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MacMahon on tournaments in 1923

AN AMERICAN TOURNAMENT TREATED BY
THE CALCULUS OF SYMMETRIC FUNCTIONS.

By Major P. A. MacMAHON.

Part 1.

1. IN a tournament of n players, where each player
plays every other player, there are 4n (n—1) games.

Since each game may be won or lost there are 28} events
and I propose to analyse them by means of the powerfal
calculus of symmetric functions. The final result of the play
is that the players are arranged in a definite order, each with
a certain number of games to his credit. These numbers
constitute a partition of the number in(n—1), and we may

ask how many of the 2¥*™™" events will yield a given partition
of in(n—1) when the players are or are not in an assigned
order.

2. Consider the symmetric function

(al + a:) (al + a:) (at+ al) "'(a-l+ au)
of the n quantities a,, a,, a,, ..., a_.

aﬂ
It involves Lu(n— 15 factors, and the terms, after carrying
out the multiplication, are grouped together in monomial

symmetric functious.
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HaeR+ (Xa/z + X_a/z)
@ {R-tournaments}« {monomial basis inV*}

@ R-score vector:= weight in V*
R-score sequence:= dominant weight in V¥
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@ o:[2n]:={1,....2n} > [2n] by o(i) =2n—i
@ orbits [2n]/o:= married couples
@ tournament on [2n] is marriage balanced:
a— b= o(b) - o(a)
@ score vector of m.b. tournament is (s1,. .., S2n)
satisfies s; + s, = 2n -1
@ score sequence of m.b. tournament: (s{ <---<s;<n-1)

{RY = B, — tournaments} <
{marriage balanced tournaments on [2n]} with generating function:
TT7 4 (i + %) Tr<icjen(Viyy + Xix)) (Xiy; + X¥i)ly=1 = Zen dim Vix*
{score vectors of m.b. tournaments} < {weights in V*}

{score sequences of m.b. tournaments}—{dominant weights in V*}

@ [2n]OW = S, < (Z/2)" c Spp, preserving couples
@ games between spouses correspond to short roots of B,
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@ D, Dynkin auto: 7:=(n,n+ 1):[2n] [2n], [2n]/T = [2n - 1]
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o
o

o:[2n]:={1,...,2n} - [2n] by (i) =2n -

marriage balanced couple(=:m.b.c.) tournament on [2n]
everyone plays everyone except their spouses and

a— b= o(b) - o(a)

[2n]OW = S, = (Z/2)"~" c S, preserving couples flipping even
g.f. for score vectors of m.b.c. tournaments

[T1<i<j<n(Yiyj + XiXp) (Xi¥; + Xjyi)ly=1 o eyl Daen dim VXA
D, Dynkin auto: 7:=(n,n+ 1):[2n] [2n], [2n]/T = [2n - 1]
o:[2n-1] - [2n—-1]byo(i)=2n—-1—i

[2n — 1]/0 has n — 1 couples and one singleton {n}

marriage balanced single(=:m.b.s.) tournament on [2n — 1]
everyone plays everyone except their spouses, the single n
plays twice with everyone and a — b = o(b) — o(a)

g.f. for score vectors of m.b.s. tournaments

HI 1(y, + X ) H1<I<]<n(ylyj + XIX])(XIy] + ijl)I,V:
Daen dim Vp
compatible with tournament folding Asp—2 ~» Cp_q
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