Geometry of Eigenschemes
 Robert Szafarczyk

Motivation: linear algebra

Linear algebra is omnipresent both in mathematics and all of science. In its simplest form, it is about solving systems of linear equations, but surprisingly, it allows one to tackle much more complicated problems like differential equations, statistical approximations, Markov chains... Even to answer questions from pure mathematics one rather often uses methods from linear algebra.

One of the main questions linear algebra tries

Solving the PageRank algorithm involves an eigenvalue problem to answer is the eigenvalue problem, that is finding all eigenvectors and eigenvalues of a given matrix. Because of their importance, it would be useful to assemble them into a structure which one could easily manipulate. This is what we do

We use algebraic geometry to construct a single object (a projective scheme) carrying all the information about both eigenvalues and eigenvectors of a matrix. Moreover, even though the construction itself is very abstract it can be intuitively visualized and some alge braic properties of the matrix can be seen geometrically, from the picture

The abstractness of our construction is its big advantage. First of all, it enables us to use powerful tools from algebraic geometry. Secondly, it easily generalizes to a more interesting situation of a family of commuting matrices, in which we are looking for common eigenvectors. Finally, it can be done "in families", which is important for its application to vector fields.

Eigenvalues and eigenvectors

Let $A \in \operatorname{Mat}_{n \times n}(\mathbb{C})$ be a matrix. A non-zero vector $v \in \mathbb{C}^{n}$ is an eigenvector if $A v=\lambda v$ for some $\lambda \in \mathbb{C}$. Then, λ is called an eigenvalue of A The eigenspace of λ is the linear subspace

$$
V_{\lambda}=\left\{v \in \mathbb{C}^{n}: A v=\lambda v\right\} .
$$

We have $V_{\lambda}=\operatorname{ker}(A-\lambda I)$ and we denote $V_{\lambda}^{(k)}=\operatorname{ker}(A-\lambda I)^{k}$. There is a chain of inclusions

$$
V_{\lambda}=V_{\lambda}^{(1)} \subseteq V_{\lambda}^{(2)} \subseteq \ldots \subseteq \mathbb{C}^{n}
$$

It always stabilizes $\left(V_{\lambda}^{(k)}=V_{\lambda}^{(k+1)}\right.$ for k big enough) and the smallest d such that $V_{\lambda}^{(d)}=$ $V_{\lambda}^{(d+1)}$ is called the index of λ.
It is more natural to think of eigenvectors in terms of lines that they span, rather than single vectors. We denote by \mathbb{P}^{n} the n dimensional projective space, it is the set of lines in \mathbb{C}^{n+1} passing through the origin. We view eigenvectors as points in \mathbb{P}^{n}

We imagine V_{λ} and V_{μ} living above the points λ and μ respectively. We make the point corresponding to λ more fuzzy to indicate a higher index

Visualization with algebraic geometry

First, we can generalize our setting to a tuple of commuting linear operators $f=$ $\left(f_{1}, \ldots, f_{m}\right)$ on a finite dimensional vector space V. Then, $v \in V$ is an eigenvector if $f_{i}(v)=\lambda_{i} v$ for some eigentuple $\lambda=\left(\lambda_{1}, \ldots, \lambda_{m}\right) \in \mathbb{C}^{m}$. The eigenspace of λ is the subspace of all eigenvectors with eigentuple λ.

We have a map $\mathbb{C}\left[t_{1}, \ldots, t_{m}\right] \rightarrow \operatorname{End}\left(V^{*}\right)$ given by $t_{i} \mapsto f_{i}^{*}$, where $V^{*}=\operatorname{Hom}(V, \mathbb{C})$ is the dual space of V. We denote by R the quotient of $\mathbb{C}\left[t_{1}, \ldots, t_{m}\right]$ by its kernel. The vector space V^{*} is naturally a module over R. We define the eigenscheme of f by the formula

$$
\mathbb{P}_{f} V=\operatorname{Proj} \operatorname{Sym}_{R} V^{*}
$$

We also have the projectivisation of V
$\mathbb{P} V=\operatorname{Proj} \operatorname{Sym} V^{*}$.
Closed points of $\mathbb{P} V$ represent lines in V.
Proposition. The following two statements hold.

1. The eigenscheme $\mathbb{P}_{f} V$ naturally forms a closed subscheme of $\mathbb{P} V$. Its closed points represent eigenvectors of f, the nilpotent data encodes the eigenfiltration.
2. The canonical map $\mathbb{P}_{f} V \rightarrow \operatorname{Spec} R$ is identified with the affinization of $\mathbb{P}_{f} V$. Its composition with the closed embedding $\operatorname{Spec} R \rightarrow \mathbb{A}^{m}$ sends an eigenvector to its corresponding eigentuple.

Hence, we have the following diagram, which makes precise our intuition from before

$$
\begin{gathered}
\mathbb{P}_{f} V \longrightarrow \mathbb{P} V \\
\downarrow \\
\operatorname{Spec} R \\
\underset{\mathbb{A}^{m}}{\downarrow}
\end{gathered}
$$

Proposition. The closed embedding $\mathbb{P}_{f} V \hookrightarrow \mathbb{P V}$ induces a very ample line bundle on $\mathbb{P}_{f} V$. Its pushforward along $\mathbb{P}_{f} V \rightarrow \mathbb{A}^{m}$ is a $\mathbb{C}\left[t_{1}, \ldots, t_{m}\right]$-module whose underlying vector space is isomorphic to V. The action of t_{i} recovers the operator f_{i}.

Therefore, given the geometrical picture, we can recover all f_{i} 's. In a single operator case, this is rather obvious, but with several operators it is more surprising, because the eigenscheme of f is nothing more than the intersection of eigenschemes for each f_{i}. So, a priori, the more operators we take, the less information we are left with

Applications: regularity and vector fields

The regularity index $\operatorname{reg}(f)$ is the maximum dimension of eigenspaces of f. The cyclicity index $\operatorname{cyc}(f)$ is the minimum number of vectors that, together with their images under subsequent application of f_{i} 's span V

Theorem (Shekhtman). For any tuple of commuting linear operators f, we have

$$
\operatorname{reg}(f)=\operatorname{cyc}\left(f^{*}\right),
$$

where $f^{*}=\left(f_{1}^{*}, \ldots, f_{m}^{*}\right)$ is the dual tuple on V^{*}
We can see this fact using our geometrical picture. Indeed, $\operatorname{cyc}\left(f^{*}\right)$ can be interpreted as the minimum number of generators for the R-module V^{*}, thus $\operatorname{cyc}\left(f^{*}\right)=\operatorname{dim} \operatorname{Sym}_{R} V^{*}=\operatorname{dim} \mathbb{P}_{f} V+1$. On the other hand, by construction, we also have $\operatorname{reg}(f)=\operatorname{dim} \mathbb{P}_{f} V+1$. In particular, f is regu$\operatorname{lar}(\operatorname{reg}(f)=1)$ if and only if its eigenscheme is zero-dimensional (a collection of points).

A vector field on a scheme X is a derivation $D: \mathcal{O}_{X} \rightarrow \mathcal{O}_{X}$ of the structure sheaf. The zero scheme \mathcal{Z}_{D} of D is the closed subscheme of X cut out by the image of D.

Eigenscheme in families over the Kostant section for $\mathrm{SL}_{3}(\mathbb{C})$

Consider $X=\mathbb{P}^{n}$. Deriving PGL $_{n+1} \cong \operatorname{Aut}\left(\mathbb{P}^{n}\right)$ we get $\mathfrak{s l}_{n+1} \cong \operatorname{Der}\left(\mathbb{P}^{n}\right)$. Hence, vector fields on \mathbb{P}^{n} are in one-to-one correspondence with traceless matrices. For a matrix $A \in \mathfrak{s l}_{n+1}$, the associated derivation maps x_{i} to A_{i}, where x_{i} 's are homogeneous coordinates of \mathbb{P}^{n} and A_{i} is the i-th row of A treated as a linear homogeneous polynomial in x_{i} 's. We have the following result.

Proposition. The eigenscheme of $A \in \mathfrak{s l}_{n+1}$ agrees with the zero scheme of the associated derivation.

