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Outline
My project lies in the intersection of algebra, representation theory and geometry. The main object of study is the cohomology ring of the complex Grassmannian Gr(k, n) – the
smooth algebraic variety of k-planes in n-dimensional complex vector space. The aim was to learn more about the algebraic properties of this ring and its structures arising from
the geometry of Grassmannian.

Representation theory
Imagine that we have some abstract group G. In order to understand it better we want
to construct a “model” of it in some more familiar to us area. One of the simplest objects
in mathematics is a linear transformation, so we can try model our group as a subset of
all linear transformations of some vector space. This idea leads to the notion of a group
representation.

A representation of a group G is a vector space V together with a group homomor-
phism ρ : G → GL(V ). A subrepresentation of a representation V of a group G is a
subspace W ⊂ V which is invariant under all the operators ρ(g), g ∈ G. A represen-
tation V of a group G is called irreducible if the only subrepresentations of V are 0
and V .

Why we are so interested in irreducible representations? The reason is that often the
irreducible representations are those smallest “building blocks” which can be used in
order to construct any representation.

Example 1. Consider G = Sn – the group of permutations on of the set {1, 2, . . . , n}.
Then, there is a natural representation ρ of Sn on the V = Cn given by the formula

ρ(σ) : Cn → Cn, ρ(σ)(x1, x2, . . . , xn) =
(
xσ(1), xσ(2), . . . , xσ(n)

)
.

It is clear that two subspaces of V defined by equations x1 = x2 = . . . = xn and
x1 + x2 + . . .+ xn = 0 are subrepresentations of V . Moreover, one can show that these
subrepresentations are in fact irreducible and that the initial representation is the direct
sum of these two.

Example 2. In the first example the group G was finite but what happens if the group
is infinite? There is a class of infinite groups, called Lie groups, whose representation
theory is well-understood and has many applications in different branches of mathemat-
ics and physics (quantum mechanics, particle physics).
One example of a Lie group is the special linear group SLn – the group of n×n matrices
with the determinant 1. The theory of irreducible representations of SLn has deep
connections to the representations of permutation group Sn and to the combinatorics
of Young tableaux.

Geometry
Cohomology ring
LetM be an n-dimensional (real) smooth manifold. Then, we have a cochain complex
of differential forms

0
d→ Ω0(M)

d→ Ω1(M)
d→ . . .

d→ Ωn(M)
d→ 0,

where d is the exterior differentiation. A differential form ω ∈ Ω(M) is called exact if
it is equal to the exterior derivative of some differential form and is called closed if its
exterior derivative is zero. In this case, the k-th cohomology group is defined as quotient
group

Hk(M) = {closed forms in Ωk(M)}
/
{exact forms in Ωk(M)}.

The cohomology ring is a graded ring

H∗(M) =

n⊕
k=0

Hk(M)

with a multiplication given by the wedge product.
The Poincare duality theorem says that for a large class of manifolds there is a
nondegenerate pairing

Hk(M)⊗Hn−k(M)→ R

given by the integral of wedge product of two forms.

Kähler manifolds
The Kähler manifolds form a special class of manifolds possessing simultaneously three
structures: Riemannian, symplectic and complex which are compatible with each other.
More precisely, a Kähler manifold is an n-dimensional complex manifold M with
a Hermitian metric h such that the associated 2-form (also known as Kähler form)
ω(u, v) = Imh(u, v) is a real closed 2-form. In this case, (M,ω) is 2n-dimensional
symplectic manifold. The Riemannian structure onM is defined by the metric g(u, v) =
Reh(u, v).
One particular remarkable example of a Kähler manifold is a smooth complex projective
variety (e. g. the complex projective space Pn or the complex Grassmannian Gr(k, n)).
For such manifolds one can extend the Poincare duality theorem by the hard Lefschetz
Theorem: the k-fold wedge product of the Kähler form ω gives an isomorphism between
cohomology groups Hn−k(M) and Hn+k(M) i. e. the map

Hn−k(M)→ Hn+k(M), [α] 7→ [ω∧k ∧ α]

is an isomorphism.

Multiplicity algebras
Let f : Cn → Cn be a polynomial map such that f(0) = 0. Then, the components
f1, . . . , fn of the map f generate an ideal If in the algebra C[x1, . . . , xn] of all polynomial
maps from Cn to C.

The multiplicity algebra of a polynomial map f is the quotient algebra Qf =
C[x1, . . . , xn]/If . If Qf is finite-dimensional, then f is called a map of finite mul-
tiplicity and µf = dimCQf is called multiplicity of f .

The importance of multiplicity algebra is due to the fact that it is a purely algebraic
object which describes local topological properties of the map f at 0.

Theorem. Let f be a polynomial map of finite multiplicity and suppose that f has a
unique root x = 0 inside the closed ball Br(0). The number of preimages in Br(0) of an
arbitrary sufficiently small regular value ε is equal to the multiplicity of f .

Example. Let m = (m1,m2, . . . ,mn) be a n-tuple of integers. Consider the Pham map
Φm : Cn → Cn defined by formula

Φm(x1, . . . , xn) = (xm1
1 , . . . , xmn

n ).

It is clear that the corresponding multiplicity algebra has dimension µ = m1m2 . . .mn

and each regular value of Φm has exactly m1m2 . . .mn preimages.

Principal sl2-triple on the cohomology of Gr(k, n)

Cohomology of Gr(k, n) as multiplicity algebra
It is known that the cohomology ring of the complex Grassmannian is isomorphic to the
multiplicity algebra of the polynomial map

r : (p1, . . . , pk, q1, . . . , qn−k) 7→ (r1, . . . , rn),

where the components of r are defined via polynomial identity

xn + r1x
n−1 + . . .+ rn = (xk + p1x

k−1 + . . .+ pk)(xn−k + q1x
n−k−1 + . . .+ qn−k).

SLn-structure
It was known that cohomology ring of the Gr(k, n) has a canonical structure of an
irreducible SLn-representation but the explicit action on the multiplicity algebra wasn’t
known.
One of the goals of my project was to better understand this structure and to find the
principal sl2-triple of this representation, i. e. three linear operators E, F and H
satisfying commutation relations:

[H,E] = 2E, [H,F ] = −2F, [E,F ] = H

with the given E and H: we knew that in cohomology E corresponds to the operator
arising in the hard Lefschetz theorem and H corresponds to the shifted cohomological
degree. Thus, the main problem was to find the action of the F which we call the
Lefschetz operator.

Results
It was found out that these operators have the following explicit differential forms:

H = 2

k∑
j=1

jpj
∂

∂pj
+ 2

n−k∑
j=1

jqj
∂

∂qj
− k(n− k),

E = p1,

F =
k∑
j=1

(k − j + 1)(n− k + j − 1)pj−1
∂

∂pj
−

−
n−k∑
j=1

(k + j − 1)(n− k − j + 1)qj−1
∂

∂qj
−

−
k∑

j,l=1

(
j−1∑
d=0

(j + l − 2d− 1)pdpj+l−d−1

)
∂2

∂pj∂pl
+

+
n−k∑
j,l=1

(
j−1∑
d=0

(j + l − 2d− 1)qdqj+l−d−1

)
∂2

∂qj∂ql
−

−2
k∑
j=1

n−k∑
l=1

(j + l − 1)

(
j−1∑
d=0

pdqj+l−d−1

)
∂2

∂pj∂ql
.

It was shown that as an SLn-module, the cohomology ring of the Gr(k, n) is isomorphic
to
∧k Cn – the k-th exterior power of the standard SLn-representation. Moreover, the

corresponding isomorphism can be described through the theory of symmetric functions
and Schubert calculus.


