let also \mathfrak{h} be a Lie algebra with a Lie algebra map $\pi : \mathfrak{g} \to \mathfrak{h}$.

Definition. We define a \mathfrak{g} -action on the Lie algebra $\mathfrak{h} \otimes S(\mathfrak{g})$ similarly to the case $\mathfrak{h} = \operatorname{End} V$ considered before and $C_{\mathfrak{h}}(\mathfrak{g})$ to be the space $(\mathfrak{h} \otimes S(\mathfrak{g}))^{\mathfrak{g}}$. We call it the **classical family algebra of \mathfrak{g} on \mathfrak{h}**.

Similarly to the case of $S(\mathfrak{g})$, the \mathfrak{g} -action on \mathfrak{g}^* extends to a \mathfrak{g} -action on $S(\mathfrak{g}^*)$, which allows us to define $C^*_{\mathfrak{h}}(\mathfrak{g}) := (\mathfrak{h} \otimes S(\mathfrak{g}^*))^{\mathfrak{g}}$. It can be shown that both $C_{\mathfrak{h}}(\mathfrak{g})$ and $C^*_{\mathfrak{h}}(\mathfrak{g})$ have a natural Lie algebra structure, and even an algebra structure if \mathfrak{h} is an algebra itself.

A representation of \mathfrak{g} is a \mathbb{C} -vector space V with a Lie algebra map $\pi : \mathfrak{g} \to \operatorname{End} V$. We can as well say that \mathfrak{g} acts on V, or that V is a \mathfrak{g} -module. We define the subspace $V^{\mathfrak{g}}$ of \mathfrak{g} -invariants of V as the set of all elements in V which are sent to 0 by the action of \mathfrak{g} .

Semisimple finite dimensional Lie algebras

Let \mathfrak{g} be a finite dimensional Lie algebra over \mathbb{C} . The **Killing form** on \mathfrak{g} is a bilinear map $\langle \cdot, \cdot \rangle : \mathfrak{g} \times \mathfrak{g} \to \mathfrak{g}$ defined by

 $\langle X, Y \rangle := \operatorname{trace}([X, [Y, -]] : \mathfrak{g} \to \mathfrak{g}) \text{ for } X, Y \in \mathfrak{g}.$

It appears that the Killing form is symmetric and possesses a $\mathfrak{g}\text{-invariance}$ property, namely

 $\langle X, [Y, Z] \rangle = \langle [X, Y], Z \rangle$ for $X, Y, Z \in \mathfrak{g}$.

We call \mathfrak{g} semisimple if the Killing form on \mathfrak{g} is non-degenerate. Then it gives an isomorphism between \mathfrak{g} and \mathfrak{g}^* , and the \mathfrak{g} -invariance property of $\langle \cdot, \cdot \rangle$ even assures that it is an isomorphism of \mathfrak{g} -modules, where for $X \in \mathfrak{g}$ and $f \in \mathfrak{g}^*$ we define actions of $Y \in \mathfrak{g}$ as Y * X = [Y, X] and $Y * f = f \circ [-, Y]$. Semisimple Lie algebras possess a wide variety of remarkable properties. We will be interested in the structure of their representations: if \mathfrak{g} is semisimple, then each finite dimensional representation V of \mathfrak{g} is a direct sum of **irreducible representations**, defined as not containing any nontrivial subrepresentations. Moreover, there is a certain class of subalgebras of \mathfrak{g}_0 of \mathfrak{g} , called **Cartan subalgebras**, playing an important role in classifying \mathfrak{g} -representations. One particular property of them is that any representation V of \mathfrak{g} is a direct sum of subspaces $V_{\lambda} = \{v \in V : \forall_{X \in \mathfrak{g}_0} X \cdot v = \alpha(X)v\}$, which we call weight subspaces.

The *D*-operator

We can define an action of \mathfrak{g}^* on $S(\mathfrak{g})$ by differentiation satisfying Leibniz rule:

$$\frac{\partial X_1 \dots X_k}{\partial f} = \sum_{i=1}^k f(X_i) X_1 X_2 \dots X_{i-1} X_{i+1} \dots X_k,$$

which can be extended to the action of $S(\mathfrak{g}^*)$ on $S(\mathfrak{g})$. Then, assuming that \mathfrak{h} is an algebra, we can define an action of $\mathfrak{h} \otimes S(\mathfrak{g}^*)$ on $\mathfrak{h} \otimes S(\mathfrak{g})$ via

 $(a \otimes P) * (b \otimes Q) = ab \otimes (\partial Q / \partial P).$

It can be shown that it restricts to an action of $C^*_{\mathfrak{h}}(\mathfrak{g})$ on $C_{\mathfrak{h}}(\mathfrak{g})$. In particular, it sends $1 \otimes S(\mathfrak{g})^{\mathfrak{g}}$ to $C_{\mathfrak{h}}(\mathfrak{g})$.

Assume for the rest of this section that \mathfrak{g} is semisimple. Identifying \mathfrak{g}^* with \mathfrak{g} via the Killing form, we get that $C_{\mathfrak{h}}(\mathfrak{g})$ acts on itself by differentiation. Let X_1, \ldots, X_n be a basis of \mathfrak{g} and X^1, \ldots, X^n be the basis of \mathfrak{g} dual to it. We define an element $C := \frac{1}{2} \sum_i X_i X^i \in S(\mathfrak{g})$, called the **Casimir element**. It can be shown that it lies in $S(\mathfrak{g})^{\mathfrak{g}}$, hence gives the associated differential action D on $C_{\mathfrak{h}}(\mathfrak{g})$, which we call the D-operator. Surprisingly, $D(1 \otimes S(\mathfrak{g})^{\mathfrak{g}})$ appears to lie in the center Z of $C_{\pi}(\mathfrak{g})$. It is not true in general, however, that $\sum_{k\geq 1} D^k (1 \otimes S(\mathfrak{g})^{\mathfrak{g}}) \subset Z$, but the main hypothesis that we have is that this family commutes. Our idea of proving this uses the theory of universal enveloping algebras.

Classical family algebras

Let \mathfrak{g} be a finite-dimensional semisimple Lie algebra over \mathbb{C} . In the papers [Kir1] and [Kir2], A. A. Kirillov introduced an algebra defined for any irreducible representation of \mathfrak{g} as follows. Let V be an irreducible representation of \mathfrak{g} given by a Lie algebra map $\pi : \mathfrak{g} \to \operatorname{End} V$. Then π defines an action on $\operatorname{End} V$ via $X \cdot H = [\pi(X), H]$ for $X \in \mathfrak{g}, H \in \operatorname{End} V$. We also endow the symmetric algebra $S(\mathfrak{g})$ over \mathfrak{g} with the standard \mathfrak{g} -action satisfying Leibniz rule given by

 $\{X, Y_1 \dots Y_k\} = \sum_{i=1}^k [X, Y_i] Y_1 \dots Y_{i-1} Y_{i+1} \dots Y_k \text{ for } X \in \mathfrak{g}, Y_i \in \mathfrak{g} = S_1(\mathfrak{g}).$

Universal enveloping algebras

Let \mathfrak{g} be a Lie algebra over \mathbb{C} . It appears that there exists an associative algebra $U(\mathfrak{g})$ and a Lie algebra homomorphism $\rho : \mathfrak{g} \to U(\mathfrak{g})$ satisfying the following universal property: for any algebra \mathfrak{h} and a Lie algebra map $\pi : \mathfrak{g} \to \mathfrak{h}$ there exists a unique algebra homomorphism $\tilde{\pi} : U(\mathfrak{g}) \to A$ such that $\tilde{\pi} \circ \rho = \pi$. In other words, there is a natural bijection

 $\operatorname{Hom}_{\operatorname{Lie}}(\mathfrak{g}, A) \simeq \operatorname{Hom}_{\operatorname{Alg}}(U(\mathfrak{g}), A).$

Now, let \mathfrak{g} be semisimple. Define $C(\mathfrak{g})$ to be the algebra $(U(\mathfrak{g}) \otimes S(\mathfrak{g}))^{\mathfrak{g}}$. We call it the **universal classical family algebra of \mathfrak{g}**. We have the following

Proposition. Let \mathfrak{h} be an algebra and $\pi : \mathfrak{g} \to \mathfrak{h}$ be a Lie algebra map. Then the algebra map $\tilde{\pi} \otimes \mathrm{id} : U(\mathfrak{g}) \otimes S(\mathfrak{g}) \to \mathrm{End} \, V \otimes S(\mathfrak{g})$ restricts to an algebra map $C(\mathfrak{g}) \to C_{\mathfrak{h}}(\mathfrak{g})$. Moreover, this map commutes with the D-operator.

 $\overline{i=1}$

We combine these two actions to define an action on the Lie algebra $\operatorname{End} V \otimes S(\mathfrak{g})$ as

 $X \cdot (a \otimes P) = [\pi(X), a] \otimes P + a \otimes \{X, P\} \text{ for } X \in \mathfrak{g}, a \in \operatorname{End} V, P \in S(\mathfrak{g}).$

Definition. Define $C_{\pi}(\mathfrak{g})$ to be the space $(\operatorname{End} V \otimes S(\mathfrak{g}))^{\mathfrak{g}}$. We call it the **classical family algebra of \mathfrak{g} on** V.

It is known that $C_{\pi}(\mathfrak{g})$ is closed under multiplication inherited from End $V \otimes S(\mathfrak{g})$, hence is an associative algebra over \mathbb{C} itself. Then a natural question that we may ask is if this algebra is commutative, and if not, then what can we say about its center? It was shown in [Kir1] that $C_{\pi}(\mathfrak{g})$ is commutative if and only if all weight subspaces of V have dimension 1. But in general, even the generators of the center of $C_{\pi}(\mathfrak{g})$ are not known. Therefore, if we understand the structure of $C(\mathfrak{g})$, then we will be able to say much about $C_{\mathfrak{h}}(\mathfrak{g})$ for any algebra \mathfrak{h} . In particular, if we prove the commutativity of $\sum_{k\geq 1} D^k(1\otimes S(\mathfrak{g})^{\mathfrak{g}})$ for $C(\mathfrak{g})$, then we will automatically prove it for all classical family algebras.

References

[Kir1] A. Kirillov (2000). *Family algebras*. Pages. 620. 1079-676200075. 10.1090/S1079-6762-00-00075-5.

[Kir2] A. Kirillov (2001). Introduction to family algebras. Moscow Mathematical Journal, 1, 49-63.