Higgs bundle tournaments

based on joint project with Mirko Mauri

Tamás Hausel

Institute of Science and Technology Austria http://hausel.ist.ac.at

Algebra \& GeometrySeminar University of Graz October 2023
an american ToUrnament Treated by THE CALCULUS OF SYMME'TRIC FUNCTIONS.

By Major P. A. MacMahon.

Part I.

1. IN a tournament of n players, where each player plays every other player, there are $\frac{1}{2} n(n-1)$ games. Since each game may be won or lost there are $2^{\frac{1}{2 n(n-1)}}$ events and I propose to analyse them by means of the powerful calculus of symmetric functions. The final result of the play is that the players are arranged in a definite order, each with a certain number of games to his credit. These numbers constitute a partition of the number $\frac{1}{2} n(n-1)$, and we may ask how many of the $2^{\frac{1}{2 n(n-1)}}$ events will yield a given partition of $\frac{1}{2} n(n-1)$ when the players are or are not in an assigned order.
2. Consider the symmetric function

$$
\left(\alpha_{1}+\alpha_{2}\right)\left(\alpha_{1}+\alpha_{3}\right)\left(\alpha_{2}+\alpha_{3}\right) \ldots\left(\alpha_{n-1}+\alpha_{n}\right)
$$

of the n quantities $\alpha_{1}, \alpha_{n}, \alpha_{3}, \ldots, \alpha_{n}$.
It involves $\frac{1}{2} n(n-1)$ factors, and the terms, after carrsing out the multiplication, are grouped together in monomial symmetric functious.

Score sequences of tournaments

- tournament
- tournament:= orientation of complete graph on $[n]:=\{1, . ., n\}$
- tournament:= orientation of complete graph on $[n]:=\{1, . ., n\}$
- score of a vertex
- tournament:= orientation of complete graph on $[n]:=\{1, . ., n\}$
- score of a vertex:= its outdegree
- tournament:= orientation of complete graph on $[n]:=\{1, . ., n\}$
- score of a vertex:= its outdegree
- score vector
- tournament:= orientation of complete graph on $[n]:=\{1, . ., n\}$
- score of a vertex:= its outdegree
- score vector:= vector of scores
- tournament:= orientation of complete graph on $[n]:=\{1, . ., n\}$
- score of a vertex:= its outdegree
- score vector:= vector of scores
- score sequence
- tournament:= orientation of complete graph on $[n]:=\{1, . ., n\}$
- score of a vertex:= its outdegree
- score vector:= vector of scores
- score sequence:= non-decreasing sequence of the scores
- tournament:= orientation of complete graph on $[n]:=\{1, . ., n\}$
- score of a vertex:= its outdegree
- score vector:= vector of scores
- score sequence:= non-decreasing sequence of the scores
- transitive tournament
- tournament:= orientation of complete graph on $[n]:=\{1, . ., n\}$
- score of a vertex:= its outdegree
- score vector:= vector of scores
- score sequence:= non-decreasing sequence of the scores
- transitive tournament: $=a \rightarrow b \& b \rightarrow c \Rightarrow a \rightarrow c$
- tournament:= orientation of complete graph on $[n]:=\{1, . ., n\}$
- score of a vertex:= its outdegree
- score vector:= vector of scores
- score sequence:= non-decreasing sequence of the scores
- transitive tournament: $=a \rightarrow b \& b \rightarrow c \Rightarrow a \rightarrow c$
\Leftrightarrow its score sequence is $(0,1, \ldots, n-2, n-1)$
- tournament:= orientation of complete graph on $[n]:=\{1, . ., n\}$
- score of a vertex:= its outdegree
- score vector:= vector of scores
- score sequence:= non-decreasing sequence of the scores
- transitive tournament: $=a \rightarrow b \& b \rightarrow c \Rightarrow a \rightarrow c$ \Leftrightarrow its score sequence is $(0,1, \ldots, n-2, n-1)$
- strong tournament
- tournament:= orientation of complete graph on $[n]:=\{1, . ., n\}$
- score of a vertex:= its outdegree
- score vector:= vector of scores
- score sequence:= non-decreasing sequence of the scores
- transitive tournament: $=a \rightarrow b \& b \rightarrow c \Rightarrow a \rightarrow c$
\Leftrightarrow its score sequence is $(0,1, \ldots, n-2, n-1)$
- strong tournament:= $n]=A \amalg B$
- tournament:= orientation of complete graph on $[n]:=\{1, . ., n\}$
- score of a vertex:= its outdegree
- score vector:= vector of scores
- score sequence:= non-decreasing sequence of the scores
- transitive tournament: $=a \rightarrow b \& b \rightarrow c \Rightarrow a \rightarrow c$
\Leftrightarrow its score sequence is $(0,1, \ldots, n-2, n-1)$
- strong tournament:= $[n]=A \amalg B, A \rightarrow B \Rightarrow A=\emptyset$ or $B=\emptyset$
- tournament:= orientation of complete graph on $[n]:=\{1, . ., n\}$
- score of a vertex:= its outdegree
- score vector:= vector of scores
- score sequence:= non-decreasing sequence of the scores
- transitive tournament: $=a \rightarrow b \& b \rightarrow c \Rightarrow a \rightarrow c$ \Leftrightarrow its score sequence is $(0,1, \ldots, n-2, n-1)$
- strong tournament:= $[n]=A \amalg B, A \rightarrow B \Rightarrow A=\emptyset$ or $B=\emptyset$ \Leftrightarrow there exists a Hamiltonian circuit
- tournament:= orientation of complete graph on $[n]:=\{1, . ., n\}$
- score of a vertex:= its outdegree
- score vector:= vector of scores
- score sequence:= non-decreasing sequence of the scores
- transitive tournament: $=a \rightarrow b \& b \rightarrow c \Rightarrow a \rightarrow c$ \Leftrightarrow its score sequence is $(0,1, \ldots, n-2, n-1)$
- strong tournament:= $[n]=A \amalg B, A \rightarrow B \Rightarrow A=\emptyset$ or $B=\emptyset$ \Leftrightarrow there exists a Hamiltonian circuit
- for any tournament there is unique $[n]=\amalg A_{i}$
- tournament:= orientation of complete graph on $[n]:=\{1, . ., n\}$
- score of a vertex:= its outdegree
- score vector:= vector of scores
- score sequence:= non-decreasing sequence of the scores
- transitive tournament: $=a \rightarrow b \& b \rightarrow c \Rightarrow a \rightarrow c$ \Leftrightarrow its score sequence is $(0,1, \ldots, n-2, n-1)$
- strong tournament:= $[n]=A \amalg B, A \rightarrow B \Rightarrow A=\emptyset$ or $B=\emptyset$ \Leftrightarrow there exists a Hamiltonian circuit
- for any tournament there is unique $[n]=\amalg A_{i}$ such that $A_{1} \rightarrow A_{2} \rightarrow \cdots \rightarrow A_{k}$
- tournament:= orientation of complete graph on $[n]:=\{1, . ., n\}$
- score of a vertex:= its outdegree
- score vector:= vector of scores
- score sequence:= non-decreasing sequence of the scores
- transitive tournament: $=a \rightarrow b \& b \rightarrow c \Rightarrow a \rightarrow c$ \Leftrightarrow its score sequence is $(0,1, \ldots, n-2, n-1)$
- strong tournament:= $n]=A \amalg B, A \rightarrow B \Rightarrow A=\emptyset$ or $B=\emptyset$ \Leftrightarrow there exists a Hamiltonian circuit
- for any tournament there is unique $[n]=\amalg A_{i}$ such that $A_{1} \rightarrow A_{2} \rightarrow \cdots \rightarrow A_{k}$ \& restricted tournament on A_{i} is strong
- tournament:= orientation of complete graph on $[n]:=\{1, . ., n\}$
- score of a vertex:= its outdegree
- score vector:= vector of scores
- score sequence:= non-decreasing sequence of the scores
- transitive tournament: $=a \rightarrow b \& b \rightarrow c \Rightarrow a \rightarrow c$ \Leftrightarrow its score sequence is $(0,1, \ldots, n-2, n-1)$
- strong tournament:= $n]=A \amalg B, A \rightarrow B \Rightarrow A=\emptyset$ or $B=\emptyset$ \Leftrightarrow there exists a Hamiltonian circuit
- for any tournament there is unique $[n]=\amalg A_{i}$ such that $A_{1} \rightarrow A_{2} \rightarrow \cdots \rightarrow A_{k}$ \& restricted tournament on A_{i} is strong, e.g. $A_{1}=V$ for strong,
- tournament:= orientation of complete graph on $[n]:=\{1, . ., n\}$
- score of a vertex:= its outdegree
- score vector:= vector of scores
- score sequence:= non-decreasing sequence of the scores
- transitive tournament: $=a \rightarrow b \& b \rightarrow c \Rightarrow a \rightarrow c$ \Leftrightarrow its score sequence is $(0,1, \ldots, n-2, n-1)$
- strong tournament:= $n]=A \amalg B, A \rightarrow B \Rightarrow A=\emptyset$ or $B=\emptyset$ \Leftrightarrow there exists a Hamiltonian circuit
- for any tournament there is unique $[n]=\amalg A_{i}$ such that $A_{1} \rightarrow A_{2} \rightarrow \cdots \rightarrow A_{k} \&$ restricted tournament on A_{i} is strong, e.g. $A_{1}=V$ for strong, $\left|A_{i}\right|=1$ for transitive tournaments
- tournament:= orientation of complete graph on $[n]:=\{1, . ., n\}$
- score of a vertex:= its outdegree
- score vector:= vector of scores
- score sequence:= non-decreasing sequence of the scores
- transitive tournament: $=a \rightarrow b \& b \rightarrow c \Rightarrow a \rightarrow c$
\Leftrightarrow its score sequence is $(0,1, \ldots, n-2, n-1)$
- strong tournament:= $n]=A \amalg B, A \rightarrow B \Rightarrow A=\emptyset$ or $B=\emptyset$ \Leftrightarrow there exists a Hamiltonian circuit
- for any tournament there is unique $[n]=\amalg A_{i}$ such that $A_{1} \rightarrow A_{2} \rightarrow \cdots \rightarrow A_{k}$ \& restricted tournament on A_{i} is strong, e.g. $A_{1}=V$ for strong, $\left|A_{i}\right|=1$ for transitive tournaments

Theorem (Landau 1953)

($s_{1} \leq \cdots \leq s_{n}$) is the score sequence of a strong (tournament)

- tournament:= orientation of complete graph on $[n]:=\{1, . ., n\}$
- score of a vertex:= its outdegree
- score vector:= vector of scores
- score sequence:= non-decreasing sequence of the scores
- transitive tournament: $=a \rightarrow b \& b \rightarrow c \Rightarrow a \rightarrow c$
\Leftrightarrow its score sequence is $(0,1, \ldots, n-2, n-1)$
- strong tournament:= $n]=A \amalg B, A \rightarrow B \Rightarrow A=\emptyset$ or $B=\emptyset$ \Leftrightarrow there exists a Hamiltonian circuit
- for any tournament there is unique $[n]=\amalg A_{i}$ such that $A_{1} \rightarrow A_{2} \rightarrow \cdots \rightarrow A_{k} \&$ restricted tournament on A_{i} is strong, e.g. $A_{1}=V$ for strong, $\left|A_{i}\right|=1$ for transitive tournaments

Theorem (Landau 1953)

($s_{1} \leq \cdots \leq s_{n}$) is the score sequence of a strong (tournament) \Leftrightarrow $\sum_{i=1}^{n} s_{i}=\binom{n}{2}$

- tournament:= orientation of complete graph on $[n]:=\{1, . ., n\}$
- score of a vertex:= its outdegree
- score vector:= vector of scores
- score sequence:= non-decreasing sequence of the scores
- transitive tournament: $=a \rightarrow b \& b \rightarrow c \Rightarrow a \rightarrow c$
\Leftrightarrow its score sequence is $(0,1, \ldots, n-2, n-1)$
- strong tournament:= $n]=A \amalg B, A \rightarrow B \Rightarrow A=\emptyset$ or $B=\emptyset$ \Leftrightarrow there exists a Hamiltonian circuit
- for any tournament there is unique $[n]=\amalg A_{i}$ such that $A_{1} \rightarrow A_{2} \rightarrow \cdots \rightarrow A_{k} \&$ restricted tournament on A_{i} is strong, e.g. $A_{1}=V$ for strong, $\left|A_{i}\right|=1$ for transitive tournaments

Theorem (Landau 1953)

($s_{1} \leq \cdots \leq s_{n}$) is the score sequence of a strong (tournament) \Leftrightarrow $\sum_{i=1}^{n} s_{i}=\binom{n}{2}$ and $\sum_{i=1}^{k} s_{i} \geq,\binom{k}{2}$ for $k<n$

Semi-stable type (1,.., 1)-Higgs bundles

Semi-stable type (1,.., 1)-Higgs bundles
 - C complex smooth projective curve

Semi-stable type (1,.., 1)-Higgs bundles

- C complex smooth projective curve $D \in S^{d}(C)$ eff. divisor

Semi-stable type (1,.., 1)-Higgs bundles

- C complex smooth projective curve $D \in S^{d}(C)$ eff. divisor (E, Φ) Higgs bundle , rank n vector bundle E and $\Phi \in H^{0}(\operatorname{End}(E) \otimes K(D))$ Higgs field

Semi-stable type (1,.., 1)-Higgs bundles

- C complex smooth projective curve $D \in S^{d}(C)$ eff. divisor (E, Φ) Higgs bundle , rank n vector bundle E and $\Phi \in H^{0}(\operatorname{End}(E) \otimes K(D))$ Higgs field (semi)-stable

Semi-stable type (1,.., 1$)$-Higgs bundles

- C complex smooth projective curve $D \in S^{d}(C)$ eff. divisor (E, Φ) Higgs bundle , rank n vector bundle E and $\Phi \in H^{0}(\operatorname{End}(E) \otimes K(D))$ Higgs field
(semi)-stable: \forall proper Φ-invariant $F \subset E \Rightarrow \frac{\operatorname{deg} F}{\operatorname{rank} F} \leq \leq \frac{\operatorname{deg} E}{\operatorname{rank} E}$

Semi-stable type (1,.., 1)-Higgs bundles

- C complex smooth projective curve $D \in S^{d}(C)$ eff. divisor (E, Φ) Higgs bundle , rank n vector bundle E and $\Phi \in H^{0}(\operatorname{End}(E) \otimes K(D))$ Higgs field
(semi)-stable: \forall proper Φ-invariant $F \subset E \Rightarrow \frac{\operatorname{deg} F}{\operatorname{rank} F} \leq \frac{\operatorname{deg} E}{\operatorname{rank} E}$
- $E=L_{1} \oplus \ldots \oplus L_{n}$ and $0 \neq \Phi\left(L_{i}\right) \subset L_{i+1} K(D)$

Semi-stable type $(1, . ., 1)$-Higgs bundles

- C complex smooth projective curve $D \in S^{d}(C)$ eff. divisor (E, Φ) Higgs bundle , rank n vector bundle E and $\Phi \in H^{0}(\operatorname{End}(E) \otimes K(D))$ Higgs field
(semi)-stable: \forall proper Φ-invariant $F \subset E \Rightarrow \frac{\operatorname{deg} F}{\operatorname{rank} F} \leq \frac{\operatorname{deg} E}{\operatorname{rank} E}$
- $E=L_{1} \oplus \ldots \oplus L_{n}$ and $0 \neq \Phi\left(L_{i}\right) \subset L_{i+1} K(D) \Rightarrow$ $(E, \Phi) \cong(E, \lambda \Phi)$

Semi-stable type $(1, . ., 1)$-Higgs bundles

- C complex smooth projective curve $D \in S^{d}(C)$ eff. divisor (E, Φ) Higgs bundle , rank n vector bundle E and $\Phi \in H^{0}(\operatorname{End}(E) \otimes K(D))$ Higgs field
(semi)-stable: \forall proper Φ-invariant $F \subset E \Rightarrow \frac{\operatorname{deg} F}{\operatorname{rank} F} \leq \frac{\operatorname{deg} E}{\operatorname{rank} E}$
- $E=L_{1} \oplus \ldots \oplus L_{n}$ and $0 \neq \Phi\left(L_{i}\right) \subset L_{i+1} K(D) \Rightarrow$
$(E, \Phi) \cong(E, \lambda \Phi)$ type $(1, . ., 1)$-Higgs bundle
- C complex smooth projective curve $D \in S^{d}(C)$ eff. divisor (E, Φ) Higgs bundle , rank n vector bundle E and $\Phi \in H^{0}(\operatorname{End}(E) \otimes K(D))$ Higgs field
(semi)-stable: \forall proper Φ-invariant $F \subset E \Rightarrow \frac{\operatorname{deg} F}{\operatorname{rank} F} \leq \frac{\operatorname{deg} E}{\operatorname{rank} E}$
- $E=L_{1} \oplus \ldots \oplus L_{n}$ and $0 \neq \Phi\left(L_{i}\right) \subset L_{i+1} K(D) \Rightarrow$
$(E, \Phi) \cong(E, \lambda \Phi)$ type $(1, . ., 1)$-Higgs bundle
(semi)-stable \Leftrightarrow for $\ell_{i}:=\operatorname{deg}\left(L_{i}\right)$ and $1<k<n$
$\frac{\ell_{k}+\cdots+\ell_{n}}{n-k+1} \leq, \frac{\ell_{1}+\cdots+\ell_{n}}{n}$
- C complex smooth projective curve $D \in S^{d}(C)$ eff. divisor (E, Φ) Higgs bundle , rank n vector bundle E and $\Phi \in H^{0}(\operatorname{End}(E) \otimes K(D))$ Higgs field
(semi)-stable: \forall proper Φ-invariant $F \subset E \Rightarrow \frac{\operatorname{deg} F}{\operatorname{rank} F} \leq \frac{\operatorname{deg} E}{\operatorname{rank} E}$
- $E=L_{1} \oplus \ldots \oplus L_{n}$ and $0 \neq \Phi\left(L_{i}\right) \subset L_{i+1} K(D) \Rightarrow$
$(E, \Phi) \cong(E, \lambda \Phi)$ type $(1, . ., 1)$-Higgs bundle
(semi)-stable \Leftrightarrow for $\ell_{i}:=\operatorname{deg}\left(L_{i}\right)$ and $1<k<n$
$\frac{\ell_{k}+\cdots+\ell_{n}}{n-k+1} \leq, \frac{\ell_{1}+\cdots+\ell_{n}}{n}$
- when $C=\mathbb{P}^{1}$ and $|D|=3$ then $\operatorname{deg}(K(D))=1$ and $\operatorname{deg}(E)=\ell_{1}+\cdots+\ell_{n}=0$

Semi-stable type (1,.., 1)-Higgs bundles

- C complex smooth projective curve $D \in S^{d}(C)$ eff. divisor (E, Φ) Higgs bundle , rank n vector bundle E and $\Phi \in H^{0}(\operatorname{End}(E) \otimes K(D))$ Higgs field
(semi)-stable: \forall proper Φ-invariant $F \subset E \Rightarrow \frac{\operatorname{deg} F}{\operatorname{rank} F} \leq \frac{\operatorname{deg} E}{\operatorname{rank} E}$
- $E=L_{1} \oplus \ldots \oplus L_{n}$ and $0 \neq \Phi\left(L_{i}\right) \subset L_{i+1} K(D) \Rightarrow$
$(E, \Phi) \cong(E, \lambda \Phi)$ type $(1, . ., 1)$-Higgs bundle (semi)-stable \Leftrightarrow for $\ell_{i}:=\operatorname{deg}\left(L_{i}\right)$ and $1<k<n$
$\frac{\ell_{k}+\cdots+\ell_{n}}{n-k+1} \leq, \frac{\ell_{1}+\cdots+\ell_{n}}{n}$
- when $C=\mathbb{P}^{1}$ and $|D|=3$ then $\operatorname{deg}(K(D))=1$ and $\operatorname{deg}(E)=\ell_{1}+\cdots+\ell_{n}=0$ choosing $s_{i}=i-1-l_{i}$

Semi-stable type (1,.., 1)-Higgs bundles

- C complex smooth projective curve $D \in S^{d}(C)$ eff. divisor (E, Φ) Higgs bundle , rank n vector bundle E and $\Phi \in H^{0}(\operatorname{End}(E) \otimes K(D))$ Higgs field
(semi)-stable: \forall proper Φ-invariant $F \subset E \Rightarrow \frac{\operatorname{deg} F}{\operatorname{rank} F} \leq \frac{\operatorname{deg} E}{\operatorname{rank} E}$
- $E=L_{1} \oplus \ldots \oplus L_{n}$ and $0 \neq \Phi\left(L_{i}\right) \subset L_{i+1} K(D) \Rightarrow$ $(E, \Phi) \cong(E, \lambda \Phi)$ type $(1, . ., 1)$-Higgs bundle (semi)-stable \Leftrightarrow for $\ell_{i}:=\operatorname{deg}\left(L_{i}\right)$ and $1<k<n$
$\frac{\ell_{k}+\cdots+\ell_{n}}{n-k+1} \leq \frac{\ell_{1}+\cdots+\ell_{n}}{n}$
- when $C=\mathbb{P}^{1}$ and $|D|=3$ then $\operatorname{deg}(K(D))=1$ and $\operatorname{deg}(E)=\ell_{1}+\cdots+\ell_{n}=0$ choosing $s_{i}=i-1-l_{i} \leadsto$

Theorem

$\left\{\right.$ score sequences $\left(s_{1}, \ldots, s_{n}\right)$ of strong (tournaments) on $\left.[n]\right\} \leftrightarrow$ \{degree sequences $\left(\ell_{1}, \ldots, \ell_{n}\right)$ of degree 0 rank n (semi)-stable type ($1, \ldots, 1$)-Higgs bundles\}

Semi-stable type (1,.., 1)-Higgs bundles

- C complex smooth projective curve $D \in S^{d}(C)$ eff. divisor (E, Φ) Higgs bundle , rank n vector bundle E and $\Phi \in H^{0}(\operatorname{End}(E) \otimes K(D))$ Higgs field
(semi)-stable: \forall proper Φ-invariant $F \subset E \Rightarrow \frac{\operatorname{deg} F}{\operatorname{rank} F} \leq \frac{\operatorname{deg} E}{\operatorname{rank} E}$
- $E=L_{1} \oplus \ldots \oplus L_{n}$ and $0 \neq \Phi\left(L_{i}\right) \subset L_{i+1} K(D) \Rightarrow$ $(E, \Phi) \cong(E, \lambda \Phi)$ type $(1, . ., 1)$-Higgs bundle (semi)-stable \Leftrightarrow for $\ell_{i}:=\operatorname{deg}\left(L_{i}\right)$ and $1<k<n$
$\frac{\ell_{k}+\cdots+\ell_{n}}{n-k+1} \leq \frac{\ell_{1}+\cdots+\ell_{n}}{n}$
- when $C=\mathbb{P}^{1}$ and $|D|=3$ then $\operatorname{deg}(K(D))=1$ and $\operatorname{deg}(E)=\ell_{1}+\cdots+\ell_{n}=0$ choosing $s_{i}=i-1-l_{i} \leadsto$

Theorem

$\left\{\right.$ score sequences $\left(s_{1}, \ldots, s_{n}\right)$ of strong (tournaments) on $\left.[n]\right\} \leftrightarrow$ \{degree sequences $\left(\ell_{1}, \ldots, \ell_{n}\right)$ of degree 0 rank n (semi)-stable type ($1, . ., 1$)-Higgs bundles\}

- e.g. transitive tourn. $(0,1, \ldots, n-1) \leftrightarrow(0, \ldots, 0)$ trivial bundle

Semi-stable type (1,.., 1)-Higgs bundles

- C complex smooth projective curve $D \in S^{d}(C)$ eff. divisor (E, Φ) Higgs bundle , rank n vector bundle E and $\Phi \in H^{0}(\operatorname{End}(E) \otimes K(D))$ Higgs field
(semi)-stable: \forall proper Φ-invariant $F \subset E \Rightarrow \frac{\operatorname{deg} F}{\operatorname{rank} F} \leq \frac{\operatorname{deg} E}{\operatorname{rankE}}$
- $E=L_{1} \oplus \ldots \oplus L_{n}$ and $0 \neq \Phi\left(L_{i}\right) \subset L_{i+1} K(D) \Rightarrow$ $(E, \Phi) \cong(E, \lambda \Phi)$ type $(1, . ., 1)$-Higgs bundle (semi)-stable \Leftrightarrow for $\ell_{i}:=\operatorname{deg}\left(L_{i}\right)$ and $1<k<n$
$\frac{\ell_{k}+\cdots+\ell_{n}}{n-k+1} \leq \frac{\ell_{1}+\cdots+\ell_{n}}{n}$
- when $C=\mathbb{P}^{1}$ and $|D|=3$ then $\operatorname{deg}(K(D))=1$ and $\operatorname{deg}(E)=\ell_{1}+\cdots+\ell_{n}=0$ choosing $s_{i}=i-1-l_{i} \leadsto$

Theorem

\{score sequences $\left(s_{1}, \ldots, s_{n}\right)$ of strong (tournaments) on $\left.[n]\right\} \leftrightarrow$ \{degree sequences $\left(\ell_{1}, \ldots, \ell_{n}\right)$ of degree 0 rank n (semi)-stable type ($1, . ., 1$)-Higgs bundles\}

- e.g. transitive tourn. $(0,1, \ldots, n-1) \leftrightarrow(0, \ldots, 0)$ trivial bundle
- $(\operatorname{deg}(E), n)=1 \leadsto$ similar combinatorics by (Villegas 2011, 2023, Reineke 2012, Rayan 2018)

Generating score sequences as Weyl character formula

- MacMahon's gf for $n(s):=\#\{$ tournaments of score sequence $s\}$

Generating score sequences as Weyl character formula

- MacMahon's gf for
$n(s):=\#\{$ tournaments of score sequence $s\}$

$$
\prod_{1 \leq i<j \leq n}\left(x_{i}+x_{j}\right)=\sum_{s=\left(s_{1} \leq \cdots \leq s_{n}\right)} n(s) \sum_{\substack{s^{\prime}=\left(s_{1}^{\prime}, \ldots, s_{n}^{\prime}\right) \\\left\{s^{\prime}\right\}=\{s\}}}
$$

Generating score sequences as Weyl character formula

- MacMahon's gf for $n(s):=\#\{$ tournaments of score sequence $s\}$
$\prod_{1 \leq i<j \leq n}\left(x_{i}+x_{j}\right)=\sum_{s=\left(s_{1} \leq \cdots \leq s_{n}\right)} n(s) \sum_{\substack{s^{\prime}=\left(s_{1}^{\prime}, \ldots, s_{n}^{\prime}\right) \\\left\{s^{\prime}\right\}=\{s\}}} x^{s^{\prime}}$
- $\Lambda:=\mathbb{Z}^{n} /\left\langle e_{1}+\cdots+e_{n}\right\rangle$ weight lattice
- MacMahon's gf for $n(s):=\#\{$ tournaments of score sequence $s\}$
$\prod_{1 \leq i<j \leq n}\left(x_{i}+x_{j}\right)=\sum_{s=\left(s_{1} \leq \cdots \leq s_{n}\right)} n(s) \sum_{\substack{s^{\prime}=\left(s_{1}^{\prime}, \ldots, s_{n}^{\prime}\right) \\\left\{s^{\prime}\right\}=\{s\}}} x^{s^{\prime}}$
- $\Lambda:=\mathbb{Z}^{n} /\left\langle e_{1}+\cdots+e_{n}\right\rangle$ weight lattice $D W:=S_{n}$ Weyl group
- MacMahon's gf for $n(s):=\#\{$ tournaments of score sequence $s\}$

$$
\prod_{1 \leq i<j \leq n}\left(x_{i}+x_{j}\right)=\sum_{s=\left(s_{1} \leq \cdots \leq s_{n}\right)} n(s) \sum_{\substack{s^{\prime}=\left(s_{1}^{\prime}, \ldots, s_{n}^{\prime}\right) \\\left\{s^{\prime}\right\}=\{s\}}} x^{s^{\prime}}
$$

- $\Lambda:=\mathbb{Z}^{n} /\left\langle e_{1}+\cdots+e_{n}\right\rangle$ weight lattice $D W:=S_{n}$ Weyl group $R:=\left\{ \pm\left(e_{i}-e_{j}\right)\right\}_{1 \leq i<j \leq n}=R_{+} \coprod R_{-} \subset \Lambda$ type A_{n-1} root system
- MacMahon's gf for $n(s):=\#\{$ tournaments of score sequence $s\}$
$\prod_{1 \leq i<j \leq n}\left(x_{i}+x_{j}\right)=\sum_{s=\left(s_{1} \leq \cdots \leq s_{n}\right)} n(s) \sum_{\substack{s^{\prime}=\left(s_{1}^{\prime}, \ldots, s_{n}^{\prime}\right) \\\left\{s^{\prime}\right\}=\{s\}}} x^{s^{\prime}}$
- $\Lambda:=\mathbb{Z}^{n} /\left\langle e_{1}+\cdots+e_{n}\right\rangle$ weight lattice $D W:=S_{n}$ Weyl group $R:=\left\{ \pm\left(e_{i}-e_{j}\right)\right\}_{1 \leq i<j \leq n}=R_{+}$U $R_{-} \subset \Lambda$ type A_{n-1} root system $\omega_{j}=\sum_{i=1}^{j} e_{i} \in \Lambda$ fundamental weight
- MacMahon's gf for $n(s):=\#\{$ tournaments of score sequence $s\}$
$\prod_{1 \leq i<j \leq n}\left(x_{i}+x_{j}\right)=\sum_{s=\left(s_{1} \leq \cdots \leq s_{n}\right)} n(s) \sum_{\substack{s^{\prime}=\left(s s_{1}^{\prime}, \ldots, s_{n}^{\prime}\right) \\\left\{s^{\prime}\right\}=\{s\}}} x^{s^{\prime}}$
- $\Lambda:=\mathbb{Z}^{n} /\left\langle e_{1}+\cdots+e_{n}\right\rangle$ weight lattice $D W:=S_{n}$ Weyl group
$R:=\left\{ \pm\left(e_{i}-e_{j}\right)\right\}_{1 \leq i<j \leq n}=R_{+}$U $R_{-} \subset \Lambda$ type A_{n-1} root system
$\omega_{j}=\sum_{i=1}^{j} e_{i} \in \Lambda$ fundamental weight
$\Lambda^{+}:=\oplus_{i=1}^{n-1} \mathbb{N} \omega_{i} \subset \Lambda$ dominant weights
- MacMahon's gf for $n(s):=\#\{$ tournaments of score sequence $s\}$
$\prod_{1 \leq i<j \leq n}\left(x_{i}+x_{j}\right)=\sum_{s=\left(s_{1} \leq \cdots \leq s_{n}\right)} n(s) \sum_{\substack{s^{\prime}=\left(s s_{1}^{\prime}, \ldots, s_{n}^{\prime}\right) \\\left\{s^{\prime}\right\}=\{s\}}} x^{s^{\prime}}$
- $\Lambda:=\mathbb{Z}^{n} /\left\langle e_{1}+\cdots+e_{n}\right\rangle$ weight lattice $D W:=S_{n}$ Weyl group
$R:=\left\{ \pm\left(e_{i}-e_{j}\right)\right\}_{1 \leq i<j \leq n}=R_{+}$U $R_{-} \subset \Lambda$ type A_{n-1} root system
$\omega_{j}=\sum_{i=1}^{j} e_{i} \in \Lambda$ fundamental weight
$\Lambda^{+}:=\oplus_{i=1}^{n-1} \mathbb{N} \omega_{i} \subset \Lambda$ dominant weights $\cong \Lambda / W$
- MacMahon's gf for $n(s):=\#\{$ tournaments of score sequence $s\}$
$\prod_{1 \leq i<j \leq n}\left(x_{i}+x_{j}\right)=\sum_{s=\left(s_{1} \leq \cdots \leq s_{n}\right)} n(s) \sum_{\substack{s^{\prime}=\left(s s_{1}^{\prime}, \ldots, s_{n}^{\prime}\right) \\\left\{s^{\prime}\right\}=\{s\}}} x^{s^{\prime}}$
- $\Lambda:=\mathbb{Z}^{n} /\left\langle e_{1}+\cdots+e_{n}\right\rangle$ weight lattice $D W:=S_{n}$ Weyl group
$R:=\left\{ \pm\left(e_{i}-e_{j}\right)\right\}_{1 \leq i<j \leq n}=R_{+}$U $R_{-} \subset \Lambda$ type A_{n-1} root system
$\omega_{j}=\sum_{i=1}^{j} e_{i} \in \Lambda$ fundamental weight
$\Lambda^{+}:=\oplus_{i=1}^{n-1} \mathbb{N} \omega_{i} \subset \Lambda$ dominant weights $\cong \Lambda / W$
$\rho:=\left(\sum_{\alpha \in R_{+}} \alpha\right) / 2=\sum_{i=1}^{n-1} \omega_{i} \in \Lambda^{+}$
- MacMahon's gf for $n(s):=\#\{$ tournaments of score sequence $s\}$
$\prod_{1 \leq i<j \leq n}\left(x_{i}+x_{j}\right)=\sum_{s=\left(s_{1} \leq \cdots \leq s_{n}\right)} n(s) \sum_{\substack{s^{\prime}=\left(s_{1}^{\prime}, \ldots, s_{n}^{\prime}\right) \\\left\{s^{\prime}\right\}=\{s\}}} x^{s^{\prime}}$
- $\Lambda:=\mathbb{Z}^{n} /\left\langle e_{1}+\cdots+e_{n}\right\rangle$ weight lattice $D W:=S_{n}$ Weyl group
$R:=\left\{ \pm\left(e_{i}-e_{j}\right)\right\}_{1 \leq i<j \leq n}=R_{+}$U $R_{-} \subset \Lambda$ type A_{n-1} root system
$\omega_{j}=\sum_{i=1}^{j} e_{i} \in \Lambda$ fundamental weight
$\Lambda^{+}:=\oplus_{i=1}^{n-1} \mathbb{N} \omega_{i} \subset \Lambda$ dominant weights $\cong \Lambda / W$
$\rho:=\left(\sum_{\alpha \in R_{+}} \alpha\right) / 2=\sum_{i=1}^{n-1} \omega_{i} \in \Lambda^{+}$
half-sum of positive roots
- MacMahon's gf for $n(s):=\#\{$ tournaments of score sequence $s\}$
$\prod_{1 \leq i<j \leq n}\left(x_{i}+x_{j}\right)=\sum_{s=\left(s_{1} \leq \cdots \leq s_{n}\right)} n(s) \sum_{\substack{s^{\prime}=\left(s_{1}^{\prime}, \ldots, s_{n}^{\prime}\right) \\\left\{s^{\prime}\right\} \mid=\{s\}}} x^{s^{\prime}}$
- $\Lambda:=\mathbb{Z}^{n} /\left\langle e_{1}+\cdots+e_{n}\right\rangle$ weight lattice $D W:=S_{n}$ Weyl group
$R:=\left\{ \pm\left(e_{i}-e_{j}\right)\right\}_{1 \leq i<j \leq n}=R_{+}$U $R_{-} \subset \Lambda$ type A_{n-1} root system
$\omega_{j}=\sum_{i=1}^{j} e_{i} \in \Lambda$ fundamental weight
$\Lambda^{+}:=\oplus_{i=1}^{n-1} \mathbb{N} \omega_{i} \subset \Lambda$ dominant weights $\cong \Lambda / W$
$\rho:=\left(\sum_{\alpha \in R_{+}} \alpha\right) / 2=\sum_{i=1}^{n-1} \omega_{i} \in \Lambda^{+}$
half-sum of positive roots
- Weyl character formula for $\mathfrak{s l}_{n} \rightarrow \operatorname{End}\left(V^{\rho}\right)$ of highest weight ρ
$\sum_{\lambda \in \Lambda} \operatorname{dim}\left(V_{\lambda}^{\rho}\right) x^{\lambda}=\frac{\sum_{w \in W} \operatorname{det}(w) x^{w(\rho+\rho)}}{\sum_{w \in W} \operatorname{det}(w) x^{w(\rho)}}$
- MacMahon's gf for $n(s):=\#\{$ tournaments of score sequence $s\}$
$\prod_{1 \leq i<j \leq n}\left(x_{i}+x_{j}\right)=\sum_{s=\left(s_{1} \leq \cdots \leq s_{n}\right)} n(s) \sum_{\substack{s^{\prime}=\left(s_{1}^{\prime}, \ldots, s_{n}^{\prime}\right) \\\left\{s^{\prime}\right\} \mid=\{s\}}} x^{s^{\prime}}$
- $\Lambda:=\mathbb{Z}^{n} /\left\langle e_{1}+\cdots+e_{n}\right\rangle$ weight lattice $D W:=S_{n}$ Weyl group
$R:=\left\{ \pm\left(e_{i}-e_{j}\right)\right\}_{1 \leq i<j \leq n}=R_{+}$U $R_{-} \subset \Lambda$ type A_{n-1} root system
$\omega_{j}=\sum_{i=1}^{j} e_{i} \in \Lambda$ fundamental weight
$\Lambda^{+}:=\oplus_{i=1}^{n-1} \mathbb{N} \omega_{i} \subset \Lambda$ dominant weights $\cong \Lambda / W$
$\rho:=\left(\sum_{\alpha \in R_{+}} \alpha\right) / 2=\sum_{i=1}^{n-1} \omega_{i} \in \Lambda^{+}$
half-sum of positive roots
- Weyl character formula for $\mathfrak{s l}_{n} \rightarrow \operatorname{End}\left(V^{\rho}\right)$ of highest weight ρ
$\sum_{\lambda \in \Lambda} \operatorname{dim}\left(V_{\lambda}^{\rho}\right) x^{\lambda}=\frac{\sum_{w \in W} \operatorname{det}(w) x^{w(\rho+\rho)}}{\sum_{w \in W} \operatorname{det}(w) x^{w(\rho)}}=\frac{\prod_{\alpha \in R_{+}}\left(x^{\alpha}-x^{-\alpha}\right)}{\prod_{\alpha \in R_{+}}\left(x^{\alpha / 2}-x^{-\alpha / 2}\right)}$
- MacMahon's gf for $n(s):=\#\{$ tournaments of score sequence $s\}$
$\prod_{1 \leq i<j \leq n}\left(x_{i}+x_{j}\right)=\sum_{s=\left(s_{1} \leq \cdots \leq s_{n}\right)} n(s) \sum_{\substack{s^{\prime}=\left(s_{1}^{\prime}, \ldots, s_{n}^{\prime}\right) \\\left\{s^{\prime}\right\} \mid=\{s\}}} x^{s^{\prime}}$
- $\Lambda:=\mathbb{Z}^{n} /\left\langle e_{1}+\cdots+e_{n}\right\rangle$ weight lattice $D W:=S_{n}$ Weyl group
$R:=\left\{ \pm\left(e_{i}-e_{j}\right)\right\}_{1 \leq i<j \leq n}=R_{+}$U $R_{-} \subset \Lambda$ type A_{n-1} root system
$\omega_{j}=\sum_{i=1}^{j} e_{i} \in \Lambda$ fundamental weight
$\Lambda^{+}:=\oplus_{i=1}^{n-1} \mathbb{N} \omega_{i} \subset \Lambda$ dominant weights $\cong \Lambda / W$
$\rho:=\left(\sum_{\alpha \in R_{+}} \alpha\right) / 2=\sum_{i=1}^{n-1} \omega_{i} \in \Lambda^{+}$
half-sum of positive roots
- Weyl character formula for $\mathfrak{s l}_{n} \rightarrow \operatorname{End}\left(V^{\rho}\right)$ of highest weight ρ
$\sum_{\lambda \in \Lambda} \operatorname{dim}\left(V_{\lambda}^{\rho}\right) x^{\lambda}=\frac{\sum_{w \in W} \operatorname{det}(w) x^{w(\rho+\rho)}}{\sum_{w \in W} \operatorname{det}(w) x^{w(\rho)}}=\frac{\prod_{\alpha \in R_{+}}\left(x^{\alpha}-x^{-\alpha}\right)}{\prod_{\alpha \in R_{+}}\left(x^{\alpha / 2}-x^{-\alpha / 2}\right)}=$
$\prod_{\alpha \in R_{+}}\left(x^{\alpha / 2}+x^{-\alpha / 2}\right)$
- MacMahon's gf for $n(s):=\#\{$ tournaments of score sequence $s\}$
$\prod_{1 \leq i<j \leq n}\left(x_{i}+x_{j}\right)=\sum_{s=\left(s_{1} \leq \cdots \leq s_{n}\right)} n(s) \sum_{\substack{s^{\prime}=\left(s_{1}^{\prime}, \ldots, s_{n}^{\prime}\right) \\\left\{s^{\prime}\right\} \mid=\{s\}}} x^{s^{\prime}}$
- $\Lambda:=\mathbb{Z}^{n} /\left\langle e_{1}+\cdots+e_{n}\right\rangle$ weight lattice $D W:=S_{n}$ Weyl group
$R:=\left\{ \pm\left(e_{i}-e_{j}\right)\right\}_{1 \leq i<j \leq n}=R_{+}$U $R_{-} \subset \Lambda$ type A_{n-1} root system
$\omega_{j}=\sum_{i=1}^{j} e_{i} \in \Lambda$ fundamental weight
$\Lambda^{+}:=\oplus_{i=1}^{n-1} \mathbb{N} \omega_{i} \subset \Lambda$ dominant weights $\cong \Lambda / W$
$\rho:=\left(\sum_{\alpha \in R_{+}} \alpha\right) / 2=\sum_{i=1}^{n-1} \omega_{i} \in \Lambda^{+}$
half-sum of positive roots
- Weyl character formula for $\mathfrak{s l}_{n} \rightarrow \operatorname{End}\left(V^{\rho}\right)$ of highest weight ρ
$\sum_{\lambda \in \Lambda} \operatorname{dim}\left(V_{\lambda}^{\rho}\right) x^{\lambda}=\frac{\sum_{w \in W} \operatorname{det}(w) x^{w(\rho+\rho)}}{\sum_{w \in W} \operatorname{det}(w) x^{w(\rho)}}=\frac{\prod_{\alpha \in R_{+}}\left(x^{\alpha}-x^{-\alpha}\right)}{\prod_{\alpha \in R_{+}}\left(x^{\alpha / 2}-x^{-\alpha / 2}\right)}=$
$\prod_{\alpha \in R_{+}}\left(x^{\alpha / 2}+x^{-\alpha / 2}\right)=\prod_{1 \leq i<j \leq n}\left(x_{i}+x_{j}\right)$
- MacMahon's gf for $n(s):=\#\{$ tournaments of score sequence $s\}$
$\prod_{1 \leq i<j \leq n}\left(x_{i}+x_{j}\right)=\sum_{s=\left(s_{1} \leq \cdots \leq s_{n}\right)} n(s) \sum_{\substack{s^{\prime}=\left(s_{1}^{\prime}, \ldots, s_{n}^{\prime}\right) \\\left\{s^{\prime}\right\} \mid=\{s\}}} x^{s^{\prime}}$
- $\Lambda:=\mathbb{Z}^{n} /\left\langle e_{1}+\cdots+e_{n}\right\rangle$ weight lattice $D W:=S_{n}$ Weyl group
$R:=\left\{ \pm\left(e_{i}-e_{j}\right)\right\}_{1 \leq i<j \leq n}=R_{+}$U $R_{-} \subset \Lambda$ type A_{n-1} root system
$\omega_{j}=\sum_{i=1}^{j} e_{i} \in \Lambda$ fundamental weight
$\Lambda^{+}:=\oplus_{i=1}^{n-1} \mathbb{N} \omega_{i} \subset \Lambda$ dominant weights $\cong \Lambda / W$
$\rho:=\left(\sum_{\alpha \in R_{+}} \alpha\right) / 2=\sum_{i=1}^{n-1} \omega_{i} \in \Lambda^{+}$
half-sum of positive roots
- Weyl character formula for $\mathfrak{s l}_{n} \rightarrow \operatorname{End}\left(V^{\rho}\right)$ of highest weight ρ
$\sum_{\lambda \in \Lambda} \operatorname{dim}\left(V_{\lambda}^{\rho}\right) x^{\lambda}=\frac{\sum_{w \in W} \operatorname{det}(w) x^{w(\rho+\rho)}}{\sum_{w \in W} \operatorname{det}(w) x^{w(\rho)}}=\frac{\prod_{\alpha \in R_{+}}\left(x^{\alpha}-x^{-\alpha}\right)}{\prod_{\alpha \in R_{+}}\left(x^{\alpha / 2}-x^{-\alpha / 2}\right)}=$
$\prod_{\alpha \in R_{+}}\left(x^{\alpha / 2}+x^{-\alpha / 2}\right)=\prod_{1 \leq i<j \leq n}\left(x_{i}+x_{j}\right)$
$\bullet \leadsto\left\{\right.$ weights in $\left.V^{\rho}\right\} \leftrightarrow\{$ score vectors $\}$
- MacMahon's gf for $n(s):=\#\{$ tournaments of score sequence $s\}$
$\prod_{1 \leq i<j \leq n}\left(x_{i}+x_{j}\right)=\sum_{s=\left(s_{1} \leq \cdots \leq s_{n}\right)} n(s) \sum_{\substack{s^{\prime}=\left(s_{1}^{\prime}, \ldots, s_{n}^{\prime}\right) \\\left\{s^{\prime}\right\} \mid=\{s\}}} x^{s^{\prime}}$
- $\Lambda:=\mathbb{Z}^{n} /\left\langle e_{1}+\cdots+e_{n}\right\rangle$ weight lattice $D W:=S_{n}$ Weyl group
$R:=\left\{ \pm\left(e_{i}-e_{j}\right)\right\}_{1 \leq i<j \leq n}=R_{+}$U $R_{-} \subset \Lambda$ type A_{n-1} root system
$\omega_{j}=\sum_{i=1}^{j} e_{i} \in \Lambda$ fundamental weight
$\Lambda^{+}:=\oplus_{i=1}^{n-1} \mathbb{N} \omega_{i} \subset \Lambda$ dominant weights $\cong \Lambda / W$
$\rho:=\left(\sum_{\alpha \in R_{+}} \alpha\right) / 2=\sum_{i=1}^{n-1} \omega_{i} \in \Lambda^{+}$
half-sum of positive roots
- Weyl character formula for $\mathfrak{s l}_{n} \rightarrow \operatorname{End}\left(V^{\rho}\right)$ of highest weight ρ
$\sum_{\lambda \in \Lambda} \operatorname{dim}\left(V_{\lambda}^{\rho}\right) x^{\lambda}=\frac{\sum_{w \in W} \operatorname{det}(w) x^{w(\rho+\rho)}}{\sum_{w \in W} \operatorname{det}(w) x^{w(\rho)}}=\frac{\prod_{\alpha \in R_{+}}\left(x^{\alpha}-x^{-\alpha}\right)}{\prod_{\alpha \in R_{+}}\left(x^{\alpha / 2}-x^{-\alpha / 2}\right)}=$
$\prod_{\alpha \in R_{+}}\left(x^{\alpha / 2}+x^{-\alpha / 2}\right)=\prod_{1 \leq i<j \leq n}\left(x_{i}+x_{j}\right)$
$\bullet \sim\left\{\right.$ weights in $\left.V^{\rho}\right\} \leftrightarrow\{$ score vectors $\}$
$\left\{\right.$ dominant weights in $\left.V^{\rho}\right\} \leftrightarrow\{$ score sequences $\}$
- MacMahon's gf for
$n(s):=\#\{$ tournaments of score sequence $s\}$
$\prod_{1 \leq i<j \leq n}\left(x_{i}+x_{j}\right)=\sum_{s=\left(s_{1} \leq \cdots \leq s_{n}\right)} n(s) \sum_{\substack{s^{\prime}=\left(s_{1}^{\prime}, \ldots, s_{n}^{\prime}\right) \\\left\{s^{\prime}\right\} \mid=\{s\}}} x^{s^{\prime}}$
- $\Lambda:=\mathbb{Z}^{n} /\left\langle e_{1}+\cdots+e_{n}\right\rangle$ weight lattice $D W:=S_{n}$ Weyl group
$R:=\left\{ \pm\left(e_{i}-e_{j}\right)\right\}_{1 \leq i<j \leq n}=R_{+}$U $R_{-} \subset \Lambda$ type A_{n-1} root system
$\omega_{j}=\sum_{i=1}^{j} e_{i} \in \Lambda$ fundamental weight
$\Lambda^{+}:=\oplus_{i=1}^{n-1} \mathbb{N} \omega_{i} \subset \Lambda$ dominant weights $\cong \Lambda / W$
$\rho:=\left(\sum_{\alpha \in R_{+}} \alpha\right) / 2=\sum_{i=1}^{n-1} \omega_{i} \in \Lambda^{+}$
half-sum of positive roots
- Weyl character formula for $\mathfrak{s l}_{n} \rightarrow \operatorname{End}\left(V^{\rho}\right)$ of highest weight ρ
$\sum_{\lambda \in \Lambda} \operatorname{dim}\left(V_{\lambda}^{\rho}\right) x^{\lambda}=\frac{\sum_{w \in W} \operatorname{det}(w) x^{w(\rho+\rho)}}{\sum_{w \in W} \operatorname{det}(w) x^{w(\rho)}}=\frac{\prod_{\alpha \in R_{+}}\left(x^{\alpha}-x^{-\alpha}\right)}{\prod_{\alpha \in R_{+}}\left(x^{\alpha / 2}-x^{-\alpha / 2}\right)}=$
$\prod_{\alpha \in R_{+}}\left(x^{\alpha / 2}+x^{-\alpha / 2}\right)=\prod_{1 \leq i<j \leq n}\left(x_{i}+x_{j}\right)$
$\bullet \sim\left\{\right.$ weights in $\left.V^{\rho}\right\} \leftrightarrow\{$ score vectors $\}$
\{ dominant weights in $\left.V^{\rho}\right\} \leftrightarrow\{$ score sequences $\}$ $\left\{\right.$ monomial basis in $\left.V^{\rho}\right\} \leftrightarrow\{\Delta \subset R:|\Delta \cap\{\alpha,-\alpha\}|=1 \forall \alpha \in R\}$
- MacMahon's gf for $n(s):=\#\{$ tournaments of score sequence $s\}$
$\prod_{1 \leq i<j \leq n}\left(x_{i}+x_{j}\right)=\sum_{s=\left(s_{1} \leq \cdots \leq s_{n}\right)} n(s) \sum_{\substack{s^{\prime}=\left(s_{1}^{\prime}, \ldots s_{n}^{\prime}\right) \\\left\{s^{\prime}\right\}=\{s\}}} x^{s^{\prime}}$
- $\Lambda:=\mathbb{Z}^{n} /\left\langle e_{1}+\cdots+e_{n}\right\rangle$ weight lattice $D W:=S_{n}$ Weyl group
$R:=\left\{ \pm\left(e_{i}-e_{j}\right)\right\}_{1 \leq i<j \leq n}=R_{+}$U $R_{-} \subset \Lambda$ type A_{n-1} root system
$\omega_{j}=\sum_{i=1}^{j} e_{i} \in \Lambda$ fundamental weight
$\Lambda^{+}:=\oplus_{i=1}^{n-1} \mathbb{N} \omega_{i} \subset \Lambda$ dominant weights $\cong \Lambda / W$
$\rho:=\left(\sum_{\alpha \in R_{+}} \alpha\right) / 2=\sum_{i=1}^{n-1} \omega_{i} \in \Lambda^{+}$
half-sum of positive roots
- Weyl character formula for $\mathfrak{s l}_{n} \rightarrow \operatorname{End}\left(V^{\rho}\right)$ of highest weight ρ
$\sum_{\lambda \in \Lambda} \operatorname{dim}\left(V_{\lambda}^{\rho}\right) x^{\lambda}=\frac{\sum_{w \in W} \operatorname{det}(w) x^{w(\rho+\rho)}}{\sum_{w \in W} \operatorname{det}(w) x^{w(\rho)}}=\frac{\prod_{\alpha \in R_{+}}\left(x^{\alpha}-x^{-\alpha}\right)}{\prod_{\alpha \in R_{+}}\left(x^{\alpha / 2}-x^{-\alpha / 2}\right)}=$
$\prod_{\alpha \in R_{+}}\left(x^{\alpha / 2}+x^{-\alpha / 2}\right)=\prod_{1 \leq i<j \leq n}\left(x_{i}+x_{j}\right)$
$\bullet \sim\left\{\right.$ weights in $\left.V^{\rho}\right\} \leftrightarrow\{$ score vectors $\}$
\{dominant weights in $\left.V^{\rho}\right\} \leftrightarrow\{$ score sequences $\}$ $\left\{\right.$ monomial basis in $\left.V^{\rho}\right\} \leftrightarrow\{\Delta \subset R:|\Delta \cap\{\alpha,-\alpha\}|=1 \forall \alpha \in R\} \leftrightarrow$ \{tournaments on [n]\}

Bottom Lagrangian

Bottom Lagrangian
$\bullet \mathbb{M}:=\mathbb{M}_{\mathrm{PGL}_{n}}^{\text {ss,0 }}$ \square

Bottom Lagrangian
 \title{ $$
\text { - } \mathbb{M}:=\mathbb{M}_{\mathrm{PGL}_{n}}^{s s, 0} \ni(E, \phi)
$$

 $\bullet \mathbb{M}:=\mathbb{M}_{\mathrm{PGL}_{n}}^{\mathrm{ss,0}} \ni(E, \phi)$

 $\bullet \mathbb{M}:=\mathbb{M}_{\mathrm{PGL}_{n}}^{\mathrm{ss,0}} \ni(E, \phi)$
 R

$\bullet \mathbb{M}:=\mathbb{M}_{\mathrm{PGL}_{n}}^{s s, 0} \ni(E, \Phi) ; \Phi \in H^{0}\left(C ; \operatorname{End}_{0}(E) \otimes K\right)$

Bottom Lagrangian

$\bullet \mathbb{M}:=\mathbb{M}_{\mathrm{PGL}_{n}}^{s s, 0} \ni(E, \Phi) ; \Phi \in H^{0}\left(C ; \operatorname{End}_{0}(E) \otimes K\right), \operatorname{deg}(E)=0$

Bottom Lagrangian

- $\mathbb{M}:=\mathbb{M}_{\mathrm{PGL}_{n}}^{\text {ss,0 }} \ni(E, \Phi) ; \Phi \in H^{0}\left(C ; \operatorname{End}_{0}(E) \otimes K\right), \operatorname{deg}(E)=0$
- $h: \mathbb{M} \rightarrow \mathbb{A}:=H^{0}\left(K_{C}^{2}\right) \times \cdots \times H^{0}\left(K_{C}^{n}\right)$
$(E, \Phi) \mapsto \quad \operatorname{det}(x-\Phi)$
- $\mathbb{M}:=\mathbb{M}_{\text {PGL }_{n}}^{s s, 0} \ni(E, \Phi) ; \Phi \in H^{0}\left(C ; \operatorname{End}_{0}(E) \otimes K\right), \operatorname{deg}(E)=0$
- $\begin{array}{cc}\quad h: \mathbb{M} & \rightarrow \mathbb{A}:=H^{0}\left(K_{C}^{2}\right) \times \cdots \times H^{0}\left(K_{C}^{n}\right) \\ (E, \Phi) & \mapsto\end{array} \quad$ Hitchin map
- $\mathbb{M}:=\mathbb{M}_{\mathrm{PGL}_{n}}^{s s, 0} \ni(E, \Phi) ; \Phi \in H^{0}\left(C ; \operatorname{End}_{0}(E) \otimes K\right), \operatorname{deg}(E)=0$
- $\begin{array}{cccc}\mathbb{M} & \rightarrow & \mathbb{A}:=H^{0}\left(K_{C}^{2}\right) \times \cdots \times H^{0}\left(K_{C}^{n}\right) \\ (E, \Phi) & \mapsto & \operatorname{det}(x-\Phi)\end{array}$ Hitchin map
- $\mathcal{E}_{\text {triv }}:=\left(O^{n}, 0\right)$ trivial Higgs bundle
- $\mathbb{M}:=\mathbb{M}_{\mathrm{PGL}_{n}}^{s s, 0} \ni(E, \Phi) ; \Phi \in H^{0}\left(C ; \operatorname{End}_{0}(E) \otimes K\right), \operatorname{deg}(E)=0$
- $\begin{array}{ccc}\mathbb{M} & \rightarrow \mathbb{A}:=H^{0}\left(K_{C}^{2}\right) \times \cdots \times H^{0}\left(K_{C}^{n}\right) \\ (E, \Phi) & \mapsto & \operatorname{det}(x-\Phi)\end{array} \quad$ Hitchin map
- $\mathcal{E}_{\text {triv }}:=\left(O^{n}, 0\right)$ trivial Higgs bundle, bottom Lagrangian: $B:=\left\{\left(O^{n}, \Phi\right): \Phi \in H^{0}\left(C ; \operatorname{End}_{0}\left(O^{n}\right) \otimes K_{C}\right)\right\} \subset \mathbb{M}$
- $\mathbb{M}:=\mathbb{M}_{\mathrm{PGL}_{n}}^{s s, 0} \ni(E, \Phi) ; \Phi \in H^{0}\left(C ; \operatorname{End}_{0}(E) \otimes K\right), \operatorname{deg}(E)=0$
- $\begin{array}{ccc}\mathbb{M} & \rightarrow & \mathbb{A}:=H^{0}\left(K_{C}^{2}\right) \times \cdots \times H^{0}\left(K_{C}^{n}\right) \\ (E, \Phi) & \mapsto & \operatorname{det}(x-\Phi)\end{array} \quad$ Hitchin map
- $\mathcal{E}_{\text {triv }}:=\left(O^{n}, 0\right)$ trivial Higgs bundle, bottom Lagrangian: $B:=\left\{\left(O^{n}, \Phi\right): \Phi \in H^{0}\left(C ; \operatorname{End}_{0}\left(O^{n}\right) \otimes K_{C}\right)\right\} \subset \mathbb{M}$ singular Lagrangian subvariety
- $\mathbb{M}:=\mathbb{M}_{\mathrm{PGL}_{n}}^{s s, 0} \ni(E, \Phi) ; \Phi \in H^{0}\left(C ; \operatorname{End}_{0}(E) \otimes K\right), \operatorname{deg}(E)=0$
- $\begin{array}{ccc}\mathbb{M} & \rightarrow \mathbb{A}:=H^{0}\left(K_{C}^{2}\right) \times \cdots \times H^{0}\left(K_{C}^{n}\right) \\ (E, \Phi) & \mapsto & \operatorname{det}(x-\Phi)\end{array} \quad$ Hitchin map
- $\mathcal{E}_{\text {triv }}:=\left(O^{n}, 0\right)$ trivial Higgs bundle, bottom Lagrangian: $B:=\left\{\left(O^{n}, \Phi\right): \Phi \in H^{0}\left(C ; \operatorname{End}_{0}\left(O^{n}\right) \otimes K_{C}\right)\right\} \subset \mathbb{M}$
singular Lagrangian subvariety
$B \cong \operatorname{End}_{0}\left(\mathbb{C}^{n}\right) \otimes H^{0}\left(K_{C}\right) / /$ PGL $_{n}$
- $\mathbb{M}:=\mathbb{M}_{\mathrm{PGL}_{n}}^{s s, 0} \ni(E, \Phi) ; \Phi \in H^{0}\left(C ; \operatorname{End}_{0}(E) \otimes K\right), \operatorname{deg}(E)=0$
- $\begin{array}{cccc}\mathbb{M} & \rightarrow \mathbb{A}:=H^{0}\left(K_{C}^{2}\right) \times \cdots \times H^{0}\left(K_{C}^{n}\right) \\ (E, \Phi) & \mapsto & \operatorname{det}(x-\Phi)\end{array}$ Hitchin map
- $\mathcal{E}_{\text {triv }}:=\left(O^{n}, 0\right)$ trivial Higgs bundle, bottom Lagrangian: $B:=\left\{\left(O^{n}, \Phi\right): \Phi \in H^{0}\left(C ; \operatorname{End}_{0}\left(O^{n}\right) \otimes K_{C}\right)\right\} \subset \mathbb{M}$
singular Lagrangian subvariety
$B \cong \operatorname{End}_{0}\left(\mathbb{C}^{n}\right) \otimes H^{0}\left(K_{C}\right) / / \mathrm{PGL}_{n}$
- $g(C)=2, h^{0}\left(K_{0}\right)=2$
- $\mathbb{M}:=\mathbb{M}_{\mathrm{PGL}_{n}}^{s s, 0} \ni(E, \Phi) ; \Phi \in H^{0}\left(C ; \operatorname{End}_{0}(E) \otimes K\right), \operatorname{deg}(E)=0$
- $\begin{array}{cccc} & \mathbb{M}: & \rightarrow \mathbb{A}:=H^{0}\left(K_{C}^{2}\right) \times \cdots \times H^{0}\left(K_{C}^{n}\right) \\ (E, \Phi) & \mapsto & \operatorname{det}(x-\Phi)\end{array}$ Hitchin map
- $\mathcal{E}_{\text {triv }}:=\left(O^{n}, 0\right)$ trivial Higgs bundle, bottom Lagrangian: $B:=\left\{\left(O^{n}, \Phi\right): \Phi \in H^{0}\left(C ; \operatorname{End}_{0}\left(O^{n}\right) \otimes K_{C}\right)\right\} \subset \mathbb{M}$ singular Lagrangian subvariety
$B \cong \operatorname{End}_{0}\left(\mathbb{C}^{n}\right) \otimes H^{0}\left(K_{C}\right) / / \mathrm{PGL}_{n}$
- $g(C)=2, h^{0}\left(K_{0}\right)=2 \sim \pi: C \rightarrow \mathbb{P}^{1}$ hyperelliptic
- $\mathbb{M}:=\mathbb{M}_{\mathrm{PGL}_{n}}^{s s, 0} \ni(E, \Phi) ; \Phi \in H^{0}\left(C ; \operatorname{End}_{0}(E) \otimes K\right), \operatorname{deg}(E)=0$
- $\begin{array}{cccc} & \mathbb{M}: & \rightarrow \mathbb{A}:=H^{0}\left(K_{C}^{2}\right) \times \cdots \times H^{0}\left(K_{C}^{n}\right) \\ (E, \Phi) & \mapsto & \operatorname{det}(x-\Phi)\end{array}$ Hitchin map
- $\mathcal{E}_{\text {triv }}:=\left(O^{n}, 0\right)$ trivial Higgs bundle, bottom Lagrangian: $B:=\left\{\left(O^{n}, \Phi\right): \Phi \in H^{0}\left(C ; \operatorname{End}_{0}\left(O^{n}\right) \otimes K_{C}\right)\right\} \subset \mathbb{M}$ singular Lagrangian subvariety
$B \cong \operatorname{End}_{0}\left(\mathbb{C}^{n}\right) \otimes H^{0}\left(K_{C}\right) / / \mathrm{PGL}_{n}$
- $g(C)=2, h^{0}\left(K_{0}\right)=2 \leadsto \pi: C \rightarrow \mathbb{P}^{1}$ hyperelliptic \leadsto $\pi^{*}(O(1))=K_{C}$
- $\mathbb{M}:=\mathbb{M}_{\mathrm{PGL}_{n}}^{s s, 0} \ni(E, \Phi) ; \Phi \in H^{0}\left(C ; \operatorname{End}_{0}(E) \otimes K\right), \operatorname{deg}(E)=0$
- $\begin{array}{cccc} & \mathbb{M} & \rightarrow \mathbb{A}:=H^{0}\left(K_{C}^{2}\right) \times \cdots \times H^{0}\left(K_{C}^{n}\right) \\ (E, \Phi) & \mapsto & \operatorname{det}(x-\Phi)\end{array}$ Hitchin map
- $\mathcal{E}_{\text {triv }}:=\left(O^{n}, 0\right)$ trivial Higgs bundle, bottom Lagrangian: $B:=\left\{\left(O^{n}, \Phi\right): \Phi \in H^{0}\left(C ; \operatorname{End}_{0}\left(O^{n}\right) \otimes K_{C}\right)\right\} \subset \mathbb{M}$ singular Lagrangian subvariety
$B \cong \operatorname{End}_{0}\left(\mathbb{C}^{n}\right) \otimes H^{0}\left(K_{C}\right) / / \mathrm{PGL}_{n}$
- $g(C)=2, h^{0}\left(K_{0}\right)=2 \leadsto \pi: C \rightarrow \mathbb{P}^{1}$ hyperelliptic \leadsto $\pi^{*}(O(1))=K_{C} \leadsto \bar{B} \cong \mathbb{M}_{\mathbb{P}^{1}, O(1)}^{0}$
- $\mathbb{M}:=\mathbb{M}_{\mathrm{PGL}_{n}}^{s s, 0} \ni(E, \Phi) ; \Phi \in H^{0}\left(C ; \operatorname{End}_{0}(E) \otimes K\right), \operatorname{deg}(E)=0$
- $\begin{array}{cccc} & \mathbb{M} & \rightarrow \mathbb{A}:=H^{0}\left(K_{C}^{2}\right) \times \cdots \times H^{0}\left(K_{C}^{n}\right) \\ (E, \Phi) & \mapsto & \operatorname{det}(x-\Phi)\end{array}$ Hitchin map
- $\mathcal{E}_{\text {triv }}:=\left(O^{n}, 0\right)$ trivial Higgs bundle, bottom Lagrangian: $B:=\left\{\left(O^{n}, \Phi\right): \Phi \in H^{0}\left(C ; \operatorname{End}_{0}\left(O^{n}\right) \otimes K_{C}\right)\right\} \subset \mathbb{M}$ singular Lagrangian subvariety
$B \cong \operatorname{End}_{0}\left(\mathbb{C}^{n}\right) \otimes H^{0}\left(K_{C}\right) / / \mathrm{PGL}_{n}$
- $g(C)=2, h^{0}\left(K_{0}\right)=2 \leadsto \pi: C \rightarrow \mathbb{P}^{1}$ hyperelliptic \leadsto $\pi^{*}(O(1))=K_{C} \leadsto \bar{B} \cong \mathbb{M}_{\mathbb{P}^{1}, O(1)}^{0}$ moduli of semi-stable (E, Φ)
- $\mathbb{M}:=\mathbb{M}_{\mathrm{PGL}_{n}}^{s s, 0} \ni(E, \Phi) ; \Phi \in H^{0}\left(C ; \operatorname{End}_{0}(E) \otimes K\right), \operatorname{deg}(E)=0$
- $\begin{array}{cccc} & \mathbb{M}: & \rightarrow & \mathbb{A}:=H^{0}\left(K_{C}^{2}\right) \times \cdots \times H^{0}\left(K_{C}^{n}\right) \\ (E, \Phi) & \mapsto & \operatorname{det}(x-\Phi)\end{array}$ Hitchin map
- $\mathcal{E}_{\text {triv }}:=\left(O^{n}, 0\right)$ trivial Higgs bundle, bottom Lagrangian: $B:=\left\{\left(O^{n}, \Phi\right): \Phi \in H^{0}\left(C ; \operatorname{End}_{0}\left(O^{n}\right) \otimes K_{C}\right)\right\} \subset \mathbb{M}$ singular Lagrangian subvariety
$B \cong \operatorname{End}_{0}\left(\mathbb{C}^{n}\right) \otimes H^{0}\left(K_{C}\right) / / \mathrm{PGL}_{n}$
- $g(C)=2, h^{0}\left(K_{0}\right)=2 \leadsto \pi: C \rightarrow \mathbb{P}^{1}$ hyperelliptic \leadsto $\pi^{*}(O(1))=K_{C} \leadsto \bar{B} \cong \mathbb{M}_{\mathbb{P}^{1}, O(1)}^{0}$ moduli of semi-stable (E, Φ) $\operatorname{deg}(E)=0, \operatorname{rank}(E)=n$,
- $\mathbb{M}:=\mathbb{M}_{\mathrm{PGL}_{n}}^{s s, 0} \ni(E, \Phi) ; \Phi \in H^{0}\left(C ; \operatorname{End}_{0}(E) \otimes K\right), \operatorname{deg}(E)=0$
- $\begin{array}{cccc} & \mathbb{M}: & \rightarrow & \mathbb{A}:=H^{0}\left(K_{C}^{2}\right) \times \cdots \times H^{0}\left(K_{C}^{n}\right) \\ (E, \Phi) & \mapsto & \operatorname{det}(x-\Phi)\end{array}$ Hitchin map
- $\mathcal{E}_{\text {triv }}:=\left(O^{n}, 0\right)$ trivial Higgs bundle, bottom Lagrangian: $B:=\left\{\left(O^{n}, \Phi\right): \Phi \in H^{0}\left(C ; \operatorname{End}_{0}\left(O^{n}\right) \otimes K_{C}\right)\right\} \subset \mathbb{M}$ singular Lagrangian subvariety
$B \cong \operatorname{End}_{0}\left(\mathbb{C}^{n}\right) \otimes H^{0}\left(K_{C}\right) / / \mathrm{PGL}_{n}$
- $g(C)=2, h^{0}\left(K_{0}\right)=2 \leadsto \pi: C \rightarrow \mathbb{P}^{1}$ hyperelliptic \leadsto $\pi^{*}(O(1))=K_{C} \leadsto \bar{B} \cong \mathbb{M}_{\mathbb{P}^{1}, O(1)}^{0}$ moduli of semi-stable (E, Φ) $\operatorname{deg}(E)=0, \operatorname{rank}(E)=n, \Phi \in H^{0}\left(\mathbb{P}^{1} ; \operatorname{End}_{0}(E)(1)\right)$
- $\mathbb{M}:=\mathbb{M}_{\mathrm{PGL}_{n}}^{s s, 0} \ni(E, \Phi) ; \Phi \in H^{0}\left(C ; \operatorname{End}_{0}(E) \otimes K\right), \operatorname{deg}(E)=0$
- $\begin{array}{cccc}\mathbb{M} & \rightarrow & \mathbb{A}:=H^{0}\left(K_{C}^{2}\right) \times \cdots \times H^{0}\left(K_{C}^{n}\right) \\ (E, \Phi) & \mapsto & \operatorname{det}(x-\Phi)\end{array} \quad$ Hitchin map
- $\mathcal{E}_{\text {triv }}:=\left(O^{n}, 0\right)$ trivial Higgs bundle, bottom Lagrangian: $B:=\left\{\left(O^{n}, \Phi\right): \Phi \in H^{0}\left(C ; \operatorname{End}_{0}\left(O^{n}\right) \otimes K_{C}\right)\right\} \subset \mathbb{M}$ singular Lagrangian subvariety
$B \cong \operatorname{End}_{0}\left(\mathbb{C}^{n}\right) \otimes H^{0}\left(K_{C}\right) / / \mathrm{PGL}_{n}$
- $g(C)=2, h^{0}\left(K_{0}\right)=2 \leadsto \pi: C \rightarrow \mathbb{P}^{1}$ hyperelliptic \leadsto $\pi^{*}(O(1))=K_{C} \leadsto \bar{B} \cong \mathbb{M}_{\mathbb{P}^{1}, O(1)}^{0}$ moduli of semi-stable (E, Φ) $\operatorname{deg}(E)=0, \operatorname{rank}(E)=n, \Phi \in H^{0}\left(\mathbb{P}^{1} ; \operatorname{End}_{0}(E)(1)\right)$
- components of $\bar{B} \cap h^{-1}(0)$
- $\mathbb{M}:=\mathbb{M}_{\mathrm{PGL}_{n}}^{s s, 0} \ni(E, \Phi) ; \Phi \in H^{0}\left(C ; \operatorname{End}_{0}(E) \otimes K\right), \operatorname{deg}(E)=0$
- $\begin{array}{cccc}\boldsymbol{M}: & \rightarrow \mathbb{A}:=H^{0}\left(K_{C}^{2}\right) \times \cdots \times H^{0}\left(K_{C}^{n}\right) \\ (E, \Phi) & \mapsto & \operatorname{det}(x-\Phi)\end{array}$ Hitchin map
- $\mathcal{E}_{\text {triv }}:=\left(O^{n}, 0\right)$ trivial Higgs bundle, bottom Lagrangian: $B:=\left\{\left(O^{n}, \Phi\right): \Phi \in H^{0}\left(C ; \operatorname{End}_{0}\left(O^{n}\right) \otimes K_{C}\right)\right\} \subset \mathbb{M}$ singular Lagrangian subvariety $B \cong \operatorname{End}_{0}\left(\mathbb{C}^{n}\right) \otimes H^{0}\left(K_{C}\right) / / \mathrm{PGL}_{n}$
- $g(C)=2, h^{0}\left(K_{0}\right)=2 \leadsto \pi: C \rightarrow \mathbb{P}^{1}$ hyperelliptic \leadsto $\pi^{*}(O(1))=K_{C} \leadsto \bar{B} \cong \mathbb{M}_{\mathbb{P}^{1}, O(1)}^{0}$ moduli of semi-stable (E, Φ) $\operatorname{deg}(E)=0, \operatorname{rank}(E)=n, \Phi \in H^{0}\left(\mathbb{P}^{1} ; \operatorname{End}_{0}(E)(1)\right)$
- components of $\bar{B} \cap h^{-1}(0) \cong$ nilpotent cone in $\mathbb{M}_{\mathbb{P}^{1}, O(1)}^{0}$
- $\mathbb{M}:=\mathbb{M}_{\mathrm{PGL}_{n}}^{s s, 0} \ni(E, \Phi) ; \Phi \in H^{0}\left(C ; \operatorname{End}_{0}(E) \otimes K\right), \operatorname{deg}(E)=0$
- $\begin{array}{ccc}h: \mathbb{M} & \rightarrow & \mathbb{A}:=H^{0}\left(K_{C}^{2}\right) \times \cdots \times H^{0}\left(K_{C}^{n}\right) \\ (E, \Phi) & \mapsto & \operatorname{det}(x-\Phi)\end{array}$ Hitchin map
- $\mathcal{E}_{\text {triv }}:=\left(O^{n}, 0\right)$ trivial Higgs bundle, bottom Lagrangian:
$B:=\left\{\left(O^{n}, \Phi\right): \Phi \in H^{0}\left(C ; \operatorname{End}_{0}\left(O^{n}\right) \otimes K_{C}\right)\right\} \subset \mathbb{M}$
singular Lagrangian subvariety
$B \cong \operatorname{End}_{0}\left(\mathbb{C}^{n}\right) \otimes H^{0}\left(K_{C}\right) / / \mathrm{PGL}_{n}$
- $g(C)=2, h^{0}\left(K_{0}\right)=2 \leadsto \pi: C \rightarrow \mathbb{P}^{1}$ hyperelliptic \leadsto $\pi^{*}(O(1))=K_{C} \leadsto \bar{B} \cong \mathbb{M}_{\mathbb{P}^{1}, O(1)}^{0}$ moduli of semi-stable (E, Φ) $\operatorname{deg}(E)=0, \operatorname{rank}(E)=n, \Phi \in H^{0}\left(\mathbb{P}^{1} ; \operatorname{End}_{0}(E)(1)\right)$
- components of $\bar{B} \cap h^{-1}(0) \cong$ nilpotent cone in $\mathbb{M}_{\mathbb{P}^{1}, O(1)}^{0} \leftrightarrow$ components of stable type $(1, \ldots, 1) O(1)$-Higgs bundles on \mathbb{P}^{1} \leftrightarrow score sequences of strong tournaments on $[n]$
- $\mathbb{M}:=\mathbb{M}_{\mathrm{PGL}_{n}}^{s s, 0} \ni(E, \Phi) ; \Phi \in H^{0}\left(C ; \operatorname{End}_{0}(E) \otimes K\right), \operatorname{deg}(E)=0$
- $\begin{array}{cccc} \\ & \mathbb{M} & \rightarrow & \mathbb{A}:=H^{0}\left(K_{C}^{2}\right) \times \cdots \times H^{0}\left(K_{C}^{n}\right) \\ (E, \Phi) & \mapsto & \operatorname{det}(x-\Phi)\end{array} \quad$ Hitchin map
- $\mathcal{E}_{\text {triv }}:=\left(O^{n}, 0\right)$ trivial Higgs bundle, bottom Lagrangian:
$B:=\left\{\left(O^{n}, \Phi\right): \Phi \in H^{0}\left(C ; \operatorname{End}_{0}\left(O^{n}\right) \otimes K_{C}\right)\right\} \subset \mathbb{M}$
singular Lagrangian subvariety
$B \cong \operatorname{End}_{0}\left(\mathbb{C}^{n}\right) \otimes H^{0}\left(K_{C}\right) / / \mathrm{PGL}_{n}$
- $g(C)=2, h^{0}\left(K_{0}\right)=2 \leadsto \pi: C \rightarrow \mathbb{P}^{1}$ hyperelliptic \leadsto $\pi^{*}(O(1))=K_{C} \leadsto \bar{B} \cong \mathbb{M}_{\mathbb{P}^{1}, O(1)}^{0}$ moduli of semi-stable (E, Φ)
$\operatorname{deg}(E)=0, \operatorname{rank}(E)=n, \Phi \in H^{0}\left(\mathbb{P}^{1} ; \operatorname{End}_{0}(E)(1)\right)$
- components of $\bar{B} \cap h^{-1}(0) \cong$ nilpotent cone in $\mathbb{M}_{\mathbb{P}^{1}, O(1)}^{0} \leftrightarrow$ components of stable type $(1, \ldots, 1) O(1)$-Higgs bundles on \mathbb{P}^{1} \leftrightarrow score sequences of strong tournaments on [n]
\leftrightarrow dominant weights in V^{ρ}
- $\mathbb{M}:=\mathbb{M}_{\mathrm{PGL}_{n}}^{s s, 0} \ni(E, \Phi) ; \Phi \in H^{0}\left(C ; \operatorname{End}_{0}(E) \otimes K\right), \operatorname{deg}(E)=0$
- $\begin{array}{ccc}\mathbb{M}: & \rightarrow & \mathbb{A}:=H^{0}\left(K_{C}^{2}\right) \times \cdots \times H^{0}\left(K_{C}^{n}\right) \\ (E, \Phi) & \mapsto & \operatorname{det}(x-\Phi)\end{array} \quad$ Hitchin map
- $\mathcal{E}_{\text {triv }}:=\left(O^{n}, 0\right)$ trivial Higgs bundle, bottom Lagrangian:
$B:=\left\{\left(O^{n}, \Phi\right): \Phi \in H^{0}\left(C ; \operatorname{End}_{0}\left(O^{n}\right) \otimes K_{C}\right)\right\} \subset \mathbb{M}$
singular Lagrangian subvariety
$B \cong \operatorname{End}_{0}\left(\mathbb{C}^{n}\right) \otimes H^{0}\left(K_{C}\right) / / \mathrm{PGL}_{n}$
- $g(C)=2, h^{0}\left(K_{0}\right)=2 \leadsto \pi: C \rightarrow \mathbb{P}^{1}$ hyperelliptic \leadsto $\pi^{*}(O(1))=K_{C} \leadsto \bar{B} \cong \mathbb{M}_{\mathbb{P}^{1}, O(1)}^{0}$ moduli of semi-stable (E, Φ)
$\operatorname{deg}(E)=0, \operatorname{rank}(E)=n, \Phi \in H^{0}\left(\mathbb{P}^{1} ; \operatorname{End}_{0}(E)(1)\right)$
- components of $\bar{B} \cap h^{-1}(0) \cong$ nilpotent cone in $\mathbb{M}_{\mathbb{P}^{1}, O(1)}^{0} \leftrightarrow$ components of stable type $(1, \ldots, 1) O(1)$-Higgs bundles on \mathbb{P}^{1} \leftrightarrow score sequences of strong tournaments on [n]
\leftrightarrow dominant weights in V^{ρ}
- Expectations:
(1) geometry of $\left.h\right|_{\bar{B}}$ should reflect $\mathrm{SL}_{n} \rightarrow \mathrm{GL}\left(V^{\rho}\right)$
- $\mathbb{M}:=\mathbb{M}_{\mathrm{PGL}_{n}}^{s s, 0} \ni(E, \Phi) ; \Phi \in H^{0}\left(C ; \operatorname{End}_{0}(E) \otimes K\right), \operatorname{deg}(E)=0$
- $\begin{array}{cccc}\mathbb{M} & \rightarrow & \mathbb{A}:=H^{0}\left(K_{C}^{2}\right) \times \cdots \times H^{0}\left(K_{C}^{n}\right) \\ (E, \Phi) & \mapsto & \operatorname{det}(x-\Phi)\end{array}$ Hitchin map
- $\mathcal{E}_{\text {triv }}:=\left(O^{n}, 0\right)$ trivial Higgs bundle, bottom Lagrangian:
$B:=\left\{\left(O^{n}, \Phi\right): \Phi \in H^{0}\left(C ; \operatorname{End}_{0}\left(O^{n}\right) \otimes K_{C}\right)\right\} \subset \mathbb{M}$
singular Lagrangian subvariety
$B \cong \operatorname{End}_{0}\left(\mathbb{C}^{n}\right) \otimes H^{0}\left(K_{C}\right) / / \mathrm{PGL}_{n}$
- $g(C)=2, h^{0}\left(K_{0}\right)=2 \leadsto \pi: C \rightarrow \mathbb{P}^{1}$ hyperelliptic \leadsto $\pi^{*}(O(1))=K_{C} \leadsto \bar{B} \cong \mathbb{M}_{\mathbb{P}^{1}, O(1)}^{0}$ moduli of semi-stable (E, Φ)
$\operatorname{deg}(E)=0, \operatorname{rank}(E)=n, \Phi \in H^{0}\left(\mathbb{P}^{1} ; \operatorname{End}_{0}(E)(1)\right)$
- components of $\bar{B} \cap h^{-1}(0) \cong$ nilpotent cone in $\mathbb{M}_{\mathbb{P}^{1}, O(1)}^{0} \leftrightarrow$ components of stable type $(1, \ldots, 1) O(1)$-Higgs bundles on \mathbb{P}^{1} \leftrightarrow score sequences of strong tournaments on [n]
\leftrightarrow dominant weights in V^{ρ}
- Expectations:
(1) geometry of $\left.h\right|_{\bar{B}}$ should reflect $\mathrm{SL}_{n} \rightarrow \mathrm{GL}\left(V^{\rho}\right)$
(2) geometry of $\left.h_{\mathrm{G}^{\vee}}\right|_{\bar{B}_{\mathrm{G}^{\vee}}}$ should reflect $\mathrm{G} \rightarrow \mathrm{GL}\left(V^{\rho}\right)$
- $\mathbb{M}:=\mathbb{M}_{\mathrm{PGL}_{n}}^{s s, 0} \ni(E, \Phi) ; \Phi \in H^{0}\left(C ; \operatorname{End}_{0}(E) \otimes K\right), \operatorname{deg}(E)=0$
- $\begin{array}{cccc}\mathbb{M} & \rightarrow \mathbb{A}:=H^{0}\left(K_{C}^{2}\right) \times \cdots \times H^{0}\left(K_{C}^{n}\right) \\ (E, \Phi) & \mapsto & \operatorname{det}(x-\Phi)\end{array}$ Hitchin map
- $\mathcal{E}_{\text {triv }}:=\left(O^{n}, 0\right)$ trivial Higgs bundle, bottom Lagrangian:
$B:=\left\{\left(O^{n}, \Phi\right): \Phi \in H^{0}\left(C ; \operatorname{End}_{0}\left(O^{n}\right) \otimes K_{C}\right)\right\} \subset \mathbb{M}$
singular Lagrangian subvariety
$B \cong \operatorname{End}_{0}\left(\mathbb{C}^{n}\right) \otimes H^{0}\left(K_{C}\right) / /$ PGL $_{n}$
- $g(C)=2, h^{0}\left(K_{0}\right)=2 \leadsto \pi: C \rightarrow \mathbb{P}^{1}$ hyperelliptic \leadsto $\pi^{*}(O(1))=K_{C} \leadsto \bar{B} \cong \mathbb{M}_{\mathbb{P}^{1}, O(1)}^{0}$ moduli of semi-stable (E, Φ)
$\operatorname{deg}(E)=0, \operatorname{rank}(E)=n, \Phi \in H^{0}\left(\mathbb{P}^{1} ; \operatorname{End}_{0}(E)(1)\right)$
- components of $\bar{B} \cap h^{-1}(0) \cong$ nilpotent cone in $\mathbb{M}_{\mathbb{P}^{1}, O(1)}^{0} \leftrightarrow$
components of stable type $(1, \ldots, 1) O(1)$-Higgs bundles on \mathbb{P}^{1}
\leftrightarrow score sequences of strong tournaments on [n]
\leftrightarrow dominant weights in V^{ρ}
- Expectations:
(1) geometry of $\left.h\right|_{\bar{B}}$ should reflect $\mathrm{SL}_{n} \rightarrow \mathrm{GL}\left(V^{\rho}\right)$
(2) geometry of $\left.h_{\mathrm{G}^{\vee}}\right|_{\bar{B}_{\mathrm{G}^{\vee}}}$ should reflect $\mathrm{G} \rightarrow \mathrm{GL}\left(V^{\rho}\right)$
(3) should be compatible with folding $\sigma: \mathrm{G} \rightarrow \mathrm{G}$
- $R \subset \Lambda \cong \mathbb{Z}^{r}$ finite root system in weight lattice, Weyl group W,

Root system tournaments

- $R \subset \Lambda \cong \mathbb{Z}^{r}$ finite root system in weight lattice, Weyl group W, $R_{+} \subset R$ set of positive roots
- $R \subset \Lambda \cong \mathbb{Z}^{r}$ finite root system in weight lattice, Weyl group W, $R_{+} \subset R$ set of positive roots
(1) $\left|R_{+} \cap\{\alpha,-\alpha\}\right|=1 \forall \alpha \in R$
- $R \subset \Lambda \cong \mathbb{Z}^{r}$ finite root system in weight lattice, Weyl group W, $R_{+} \subset R$ set of positive roots
(1) $\left|R_{+} \cap\{\alpha,-\alpha\}\right|=1 \forall \alpha \in R$
(2) $\alpha, \beta \in R_{+}$and $\alpha+\beta \in R \Rightarrow \alpha+\beta \in R_{+}$
- $R \subset \Lambda \cong \mathbb{Z}^{r}$ finite root system in weight lattice, Weyl group W, $R_{+} \subset R$ set of positive roots
(1) $\left|R_{+} \cap\{\alpha,-\alpha\}\right|=1 \forall \alpha \in R$
(2) $\alpha, \beta \in R_{+}$and $\alpha+\beta \in R \Rightarrow \alpha+\beta \in R_{+}$
- R-tournament: $T \subset R$ s.t. $|T \cap\{\alpha,-\alpha\}|=1 \forall \alpha \in R$
- $R \subset \Lambda \cong \mathbb{Z}^{r}$ finite root system in weight lattice, Weyl group W, $R_{+} \subset R$ set of positive roots
(1) $\left|R_{+} \cap\{\alpha,-\alpha\}\right|=1 \forall \alpha \in R$
(2) $\alpha, \beta \in R_{+}$and $\alpha+\beta \in R \Rightarrow \alpha+\beta \in R_{+}$
- R-tournament: $T \subset R$ s.t. $|T \cap\{\alpha,-\alpha\}|=1 \forall \alpha \in R$
- example: positive roots $R_{+} \subset R$
- $R \subset \Lambda \cong \mathbb{Z}^{r}$ finite root system in weight lattice, Weyl group W, $R_{+} \subset R$ set of positive roots
(1) $\left|R_{+} \cap\{\alpha,-\alpha\}\right|=1 \forall \alpha \in R$
(2) $\alpha, \beta \in R_{+}$and $\alpha+\beta \in R \Rightarrow \alpha+\beta \in R_{+}$
- R-tournament: $T \subset R$ s.t. $|T \cap\{\alpha,-\alpha\}|=1 \forall \alpha \in R$
- example: positive roots $R_{+} \subset R$ transitive R-tournament
- $R \subset \Lambda \cong \mathbb{Z}^{r}$ finite root system in weight lattice, Weyl group W, $R_{+} \subset R$ set of positive roots
(1) $\left|R_{+} \cap\{\alpha,-\alpha\}\right|=1 \forall \alpha \in R$
(2) $\alpha, \beta \in R_{+}$and $\alpha+\beta \in R \Rightarrow \alpha+\beta \in R_{+}$
- R-tournament: $T \subset R$ s.t. $|T \cap\{\alpha,-\alpha\}|=1 \forall \alpha \in R$
- example: positive roots $R_{+} \subset R$ transitive R-tournament
- notion used by (Calderbank-Hanlon, 1986) to give a combinatorial proof for the Weyl denominator identity

$$
\prod_{\alpha \in R_{+}}\left(x^{\alpha / 2}-x^{-\alpha / 2}\right)=\sum_{w \in W} \operatorname{det}(w) x^{w(\rho)}
$$

- $R \subset \Lambda \cong \mathbb{Z}^{r}$ finite root system in weight lattice, Weyl group W, $R_{+} \subset R$ set of positive roots
(1) $\left|R_{+} \cap\{\alpha,-\alpha\}\right|=1 \forall \alpha \in R$
(2) $\alpha, \beta \in R_{+}$and $\alpha+\beta \in R \Rightarrow \alpha+\beta \in R_{+}$
- R-tournament: $T \subset R$ s.t. $|T \cap\{\alpha,-\alpha\}|=1 \forall \alpha \in R$
- example: positive roots $R_{+} \subset R$ transitive R-tournament
- notion used by (Calderbank-Hanlon, 1986) to give a combinatorial proof for the Weyl denominator identity
$\prod_{\alpha \in R_{+}}\left(x^{\alpha / 2}-x^{-\alpha / 2}\right)=\sum_{w \in W} \operatorname{det}(w) x^{w(\rho)}$
in types B, C, D after (Gessel, 1979) in type A
- $R \subset \Lambda \cong \mathbb{Z}^{r}$ finite root system in weight lattice, Weyl group W, $R_{+} \subset R$ set of positive roots
(1) $\left|R_{+} \cap\{\alpha,-\alpha\}\right|=1 \forall \alpha \in R$
(2) $\alpha, \beta \in R_{+}$and $\alpha+\beta \in R \Rightarrow \alpha+\beta \in R_{+}$
- R-tournament: $T \subset R$ s.t. $|T \cap\{\alpha,-\alpha\}|=1 \forall \alpha \in R$
- example: positive roots $R_{+} \subset R$ transitive R-tournament
- notion used by (Calderbank-Hanlon, 1986) to give a combinatorial proof for the Weyl denominator identity
$\prod_{\alpha \in R_{+}}\left(x^{\alpha / 2}-x^{-\alpha / 2}\right)=\sum_{w \in W} \operatorname{det}(w) x^{w(\rho)}$
in types B, C, D after (Gessel, 1979) in type A
- Weyl character formula for $\mathfrak{g}_{R} \rightarrow \operatorname{End}\left(V^{\rho}\right), \rho=\left(\sum_{\alpha \in R_{+}}\right) / 2$
- $R \subset \Lambda \cong \mathbb{Z}^{r}$ finite root system in weight lattice, Weyl group W, $R_{+} \subset R$ set of positive roots
(1) $\left|R_{+} \cap\{\alpha,-\alpha\}\right|=1 \forall \alpha \in R$
(2) $\alpha, \beta \in R_{+}$and $\alpha+\beta \in R \Rightarrow \alpha+\beta \in R_{+}$
- R-tournament: $T \subset R$ s.t. $|T \cap\{\alpha,-\alpha\}|=1 \forall \alpha \in R$
- example: positive roots $R_{+} \subset R$ transitive R-tournament
- notion used by (Calderbank-Hanlon, 1986) to give a combinatorial proof for the Weyl denominator identity
$\prod_{\alpha \in R_{+}}\left(x^{\alpha / 2}-x^{-\alpha / 2}\right)=\sum_{w \in W} \operatorname{det}(w) x^{w(\rho)}$
in types B, C, D after (Gessel, 1979) in type A
- Weyl character formula for $\mathfrak{g}_{R} \rightarrow \operatorname{End}\left(V^{\rho}\right), \rho=\left(\sum_{\alpha \in R_{+}}\right) / 2$
$\sum_{\lambda \in \Lambda} \operatorname{dim}\left(V_{\lambda}^{\rho}\right) x^{\lambda}=\frac{\sum_{w \in W} \operatorname{det}(w) x^{w(\rho+\rho)}}{\sum_{w \in W} \operatorname{det}(w) x^{w(\rho)}}$
- $R \subset \Lambda \cong \mathbb{Z}^{r}$ finite root system in weight lattice, Weyl group W, $R_{+} \subset R$ set of positive roots
(1) $\left|R_{+} \cap\{\alpha,-\alpha\}\right|=1 \forall \alpha \in R$
(2) $\alpha, \beta \in R_{+}$and $\alpha+\beta \in R \Rightarrow \alpha+\beta \in R_{+}$
- R-tournament: $T \subset R$ s.t. $|T \cap\{\alpha,-\alpha\}|=1 \forall \alpha \in R$
- example: positive roots $R_{+} \subset R$ transitive R-tournament
- notion used by (Calderbank-Hanlon, 1986) to give a combinatorial proof for the Weyl denominator identity
$\prod_{\alpha \in R_{+}}\left(x^{\alpha / 2}-x^{-\alpha / 2}\right)=\sum_{w \in W} \operatorname{det}(w) x^{w(\rho)}$
in types B, C, D after (Gessel, 1979) in type A
- Weyl character formula for $\mathfrak{g}_{R} \rightarrow \operatorname{End}\left(V^{\rho}\right), \rho=\left(\sum_{\alpha \in R_{+}}\right) / 2$
$\sum_{\lambda \in \Lambda} \operatorname{dim}\left(V_{\lambda}^{\rho}\right) x^{\lambda}=\frac{\sum_{w \in W} \operatorname{det}(w) x^{w(\rho+\rho)}}{\sum_{w \in W} \operatorname{det}(w) x^{w(\rho)}}=\frac{\prod_{\alpha \in R_{+}}\left(x^{\alpha}-x^{-\alpha}\right)}{\prod_{\alpha \in R_{+}}\left(x^{\alpha / 2}-x^{-\alpha / 2}\right)}$
- $R \subset \Lambda \cong \mathbb{Z}^{r}$ finite root system in weight lattice, Weyl group W, $R_{+} \subset R$ set of positive roots
(1) $\left|R_{+} \cap\{\alpha,-\alpha\}\right|=1 \forall \alpha \in R$
(2) $\alpha, \beta \in R_{+}$and $\alpha+\beta \in R \Rightarrow \alpha+\beta \in R_{+}$
- R-tournament: $T \subset R$ s.t. $|T \cap\{\alpha,-\alpha\}|=1 \forall \alpha \in R$
- example: positive roots $R_{+} \subset R$ transitive R-tournament
- notion used by (Calderbank-Hanlon, 1986) to give a combinatorial proof for the Weyl denominator identity
$\prod_{\alpha \in R_{+}}\left(x^{\alpha / 2}-x^{-\alpha / 2}\right)=\sum_{w \in W} \operatorname{det}(w) x^{w(\rho)}$
in types B, C, D after (Gessel, 1979) in type A
- Weyl character formula for $\mathfrak{g}_{R} \rightarrow \operatorname{End}\left(V^{\rho}\right), \rho=\left(\sum_{\alpha \in R_{+}}\right) / 2$
$\sum_{\lambda \in \Lambda} \operatorname{dim}\left(V_{\lambda}^{\rho}\right) x^{\lambda}=\frac{\sum_{w \in w} \operatorname{det}(w) x^{w(\rho+\rho)}}{\sum_{w \in W} \operatorname{det}(w) x^{w(\rho)}}=\frac{\prod_{\alpha \in R_{+}}\left(x^{\alpha}-x^{-\alpha}\right)}{\prod_{\alpha \in R_{+}}\left(x^{\alpha / 2}-x^{-\alpha / 2}\right)}=$ $\prod_{\alpha \in R_{+}}\left(x^{\alpha / 2}+x^{-\alpha / 2}\right)$
- $R \subset \Lambda \cong \mathbb{Z}^{r}$ finite root system in weight lattice, Weyl group W, $R_{+} \subset R$ set of positive roots
(1) $\left|R_{+} \cap\{\alpha,-\alpha\}\right|=1 \forall \alpha \in R$
(2) $\alpha, \beta \in R_{+}$and $\alpha+\beta \in R \Rightarrow \alpha+\beta \in R_{+}$
- R-tournament: $T \subset R$ s.t. $|T \cap\{\alpha,-\alpha\}|=1 \forall \alpha \in R$
- example: positive roots $R_{+} \subset R$ transitive R-tournament
- notion used by (Calderbank-Hanlon, 1986) to give a combinatorial proof for the Weyl denominator identity
$\prod_{\alpha \in R_{+}}\left(x^{\alpha / 2}-x^{-\alpha / 2}\right)=\sum_{w \in W} \operatorname{det}(w) x^{w(\rho)}$
in types B, C, D after (Gessel, 1979) in type A
- Weyl character formula for $g_{R} \rightarrow \operatorname{End}\left(V^{\rho}\right), \rho=\left(\sum_{\alpha \in R_{+}}\right) / 2$
$\sum_{\lambda \in \Lambda} \operatorname{dim}\left(V_{\lambda}^{\rho}\right) x^{\lambda}=\frac{\sum_{w \in W} \operatorname{det}(w) x^{w(\rho+\rho)}}{\sum_{w \in W} \operatorname{det}(w) x^{w(\rho)}}=\frac{\prod_{\alpha \in R_{+}}\left(x^{\alpha}-x^{-\alpha}\right)}{\prod_{\alpha \in R_{+}}\left(x^{\alpha / 2}-x^{-\alpha / 2}\right)}=$ $\prod_{\alpha \in R_{+}}\left(x^{\alpha / 2}+x^{-\alpha / 2}\right)$
- $\{R$-tournaments $\}$
- $R \subset \Lambda \cong \mathbb{Z}^{r}$ finite root system in weight lattice, Weyl group W, $R_{+} \subset R$ set of positive roots
(1) $\left|R_{+} \cap\{\alpha,-\alpha\}\right|=1 \forall \alpha \in R$
(2) $\alpha, \beta \in R_{+}$and $\alpha+\beta \in R \Rightarrow \alpha+\beta \in R_{+}$
- R-tournament: $T \subset R$ s.t. $|T \cap\{\alpha,-\alpha\}|=1 \forall \alpha \in R$
- example: positive roots $R_{+} \subset R$ transitive R-tournament
- notion used by (Calderbank-Hanlon, 1986) to give a combinatorial proof for the Weyl denominator identity
$\prod_{\alpha \in R_{+}}\left(x^{\alpha / 2}-x^{-\alpha / 2}\right)=\sum_{w \in W} \operatorname{det}(w) x^{w(\rho)}$
in types B, C, D after (Gessel, 1979) in type A
- Weyl character formula for $\mathfrak{g}_{R} \rightarrow \operatorname{End}\left(V^{\rho}\right), \rho=\left(\sum_{\alpha \in R_{+}}\right) / 2$
$\sum_{\lambda \in \Lambda} \operatorname{dim}\left(V_{\lambda}^{\rho}\right) x^{\lambda}=\frac{\sum_{w \in W} \operatorname{det}(w) x^{w(\rho+\rho)}}{\sum_{w \in W} \operatorname{det}(w) x^{w(\rho)}}=\frac{\prod_{\alpha \in R_{+}}\left(x^{\alpha}-x^{-\alpha}\right)}{\prod_{\alpha \in R_{+}}\left(x^{\alpha / 2}-x^{-\alpha / 2}\right)}=$ $\prod_{\alpha \in R_{+}}\left(x^{\alpha / 2}+x^{-\alpha / 2}\right)$
- $\{R$-tournaments $\} \leftrightarrow\left\{\right.$ monomial basis in $\left.V^{\rho}\right\}$
- $R \subset \Lambda \cong \mathbb{Z}^{r}$ finite root system in weight lattice, Weyl group W, $R_{+} \subset R$ set of positive roots
(1) $\left|R_{+} \cap\{\alpha,-\alpha\}\right|=1 \forall \alpha \in R$
(2) $\alpha, \beta \in R_{+}$and $\alpha+\beta \in R \Rightarrow \alpha+\beta \in R_{+}$
- R-tournament: $T \subset R$ s.t. $|T \cap\{\alpha,-\alpha\}|=1 \forall \alpha \in R$
- example: positive roots $R_{+} \subset R$ transitive R-tournament
- notion used by (Calderbank-Hanlon, 1986) to give a combinatorial proof for the Weyl denominator identity
$\prod_{\alpha \in R_{+}}\left(x^{\alpha / 2}-x^{-\alpha / 2}\right)=\sum_{w \in W} \operatorname{det}(w) x^{w(\rho)}$
in types B, C, D after (Gessel, 1979) in type A
- Weyl character formula for $g_{R} \rightarrow \operatorname{End}\left(V^{\rho}\right), \rho=\left(\sum_{\alpha \in R_{+}}\right) / 2$
$\sum_{\lambda \in \Lambda} \operatorname{dim}\left(V_{\lambda}^{\rho}\right) x^{\lambda}=\frac{\sum_{w \in W} \operatorname{det}(w) x^{w(\rho+\rho)}}{\sum_{w \in W} \operatorname{det}(w) x^{w(\rho)}}=\frac{\prod_{\alpha \in R_{+}}\left(x^{\alpha}-x^{-\alpha}\right)}{\prod_{\alpha \in R_{+}}\left(x^{\alpha / 2}-x^{-\alpha / 2}\right)}=$ $\prod_{\alpha \in R_{+}}\left(x^{\alpha / 2}+x^{-\alpha / 2}\right)$
- $\{R$-tournaments $\} \leftrightarrow\left\{\right.$ monomial basis in $\left.V^{\rho}\right\}$
- R-score vector:= weight in V^{ρ}
- $R \subset \Lambda \cong \mathbb{Z}^{r}$ finite root system in weight lattice, Weyl group W, $R_{+} \subset R$ set of positive roots
(1) $\left|R_{+} \cap\{\alpha,-\alpha\}\right|=1 \forall \alpha \in R$
(2) $\alpha, \beta \in R_{+}$and $\alpha+\beta \in R \Rightarrow \alpha+\beta \in R_{+}$
- R-tournament: $T \subset R$ s.t. $|T \cap\{\alpha,-\alpha\}|=1 \forall \alpha \in R$
- example: positive roots $R_{+} \subset R$ transitive R-tournament
- notion used by (Calderbank-Hanlon, 1986) to give a combinatorial proof for the Weyl denominator identity
$\prod_{\alpha \in R_{+}}\left(x^{\alpha / 2}-x^{-\alpha / 2}\right)=\sum_{w \in W} \operatorname{det}(w) x^{w(\rho)}$
in types B, C, D after (Gessel, 1979) in type A
- Weyl character formula for $\mathfrak{g}_{R} \rightarrow \operatorname{End}\left(V^{\rho}\right), \rho=\left(\sum_{\alpha \in R_{+}}\right) / 2$
$\sum_{\lambda \in \Lambda} \operatorname{dim}\left(V_{\lambda}^{\rho}\right) x^{\lambda}=\frac{\sum_{w \in W} \operatorname{det}(w) x^{w(\rho+\rho)}}{\sum_{w \in W} \operatorname{det}(w) x^{w(\rho)}}=\frac{\prod_{\alpha \in R_{+}}\left(x^{\alpha}-x^{-\alpha}\right)}{\prod_{\alpha \in R_{+}}\left(x^{\alpha / 2}-x^{-\alpha / 2}\right)}=$ $\prod_{\alpha \in R_{+}}\left(x^{\alpha / 2}+x^{-\alpha / 2}\right)$
- $\{R$-tournaments $\} \leftrightarrow\left\{\right.$ monomial basis in $\left.V^{\rho}\right\}$
- R-score vector:= weight in V^{ρ}
R-score sequence:= dominant weight in V^{ρ}

Folding

R \subset w finite root system, weight lattice, weyl group
PR R R Mow finite root system, weight lattice, well group
PR R R Mow finite root system, weight lattice, well group
R \sim pinite root system, weight lattice, well group

R \sim pinite root system, weight lattice, well group

\subset W finite root system, weight lattice, Weyl
\qquad

- $R \subset \Lambda \supset W$ finite root system, weight lattice, Weyl group
- Dynkin diagram automorphism $\leadsto \sigma: \Lambda \rightarrow \Lambda$ s.t. $\sigma(R)=R$
- $R \subset \Lambda \supset W$ finite root system, weight lattice, Weyl group
- Dynkin diagram automorphism $\leadsto \sigma: \Lambda \rightarrow \Lambda$ s.t. $\sigma(R)=R$
- folding procedure \leadsto root system $R^{\sigma}:=R / \sigma \subset \Lambda^{\sigma}$ (except $A_{2 n}$)
- $R \subset \Lambda \supset W$ finite root system, weight lattice, Weyl group
- Dynkin diagram automorphism $\leadsto \sigma: \Lambda \rightarrow \Lambda$ s.t. $\sigma(R)=R$
- folding procedure \leadsto root system $R^{\sigma}:=R / \sigma \subset \Lambda^{\sigma}$ (except $A_{2 n}$)
- defining property: $\mathfrak{g}_{R^{\sigma}}^{\vee} \cong\left(\mathfrak{g}_{R}^{\vee}\right)^{\sigma} \subset \mathfrak{g}_{R}^{\vee}$
- $R \subset \Lambda \supset W$ finite root system, weight lattice, Weyl group
- Dynkin diagram automorphism $\sim \sigma: \Lambda \rightarrow \Lambda$ s.t. $\sigma(R)=R$
- folding procedure \leadsto root system $R^{\sigma}:=R / \sigma \subset \Lambda^{\sigma}$ (except $A_{2 n}$)
- defining property: $\mathfrak{g}_{R^{\sigma}}^{\vee} \cong\left(\mathfrak{g}_{R}^{\vee}\right)^{\sigma} \subset \mathfrak{g}_{R}^{\vee}$
$-$

Tournament folding $A_{2 n-1} \leadsto B_{n}$

Tournament folding $A_{2 n-1} \leadsto B_{n}$

$$
\text { - } \sigma:[2 n]:=\{1, \ldots, 2 n\} \rightarrow[2 n] \text { by } \sigma(i)=2 n-i
$$

Tournament folding $A_{2 n-1} \leadsto B_{n}$

- $\sigma:[2 n]:=\{1, \ldots, 2 n\} \rightarrow[2 n]$ by $\sigma(i)=2 n-i$
- orbits [2n]/ $\sigma:=$ married couples
- $\sigma:[2 n]:=\{1, \ldots, 2 n\} \rightarrow[2 n]$ by $\sigma(i)=2 n-i$
- orbits $[2 n] / \sigma:=$ married couples
- tournament on $[2 n]$ is marriage balanced
- $\sigma:[2 n]:=\{1, \ldots, 2 n\} \rightarrow[2 n]$ by $\sigma(i)=2 n-i$
- orbits $[2 n] / \sigma:=$ married couples
- tournament on $[2 n]$ is marriage balanced:

$$
a \rightarrow b \Rightarrow \sigma(b) \rightarrow \sigma(a)
$$

- $\sigma:[2 n]:=\{1, \ldots, 2 n\} \rightarrow[2 n]$ by $\sigma(i)=2 n-i$
- orbits $[2 n] / \sigma:=$ married couples
- tournament on [2n] is marriage balanced:

$$
a \rightarrow b \Rightarrow \sigma(b) \rightarrow \sigma(a)
$$

- score vector of m.b. tournament is $\left(s_{1}, \ldots, s_{2 n}\right)$
- $\sigma:[2 n]:=\{1, \ldots, 2 n\} \rightarrow[2 n]$ by $\sigma(i)=2 n-i$
- orbits $[2 n] / \sigma:=$ married couples
- tournament on $[2 n]$ is marriage balanced:
$a \rightarrow b \Rightarrow \sigma(b) \rightarrow \sigma(a)$
- score vector of m.b. tournament is $\left(s_{1}, \ldots, s_{2 n}\right)$ satisfies $s_{i}+s_{\sigma_{i}}=2 n-1$
- $\sigma:[2 n]:=\{1, \ldots, 2 n\} \rightarrow[2 n]$ by $\sigma(i)=2 n-i$
- orbits $[2 n] / \sigma:=$ married couples
- tournament on $[2 n]$ is marriage balanced:
$a \rightarrow b \Rightarrow \sigma(b) \rightarrow \sigma(a)$
- score vector of m.b. tournament is $\left(s_{1}, \ldots, s_{2 n}\right)$ satisfies $s_{i}+s_{\sigma_{i}}=2 n-1$
- score sequence of m.b. tournament: $\left(s_{1}^{\prime} \leq \cdots \leq s_{n}^{\prime} \leq n-1\right)$
- $\sigma:[2 n]:=\{1, \ldots, 2 n\} \rightarrow[2 n]$ by $\sigma(i)=2 n-i$
- orbits $[2 n] / \sigma:=$ married couples
- tournament on $[2 n]$ is marriage balanced:
$a \rightarrow b \Rightarrow \sigma(b) \rightarrow \sigma(a)$
- score vector of m.b. tournament is $\left(s_{1}, \ldots, s_{2 n}\right)$ satisfies $s_{i}+s_{\sigma_{i}}=2 n-1$
- score sequence of m.b. tournament: $\left(s_{1}^{\prime} \leq \cdots \leq s_{n}^{\prime} \leq n-1\right)$

Theorem

$\left\{R^{\sigma}=B_{n}\right.$ - tournaments $\} \leftrightarrow$
\{marriage balanced tournaments on [2n]\}

Tournament folding $A_{2 n-1} \leadsto B_{n}$

- $\sigma:[2 n]:=\{1, \ldots, 2 n\} \rightarrow[2 n]$ by $\sigma(i)=2 n-i$
- orbits $[2 n] / \sigma:=$ married couples
- tournament on $[2 n]$ is marriage balanced: $a \rightarrow b \Rightarrow \sigma(b) \rightarrow \sigma(a)$
- score vector of m.b. tournament is $\left(s_{1}, \ldots, s_{2 n}\right)$ satisfies $s_{i}+s_{\sigma_{i}}=2 n-1$
- score sequence of m.b. tournament: $\left(s_{1}^{\prime} \leq \cdots \leq s_{n}^{\prime} \leq n-1\right)$

Theorem

$\left\{R^{\sigma}=B_{n}\right.$ - tournaments $\} \leftrightarrow$
\{marriage balanced tournaments on [2n]\} with generating function:
$\prod_{i=1}^{n}\left(y_{i}+x_{i}\right) \prod_{1 \leq i<j \leq n}\left(y_{i} y_{j}+x_{i} x_{j}\right)\left(x_{i} y_{j}+x_{j} y_{i}\right)$

- $\sigma:[2 n]:=\{1, \ldots, 2 n\} \rightarrow[2 n]$ by $\sigma(i)=2 n-i$
- orbits $[2 n] / \sigma:=$ married couples
- tournament on $[2 n]$ is marriage balanced: $a \rightarrow b \Rightarrow \sigma(b) \rightarrow \sigma(a)$
- score vector of m.b. tournament is $\left(s_{1}, \ldots, s_{2 n}\right)$ satisfies $s_{i}+s_{\sigma_{i}}=2 n-1$
- score sequence of m.b. tournament: $\left(s_{1}^{\prime} \leq \cdots \leq s_{n}^{\prime} \leq n-1\right)$

Theorem

$\left\{R^{\sigma}=B_{n}\right.$ - tournaments $\} \leftrightarrow$
\{marriage balanced tournaments on [2n]\} with generating function:
$\left.\prod_{i=1}^{n}\left(y_{i}+x_{i}\right) \prod_{1 \leq i<j \leq n}\left(y_{i} y_{j}+x_{i} x_{j}\right)\left(x_{i} y_{j}+x_{j} y_{i}\right)\right|_{y_{i}=1}=\sum_{\lambda \in \Lambda} \operatorname{dim} V_{\lambda}^{\rho} x^{\lambda}$

Tournament folding $A_{2 n-1} \rightsquigarrow B_{n}$

- $\sigma:[2 n]:=\{1, \ldots, 2 n\} \rightarrow[2 n]$ by $\sigma(i)=2 n-i$
- orbits $[2 n] / \sigma:=$ married couples
- tournament on $[2 n]$ is marriage balanced: $a \rightarrow b \Rightarrow \sigma(b) \rightarrow \sigma(a)$
- score vector of m.b. tournament is $\left(s_{1}, \ldots, s_{2 n}\right)$ satisfies $s_{i}+s_{\sigma_{i}}=2 n-1$
- score sequence of m.b. tournament: $\left(s_{1}^{\prime} \leq \cdots \leq s_{n}^{\prime} \leq n-1\right)$

Theorem

$\left\{R^{\sigma}=B_{n}\right.$ - tournaments $\} \leftrightarrow$
\{marriage balanced tournaments on [2n]\} with generating function: $\left.\prod_{i=1}^{n}\left(y_{i}+x_{i}\right) \prod_{1 \leq i<j \leq n}\left(y_{i} y_{j}+x_{i} x_{j}\right)\left(x_{i} y_{j}+x_{j} y_{i}\right)\right|_{y_{i}=1}=\sum_{\lambda \in \Lambda} \operatorname{dim} V_{\lambda}^{\rho} x^{\lambda}$ $\{$ score vectors of m.b. tournaments $\} \leftrightarrow\left\{\right.$ weights in $\left.V^{\rho}\right\}$

Tournament folding $A_{2 n-1} \rightsquigarrow B_{n}$

- $\sigma:[2 n]:=\{1, \ldots, 2 n\} \rightarrow[2 n]$ by $\sigma(i)=2 n-i$
- orbits $[2 n] / \sigma:=$ married couples
- tournament on [2n] is marriage balanced: $a \rightarrow b \Rightarrow \sigma(b) \rightarrow \sigma(a)$
- score vector of m.b. tournament is $\left(s_{1}, \ldots, s_{2 n}\right)$ satisfies $s_{i}+s_{\sigma_{i}}=2 n-1$
- score sequence of m.b. tournament: $\left(s_{1}^{\prime} \leq \cdots \leq s_{n}^{\prime} \leq n-1\right)$

Theorem

$\left\{R^{\sigma}=B_{n}\right.$ - tournaments $\} \leftrightarrow$
\{marriage balanced tournaments on [2n]\} with generating function: $\left.\prod_{i=1}^{n}\left(y_{i}+x_{i}\right) \prod_{1 \leq i<j \leq n}\left(y_{i} y_{j}+x_{i} x_{j}\right)\left(x_{i} y_{j}+x_{j} y_{i}\right)\right|_{y_{i}=1}=\sum_{\lambda \in \Lambda} \operatorname{dim} V_{\lambda}^{\rho} x^{\lambda}$ \{score vectors of m.b. tournaments\} $\leftrightarrow\left\{\right.$ weights in $\left.V^{\rho}\right\}$ \{score sequences of m.b. tournaments $\} \leftrightarrow\left\{\right.$ dominant weights in $\left.V^{\rho}\right\}$

Tournament folding $A_{2 n-1} \rightsquigarrow B_{n}$

- $\sigma:[2 n]:=\{1, \ldots, 2 n\} \rightarrow[2 n]$ by $\sigma(i)=2 n-i$
- orbits $[2 n] / \sigma:=$ married couples
- tournament on $[2 n]$ is marriage balanced: $a \rightarrow b \Rightarrow \sigma(b) \rightarrow \sigma(a)$
- score vector of m.b. tournament is $\left(s_{1}, \ldots, s_{2 n}\right)$ satisfies $s_{i}+s_{\sigma_{i}}=2 n-1$
- score sequence of m.b. tournament: $\left(s_{1}^{\prime} \leq \cdots \leq s_{n}^{\prime} \leq n-1\right)$

Theorem

$\left\{R^{\sigma}=B_{n}\right.$ - tournaments $\} \leftrightarrow$
\{marriage balanced tournaments on [2n]\} with generating function: $\left.\prod_{i=1}^{n}\left(y_{i}+x_{i}\right) \prod_{1 \leq i<j \leq n}\left(y_{i} y_{j}+x_{i} x_{j}\right)\left(x_{i} y_{j}+x_{j} y_{i}\right)\right|_{y_{i}=1}=\sum_{\lambda \in \Lambda} \operatorname{dim} V_{\lambda}^{\rho} x^{\lambda}$ \{score vectors of m.b. tournaments\} $\leftrightarrow\left\{\right.$ weights in $\left.V^{\rho}\right\}$ \{score sequences of m.b. tournaments $\} \leftrightarrow\left\{\right.$ dominant weights in $\left.V^{\rho}\right\}$

- [2n] $\supset W=S_{n} \ltimes(\mathbb{Z} / 2)^{n} \subset S_{2 n}$ preserving couples
- $\sigma:[2 n]:=\{1, \ldots, 2 n\} \rightarrow[2 n]$ by $\sigma(i)=2 n-i$
- orbits $[2 n] / \sigma:=$ married couples
- tournament on $[2 n]$ is marriage balanced: $a \rightarrow b \Rightarrow \sigma(b) \rightarrow \sigma(a)$
- score vector of m.b. tournament is $\left(s_{1}, \ldots, s_{2 n}\right)$ satisfies $s_{i}+s_{\sigma_{i}}=2 n-1$
- score sequence of m.b. tournament: $\left(s_{1}^{\prime} \leq \cdots \leq s_{n}^{\prime} \leq n-1\right)$

Theorem

$\left\{R^{\sigma}=B_{n}\right.$ - tournaments $\} \leftrightarrow$
\{marriage balanced tournaments on [2n]\} with generating function: $\left.\prod_{i=1}^{n}\left(y_{i}+x_{i}\right) \prod_{1 \leq i<j \leq n}\left(y_{i} y_{j}+x_{i} x_{j}\right)\left(x_{i} y_{j}+x_{j} y_{i}\right)\right|_{y_{i}=1}=\sum_{\lambda \in \Lambda} \operatorname{dim} V_{\lambda}^{\rho} x^{\lambda}$ \{score vectors of m.b. tournaments\} $\leftrightarrow\left\{\right.$ weights in $\left.V^{\rho}\right\}$ $\{$ score sequences of m.b. tournaments $\} \leftrightarrow\left\{\right.$ dominant weights in $\left.V^{\rho}\right\}$

- [2n] $D W=S_{n} \ltimes(\mathbb{Z} / 2)^{n} \subset S_{2 n}$ preserving couples
- games between spouses correspond to short roots of B_{n}

Tournament folding $D_{n} \leadsto C_{n-1}$

Tournament folding $D_{n} \leadsto C_{n-1}$

- $\sigma:[2 n]:=\{1, \ldots, 2 n\} \rightarrow[2 n]$ by $\sigma(i)=2 n-i$
$=$
\square
- $\sigma:[2 n]:=\{1, \ldots, 2 n\} \rightarrow[2 n]$ by $\sigma(i)=2 n-i$
- marriage balanced couple(=:m.b.c.) tournament
- $\sigma:[2 n]:=\{1, \ldots, 2 n\} \rightarrow[2 n]$ by $\sigma(i)=2 n-i$
- marriage balanced couple(=:m.b.c.) tournament on [2n]
- $\sigma:[2 n]:=\{1, \ldots, 2 n\} \rightarrow[2 n]$ by $\sigma(i)=2 n-i$
- marriage balanced couple(=:m.b.c.) tournament on [2n] everyone plays everyone except their spouses and $a \rightarrow b \Rightarrow \sigma(b) \rightarrow \sigma(a)$
- $\sigma:[2 n]:=\{1, \ldots, 2 n\} \rightarrow[2 n]$ by $\sigma(i)=2 n-i$
- marriage balanced couple(=:m.b.c.) tournament on [2n] everyone plays everyone except their spouses and $a \rightarrow b \Rightarrow \sigma(b) \rightarrow \sigma(a)$
- [2n] $\supset W=S_{n} \ltimes(\mathbb{Z} / 2)^{n-1} \subset S_{2 n}$ preserving couples
- $\sigma:[2 n]:=\{1, \ldots, 2 n\} \rightarrow[2 n]$ by $\sigma(i)=2 n-i$
- marriage balanced couple(=:m.b.c.) tournament on [2n] everyone plays everyone except their spouses and $a \rightarrow b \Rightarrow \sigma(b) \rightarrow \sigma(a)$
- [2n] $D W=S_{n} \ltimes(\mathbb{Z} / 2)^{n-1} \subset S_{2 n}$ preserving couples flipping even
- $\sigma:[2 n]:=\{1, \ldots, 2 n\} \rightarrow[2 n]$ by $\sigma(i)=2 n-i$
- marriage balanced couple(=:m.b.c.) tournament on [2n] everyone plays everyone except their spouses and $a \rightarrow b \Rightarrow \sigma(b) \rightarrow \sigma(a)$
- [2n] $\supset W=S_{n} \ltimes(\mathbb{Z} / 2)^{n-1} \subset S_{2 n}$ preserving couples flipping even
- g.f. for score vectors of m.b.c. tournaments
$\prod_{1 \leq i<j \leq n}\left(y_{i} y_{j}+x_{i} x_{j}\right)\left(x_{i} y_{j}+x_{j} y_{i}\right)$
- $\sigma:[2 n]:=\{1, \ldots, 2 n\} \rightarrow[2 n]$ by $\sigma(i)=2 n-i$
- marriage balanced couple(=:m.b.c.) tournament on [2n] everyone plays everyone except their spouses and $a \rightarrow b \Rightarrow \sigma(b) \rightarrow \sigma(a)$
- [2n] $\supset W=S_{n} \ltimes(\mathbb{Z} / 2)^{n-1} \subset S_{2 n}$ preserving couples flipping even
- g.f. for score vectors of m.b.c. tournaments

$$
\left.\prod_{1 \leq i<j \leq n}\left(y_{i} y_{j}+x_{i} x_{j}\right)\left(x_{i} y_{j}+x_{j} y_{i}\right)\right|_{y_{i}=1} \stackrel{D_{n}-\text { Weyl }}{=} \sum_{\lambda \in \Lambda} \operatorname{dim} V_{\lambda}^{\rho} x^{\lambda}
$$

- $\sigma:[2 n]:=\{1, \ldots, 2 n\} \rightarrow[2 n]$ by $\sigma(i)=2 n-i$
- marriage balanced couple(=:m.b.c.) tournament on [2n] everyone plays everyone except their spouses and $a \rightarrow b \Rightarrow \sigma(b) \rightarrow \sigma(a)$
- [2n] $\supset W=S_{n} \ltimes(\mathbb{Z} / 2)^{n-1} \subset S_{2 n}$ preserving couples flipping even
- g.f. for score vectors of m.b.c. tournaments

$$
\left.\prod_{1 \leq i<j \leq n}\left(y_{i} y_{j}+x_{i} x_{j}\right)\left(x_{i} y_{j}+x_{j} y_{i}\right)\right|_{y_{i}=1} \stackrel{D_{n}-\text { Weyl }}{=} \sum_{\lambda \in \Lambda} \operatorname{dim} V_{\lambda}^{\rho} x^{\lambda}
$$

- D_{n} Dynkin auto: $\tau:=(n, n+1):[2 n] \rightarrow[2 n]$
- $\sigma:[2 n]:=\{1, \ldots, 2 n\} \rightarrow[2 n]$ by $\sigma(i)=2 n-i$
- marriage balanced couple(=:m.b.c.) tournament on [2n] everyone plays everyone except their spouses and $a \rightarrow b \Rightarrow \sigma(b) \rightarrow \sigma(a)$
- [2n] $\supset W=S_{n} \ltimes(\mathbb{Z} / 2)^{n-1} \subset S_{2 n}$ preserving couples flipping even
- g.f. for score vectors of m.b.c. tournaments

$$
\left.\prod_{1 \leq i<j \leq n}\left(y_{i} y_{j}+x_{i} x_{j}\right)\left(x_{i} y_{j}+x_{j} y_{i}\right)\right|_{y_{i}=1} \stackrel{D_{n}-\text { Weyl }}{=} \sum_{\lambda \in \Lambda} \operatorname{dim} V_{\lambda}^{\rho} x^{\lambda}
$$

- D_{n} Dynkin auto: $\tau:=(n, n+1):[2 n] \rightarrow[2 n],[2 n] / \tau=[2 n-1]$
- $\sigma:[2 n]:=\{1, \ldots, 2 n\} \rightarrow[2 n]$ by $\sigma(i)=2 n-i$
- marriage balanced couple(=:m.b.c.) tournament on [2n] everyone plays everyone except their spouses and

$$
a \rightarrow b \Rightarrow \sigma(b) \rightarrow \sigma(a)
$$

- [2n] $] D W=S_{n} \ltimes(\mathbb{Z} / 2)^{n-1} \subset S_{2 n}$ preserving couples flipping even
- g.f. for score vectors of m.b.c. tournaments

$$
\Pi_{1 \leq i<j \leq n}\left(y_{i} y_{j}+x_{i} x_{j}\right)\left(x_{i} y_{j}+x_{j} y_{i}\right) y_{y_{i}=1}^{D_{n}-\text { Weyl }}=\sum_{\lambda \in \Lambda} \operatorname{dim} V_{\lambda}^{\rho} x^{\lambda}
$$

- D_{n} Dynkin auto: $\tau:=(n, n+1):[2 n] \rightarrow[2 n],[2 n] / \tau=[2 n-1]$
- $\sigma:[2 n-1] \rightarrow[2 n-1]$ by $\sigma(i)=2 n-1-i$
- $\sigma:[2 n]:=\{1, \ldots, 2 n\} \rightarrow[2 n]$ by $\sigma(i)=2 n-i$
- marriage balanced couple(=:m.b.c.) tournament on [2n] everyone plays everyone except their spouses and $a \rightarrow b \Rightarrow \sigma(b) \rightarrow \sigma(a)$
- [2n] $] D W=S_{n} \ltimes(\mathbb{Z} / 2)^{n-1} \subset S_{2 n}$ preserving couples flipping even
- g.f. for score vectors of m.b.c. tournaments
$\Pi_{1 \leq i<j \leq n}\left(y_{i} y_{j}+x_{i} x_{j}\right)\left(x_{i} y_{j}+x_{j} y_{i}\right) y_{y_{i}=1} \stackrel{D_{n}-\text { Weyl }}{=} \sum_{\lambda \in \Lambda} \operatorname{dim} V_{\lambda}^{\rho} x^{\lambda}$
- D_{n} Dynkin auto: $\tau:=(n, n+1):[2 n] \rightarrow[2 n],[2 n] / \tau=[2 n-1]$
- $\sigma:[2 n-1] \rightarrow[2 n-1]$ by $\sigma(i)=2 n-1-i$
[2n-1]/ σ has $n-1$ couples and one singleton $\{n\}$
- $\sigma:[2 n]:=\{1, \ldots, 2 n\} \rightarrow[2 n]$ by $\sigma(i)=2 n-i$
- marriage balanced couple(=:m.b.c.) tournament on [2n] everyone plays everyone except their spouses and $a \rightarrow b \Rightarrow \sigma(b) \rightarrow \sigma(a)$
- [2n] $] D W=S_{n} \ltimes(\mathbb{Z} / 2)^{n-1} \subset S_{2 n}$ preserving couples flipping even
- g.f. for score vectors of m.b.c. tournaments
$\Pi_{1 \leq i<j \leq n}\left(y_{i} y_{j}+x_{i} x_{j}\right)\left(x_{i} y_{j}+x_{j} y_{i}\right) y_{y_{i}=1} \stackrel{D_{n}-\text { Weyl }}{=} \sum_{\lambda \in \Lambda} \operatorname{dim} V_{\lambda}^{\rho} x^{\lambda}$
- D_{n} Dynkin auto: $\tau:=(n, n+1):[2 n] \rightarrow[2 n],[2 n] / \tau=[2 n-1]$
- $\sigma:[2 n-1] \rightarrow[2 n-1]$ by $\sigma(i)=2 n-1-i$
[2n-1]/ σ has $n-1$ couples and one singleton $\{n\}$
- marriage balanced single(=:m.b.s.) tournament
- $\sigma:[2 n]:=\{1, \ldots, 2 n\} \rightarrow[2 n]$ by $\sigma(i)=2 n-i$
- marriage balanced couple(=:m.b.c.) tournament on [2n] everyone plays everyone except their spouses and $a \rightarrow b \Rightarrow \sigma(b) \rightarrow \sigma(a)$
- [2n] $] D W=S_{n} \ltimes(\mathbb{Z} / 2)^{n-1} \subset S_{2 n}$ preserving couples flipping even
- g.f. for score vectors of m.b.c. tournaments
$\Pi_{1 \leq i<j \leq n}\left(y_{i} y_{j}+x_{i} x_{j}\right)\left(x_{i} y_{j}+x_{j} y_{i}\right) y_{y_{i}=1} \stackrel{D_{n}-\text { Weyl }}{=} \sum_{\lambda \in \Lambda} \operatorname{dim} V_{\lambda}^{\rho} x^{\lambda}$
- D_{n} Dynkin auto: $\tau:=(n, n+1):[2 n] \rightarrow[2 n],[2 n] / \tau=[2 n-1]$
- $\sigma:[2 n-1] \rightarrow[2 n-1]$ by $\sigma(i)=2 n-1-i$
[2n-1]/ σ has $n-1$ couples and one singleton $\{n\}$
- marriage balanced single(=:m.b.s.) tournament on [2n-1]
- $\sigma:[2 n]:=\{1, \ldots, 2 n\} \rightarrow[2 n]$ by $\sigma(i)=2 n-i$
- marriage balanced couple(=:m.b.c.) tournament on [2n] everyone plays everyone except their spouses and $a \rightarrow b \Rightarrow \sigma(b) \rightarrow \sigma(a)$
- [2n] $] D W=S_{n} \ltimes(\mathbb{Z} / 2)^{n-1} \subset S_{2 n}$ preserving couples flipping even
- g.f. for score vectors of m.b.c. tournaments
$\Pi_{1 \leq i<j \leq n}\left(y_{i} y_{j}+x_{i} x_{j}\right)\left(x_{i} y_{j}+x_{j} y_{i}\right) y_{y_{i}=1} \stackrel{D_{n}-\text { Weyl }}{=} \sum_{\lambda \in \Lambda} \operatorname{dim} V_{\lambda}^{\rho} x^{\lambda}$
- D_{n} Dynkin auto: $\tau:=(n, n+1):[2 n] \rightarrow[2 n],[2 n] / \tau=[2 n-1]$
- $\sigma:[2 n-1] \rightarrow[2 n-1]$ by $\sigma(i)=2 n-1-i$
[2n-1]/ σ has $n-1$ couples and one singleton $\{n\}$
- marriage balanced single(=:m.b.s.) tournament on [2n-1] everyone plays everyone except their spouses
- $\sigma:[2 n]:=\{1, \ldots, 2 n\} \rightarrow[2 n]$ by $\sigma(i)=2 n-i$
- marriage balanced couple(=:m.b.c.) tournament on [2n] everyone plays everyone except their spouses and $a \rightarrow b \Rightarrow \sigma(b) \rightarrow \sigma(a)$
- [2n] $] D W=S_{n} \ltimes(\mathbb{Z} / 2)^{n-1} \subset S_{2 n}$ preserving couples flipping even
- g.f. for score vectors of m.b.c. tournaments
$\Pi_{1 \leq i<j \leq n}\left(y_{i} y_{j}+x_{i} x_{j}\right)\left(x_{i} y_{j}+x_{j} y_{i}\right) y_{y_{i}=1} \stackrel{D_{n}-\text { Weyl }}{=} \sum_{\lambda \in \Lambda} \operatorname{dim} V_{\lambda}^{\rho} x^{\lambda}$
- D_{n} Dynkin auto: $\tau:=(n, n+1):[2 n] \rightarrow[2 n],[2 n] / \tau=[2 n-1]$
- $\sigma:[2 n-1] \rightarrow[2 n-1]$ by $\sigma(i)=2 n-1-i$
[2n-1]/ σ has $n-1$ couples and one singleton $\{n\}$
- marriage balanced single(=:m.b.s.) tournament on [2n-1] everyone plays everyone except their spouses, the single n plays twice with everyone
- $\sigma:[2 n]:=\{1, \ldots, 2 n\} \rightarrow[2 n]$ by $\sigma(i)=2 n-i$
- marriage balanced couple(=:m.b.c.) tournament on [2n] everyone plays everyone except their spouses and $a \rightarrow b \Rightarrow \sigma(b) \rightarrow \sigma(a)$
- [2n] $\mathrm{DW}=S_{n} \ltimes(\mathbb{Z} / 2)^{n-1} \subset S_{2 n}$ preserving couples flipping even
- g.f. for score vectors of m.b.c. tournaments
$\Pi_{1 \leq i<j \leq n}\left(y_{i} y_{j}+x_{i} x_{j}\right)\left(x_{i} y_{j}+x_{j} y_{i}\right) y_{y_{i}=1} \stackrel{D_{n}-\text { Weyl }}{=} \sum_{\lambda \in \Lambda} \operatorname{dim} V_{\lambda}^{\rho} x^{\lambda}$
- D_{n} Dynkin auto: $\tau:=(n, n+1):[2 n] \rightarrow[2 n],[2 n] / \tau=[2 n-1]$
- $\sigma:[2 n-1] \rightarrow[2 n-1]$ by $\sigma(i)=2 n-1-i$
[2n-1]/ σ has $n-1$ couples and one singleton $\{n\}$
- marriage balanced single(=:m.b.s.) tournament on [2n-1] everyone plays everyone except their spouses, the single n plays twice with everyone and $a \rightarrow b \Rightarrow \sigma(b) \rightarrow \sigma(a)$
- $\sigma:[2 n]:=\{1, \ldots, 2 n\} \rightarrow[2 n]$ by $\sigma(i)=2 n-i$
- marriage balanced couple(=:m.b.c.) tournament on [2n] everyone plays everyone except their spouses and $a \rightarrow b \Rightarrow \sigma(b) \rightarrow \sigma(a)$
- [2n].DW $=S_{n} \ltimes(\mathbb{Z} / 2)^{n-1} \subset S_{2 n}$ preserving couples flipping even
- g.f. for score vectors of m.b.c. tournaments
$\Pi_{1 \leq i<j \leq n}\left(y_{i} y_{j}+x_{i} x_{j}\right)\left(x_{i} y_{j}+x_{j} y_{i}\right) y_{y_{i}=1} \stackrel{D_{n}-\text { Weyl }}{=} \sum_{\lambda \in \Lambda} \operatorname{dim} V_{\lambda}^{\rho} x^{\lambda}$
- D_{n} Dynkin auto: $\tau:=(n, n+1):[2 n] \rightarrow[2 n],[2 n] / \tau=[2 n-1]$
- $\sigma:[2 n-1] \rightarrow[2 n-1]$ by $\sigma(i)=2 n-1-i$
$[2 n-1] / \sigma$ has $n-1$ couples and one singleton $\{n\}$
- marriage balanced single(=:m.b.s.) tournament on [2n-1] everyone plays everyone except their spouses, the single n plays twice with everyone and $a \rightarrow b \Rightarrow \sigma(b) \rightarrow \sigma(a)$
- g.f. for score vectors of m.b.s. tournaments

$$
\prod_{i=1}^{i-1}\left(y_{i}^{2}+x_{i}^{2}\right) \prod_{1 \leq i<j<n}\left(y_{i} y_{j}+x_{i} x_{j}\right)\left(x_{i} y_{j}+x_{j} y_{i}\right)
$$

- $\sigma:[2 n]:=\{1, \ldots, 2 n\} \rightarrow[2 n]$ by $\sigma(i)=2 n-i$
- marriage balanced couple(=:m.b.c.) tournament on [2n] everyone plays everyone except their spouses and $a \rightarrow b \Rightarrow \sigma(b) \rightarrow \sigma(a)$
- [2n] $] D W=S_{n} \ltimes(\mathbb{Z} / 2)^{n-1} \subset S_{2 n}$ preserving couples flipping even
- g.f. for score vectors of m.b.c. tournaments
$\Pi_{1 \leq i<j \leq n}\left(y_{i} y_{j}+x_{i} x_{j}\right)\left(x_{i} y_{j}+x_{j} y_{i}\right) y_{y_{i}=1} \stackrel{D_{n}-\text { Weyl }}{=} \sum_{\lambda \in \Lambda} \operatorname{dim} V_{\lambda}^{\rho} x^{\lambda}$
- D_{n} Dynkin auto: $\tau:=(n, n+1):[2 n] \rightarrow[2 n],[2 n] / \tau=[2 n-1]$
- $\sigma:[2 n-1] \rightarrow[2 n-1]$ by $\sigma(i)=2 n-1-i$
[2n-1]/ σ has $n-1$ couples and one singleton $\{n\}$
- marriage balanced single(=:m.b.s.) tournament on [2n-1] everyone plays everyone except their spouses, the single n plays twice with everyone and $a \rightarrow b \Rightarrow \sigma(b) \rightarrow \sigma(a)$
- g.f. for score vectors of m.b.s. tournaments

$$
\begin{aligned}
& \left.\prod_{i=1}^{i=1}\left(y_{i}^{2}+x_{i}^{2}\right) \prod_{1 \leq i<j<n}\left(y_{i} y_{j}+x_{i} x_{j}\right)\left(x_{i} y_{j}+x_{j} y_{i}\right)\right|_{y_{i}=1} \stackrel{c_{n-1}-\text { Weyl }}{=}
\end{aligned}
$$

- $\sigma:[2 n]:=\{1, \ldots, 2 n\} \rightarrow[2 n]$ by $\sigma(i)=2 n-i$
- marriage balanced couple(=:m.b.c.) tournament on [2n] everyone plays everyone except their spouses and $a \rightarrow b \Rightarrow \sigma(b) \rightarrow \sigma(a)$
- [2n] $] D W=S_{n} \ltimes(\mathbb{Z} / 2)^{n-1} \subset S_{2 n}$ preserving couples flipping even
- g.f. for score vectors of m.b.c. tournaments
$\Pi_{1 \leq i<j \leq n}\left(y_{i} y_{j}+x_{i} x_{j}\right)\left(x_{i} y_{j}+x_{j} y_{i}\right) y_{y_{i}=1} \stackrel{D_{n}-\text { Weyl }}{=} \sum_{\lambda \in \Lambda} \operatorname{dim} V_{\lambda}^{\rho} x^{\lambda}$
- D_{n} Dynkin auto: $\tau:=(n, n+1):[2 n] \rightarrow[2 n],[2 n] / \tau=[2 n-1]$
- $\sigma:[2 n-1] \rightarrow[2 n-1]$ by $\sigma(i)=2 n-1-i$
[2n-1]/ σ has $n-1$ couples and one singleton $\{n\}$
- marriage balanced single(=:m.b.s.) tournament on [2n-1] everyone plays everyone except their spouses, the single n plays twice with everyone and $a \rightarrow b \Rightarrow \sigma(b) \rightarrow \sigma(a)$
- g.f. for score vectors of m.b.s. tournaments

$$
\begin{aligned}
& \left.\prod_{i=1}^{i=1}\left(y_{i}^{2}+x_{i}^{2}\right) \prod_{1 \leq i<j<n}\left(y_{i} y_{j}+x_{i} x_{j}\right)\left(x_{i} y_{j}+x_{j} y_{i}\right)\right|_{y_{i}=1} \stackrel{c_{n-1}-\text { Weyl }}{=} V_{\lambda}^{\rho} \operatorname{dim} V_{\lambda}^{\rho} x^{\lambda}
\end{aligned}
$$

- compatible with tournament folding $A_{2 n-2} \rightsquigarrow C_{n-1}$

