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Lie algebras
A Lie algebra over C is a C-vector space g equipped with a bilinear map
[·, ·] : g × g → g, called the Lie bracket, satisfying

• antisymmetricity: [x, x] = 0 for all x ∈ g;

• Jacobi identity: [[x, y], z] + [[z, x], y] + [[y, z], x] = 0.

For example, if A is an associative algebra over C, then it can be checked
that the bilinear map defined by [a, b] = ab − ba for a, b ∈ A makes A a
Lie algebra over C. We will always endow algebras with this Lie bracket.
We define maps of Lie algebras π : g → h to be linear maps such that
π([X, Y ]) = [π(X), π(Y )] for all X, Y ∈ g.
A representation of g is a C-vector space V with a Lie algebra map
π : g → End V . We can as well say that g acts on V , or that V is a
g-module. We define the subspace V g of g-invariants of V as the set of
all elements in V which are sent to 0 by the action of g.

Semisimple finite dimensional Lie algebras
Let g be a finite dimensional Lie algebra over C. The Killing form on g
is a bilinear map ⟨·, ·⟩ : g × g → g defined by

⟨X, Y ⟩ := trace([X, [Y, −]] : g → g) for X, Y ∈ g.

It appears that the Killing form is symmetric and possesses a g-invariance
property, namely

⟨X, [Y, Z]⟩ = ⟨[X, Y ], Z⟩ for X, Y, Z ∈ g.

We call g semisimple if the Killing form on g is non-degenerate. Then
it gives an isomorphism between g and g∗, and the g-invariance property
of ⟨·, ·⟩ even assures that it is an isomorphism of g-modules, where for
X ∈ g and f ∈ g∗ we define actions of Y ∈ g as Y ∗ X = [Y, X] and
Y ∗ f = f ◦ [−, Y ].
Semisimple Lie algebras possess a wide variety of remarkable proper-
ties. We will be interested in the structure of their representations: if
g is semisimple, then each finite dimensional representation V of g is
a direct sum of irreducible representations, defined as not contain-
ing any nontrivial subrepresentations. Moreover, there is a certain class
of subalgebras of g0 of g, called Cartan subalgebras, playing an im-
portant role in classifying g-representations. One particular property of
them is that any representation V of g is a direct sum of subspaces
Vλ = {v ∈ V : ∀X∈g0X · v = α(X)v}, which we call weight subspaces.

Classical family algebras
Let g be a finite-dimensional semisimple Lie algebra over C. In the pa-
pers [Kir1] and [Kir2], A. A. Kirillov introduced an algebra defined for any
irreducible representation of g as follows. Let V be an irreducible repre-
sentation of g given by a Lie algebra map π : g → End V . Then π defines
an action on End V via X · H = [π(X), H] for X ∈ g, H ∈ End V . We
also endow the symmetric algebra S(g) over g with the standard g-action
satisfying Leibniz rule given by

{X, Y1 . . . Yk} =
k∑

i=1
[X, Yi]Y1 . . . Yi−1Yi+1 . . . Yk for X ∈ g, Yi ∈ g = S1(g).

We combine these two actions to define an action on the Lie algebra
End V ⊗ S(g) as

X · (a ⊗ P ) = [π(X), a] ⊗ P + a ⊗ {X, P} for X ∈ g, a ∈ End V, P ∈ S(g).

Definition. Define Cπ(g) to be the space (End V ⊗ S(g))g. We call it the
classical family algebra of g on V .

It is known that Cπ(g) is closed under multiplication inherited from
End V ⊗S(g), hence is an associative algebra over C itself. Then a natural
question that we may ask is if this algebra is commutative, and if not, then
what can we say about its center? It was shown in [Kir1] that Cπ(g) is
commutative if and only if all weight subspaces of V have dimension 1.
But in general, even the generators of the center of Cπ(g) are not known.

A more general setting
Our approach to studying classical family algebras is to consider the fol-
lowing generalized construction. Let g be a finite-dimensional Lie algebra
over C. Let also h be a Lie algebra with a Lie algebra map π : g → h.

Definition. We define a g-action on the Lie algebra h ⊗ S(g) similarly to
the case h = End V considered before and Ch(g) to be the space (h⊗S(g))g.
We call it the classical family algebra of g on h.

Similarly to the case of S(g), the g-action on g∗ extends to a g-action on
S(g∗), which allows us to define C∗

h(g) := (h ⊗ S(g∗))g. It can be shown
that both Ch(g) and C∗

h(g) have a natural Lie algebra structure, and even
an algebra structure if h is an algebra itself.

The D-operator
We can define an action of g∗ on S(g) by differentiation satisfying Leibniz
rule:

∂X1 . . . Xk

∂f
=

k∑
i=1

f(Xi)X1X2 . . . Xi−1Xi+1 . . . Xk,

which can be extended to the action of S(g∗) on S(g). Then, assuming
that h is an algebra, we can define an action of h ⊗ S(g∗) on h ⊗ S(g) via

(a ⊗ P ) ∗ (b ⊗ Q) = ab ⊗ (∂Q/∂P ).

It can be shown that it restricts to an action of C∗
h(g) on Ch(g). In par-

ticular, it sends 1 ⊗ S(g)g to Ch(g).
Assume for the rest of this section that g is semisimple. Identifying g∗ with
g via the Killing form, we get that Ch(g) acts on itself by differentiation.
Let X1, . . . , Xn be a basis of g and X1, . . . , Xn be the basis of g dual to
it. We define an element C := 1

2
∑

i XiX
i ∈ S(g), called the Casimir

element. It can be shown that it lies in S(g)g, hence gives the associated
differential action D on Ch(g), which we call the D-operator.
Surprisingly, D(1 ⊗ S(g)g) appears to lie in the center Z of Cπ(g). It is
not true in general, however, that

∑
k≥1 Dk(1 ⊗ S(g)g) ⊂ Z, but the main

hypothesis that we have is that this family commutes. Our idea of proving
this uses the theory of universal enveloping algebras.

Universal enveloping algebras
Let g be a Lie algebra over C. It appears that there exists an associative
algebra U(g) and a Lie algebra homomorphism ρ : g → U(g) satisfying
the following universal property: for any algebra h and a Lie algebra map
π : g → h there exists a unique algebra homomorphism π̃ : U(g) → A such
that π̃ ◦ ρ = π. In other words, there is a natural bijection

HomLie(g, A) ≃ HomAlg(U(g), A).

Now, let g be semisimple. Define C(g) to be the algebra (U(g) ⊗ S(g))g.
We call it the universal classical family algebra of g. We have the
following

Proposition. Let h be an algebra and π : g → h be a Lie algebra map.
Then the algebra map π̃ ⊗ id : U(g) ⊗ S(g) → End V ⊗ S(g) restricts to
an algebra map C(g) → Ch(g). Moreover, this map commutes with the
D-operator.

Therefore, if we understand the structure of C(g), then we will be able
to say much about Ch(g) for any algebra h. In particular, if we prove the
commutativity of

∑
k≥1 Dk(1⊗S(g)g) for C(g), then we will automatically

prove it for all classical family algebras.
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