Higgs bundle tournaments

based on joint project with Mirko Mauri

Tamás Hausel

Institute of Science and Technology Austria http://hausel.ist.ac.at

Algebra & GeometrySeminar University of Graz October 2023

Der Wissenschaftsfonds.

MacMahon on tournaments in 1923

AN AMERICAN TOURNAMENT TREATED BY THE CALCULUS OF SYMMETRIC FUNCTIONS.

By MAJOR P. A. MACMAHON.

PART I.

1. IN a tournament of *n* players, where each player plays every other player, there are $\frac{1}{2}n(n-1)$ games. Since each game may be won or lost there are $2^{\frac{1}{n}(n-1)}$ events and I propose to analyse them by means of the powerful calculus of symmetric functions. The final result of the play is that the players are arranged in a definite order, each with a certain number of games to his credit. These numbers constitute a partition of the number $\frac{1}{2}n(n-1)$, and we may ask how many of the $2^{\frac{1}{2}n(n-1)}$ events will yield a given partition of $\frac{1}{2}n(n-1)$ when the players are or are not in an assigned order.

2. Consider the symmetric function

 $(a_1 + a_2)(a_1 + a_2)(a_2 + a_3)...(a_{n-1} + a_n)$

of the *n* quantities $\alpha_1, \alpha_2, \alpha_3, \dots, \alpha_n$. It involves $\frac{1}{2}n(n-1)$ factors, and the terms, after carrying out the multiplication, are grouped together in monomial symmetric functions.

▲目▶▲目▶ 目 のへで

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

tournament

• *tournament*:= orientation of complete graph on [*n*] := {1, ..., *n*}

・ロト・日本・モート モー うへぐ

• *tournament*:= orientation of complete graph on [*n*] := {1, .., *n*}

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

score of a vertex

• *tournament*:= orientation of complete graph on [*n*] := {1, ..., *n*}

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

score of a vertex:= its outdegree

• *tournament*:= orientation of complete graph on [*n*] := {1, ..., *n*}

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

- score of a vertex:= its outdegree
- score vector

• *tournament*:= orientation of complete graph on [*n*] := {1, ..., *n*}

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

- score of a vertex:= its outdegree
- score vector:= vector of scores

• *tournament*:= orientation of complete graph on [*n*] := {1, ..., *n*}

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

- score of a vertex:= its outdegree
- score vector:= vector of scores
- score sequence

- *tournament*:= orientation of complete graph on [*n*] := {1, ..., *n*}
- score of a vertex:= its outdegree
- score vector:= vector of scores
- score sequence:= non-decreasing sequence of the scores

- *tournament*:= orientation of complete graph on [*n*] := {1, ..., *n*}
- score of a vertex:= its outdegree
- score vector:= vector of scores
- score sequence:= non-decreasing sequence of the scores

▲ロト ▲ 同 ト ▲ 国 ト ▲ 国 ト ク Q (~)

• transitive tournament

- *tournament*:= orientation of complete graph on [*n*] := {1, ..., *n*}
- score of a vertex:= its outdegree
- score vector:= vector of scores
- score sequence:= non-decreasing sequence of the scores

▲ロト ▲ 同 ト ▲ 国 ト ▲ 国 ト ク Q (~)

• *transitive* tournament:= $a \rightarrow b \& b \rightarrow c \Rightarrow a \rightarrow c$

- *tournament*:= orientation of complete graph on [*n*] := {1, ..., *n*}
- score of a vertex:= its outdegree
- score vector:= vector of scores
- score sequence:= non-decreasing sequence of the scores

▲ロト ▲ 同 ト ▲ 国 ト ▲ 国 ト ク Q (~)

• *transitive* tournament:= $a \rightarrow b \& b \rightarrow c \Rightarrow a \rightarrow c$ \Leftrightarrow its score sequence is (0, 1, ..., n-2, n-1)

- *tournament*:= orientation of complete graph on [*n*] := {1, ..., *n*}
- score of a vertex:= its outdegree
- score vector:= vector of scores
- score sequence:= non-decreasing sequence of the scores

- *transitive* tournament:= $a \rightarrow b \& b \rightarrow c \Rightarrow a \rightarrow c$ \Leftrightarrow its score sequence is (0, 1, ..., n-2, n-1)
- strong tournament

- *tournament*:= orientation of complete graph on [*n*] := {1, ..., *n*}
- score of a vertex:= its outdegree
- score vector:= vector of scores
- score sequence:= non-decreasing sequence of the scores

- *transitive* tournament:= $a \rightarrow b \& b \rightarrow c \Rightarrow a \rightarrow c$ \Leftrightarrow its score sequence is $(0, 1, \dots, n-2, n-1)$
- strong tournament:= $[n] = A \coprod B$

- *tournament*:= orientation of complete graph on [*n*] := {1, ..., *n*}
- score of a vertex:= its outdegree
- score vector:= vector of scores
- score sequence:= non-decreasing sequence of the scores
- *transitive* tournament:= $a \rightarrow b \& b \rightarrow c \Rightarrow a \rightarrow c$ \Leftrightarrow its score sequence is (0, 1, ..., n-2, n-1)
- *strong* tournament:= $[n] = A \coprod B, A \to B \Rightarrow A = \emptyset$ or $B = \emptyset$

- *tournament*:= orientation of complete graph on [*n*] := {1, .., *n*}
- score of a vertex:= its outdegree
- score vector:= vector of scores
- score sequence:= non-decreasing sequence of the scores
- *transitive* tournament:= $a \rightarrow b \& b \rightarrow c \Rightarrow a \rightarrow c$ \Leftrightarrow its score sequence is (0, 1, ..., n-2, n-1)
- strong tournament:= [n] = A ∐ B, A → B ⇒ A = Ø or B = Ø
 ⇔ there exists a Hamiltonian circuit

- *tournament*:= orientation of complete graph on [*n*] := {1, .., *n*}
- score of a vertex:= its outdegree
- score vector:= vector of scores
- score sequence:= non-decreasing sequence of the scores
- *transitive* tournament:= $a \rightarrow b \& b \rightarrow c \Rightarrow a \rightarrow c$ \Leftrightarrow its score sequence is $(0, 1, \dots, n-2, n-1)$
- strong tournament:= [n] = A ∐ B, A → B ⇒ A = Ø or B = Ø
 ⇔ there exists a Hamiltonian circuit

うしん 山田 ・山田・山田・山田・

• for any tournament there is unique $[n] = \coprod A_i$

- *tournament*:= orientation of complete graph on [*n*] := {1, ..., *n*}
- score of a vertex:= its outdegree
- score vector:= vector of scores
- score sequence:= non-decreasing sequence of the scores
- *transitive* tournament:= $a \rightarrow b \& b \rightarrow c \Rightarrow a \rightarrow c$ \Leftrightarrow its score sequence is $(0, 1, \dots, n-2, n-1)$
- strong tournament:= [n] = A ∐ B, A → B ⇒ A = Ø or B = Ø
 ⇔ there exists a Hamiltonian circuit

うしん 山田 ・山田・山田・山田・

• for any tournament there is unique $[n] = \coprod A_i$ such that $A_1 \rightarrow A_2 \rightarrow \cdots \rightarrow A_k$

- *tournament*:= orientation of complete graph on [*n*] := {1, ..., *n*}
- score of a vertex:= its outdegree
- score vector:= vector of scores
- score sequence:= non-decreasing sequence of the scores
- *transitive* tournament:= $a \rightarrow b \& b \rightarrow c \Rightarrow a \rightarrow c$ \Leftrightarrow its score sequence is $(0, 1, \dots, n-2, n-1)$
- strong tournament:= [n] = A ∐ B, A → B ⇒ A = Ø or B = Ø
 ⇔ there exists a Hamiltonian circuit
- for any tournament there is unique $[n] = \coprod A_i$ such that $A_1 \rightarrow A_2 \rightarrow \cdots \rightarrow A_k$ & restricted tournament on A_i is strong

うしん 山田 ・山田・山田・山田・

- *tournament*:= orientation of complete graph on [*n*] := {1, ..., *n*}
- score of a vertex:= its outdegree
- score vector:= vector of scores
- score sequence:= non-decreasing sequence of the scores
- *transitive* tournament:= $a \rightarrow b \& b \rightarrow c \Rightarrow a \rightarrow c$ \Leftrightarrow its score sequence is (0, 1, ..., n-2, n-1)
- strong tournament:= [n] = A ∐ B, A → B ⇒ A = Ø or B = Ø
 ⇔ there exists a Hamiltonian circuit
- for any tournament there is unique [n] = ∐ A_i such that
 A₁ → A₂ → ··· → A_k & restricted tournament on A_i is strong,
 e.g. A₁ = V for strong,

- *tournament*:= orientation of complete graph on [*n*] := {1, ..., *n*}
- score of a vertex:= its outdegree
- score vector:= vector of scores
- score sequence:= non-decreasing sequence of the scores
- *transitive* tournament:= $a \rightarrow b \& b \rightarrow c \Rightarrow a \rightarrow c$ \Leftrightarrow its score sequence is (0, 1, ..., n-2, n-1)
- strong tournament:= [n] = A ∐ B, A → B ⇒ A = Ø or B = Ø
 ⇔ there exists a Hamiltonian circuit
- for any tournament there is unique [n] = ∐ A_i such that
 A₁ → A₂ → ··· → A_k & restricted tournament on A_i is strong,
 e.g. A₁ = V for strong, |A_i| = 1 for transitive tournaments

- *tournament*:= orientation of complete graph on [*n*] := {1, ..., *n*}
- score of a vertex:= its outdegree
- score vector:= vector of scores
- score sequence:= non-decreasing sequence of the scores
- *transitive* tournament:= $a \rightarrow b \& b \rightarrow c \Rightarrow a \rightarrow c$ \Leftrightarrow its score sequence is $(0, 1, \dots, n-2, n-1)$
- strong tournament:= [n] = A ∐ B, A → B ⇒ A = Ø or B = Ø
 ⇔ there exists a Hamiltonian circuit
- for any tournament there is unique [n] = ∐ A_i such that
 A₁ → A₂ → ··· → A_k & restricted tournament on A_i is strong,
 e.g. A₁ = V for strong, |A_i| = 1 for transitive tournaments

Theorem (Landau 1953)

 $(s_1 \leq \cdots \leq s_n)$ is the score sequence of a strong (tournament)

- *tournament*:= orientation of complete graph on [*n*] := {1, ..., *n*}
- score of a vertex:= its outdegree
- score vector:= vector of scores
- score sequence:= non-decreasing sequence of the scores
- *transitive* tournament:= $a \rightarrow b \& b \rightarrow c \Rightarrow a \rightarrow c$ \Leftrightarrow its score sequence is $(0, 1, \dots, n-2, n-1)$
- strong tournament:= [n] = A ∐ B, A → B ⇒ A = Ø or B = Ø
 ⇔ there exists a Hamiltonian circuit
- for any tournament there is unique [n] = ∐ A_i such that
 A₁ → A₂ → ··· → A_k & restricted tournament on A_i is strong,
 e.g. A₁ = V for strong, |A_i| = 1 for transitive tournaments

Theorem (Landau 1953)

 $(s_1 \leq \cdots \leq s_n)$ is the score sequence of a strong (tournament) $\Leftrightarrow \sum_{i=1}^n s_i = \binom{n}{2}$

- *tournament*:= orientation of complete graph on [*n*] := {1, ..., *n*}
- score of a vertex:= its outdegree
- score vector:= vector of scores
- score sequence:= non-decreasing sequence of the scores
- *transitive* tournament:= $a \rightarrow b \& b \rightarrow c \Rightarrow a \rightarrow c$ \Leftrightarrow its score sequence is $(0, 1, \dots, n-2, n-1)$
- strong tournament:= [n] = A ∐ B, A → B ⇒ A = Ø or B = Ø
 ⇔ there exists a Hamiltonian circuit
- for any tournament there is unique [n] = ∐ A_i such that
 A₁ → A₂ → ··· → A_k & restricted tournament on A_i is strong,
 e.g. A₁ = V for strong, |A_i| = 1 for transitive tournaments

Theorem (Landau 1953)

 $(s_1 \leq \cdots \leq s_n)$ is the score sequence of a strong (tournament) $\Leftrightarrow \sum_{i=1}^n s_i = {n \choose 2}$ and $\sum_{i=1}^k s_i \geq {k \choose 2}$ for k < n

▲□▶▲□▶▲□▶▲□▶ □ ● ● ●

• C complex smooth projective curve

• C complex smooth projective curve $D \in S^d(C)$ eff. divisor

• *C* complex smooth projective curve $D \in S^d(C)$ eff. divisor (E, Φ) Higgs bundle, rank *n* vector bundle *E* and $\Phi \in H^0(\text{End}(E) \otimes K(D))$ Higgs field

• *C* complex smooth projective curve $D \in S^d(C)$ eff. divisor (E, Φ) Higgs bundle, rank *n* vector bundle *E* and $\Phi \in H^0(\text{End}(E) \otimes K(D))$ Higgs field (semi)-stable

 C complex smooth projective curve D ∈ S^d(C) eff. divisor (E, Φ) Higgs bundle, rank n vector bundle E and Φ ∈ H⁰(End(E) ⊗ K(D)) Higgs field (semi)-stable: ∀ proper Φ-invariant F ⊂ E ⇒ deg F rankE ≤ deg E rankE

C complex smooth projective curve D ∈ S^d(C) eff. divisor (E, Φ) Higgs bundle, rank n vector bundle E and Φ ∈ H⁰(End(E) ⊗ K(D)) Higgs field (semi)-stable: ∀ proper Φ-invariant F ⊂ E ⇒ deg F / rankF ≤ deg E / rankE
 E = L₁⊕...⊕ L_n and 0 ≠ Φ(L_i) ⊂ L_{i+1}K(D)

A D M A

C complex smooth projective curve D ∈ S^d(C) eff. divisor (E, Φ) Higgs bundle, rank n vector bundle E and Φ ∈ H⁰(End(E) ⊗ K(D)) Higgs field (semi)-stable: ∀ proper Φ-invariant F ⊂ E ⇒ deg F rankF ≤ deg E rankE
 E = L₁⊕...⊕ L_n and 0 ≠ Φ(L_i) ⊂ L_{i+1}K(D) ⇒

ション ション・ボット オーマン しょう

• $E = L_1 \oplus \ldots \oplus L_n$ and $0 \neq \Phi(L_i) \subset L_{i+1} K(L_i)$ $(E, \Phi) \cong (E, \lambda \Phi)$

• *C* complex smooth projective curve $D \in S^d(C)$ eff. divisor (E, Φ) *Higgs bundle*, rank *n* vector bundle *E* and $\Phi \in H^0(\text{End}(E) \otimes K(D))$ *Higgs field* (semi)-stable: \forall proper Φ -invariant $F \subset E \Rightarrow \frac{\deg F}{\operatorname{rank} F} \leq \frac{\deg E}{\operatorname{rank} E}$

• $E = L_1 \oplus ... \oplus L_n$ and $0 \neq \Phi(L_i) \subset L_{i+1}K(D) \Rightarrow$ $(E, \Phi) \cong (E, \lambda \Phi)$ type (1, ..., 1)-Higgs bundle

C complex smooth projective curve D ∈ S^d(C) eff. divisor (E, Φ) Higgs bundle, rank n vector bundle E and Φ ∈ H⁰(End(E) ⊗ K(D)) Higgs field (semi)-stable: ∀ proper Φ-invariant F ⊂ E ⇒ deg F / rankF ≤ deg E / rankE
E = L₁⊕...⊕ L_n and 0 ≠ Φ(L_i) ⊂ L_{i+1}K(D) ⇒ (E, Φ) ≅ (E, λΦ) type (1, ..., 1)-Higgs bundle (semi)-stable ⇔ for ℓ_i := deg(L_i) and 1 < k < n deg L_k+...+ℓ_n ≤ deg L₁+...+ℓ_n
• *C* complex smooth projective curve $D \in S^d(C)$ eff. divisor (*E*, Φ) *Higgs bundle*, rank *n* vector bundle *E* and $\Phi \in H^0(\text{End}(E) \otimes K(D))$ *Higgs field* (*semi*)-*stable*: \forall proper Φ -invariant $F \subset E \Rightarrow \frac{\deg F}{\operatorname{rank} E} \leq \frac{\deg E}{\operatorname{rank} E}$

•
$$E = L_1 \oplus ... \oplus L_n$$
 and $0 \neq \Phi(L_i) \subset L_{i+1}K(D) \Rightarrow$
 $(E, \Phi) \cong (E, \lambda \Phi)$ type $(1, ..., 1)$ -Higgs bundle
(semi)-stable \Leftrightarrow for $\ell_i := \deg(L_i)$ and $1 < k < n$
 $\frac{\ell_k + \dots + \ell_n}{n-k+1} \leq \frac{\ell_1 + \dots + \ell_n}{n}$

• when $C = \mathbb{P}^1$ and |D| = 3 then $\deg(K(D)) = 1$ and $\deg(E) = \ell_1 + \cdots + \ell_n = 0$

ション ション・ボット オーマン しょう

• *C* complex smooth projective curve $D \in S^d(C)$ eff. divisor (*E*, Φ) *Higgs bundle*, rank *n* vector bundle *E* and $\Phi \in H^0(\text{End}(E) \otimes K(D))$ *Higgs field* (*semi*)-*stable*: \forall proper Φ -invariant $F \subset E \Rightarrow \frac{\deg F}{\operatorname{rank} E} \leq \frac{\deg E}{\operatorname{rank} E}$

•
$$E = L_1 \oplus ... \oplus L_n$$
 and $0 \neq \Phi(L_i) \subset L_{i+1}K(D) \Rightarrow$
 $(E, \Phi) \cong (E, \lambda \Phi)$ type $(1, ..., 1)$ -Higgs bundle
(semi)-stable \Leftrightarrow for $\ell_i := \deg(L_i)$ and $1 < k < n$
 $\frac{\ell_k + \dots + \ell_n}{n-k+1} \leq \frac{\ell_1 + \dots + \ell_n}{n}$

• when $C = \mathbb{P}^1$ and |D| = 3 then $\deg(K(D)) = 1$ and $\deg(E) = \ell_1 + \cdots + \ell_n = 0$ choosing $s_i = i - 1 - l_i$

ション ション・ボット オーマン しょう

- C complex smooth projective curve D ∈ S^d(C) eff. divisor (E, Φ) Higgs bundle, rank n vector bundle E and Φ ∈ H⁰(End(E) ⊗ K(D)) Higgs field (semi)-stable: ∀ proper Φ-invariant F ⊂ E ⇒ deg F / rankF ≤ deg E / rankE
 E = L₁⊕...⊕ L_n and 0 ≠ Φ(L_i) ⊂ L_{i+1}K(D) ⇒ (E, Φ) ≅ (E, λΦ) type (1, ..., 1)-Higgs bundle (semi)-stable ⇔ for ℓ_i := deg(L_i) and 1 < k < n deg(L_i) = deg(L_i) and 1 < k < n deg(L_i) = deg(L_i) = deg(L_i) = deg(L_i) = deg(L_i)
- when $C = \mathbb{P}^1$ and |D| = 3 then $\deg(K(D)) = 1$ and $\deg(E) = \ell_1 + \cdots + \ell_n = 0$ choosing $s_i = i 1 l_i \rightsquigarrow$

Theorem

{score sequences $(s_1, ..., s_n)$ of strong (tournaments) on [n]} \leftrightarrow {degree sequences $(\ell_1, ..., \ell_n)$ of degree 0 rank n (semi)-stable type (1, ..., 1)-Higgs bundles}

C complex smooth projective curve D ∈ S^d(C) eff. divisor (E, Φ) Higgs bundle, rank n vector bundle E and Φ ∈ H⁰(End(E) ⊗ K(D)) Higgs field (semi)-stable: ∀ proper Φ-invariant F ⊂ E ⇒ deg F / rankF ≤ deg E / rankE
E = L₁⊕...⊕ L_n and 0 ≠ Φ(L_i) ⊂ L_{i+1}K(D) ⇒ (E, Φ) ≅ (E, λΦ) type (1, ..., 1)-Higgs bundle (semi)-stable ⇔ for ℓ_i := deg(L_i) and 1 < k < n deg f / rank = deg(K(D)) = 1 and deg(K(D)) = 1 and deg(K(D)) = 1 and deg(K(D)) = 1 and deg(K(D)) = 1.

 $\deg(E) = \ell_1 + \cdots + \ell_n = 0 \text{ choosing } s_i = i - 1 - l_i \rightsquigarrow$

Theorem

{score sequences $(s_1, ..., s_n)$ of strong (tournaments) on [n]} \leftrightarrow {degree sequences $(\ell_1, ..., \ell_n)$ of degree 0 rank n (semi)-stable type (1, ..., 1)-Higgs bundles}

• e.g. transitive tourn. $(0, 1, ..., n-1) \leftrightarrow (0, ..., 0)$ trivial bundle

• *C* complex smooth projective curve $D \in S^d(C)$ eff. divisor (E, Φ) *Higgs bundle*, rank *n* vector bundle *E* and $\Phi \in H^0(\text{End}(E) \otimes K(D))$ *Higgs field* (*semi*)-*stable*: \forall proper Φ -invariant $F \subset E \Rightarrow \frac{\deg F}{\operatorname{rank} F} \leq \frac{\deg E}{\operatorname{rank} E}$ • $E = L_1 \oplus \ldots \oplus L_n$ and $0 \neq \Phi(L_i) \subset L_{i+1}K(D) \Rightarrow$ $(E, \Phi) \cong (E, \lambda \Phi)$ type (1, ..., 1)-*Higgs bundle* (semi)-stable \Leftrightarrow for $\ell_i := \deg(L_i)$ and 1 < k < n $\frac{\ell_k + \cdots + \ell_n}{n - k + 1} \leq \frac{\ell_1 + \cdots + \ell_n}{n}$ • when $C = \mathbb{P}^1$ and |D| = 3 then $\deg(K(D)) = 1$ and

 $\deg(E) = \ell_1 + \dots + \ell_n = 0 \text{ choosing } s_i = i - 1 - I_i \rightsquigarrow$

Theorem

{score sequences $(s_1, ..., s_n)$ of strong (tournaments) on [n]} \leftrightarrow {degree sequences $(\ell_1, ..., \ell_n)$ of degree 0 rank n (semi)-stable type (1, ..., 1)-Higgs bundles}

- e.g. transitive tourn. $(0, 1, ..., n-1) \leftrightarrow (0, ..., 0)$ trivial bundle
- (deg(E), n) = 1 → similar combinatorics by (Villegas 2011, 2023, Reineke 2012, Rayan 2018) = → (=) → (=)

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

MacMahon's gf for

 $n(s) := #\{\text{tournaments of score sequence } s\}$

<ロト < 同ト < 三ト < 三ト < 三 ・ つへへ

• MacMahon's gf for $n(s):=\#\{\text{tournaments of score sequence } s\}$ $\prod_{1 \le i < j \le n} (x_i + x_j) = \sum_{s = (s_1 \le \dots \le s_n)} n(s) \sum_{\substack{s' = (s'_1, \dots, s'_n) \\ \{s'\} = \{s\}}} x^{s'}$

• MacMahon's gf for $n(s):=\#\{\text{tournaments of score sequence } s\}$ $\prod_{1 \le i < j \le n} (x_i + x_j) = \sum_{s = (s_1 \le \dots \le s_n)} n(s) \sum_{\substack{s' = (s'_1, \dots, s'_n) \\ \{s'\} = \{s\}}} x^{s'}$

• $\Lambda := \mathbb{Z}^n / \langle e_1 + \cdots + e_n \rangle$ weight lattice

- MacMahon's gf for $n(s):=\#\{\text{tournaments of score sequence } s\}$ $\prod_{1 \le i < j \le n} (x_i + x_j) = \sum_{s=(s_1 \le \dots \le s_n)} n(s) \sum_{\substack{s'=(s'_1,\dots,s'_n) \\ \{s'\}=\{s\}}} x^{s'}$
- $\Lambda := \mathbb{Z}^n / \langle e_1 + \cdots + e_n \rangle$ weight lattice $\Im W := S_n$ Weyl group

<ロト < 同ト < 三ト < 三ト < 三 ・ つへへ

- MacMahon's gf for $n(s):=\#\{\text{tournaments of score sequence } s\}$ $\prod_{1 \le i < j \le n} (x_i + x_j) = \sum_{s=(s_1 \le \dots \le s_n)} n(s) \sum_{\substack{s' = (s'_1,\dots,s'_n) \\ \{s'\} = \{s\}}} x^{s'}$
- $\Lambda := \mathbb{Z}^n / \langle e_1 + \dots + e_n \rangle$ weight lattice $\Im W := S_n$ Weyl group $R := \{\pm (e_i e_j)\}_{1 \le i < j \le n} = R_+ \coprod R_- \subset \Lambda$ type A_{n-1} root system

<ロト < 同ト < 三ト < 三ト < 三 ・ つへへ

• MacMahon's gf for $n(s):=\#\{\text{tournaments of score sequence }s\}$ $\prod_{1 \le i < j \le n} (x_i + x_j) = \sum_{s=(s_1 \le \dots \le s_n)} n(s) \sum_{\substack{s' = (s'_1, \dots, s'_n) \\ \{s'\} = \{s\}}} x^{s'}$ • $\Lambda := \mathbb{Z}^n / \langle e_1 + \dots + e_n \rangle$ weight lattice $\Im W := S_n$ Weyl group $R := \{\pm (e_i - e_j)\}_{1 \le i < j \le n} = R_+ \coprod R_- \subset \Lambda$ type A_{n-1} root system $\omega_i = \sum_{i=1}^j e_i \in \Lambda$ fundamental weight

• MacMahon's gf for $n(s):= \#\{\text{tournaments of score sequence } s\}$ $\prod_{1 \le i < j \le n} (x_i + x_j) = \sum_{s = (s_1 \le \dots \le s_n)} n(s) \sum_{\substack{s' = (s'_1, \dots, s'_n) \\ \{s'\} = \{s\}}} x^{s'}$ • $\Lambda := \mathbb{Z}^n / \langle e_1 + \dots + e_n \rangle$ weight lattice $\Im W := S_n$ Weyl group $R := \{\pm (e_i - e_j)\}_{1 \le i < j \le n} = R_+ \coprod R_- \subset \Lambda$ type A_{n-1} root system $\omega_j = \sum_{i=1}^j e_i \in \Lambda$ fundamental weight $\Lambda^+ := \bigoplus_{i=1}^{n-1} \mathbb{N} \omega_i \subset \Lambda$ dominant weights

• MacMahon's gf for $n(s):= \#\{\text{tournaments of score sequence } s\}$ $\prod_{1 \le i < j \le n} (x_i + x_j) = \sum_{s = (s_1 \le \dots \le s_n)} n(s) \sum_{\substack{s' = (s'_1, \dots, s'_n) \\ \{s'\} = \{s\}}} x^{s'}$ • $\Lambda := \mathbb{Z}^n / \langle e_1 + \dots + e_n \rangle$ weight lattice $\Im W := S_n$ Weyl group $R := \{\pm (e_i - e_j)\}_{1 \le i < j \le n} = R_+ \coprod R_- \subset \Lambda$ type A_{n-1} root system $\omega_j = \sum_{i=1}^j e_i \in \Lambda$ fundamental weight $\Lambda^+ := \bigoplus_{i=1}^{n-1} \mathbb{N} \omega_i \subset \Lambda$ dominant weights $\cong \Lambda / W$

• MacMahon's gf for

$$n(s) := \# \{ \text{tournaments of score sequence } s \}$$

 $\prod_{1 \le i < j \le n} (x_i + x_j) = \sum_{s = (s_1 \le \dots \le s_n)} n(s) \sum_{\substack{s' = (s'_1, \dots, s'_n) \\ \{s'\} = \{s\}}} x^{s'}$
• $\Lambda := \mathbb{Z}^n / \langle e_1 + \dots + e_n \rangle$ weight lattice $\Im W := S_n$ Weyl group
 $R := \{\pm (e_i - e_j)\}_{1 \le i < j \le n} = R_+ \coprod R_- \subset \Lambda$ type A_{n-1} root system
 $\omega_j = \sum_{i=1}^j e_i \in \Lambda$ fundamental weight
 $\Lambda^+ := \bigoplus_{i=1}^{n-1} \mathbb{N} \omega_i \subset \Lambda$ dominant weights $\cong \Lambda / W$
 $\rho := (\sum_{\alpha \in R_+} \alpha)/2 = \sum_{i=1}^{n-1} \omega_i \in \Lambda^+$

<□> < @> < E> < E> E 9000

• MacMahon's gf for

$$n(s):= \#$$
{tournaments of score sequence s}
 $\prod_{1 \le i < j \le n} (x_i + x_j) = \sum_{s = (s_1 \le \dots \le s_n)} n(s) \sum_{\substack{s' = (s'_1, \dots, s'_n) \\ \{s'\} = \{s\}}} x^{s'}$
• $\Lambda := \mathbb{Z}^n / \langle e_1 + \dots + e_n \rangle$ weight lattice $\Im W := S_n$ Weyl group
 $R := \{\pm (e_i - e_j)\}_{1 \le i < j \le n} = R_+ \coprod R_- \subset \Lambda$ type A_{n-1} root system
 $\omega_j = \sum_{i=1}^j e_i \in \Lambda$ fundamental weight
 $\Lambda^+ := \bigoplus_{i=1}^{n-1} \mathbb{N} \omega_i \subset \Lambda$ dominant weights $\cong \Lambda / W$
 $\rho := (\sum_{\alpha \in R_+} \alpha)/2 = \sum_{i=1}^{n-1} \omega_i \in \Lambda^+$
half-sum of positive roots

・ロト・日本・モート モー うらくで

- MacMahon's of for $n(s) := \# \{ \text{tournaments of score sequence } s \}$ $\prod_{1 \leq i < j \leq n} (x_i + x_j) = \sum_{s = (s_1 \leq \cdots \leq s_n)} n(s) \sum_{s' = (s'_1, \dots, s'_n)} x^{s'}$ $\{s'\} = \{s\}$ • $\Lambda := \mathbb{Z}^n / \langle e_1 + \cdots + e_n \rangle$ weight lattice $\Im W := S_n$ Weyl group $R := \{\pm (e_i - e_i)\}_{1 \le i \le n} = R_+ \mid |R_- \subset \Lambda \text{ type } A_{n-1} \text{ root system} \}$ $\omega_i = \sum_{i=1}^{j} e_i \in \Lambda$ fundamental weight $\Lambda^+ := \bigoplus_{i=1}^{n-1} \mathbb{N} \omega_i \subset \Lambda$ dominant weights $\cong \Lambda/W$ $\rho := (\sum_{\alpha \in B_{\perp}} \alpha)/2 = \sum_{i=1}^{n-1} \omega_i \in \Lambda^+$ half-sum of positive roots
- Weyl character formula for $\mathfrak{sl}_n \to \operatorname{End}(V^{\rho})$ of highest weight ρ $\sum_{\lambda \in \Lambda} \dim(V^{\rho}_{\lambda}) x^{\lambda} = \frac{\sum_{w \in W} \det(w) x^{w(\rho+\rho)}}{\sum_{w \in W} \det(w) x^{w(\rho)}}$

- MacMahon's of for $n(s) := \# \{ \text{tournaments of score sequence } s \}$ $\prod_{1 \leq i < j \leq n} (x_i + x_j) = \sum_{s = (s_1 \leq \cdots \leq s_n)} n(s) \sum_{s' = (s'_1, \dots, s'_n)} x^{s'}$ ${s'} = {s}$ • $\Lambda := \mathbb{Z}^n / \langle e_1 + \cdots + e_n \rangle$ weight lattice $\Im W := S_n$ Weyl group $R := \{\pm (e_i - e_i)\}_{1 \le i \le n} = R_+ \mid \prod R_- \subset \Lambda \text{ type } A_{n-1} \text{ root system}$ $\omega_i = \sum_{i=1}^{j} e_i \in \Lambda$ fundamental weight $\Lambda^+ := \bigoplus_{i=1}^{n-1} \mathbb{N} \omega_i \subset \Lambda$ dominant weights $\cong \Lambda/W$ $\rho := (\sum_{\alpha \in B_{+}} \alpha)/2 = \sum_{i=1}^{n-1} \omega_{i} \in \Lambda^{+}$ half-sum of positive roots
- Weyl character formula for $\mathfrak{sl}_n \to \operatorname{End}(V^{\rho})$ of highest weight ρ $\sum_{\lambda \in \Lambda} \dim(V^{\rho}_{\lambda}) x^{\lambda} = \frac{\sum_{w \in W} \det(w) x^{w(\rho+\rho)}}{\sum_{w \in W} \det(w) x^{w(\rho)}} = \frac{\prod_{\alpha \in R_+} (x^{\alpha} - x^{-\alpha})}{\prod_{\alpha \in R_+} (x^{\alpha/2} - x^{-\alpha/2})}$

MacMahon's of for $n(s) := \# \{ \text{tournaments of score sequence } s \}$ $\prod_{1 \le i < j \le n} (x_i + x_j) = \sum_{s = (s_1 \le \dots \le s_n)} n(s) \sum_{s' = (s'_1, \dots, s'_n)} x^{s'}$ $\{s'\} = \{s\}$ • $\Lambda := \mathbb{Z}^n / \langle e_1 + \cdots + e_n \rangle$ weight lattice $\Im W := S_n$ Weyl group $R := \{\pm (e_i - e_i)\}_{1 \le i \le n} = R_+ \mid \prod R_- \subset \Lambda \text{ type } A_{n-1} \text{ root system}$ $\omega_i = \sum_{i=1}^{j} e_i \in \Lambda$ fundamental weight $\Lambda^+ := \bigoplus_{i=1}^{n-1} \mathbb{N} \omega_i \subset \Lambda$ dominant weights $\cong \Lambda/W$ $\rho := (\sum_{\alpha \in B_{+}} \alpha)/2 = \sum_{i=1}^{n-1} \omega_{i} \in \Lambda^{+}$ half-sum of positive roots • Weyl character formula for $\mathfrak{sl}_n \to \operatorname{End}(V^{\rho})$ of highest weight ρ $\sum_{\lambda \in \Lambda} \dim(V_{\lambda}^{\rho}) x^{\lambda} = \frac{\sum_{w \in W} \det(w) x^{w(\rho+\rho)}}{\sum_{w \in W} \det(w) x^{w(\rho+\rho)}} = \frac{\prod_{\alpha \in R_{+}} (x^{\alpha} - x^{-\alpha})}{\sum_{w \in W} \det(w) x^{w(\rho+\rho)}} = \frac{\prod_{\alpha \in R_{+}} (x^{\alpha} - x^{-\alpha})}{\sum_{w \in W} \det(w) x^{w(\rho+\rho)}} = \frac{\prod_{\alpha \in R_{+}} (x^{\alpha} - x^{-\alpha})}{\sum_{w \in W} \det(w) x^{w(\rho+\rho)}} = \frac{\prod_{\alpha \in R_{+}} (x^{\alpha} - x^{-\alpha})}{\sum_{w \in W} \det(w) x^{w(\rho+\rho)}} = \frac{\prod_{\alpha \in R_{+}} (x^{\alpha} - x^{-\alpha})}{\sum_{w \in W} \det(w) x^{w(\rho+\rho)}} = \frac{\prod_{\alpha \in R_{+}} (x^{\alpha} - x^{-\alpha})}{\sum_{w \in W} \det(w) x^{w(\rho+\rho)}} = \frac{\prod_{\alpha \in R_{+}} (x^{\alpha} - x^{-\alpha})}{\sum_{w \in W} \det(w) x^{w(\rho+\rho)}} = \frac{\prod_{\alpha \in R_{+}} (x^{\alpha} - x^{-\alpha})}{\sum_{w \in W} \det(w) x^{w(\rho+\rho)}} = \frac{\prod_{\alpha \in R_{+}} (x^{\alpha} - x^{-\alpha})}{\sum_{w \in W} \det(w) x^{w(\rho+\rho)}} = \frac{\prod_{\alpha \in R_{+}} (x^{\alpha} - x^{-\alpha})}{\sum_{w \in W} \det(w) x^{w(\rho+\rho)}} = \frac{\prod_{\alpha \in R_{+}} (x^{\alpha} - x^{-\alpha})}{\sum_{w \in W} \det(w) x^{w(\rho+\rho)}} = \frac{\prod_{\alpha \in R_{+}} (x^{\alpha} - x^{-\alpha})}{\sum_{w \in W} \det(w) x^{w(\rho+\rho)}} = \frac{\prod_{\alpha \in R_{+}} (x^{\alpha} - x^{-\alpha})}{\sum_{w \in W} \det(w) x^{w(\rho+\rho)}} = \frac{\prod_{\alpha \in R_{+}} (x^{\alpha} - x^{-\alpha})}{\sum_{w \in W} \det(w) x^{w(\rho+\rho)}} = \frac{\prod_{\alpha \in R_{+}} (x^{\alpha} - x^{-\alpha})}{\sum_{w \in W} \det(w) x^{w(\rho+\rho)}} = \frac{\prod_{\alpha \in R_{+}} (x^{\alpha} - x^{-\alpha})}{\sum_{w \in W} \det(w) x^{w(\rho+\rho)}} = \frac{\prod_{\alpha \in R_{+}} (x^{\alpha} - x^{-\alpha})}{\sum_{w \in W} \det(w) x^{w(\rho+\rho)}} = \frac{\prod_{\alpha \in R_{+}} (x^{\alpha} - x^{-\alpha})}{\sum_{w \in W} \det(w) x^{w(\rho+\rho)}} = \frac{\prod_{\alpha \in R_{+}} (x^{\alpha} - x^{-\alpha})}{\sum_{w \in W} \det(w) x^{w(\rho+\rho)}} = \frac{\prod_{\alpha \in R_{+}} (x^{\alpha} - x^{-\alpha})}{\sum_{w \in W} \det(w) x^{w(\rho+\rho)}} = \frac{\prod_{\alpha \in R_{+}} (x^{\alpha} - x^{-\alpha})}{\sum_{w \in W} \det(w) x^{w(\rho+\rho)}} = \frac{\prod_{\alpha \in W} (x^{\alpha} - x^{-\alpha})}{\sum_{w \in W} \det(w) x^{w(\rho+\rho)}} = \frac{\prod_{\alpha \in W} (x^{\alpha} - x^{-\alpha})}{\sum_{w \in W} (x^{\alpha} - x^{-\alpha})} = \frac{\prod_{\alpha \in W} (x^{\alpha} - x^{\alpha})}{\sum_{w \in W} (x^{\alpha} - x^{\alpha})} = \frac{\prod_{\alpha \in W} (x^{\alpha} - x^{\alpha})}{\sum_{w \in W} (x^{\alpha} - x^{\alpha})} = \frac{\prod_{\alpha \in W} (x^{\alpha} - x^{\alpha})}{\sum_{w \in W} (x^{\alpha} - x^{\alpha})} = \frac{\prod_{\alpha \in W} (x^{\alpha} - x^{\alpha})}{\sum_{w \in W} (x^{\alpha} - x^{\alpha})} = \frac{\prod_{\alpha \in W} (x^{\alpha} - x^{\alpha})}{\sum_{w \in W} (x^{\alpha} - x^{\alpha})} = \frac{\prod_{\alpha \in W} (x^{\alpha} - x^{\alpha})}{\sum_{w \in W} (x^{\alpha} - x^{\alpha})} = \frac{\prod_{\alpha \in W} (x^{\alpha} - x^{\alpha})}{\sum_{w \in W} (x^{\alpha} - x^{\alpha})} = \frac{\prod_{\alpha \in W} (x$

MacMahon's of for $n(s) := \# \{ \text{tournaments of score sequence } s \}$ $\prod_{1 \le i < j \le n} (x_i + x_j) = \sum_{s = (s_1 \le \dots \le s_n)} n(s) \sum_{s' = (s'_4, \dots, s'_n)} x^{s'}$ ${s'} = {s}$ • $\Lambda := \mathbb{Z}^n / \langle e_1 + \cdots + e_n \rangle$ weight lattice $\Im W := S_n$ Weyl group $R := \{\pm (e_i - e_i)\}_{1 \le i \le n} = R_+ \mid \prod R_- \subset \Lambda \text{ type } A_{n-1} \text{ root system}$ $\omega_i = \sum_{i=1}^{j} e_i \in \Lambda$ fundamental weight $\Lambda^+ := \bigoplus_{i=1}^{n-1} \mathbb{N} \omega_i \subset \Lambda$ dominant weights $\cong \Lambda/W$ $\rho := (\sum_{\alpha \in B_{+}} \alpha)/2 = \sum_{i=1}^{n-1} \omega_{i} \in \Lambda^{+}$ half-sum of positive roots • Weyl character formula for $\mathfrak{sl}_n \to \operatorname{End}(V^{\rho})$ of highest weight ρ $\sum_{\lambda \in \Lambda} \dim(V_{\lambda}^{\rho}) x^{\lambda} = \frac{\sum_{w \in W} \det(w) x^{w(\rho+\rho)}}{\sum_{w \in W} \det(w) x^{w(\rho)}} = \frac{\Pi_{\alpha \in R_{+}}(x^{\alpha} - x^{-\alpha})}{\Pi_{\alpha \in R_{+}}(x^{\alpha/2} - x^{-\alpha/2})} =$

$$\prod_{\alpha \in \mathcal{R}_+} (x^{\alpha/2} + x^{-\alpha/2}) = \prod_{1 \le i < j \le n} (x_i + x_j)$$

MacMahon's of for $n(s) := #\{\text{tournaments of score sequence } s\}$ $\prod_{1 \le i < j \le n} (x_i + x_j) = \sum_{s = (s_1 \le \dots \le s_n)} n(s) \sum_{s' = (s'_1, \dots, s'_n)} x^{s'}$ ${s'} = {s}$ • $\Lambda := \mathbb{Z}^n / \langle e_1 + \cdots + e_n \rangle$ weight lattice $\Im W := S_n$ Weyl group $R := \{\pm (e_i - e_j)\}_{1 \le i < j \le n} = R_+ \coprod R_- \subset \Lambda$ type A_{n-1} root system $\omega_i = \sum_{i=1}^{j} e_i \in \Lambda$ fundamental weight $\Lambda^+ := \bigoplus_{i=1}^{n-1} \mathbb{N} \omega_i \subset \Lambda$ dominant weights $\cong \Lambda / W$ $\rho := (\sum_{\alpha \in B_{+}} \alpha)/2 = \sum_{i=1}^{n-1} \omega_{i} \in \Lambda^{+}$ half-sum of positive roots • Weyl character formula for $\mathfrak{sl}_n \to \operatorname{End}(V^{\rho})$ of highest weight ρ $\sum_{\lambda \in \Lambda} \dim(V_{\lambda}^{\rho}) x^{\lambda} = \frac{\sum_{w \in W} \det(w) x^{w(\rho+\rho)}}{\sum_{w \in W} \det(w) x^{w(\rho)}} = \frac{\Pi_{\alpha \in R_{+}}(x^{\alpha} - x^{-\alpha})}{\Pi_{\alpha \in R_{+}}(x^{\alpha/2} - x^{-\alpha/2})} =$ $\prod_{\alpha \in R_{+}} (x^{\alpha/2} + x^{-\alpha/2}) = \prod_{1 \le i \le n} (x_i + x_j)$ • \rightarrow { weights in V^{ρ} } \leftrightarrow {score vectors}

MacMahon's of for $n(s) := \# \{ \text{tournaments of score sequence } s \}$ $\prod_{1 \le i < j \le n} (x_i + x_j) = \sum_{s = (s_1 \le \dots \le s_n)} n(s) \sum_{s' = (s'_1, \dots, s'_n)} x^{s'}$ ${s'} = {s}$ • $\Lambda := \mathbb{Z}^n / \langle e_1 + \cdots + e_n \rangle$ weight lattice $\Im W := S_n$ Weyl group $R := \{\pm (e_i - e_j)\}_{1 \le i < j \le n} = R_+ \coprod R_- \subset \Lambda$ type A_{n-1} root system $\omega_i = \sum_{i=1}^{j} e_i \in \Lambda$ fundamental weight $\Lambda^+ := \bigoplus_{i=1}^{n-1} \mathbb{N} \omega_i \subset \Lambda$ dominant weights $\cong \Lambda / W$ $\rho := (\sum_{\alpha \in B_{+}} \alpha)/2 = \sum_{i=1}^{n-1} \omega_{i} \in \Lambda^{+}$ half-sum of positive roots • Weyl character formula for $\mathfrak{sl}_n \to \operatorname{End}(V^{\rho})$ of highest weight ρ $\sum_{\lambda \in \Lambda} \dim(V_{\lambda}^{\rho}) x^{\lambda} = \frac{\sum_{w \in W} \det(w) x^{w(\rho+\rho)}}{\sum_{w \in W} \det(w) x^{w(\rho)}} = \frac{\Pi_{\alpha \in R_{+}}(x^{\alpha} - x^{-\alpha})}{\Pi_{\alpha \in R_{+}}(x^{\alpha/2} - x^{-\alpha/2})} =$ $\prod_{\alpha \in B_{+}} (x^{\alpha/2} + x^{-\alpha/2}) = \prod_{1 \le i \le n} (x_{i} + x_{j})$ • \rightarrow { weights in V^{ρ} } \leftrightarrow {score vectors} { dominant weights in V^{ρ} } \leftrightarrow {score sequences}

MacMahon's of for $n(s) := \# \{ \text{tournaments of score sequence } s \}$ $\prod_{1 \le i < j \le n} (x_i + x_j) = \sum_{s = (s_1 \le \dots \le s_n)} n(s) \sum_{s' = (s'_1, \dots, s'_n)} x^{s'}$ ${s'} = {s}$ • $\Lambda := \mathbb{Z}^n / \langle e_1 + \cdots + e_n \rangle$ weight lattice $\Im W := S_n$ Weyl group $R := \{\pm (e_i - e_j)\}_{1 \le i < j \le n} = R_+ \coprod R_- \subset \Lambda$ type A_{n-1} root system $\omega_i = \sum_{i=1}^{j} e_i \in \Lambda$ fundamental weight $\Lambda^+ := \bigoplus_{i=1}^{n-1} \mathbb{N} \omega_i \subset \Lambda$ dominant weights $\cong \Lambda/W$ $\rho := (\sum_{\alpha \in B_{+}} \alpha)/2 = \sum_{i=1}^{n-1} \omega_{i} \in \Lambda^{+}$ half-sum of positive roots • Weyl character formula for $\mathfrak{sl}_n \to \operatorname{End}(V^{\rho})$ of highest weight ρ $\sum_{\lambda \in \Lambda} \dim(V_{\lambda}^{\rho}) x^{\lambda} = \frac{\sum_{w \in W} \det(w) x^{w(\rho+\rho)}}{\sum_{w \in W} \det(w) x^{w(\rho)}} = \frac{\Pi_{\alpha \in R_{+}}(x^{\alpha} - x^{-\alpha})}{\Pi_{\alpha \in R_{+}}(x^{\alpha/2} - x^{-\alpha/2})} =$ $\prod_{\alpha \in B_{+}} (x^{\alpha/2} + x^{-\alpha/2}) = \prod_{1 \le i \le n} (x_{i} + x_{j})$ • \rightsquigarrow { weights in V^{ρ} } \leftrightarrow {score vectors} { dominant weights in V^{ρ} } \leftrightarrow {score sequences} {monomial basis in V^{ρ} } \leftrightarrow { $\Delta \subset R : |\Delta \cap \{\alpha, -\alpha\}| = 1 \forall \alpha \in R$ }

MacMahon's of for $n(s) := \# \{ \text{tournaments of score sequence } s \}$ $\prod_{1 \le i < j \le n} (x_i + x_j) = \sum_{s = (s_1 \le \dots \le s_n)} n(s) \sum_{s' = (s'_1, \dots, s'_n)} x^{s'}$ $\{s'\} = \{s\}$ • $\Lambda := \mathbb{Z}^n / \langle e_1 + \cdots + e_n \rangle$ weight lattice $\Im W := S_n$ Weyl group $R := \{\pm (e_i - e_i)\}_{1 \le i \le n} = R_+ \mid \prod R_- \subset \Lambda \text{ type } A_{n-1} \text{ root system}$ $\omega_i = \sum_{i=1}^{j} e_i \in \Lambda$ fundamental weight $\Lambda^+ := \bigoplus_{i=1}^{n-1} \mathbb{N} \omega_i \subset \Lambda$ dominant weights $\cong \Lambda/W$ $\rho := (\sum_{\alpha \in B_{+}} \alpha)/2 = \sum_{i=1}^{n-1} \omega_{i} \in \Lambda^{+}$ half-sum of positive roots • Weyl character formula for $\mathfrak{sl}_n \to \operatorname{End}(V^{\rho})$ of highest weight ρ $\sum_{\lambda \in \Lambda} \dim(V_{\lambda}^{\rho}) x^{\lambda} = \frac{\sum_{w \in W} \det(w) x^{w(\rho+\rho)}}{\sum_{w \in W} \det(w) x^{w(\rho)}} = \frac{\Pi_{\alpha \in R_{+}}(x^{\alpha} - x^{-\alpha})}{\Pi_{\alpha \in R_{+}}(x^{\alpha/2} - x^{-\alpha/2})} =$ $\prod_{\alpha \in B_{+}} (x^{\alpha/2} + x^{-\alpha/2}) = \prod_{1 \le i \le n} (x_{i} + x_{j})$ • \rightsquigarrow { weights in V^{ρ} } \leftrightarrow {score vectors} { dominant weights in V^{ρ} } \leftrightarrow {score sequences} {monomial basis in V^{ρ} } \leftrightarrow { $\Delta \subset R : |\Delta \cap \{\alpha, -\alpha\}| = 1 \forall \alpha \in R$ } \leftrightarrow {tournaments on [n]} (日本・西本・日本・日本・日本)

<ロト < 個ト < 目ト < 目ト = うへで</p>

•
$$\mathbb{M} := \mathbb{M}_{\text{PGL}_n}^{ss,0}$$

•
$$\mathbb{M} := \mathbb{M}_{\text{PGL}_n}^{ss,0} \ni (E, \Phi)$$

•
$$\mathbb{M} := \mathbb{M}_{\text{PGL}_n}^{ss,0} \ni (E, \Phi); \Phi \in H^0(C; \text{End}_0(E) \otimes K)$$

•
$$\mathbb{M} := \mathbb{M}^{ss,0}_{\mathrm{PGL}_n} \ni (E, \Phi); \Phi \in H^0(C; \mathrm{End}_0(E) \otimes K), \deg(E) = 0$$

▲□▶▲□▶▲□▶▲□▶ □ ● ●

•
$$\mathbb{M} := \mathbb{M}_{PGL_n}^{ss,0} \ni (E, \Phi); \Phi \in H^0(C; End_0(E) \otimes K), \deg(E) = 0$$

• $h : \mathbb{M} \rightarrow \mathbb{A} := H^0(K_C^2) \times \cdots \times H^0(K_C^n)$
• $(E, \Phi) \mapsto \det(x - \Phi)$

•
$$\mathbb{M} := \mathbb{M}_{\text{PGL}_n}^{ss,0} \ni (E, \Phi); \Phi \in H^0(C; \text{End}_0(E) \otimes K), \deg(E) = 0$$

• $h : \mathbb{M} \rightarrow \mathbb{A} := H^0(K_C^2) \times \cdots \times H^0(K_C^n)$
• $(E, \Phi) \mapsto \det(x - \Phi)$ Hitchin map

•
$$\mathbb{M} := \mathbb{M}_{\text{PGL}_n}^{ss,0} \ni (E, \Phi); \Phi \in H^0(C; \text{End}_0(E) \otimes K), \deg(E) = 0$$

• $h : \mathbb{M} \rightarrow \mathbb{A} := H^0(K_C^2) \times \cdots \times H^0(K_C^n)$
• $(E, \Phi) \mapsto \det(x - \Phi)$
• $\mathcal{E}_{triv} := (O^n, 0)$ trivial Higgs bundle

▲□▶▲□▶▲□▶▲□▶ □ ● ●

•
$$\mathbb{M} := \mathbb{M}_{\mathrm{PGL}_n}^{\mathrm{ss},0} \ni (E, \Phi); \Phi \in H^0(C; \mathrm{End}_0(E) \otimes K), \deg(E) = 0$$

• $h : \mathbb{M} \to \mathbb{A} := H^0(K_C^2) \times \cdots \times H^0(K_C^n)$ Hitchin map
• $(E, \Phi) \mapsto \det(x - \Phi)$ Hitchin map
• $\mathcal{E}_{triv} := (O^n, 0)$ trivial Higgs bundle, bottom Lagrangian:
 $B := \{(O^n, \Phi) : \Phi \in H^0(C; \mathrm{End}_0(O^n) \otimes K_C)\} \subset \mathbb{M}$

•
$$\mathbb{M} := \mathbb{M}_{\text{PGL}_n}^{ss,0} \ni (E, \Phi); \Phi \in H^0(C; \text{End}_0(E) \otimes K), \deg(E) = 0$$

• $h : \mathbb{M} \to \mathbb{A} := H^0(K_C^2) \times \cdots \times H^0(K_C^n)$ Hitchin map
• $(E, \Phi) \mapsto \det(x - \Phi)$
• $\mathcal{E}_{triv} := (O^n, 0)$ trivial Higgs bundle, bottom Lagrangian:
 $B := \{(O^n, \Phi) : \Phi \in H^0(C; \text{End}_0(O^n) \otimes K_C)\} \subset \mathbb{M}$
singular Lagrangian subvariety

•
$$\mathbb{M} := \mathbb{M}_{\text{PGL}_n}^{\text{ss},0} \ni (E, \Phi); \Phi \in H^0(C; \text{End}_0(E) \otimes K), \deg(E) = 0$$

• $h: \mathbb{M} \to \mathbb{A} := H^0(K_C^2) \times \cdots \times H^0(K_C^n)$ Hitchin map
(E, Φ) $\mapsto \quad \det(x - \Phi)$ Hitchin map
• $\mathcal{E}_{triv} := (O^n, 0)$ trivial Higgs bundle, bottom Lagrangian:
 $B := \{(O^n, \Phi) : \Phi \in H^0(C; \text{End}_0(O^n) \otimes K_C)\} \subset \mathbb{M}$
singular Lagrangian subvariety
 $B \cong \text{End}_0(\mathbb{C}^n) \otimes H^0(K_C) // \text{PGL}_n$

•
$$\mathbb{M} := \mathbb{M}_{PGL_n}^{ss,0} \ni (E, \Phi); \Phi \in H^0(C; End_0(E) \otimes K), \deg(E) = 0$$

• $h : \mathbb{M} \rightarrow \mathbb{A} := H^0(K_C^2) \times \cdots \times H^0(K_C^n)$ Hitchin map
(E, Φ) \mapsto det $(x - \Phi)$ Hitchin map
• $\mathcal{E}_{triv} := (O^n, 0)$ trivial Higgs bundle, bottom Lagrangian:
 $B := \{(O^n, \Phi) : \Phi \in H^0(C; End_0(O^n) \otimes K_C)\} \subset \mathbb{M}$
singular Lagrangian subvariety
 $B \cong End_0(\mathbb{C}^n) \otimes H^0(K_C) // PGL_n$
• $g(C) = 2, h^0(K_0) = 2$
•
$$\mathbb{M} := \mathbb{M}_{\text{PGL}_n}^{\text{ss},0} \ni (E, \Phi); \Phi \in H^0(C; \text{End}_0(E) \otimes K), \text{deg}(E) = 0$$

• $h: \mathbb{M} \to \mathbb{A} := H^0(K_C^2) \times \cdots \times H^0(K_C^n)$ Hitchin map
• $(E, \Phi) \mapsto \det(x - \Phi)$ Hitchin map
• $\mathcal{E}_{triv} := (O^n, 0)$ trivial Higgs bundle, bottom Lagrangian:
 $B := \{(O^n, \Phi) : \Phi \in H^0(C; \text{End}_0(O^n) \otimes K_C)\} \subset \mathbb{M}$
singular Lagrangian subvariety
 $B \cong \text{End}_0(\mathbb{C}^n) \otimes H^0(K_C) // \text{PGL}_n$
• $g(C) = 2, h^0(K_0) = 2 \rightsquigarrow \pi : C \to \mathbb{P}^1$ hyperelliptic

•
$$\mathbb{M} := \mathbb{M}_{PGL_n}^{ss,0} \ni (E, \Phi); \Phi \in H^0(C; End_0(E) \otimes K), \deg(E) = 0$$

• $h : \mathbb{M} \rightarrow \mathbb{A} := H^0(K_C^2) \times \cdots \times H^0(K_C^n)$ Hitchin map
• $(E, \Phi) \mapsto \det(x - \Phi)$ Hitchin map
• $\mathcal{E}_{triv} := (O^n, 0)$ trivial Higgs bundle, bottom Lagrangian:
 $B := \{(O^n, \Phi) : \Phi \in H^0(C; End_0(O^n) \otimes K_C)\} \subset \mathbb{M}$
singular Lagrangian subvariety
 $B \cong End_0(\mathbb{C}^n) \otimes H^0(K_C) // PGL_n$
• $g(C) = 2, h^0(K_0) = 2 \rightarrow \pi : C \rightarrow \mathbb{P}^1$ hyperelliptic $\rightarrow \pi^*(O(1)) = K_C$

•
$$\mathbb{M} := \mathbb{M}_{PGL_n}^{ss,0} \ni (E, \Phi); \Phi \in H^0(C; End_0(E) \otimes K), \deg(E) = 0$$

• $h: \mathbb{M} \rightarrow \mathbb{A} := H^0(K_C^2) \times \cdots \times H^0(K_C^n)$ Hitchin map
(E, Φ) \mapsto det $(x - \Phi)$ Hitchin map
• $\mathcal{E}_{triv} := (O^n, 0)$ trivial Higgs bundle, bottom Lagrangian:
 $B := \{(O^n, \Phi) : \Phi \in H^0(C; End_0(O^n) \otimes K_C)\} \subset \mathbb{M}$
singular Lagrangian subvariety
 $B \cong End_0(\mathbb{C}^n) \otimes H^0(K_C) //PGL_n$
• $g(C) = 2, h^0(K_0) = 2 \rightsquigarrow \pi : C \to \mathbb{P}^1$ hyperelliptic $\rightsquigarrow \pi^*(O(1)) = K_C \rightsquigarrow \overline{B} \cong \mathbb{M}_{\mathbb{P}^1, O(1)}^0$

•
$$\mathbb{M} := \mathbb{M}_{PGL_n}^{ss,0} \ni (E, \Phi); \Phi \in H^0(C; End_0(E) \otimes K), deg(E) = 0$$

• $h : \mathbb{M} \rightarrow A := H^0(K_C^2) \times \cdots \times H^0(K_C^n)$ Hitchin map
(E, Φ) \mapsto det($x - \Phi$) Hitchin map
• $\mathcal{E}_{triv} := (O^n, 0)$ trivial Higgs bundle, bottom Lagrangian:
 $B := \{(O^n, \Phi) : \Phi \in H^0(C; End_0(O^n) \otimes K_C)\} \subset \mathbb{M}$
singular Lagrangian subvariety
 $B \cong End_0(\mathbb{C}^n) \otimes H^0(K_C) //PGL_n$
• $g(C) = 2, h^0(K_0) = 2 \rightsquigarrow \pi : C \to \mathbb{P}^1$ hyperelliptic \rightsquigarrow
 $\pi^*(O(1)) = K_C \rightsquigarrow \overline{B} \cong \mathbb{M}_{\mathbb{P}^1, O(1)}^0$ moduli of semi-stable (E, Φ)

•
$$\mathbb{M} := \mathbb{M}_{PGL_n}^{ss,0} \ni (E, \Phi); \Phi \in H^0(C; End_0(E) \otimes K), \deg(E) = 0$$

• $h : \mathbb{M} \rightarrow \mathbb{A} := H^0(K_C^2) \times \cdots \times H^0(K_C^n)$ Hitchin map
• $(E, \Phi) \mapsto \det(x - \Phi)$ Hitchin map
• $\mathcal{E}_{triv} := (O^n, 0)$ trivial Higgs bundle, bottom Lagrangian:
 $B := \{(O^n, \Phi) : \Phi \in H^0(C; End_0(O^n) \otimes K_C)\} \subset \mathbb{M}$
singular Lagrangian subvariety
 $B \cong End_0(\mathbb{C}^n) \otimes H^0(K_C) //PGL_n$
• $g(C) = 2, h^0(K_0) = 2 \rightsquigarrow \pi : C \to \mathbb{P}^1$ hyperelliptic \rightsquigarrow
 $\pi^*(O(1)) = K_C \rightsquigarrow \overline{B} \cong \mathbb{M}_{\mathbb{P}^1, O(1)}^0$ moduli of semi-stable (E, Φ)
 $\deg(E) = 0, \operatorname{rank}(E) = n,$

•
$$\mathbb{M} := \mathbb{M}_{PGL_n}^{ss,0} \ni (E, \Phi); \Phi \in H^0(C; End_0(E) \otimes K), \deg(E) = 0$$

• $h : \mathbb{M} \rightarrow \mathbb{A} := H^0(K_C^2) \times \cdots \times H^0(K_C^n)$ Hitchin map
(E, Φ) \mapsto $\det(x - \Phi)$ Hitchin map
• $\mathcal{E}_{triv} := (O^n, 0)$ trivial Higgs bundle, bottom Lagrangian:
 $B := \{(O^n, \Phi) : \Phi \in H^0(C; End_0(O^n) \otimes K_C)\} \subset \mathbb{M}$
singular Lagrangian subvariety
 $B \cong End_0(\mathbb{C}^n) \otimes H^0(K_C) //PGL_n$
• $g(C) = 2, h^0(K_0) = 2 \rightsquigarrow \pi : C \to \mathbb{P}^1$ hyperelliptic \rightsquigarrow
 $\pi^*(O(1)) = K_C \rightsquigarrow \overline{B} \cong \mathbb{M}_{\mathbb{P}^1, O(1)}^0$ moduli of semi-stable (E, Φ)
 $\deg(E) = 0, rank(E) = n, \Phi \in H^0(\mathbb{P}^1; End_0(E)(1))$

•
$$\mathbb{M} := \mathbb{M}_{PGL_n}^{ss,0} \ni (E, \Phi); \Phi \in H^0(C; End_0(E) \otimes K), \deg(E) = 0$$

• $h : \mathbb{M} \rightarrow \mathbb{A} := H^0(K_C^2) \times \cdots \times H^0(K_C^n)$ Hitchin map
• $(E, \Phi) \mapsto \det(x - \Phi)$ Hitchin map
• $\mathcal{E}_{triv} := (O^n, 0)$ trivial Higgs bundle, bottom Lagrangian:
 $B := \{(O^n, \Phi) : \Phi \in H^0(C; End_0(O^n) \otimes K_C)\} \subset \mathbb{M}$
singular Lagrangian subvariety
 $B \cong End_0(\mathbb{C}^n) \otimes H^0(K_C) //PGL_n$
• $g(C) = 2, h^0(K_0) = 2 \rightsquigarrow \pi : C \to \mathbb{P}^1$ hyperelliptic \rightsquigarrow
 $\pi^*(O(1)) = K_C \rightsquigarrow \overline{B} \cong \mathbb{M}_{\mathbb{P}^1, O(1)}^0$ moduli of semi-stable (E, Φ)
deg $(E) = 0, \operatorname{rank}(E) = n, \Phi \in H^0(\mathbb{P}^1; End_0(E)(1))$
• components of $\overline{B} \cap h^{-1}(0)$

•
$$\mathbb{M} := \mathbb{M}_{PGL_n}^{ss,0} \ni (E, \Phi); \Phi \in H^0(C; End_0(E) \otimes K), \deg(E) = 0$$

• $h: \mathbb{M} \rightarrow A:= H^0(K_C^2) \times \cdots \times H^0(K_C^n)$ Hitchin map
(E, Φ) \mapsto det($x - \Phi$) Hitchin map
• $\mathcal{E}_{triv} := (O^n, 0)$ trivial Higgs bundle, bottom Lagrangian:
 $B := \{(O^n, \Phi) : \Phi \in H^0(C; End_0(O^n) \otimes K_C)\} \subset \mathbb{M}$
singular Lagrangian subvariety
 $B \cong End_0(\mathbb{C}^n) \otimes H^0(K_C) //PGL_n$
• $g(C) = 2, h^0(K_0) = 2 \rightsquigarrow \pi : C \to \mathbb{P}^1$ hyperelliptic $\rightsquigarrow \pi^*(O(1)) = K_C \rightsquigarrow \overline{B} \cong \mathbb{M}_{\mathbb{P}^1,O(1)}^0$ moduli of semi-stable (E, Φ)
deg $(E) = 0, \operatorname{rank}(E) = n, \Phi \in H^0(\mathbb{P}^1; End_0(E)(1))$
• components of $\overline{B} \cap h^{-1}(0) \cong$ nilpotent cone in $\mathbb{M}_{\mathbb{P}^1,O(1)}^0$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ◆ □ ◆ ○ ◆ ○ ◆

() geometry of $h|_{\overline{B}}$ should reflect $SL_n \to GL(V^{\rho})$

- geometry of $h|_{\overline{B}}$ should reflect $SL_n \to GL(V^{\rho})$
- 2 geometry of $h_{G^{\vee}}|_{\overline{B}_{G^{\vee}}}$ should reflect $G \to GL(V^{\rho})$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

- **(**) geometry of $h|_{\overline{B}}$ should reflect $SL_n \to GL(V^{\rho})$
- 2 geometry of $h_{G^{\vee}}|_{\overline{B}_{G^{\vee}}}$ should reflect $G \to GL(V^{\rho})$
- \bigcirc should be compatible with folding $\sigma: \mathbf{G} \to \mathbf{G}_{\bigcirc} \to \mathsf{G}_{\bigcirc} \to \mathsf{G}_{\bigcirc}$

▲□▶▲□▶▲≡▶▲≡▶ ≡ のへ⊙

• $R \subset \Lambda \cong \mathbb{Z}^r$ finite root system in weight lattice, Weyl group W,

• $R \subset \Lambda \cong \mathbb{Z}^r$ finite root system in weight lattice, Weyl group W, $R_+ \subset R$ set of positive roots

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

• $R \subset \Lambda \cong \mathbb{Z}^r$ finite root system in weight lattice, Weyl group W, $R_+ \subset R$ set of positive roots

• $R \subset \Lambda \cong \mathbb{Z}^r$ finite root system in weight lattice, Weyl group W, $R_+ \subset R$ set of positive roots

▲ロト ▲ 同 ト ▲ 国 ト ▲ 国 ト ク Q (~)

- $|\mathbf{R}_+ \cap \{\alpha, -\alpha\}| = 1 \, \forall \alpha \in \mathbf{R}$
- 2 $\alpha, \beta \in R_+$ and $\alpha + \beta \in R \Rightarrow \alpha + \beta \in R_+$

• $R \subset \Lambda \cong \mathbb{Z}^r$ finite root system in weight lattice, Weyl group W, $R_+ \subset R$ set of positive roots

$$|\mathbf{R}_+ \cap \{\alpha, -\alpha\}| = 1 \, \forall \alpha \in \mathbf{R}$$

- 2 $\alpha, \beta \in R_+$ and $\alpha + \beta \in R \Rightarrow \alpha + \beta \in R_+$
- *R*-tournament: $T \subset R$ s.t. $|T \cap \{\alpha, -\alpha\}| = 1 \forall \alpha \in R$

• $R \subset \Lambda \cong \mathbb{Z}^r$ finite root system in weight lattice, Weyl group W, $R_+ \subset R$ set of positive roots

- $|\mathbf{R}_+ \cap \{\alpha, -\alpha\}| = 1 \, \forall \alpha \in \mathbf{R}$
- 2 $\alpha, \beta \in R_+$ and $\alpha + \beta \in R \Rightarrow \alpha + \beta \in R_+$
- *R*-tournament: $T \subset R$ s.t. $|T \cap \{\alpha, -\alpha\}| = 1 \forall \alpha \in R$
- example: positive roots $R_+ \subset R$

- $R \subset \Lambda \cong \mathbb{Z}^r$ finite root system in weight lattice, Weyl group W, $R_+ \subset R$ set of positive roots

 - 2 $\alpha, \beta \in R_+$ and $\alpha + \beta \in R \Rightarrow \alpha + \beta \in R_+$
- *R*-tournament: $T \subset R$ s.t. $|T \cap \{\alpha, -\alpha\}| = 1 \forall \alpha \in R$
- example: positive roots $R_+ \subset R$ transitive R-tournament

- $R \subset \Lambda \cong \mathbb{Z}^r$ finite root system in weight lattice, Weyl group W, $R_+ \subset R$ set of positive roots

 - 2 $\alpha, \beta \in R_+$ and $\alpha + \beta \in R \Rightarrow \alpha + \beta \in R_+$
- *R*-tournament: $T \subset R$ s.t. $|T \cap \{\alpha, -\alpha\}| = 1 \forall \alpha \in R$
- example: positive roots $R_+ \subset R$ transitive R-tournament

▲ロト ▲ 同 ト ▲ 国 ト ▲ 国 ト ク Q (~)

• notion used by (Calderbank–Hanlon, 1986) to give a combinatorial proof for the Weyl denominator identity $\prod_{\alpha \in R_+} (x^{\alpha/2} - x^{-\alpha/2}) = \sum_{w \in W} \det(w) x^{w(\rho)}$

- $R \subset \Lambda \cong \mathbb{Z}^r$ finite root system in weight lattice, Weyl group W, $R_+ \subset R$ set of positive roots

 - 2 $\alpha, \beta \in R_+$ and $\alpha + \beta \in R \Rightarrow \alpha + \beta \in R_+$
- *R*-tournament: $T \subset R$ s.t. $|T \cap \{\alpha, -\alpha\}| = 1 \forall \alpha \in R$
- example: positive roots $R_+ \subset R$ transitive R-tournament

▲ロト ▲ 同 ト ▲ 国 ト ▲ 国 ト ク Q (~)

• notion used by (Calderbank–Hanlon, 1986) to give a combinatorial proof for the Weyl denominator identity $\prod_{\alpha \in R_+} (x^{\alpha/2} - x^{-\alpha/2}) = \sum_{w \in W} \det(w) x^{w(\rho)}$ in types *B*, *C*, *D* after (Gessel, 1979) in type *A*

- $R \subset \Lambda \cong \mathbb{Z}^r$ finite root system in weight lattice, Weyl group W, $R_+ \subset R$ set of positive roots

 - 2 $\alpha, \beta \in R_+$ and $\alpha + \beta \in R \Rightarrow \alpha + \beta \in R_+$
- *R*-tournament: $T \subset R$ s.t. $|T \cap \{\alpha, -\alpha\}| = 1 \forall \alpha \in R$
- example: positive roots $R_+ \subset R$ transitive R-tournament
- notion used by (Calderbank–Hanlon, 1986) to give a combinatorial proof for the Weyl denominator identity $\prod_{\alpha \in R_+} (x^{\alpha/2} x^{-\alpha/2}) = \sum_{w \in W} \det(w) x^{w(\rho)}$ in types *B*, *C*, *D* after (Gessel, 1979) in type *A*
- Weyl character formula for $\mathfrak{g}_R \to \operatorname{End}(V^{\rho}), \rho = (\sum_{\alpha \in R_+})/2$

▲ロト ▲ 同 ト ▲ 国 ト ▲ 国 ト ク Q (~)

- *R* ⊂ Λ ≃ Z^r finite root system in weight lattice, Weyl group *W*, *R*₊ ⊂ *R* set of positive roots

 - 2 $\alpha, \beta \in R_+$ and $\alpha + \beta \in R \Rightarrow \alpha + \beta \in R_+$
- *R*-tournament: $T \subset R$ s.t. $|T \cap \{\alpha, -\alpha\}| = 1 \forall \alpha \in R$
- example: positive roots $R_+ \subset R$ transitive R-tournament
- notion used by (Calderbank–Hanlon, 1986) to give a combinatorial proof for the Weyl denominator identity $\prod_{\alpha \in R_+} (x^{\alpha/2} x^{-\alpha/2}) = \sum_{w \in W} \det(w) x^{w(\rho)}$ in types *B*, *C*, *D* after (Gessel, 1979) in type *A*
- Weyl character formula for $\mathfrak{g}_R \to \operatorname{End}(V^{\rho}), \rho = (\sum_{\alpha \in R_+})/2$ $\sum_{\lambda \in \Lambda} \dim(V^{\rho}_{\lambda}) x^{\lambda} = \frac{\sum_{w \in W} \det(w) x^{w(\rho+\rho)}}{\sum_{w \in W} \det(w) x^{w(\rho)}}$

▲ロト ▲ 同 ト ▲ 国 ト ▲ 国 ト ク Q (~)

- *R* ⊂ Λ ≃ Z^r finite root system in weight lattice, Weyl group *W*, *R*₊ ⊂ *R* set of positive roots

 - 2 $\alpha, \beta \in R_+$ and $\alpha + \beta \in R \Rightarrow \alpha + \beta \in R_+$
- *R*-tournament: $T \subset R$ s.t. $|T \cap \{\alpha, -\alpha\}| = 1 \forall \alpha \in R$
- example: positive roots $R_+ \subset R$ transitive R-tournament
- notion used by (Calderbank–Hanlon, 1986) to give a combinatorial proof for the Weyl denominator identity $\prod_{\alpha \in R_+} (x^{\alpha/2} x^{-\alpha/2}) = \sum_{w \in W} \det(w) x^{w(\rho)}$ in types *B*, *C*, *D* after (Gessel, 1979) in type *A*
- Weyl character formula for $\mathfrak{g}_R \to \operatorname{End}(V^{\rho}), \rho = (\sum_{\alpha \in R_+})/2$ $\sum_{\lambda \in \Lambda} \dim(V^{\rho}_{\lambda}) x^{\lambda} = \frac{\sum_{w \in W} \det(w) x^{w(\rho+\rho)}}{\sum_{w \in W} \det(w) x^{w(\rho)}} = \frac{\prod_{\alpha \in R_+} (x^{\alpha} - x^{-\alpha})}{\prod_{\alpha \in R_+} (x^{\alpha/2} - x^{-\alpha/2})}$

- *R* ⊂ Λ ≃ Z^r finite root system in weight lattice, Weyl group *W*, *R*₊ ⊂ *R* set of positive roots

 - 2 $\alpha, \beta \in R_+$ and $\alpha + \beta \in R \Rightarrow \alpha + \beta \in R_+$
- *R*-tournament: $T \subset R$ s.t. $|T \cap \{\alpha, -\alpha\}| = 1 \forall \alpha \in R$
- example: positive roots $R_+ \subset R$ transitive R-tournament
- notion used by (Calderbank–Hanlon, 1986) to give a combinatorial proof for the Weyl denominator identity $\prod_{\alpha \in R_+} (x^{\alpha/2} x^{-\alpha/2}) = \sum_{w \in W} \det(w) x^{w(\rho)}$ in types *B*, *C*, *D* after (Gessel, 1979) in type *A*
- Weyl character formula for $\mathfrak{g}_R \to \operatorname{End}(V^{\rho}), \rho = (\sum_{\alpha \in R_+})/2$ $\sum_{\lambda \in \Lambda} \dim(V_{\lambda}^{\rho}) x^{\lambda} = \frac{\sum_{w \in W} \det(w) x^{w(\rho+\rho)}}{\sum_{w \in W} \det(w) x^{w(\rho)}} = \frac{\prod_{\alpha \in R_+} (x^{\alpha} - x^{-\alpha})}{\prod_{\alpha \in R_+} (x^{\alpha/2} - x^{-\alpha/2})} = \prod_{\alpha \in R_+} (x^{\alpha/2} + x^{-\alpha/2})$

ション 小田 マイビット ビックタン

- *R* ⊂ Λ ≃ Z^r finite root system in weight lattice, Weyl group *W*, *R*₊ ⊂ *R* set of positive roots

 - 2 $\alpha, \beta \in R_+$ and $\alpha + \beta \in R \Rightarrow \alpha + \beta \in R_+$
- *R*-tournament: $T \subset R$ s.t. $|T \cap \{\alpha, -\alpha\}| = 1 \forall \alpha \in R$
- example: positive roots $R_+ \subset R$ transitive R-tournament
- notion used by (Calderbank–Hanlon, 1986) to give a combinatorial proof for the Weyl denominator identity $\prod_{\alpha \in R_+} (x^{\alpha/2} x^{-\alpha/2}) = \sum_{w \in W} \det(w) x^{w(\rho)}$ in types *B*, *C*, *D* after (Gessel, 1979) in type *A*
- Weyl character formula for $\mathfrak{g}_R \to \operatorname{End}(V^{\rho}), \rho = (\sum_{\alpha \in R_+})/2$ $\sum_{\lambda \in \Lambda} \dim(V_{\lambda}^{\rho}) x^{\lambda} = \frac{\sum_{w \in W} \det(w) x^{w(\rho+\rho)}}{\sum_{w \in W} \det(w) x^{w(\rho)}} = \frac{\prod_{\alpha \in R_+} (x^{\alpha} - x^{-\alpha})}{\prod_{\alpha \in R_+} (x^{\alpha/2} - x^{-\alpha/2})} = \prod_{\alpha \in R_+} (x^{\alpha/2} + x^{-\alpha/2})$

ション 小田 マイビット ビックタン

{*R*-tournaments}

- *R* ⊂ Λ ≃ Z^r finite root system in weight lattice, Weyl group *W*, *R*₊ ⊂ *R* set of positive roots
- *R*-tournament: $T \subset R$ s.t. $|T \cap \{\alpha, -\alpha\}| = 1 \forall \alpha \in R$
- example: positive roots $R_+ \subset R$ transitive R-tournament
- notion used by (Calderbank–Hanlon, 1986) to give a combinatorial proof for the Weyl denominator identity $\prod_{\alpha \in R_+} (x^{\alpha/2} x^{-\alpha/2}) = \sum_{w \in W} \det(w) x^{w(\rho)}$ in types *B*, *C*, *D* after (Gessel, 1979) in type *A*
- Weyl character formula for $\mathfrak{g}_R \to \operatorname{End}(V^{\rho}), \rho = (\sum_{\alpha \in R_+})/2$ $\sum_{\lambda \in \Lambda} \dim(V_{\lambda}^{\rho}) x^{\lambda} = \frac{\sum_{w \in W} \det(w) x^{w(\rho+\rho)}}{\sum_{w \in W} \det(w) x^{w(\rho)}} = \frac{\prod_{\alpha \in R_+} (x^{\alpha} - x^{-\alpha})}{\prod_{\alpha \in R_+} (x^{\alpha/2} - x^{-\alpha/2})} = \prod_{\alpha \in R_+} (x^{\alpha/2} + x^{-\alpha/2})$
- {*R*-tournaments} \leftrightarrow {monomial basis in V^{ρ} }

- $R \subset \Lambda \cong \mathbb{Z}^r$ finite root system in weight lattice, Weyl group W, $R_+ \subset R$ set of positive roots

 - 2 $\alpha, \beta \in R_+$ and $\alpha + \beta \in R \Rightarrow \alpha + \beta \in R_+$
- *R*-tournament: $T \subset R$ s.t. $|T \cap \{\alpha, -\alpha\}| = 1 \forall \alpha \in R$
- example: positive roots $R_+ \subset R$ transitive R-tournament
- notion used by (Calderbank–Hanlon, 1986) to give a combinatorial proof for the Weyl denominator identity $\prod_{\alpha \in R_+} (x^{\alpha/2} x^{-\alpha/2}) = \sum_{w \in W} \det(w) x^{w(\rho)}$ in types *B*, *C*, *D* after (Gessel, 1979) in type *A*
- Weyl character formula for $\mathfrak{g}_R \to \operatorname{End}(V^{\rho}), \rho = (\sum_{\alpha \in R_+})/2$ $\sum_{\lambda \in \Lambda} \dim(V^{\rho}_{\lambda}) x^{\lambda} = \frac{\sum_{w \in W} \det(w) x^{w(\rho+\rho)}}{\sum_{w \in W} \det(w) x^{w(\rho)}} = \frac{\prod_{\alpha \in R_+} (x^{\alpha} - x^{-\alpha})}{\prod_{\alpha \in R_+} (x^{\alpha/2} - x^{-\alpha/2})} = \prod_{\alpha \in R_+} (x^{\alpha/2} + x^{-\alpha/2})$
- {*R*-tournaments} \leftrightarrow {monomial basis in V^{ρ} }
- *R*-score vector:= weight in V^p

- $R \subset \Lambda \cong \mathbb{Z}^r$ finite root system in weight lattice, Weyl group W, $R_+ \subset R$ set of positive roots
- *R*-tournament: $T \subset R$ s.t. $|T \cap \{\alpha, -\alpha\}| = 1 \forall \alpha \in R$
- example: positive roots $R_+ \subset R$ transitive R-tournament
- notion used by (Calderbank–Hanlon, 1986) to give a combinatorial proof for the Weyl denominator identity $\prod_{\alpha \in R_+} (x^{\alpha/2} x^{-\alpha/2}) = \sum_{w \in W} \det(w) x^{w(\rho)}$ in types *B*, *C*, *D* after (Gessel, 1979) in type *A*
- Weyl character formula for $\mathfrak{g}_R \to \operatorname{End}(V^{\rho}), \rho = (\sum_{\alpha \in R_+})/2$ $\sum_{\lambda \in \Lambda} \dim(V^{\rho}_{\lambda}) x^{\lambda} = \frac{\sum_{w \in W} \det(w) x^{w(\rho+\rho)}}{\sum_{w \in W} \det(w) x^{w(\rho)}} = \frac{\prod_{\alpha \in R_+} (x^{\alpha-x^{-\alpha}})}{\prod_{\alpha \in R_+} (x^{\alpha/2} - x^{-\alpha/2})} = \prod_{\alpha \in R_+} (x^{\alpha/2} + x^{-\alpha/2})$
- {*R*-tournaments} \leftrightarrow {monomial basis in V^{ρ} }
- *R*-score vector:= weight in V^ρ
 R-score sequence:= dominant weight in V^ρ

• $R \subset \Lambda \supset W$ finite root system, weight lattice, Weyl group

- $R \subset \Lambda \supset W$ finite root system, weight lattice, Weyl group
- Dynkin diagram automorphism $\rightsquigarrow \sigma : \Lambda \rightarrow \Lambda$ s.t. $\sigma(R) = R$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

- $R \subset \Lambda \Im W$ finite root system, weight lattice, Weyl group
- Dynkin diagram automorphism $\sim \sigma : \Lambda \rightarrow \Lambda$ s.t. $\sigma(R) = R$
- folding procedure → root system R^σ:=R/σ ⊂ Λ^σ (except A_{2n})

◆ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● の Q @

- $R \subset \Lambda \supset W$ finite root system, weight lattice, Weyl group
- Dynkin diagram automorphism $\rightsquigarrow \sigma : \Lambda \rightarrow \Lambda$ s.t. $\sigma(R) = R$
- folding procedure → root system R^σ:=R/σ ⊂ Λ^σ (except A_{2n})

▲ロト ▲ 同 ト ▲ 国 ト ▲ 国 ト ク Q (~)

• defining property: $\mathfrak{g}_{R^{\sigma}}^{\vee} \cong (\mathfrak{g}_{R}^{\vee})^{\sigma} \subset \mathfrak{g}_{R}^{\vee}$
Folding

- $R \subset \Lambda \Im W$ finite root system, weight lattice, Weyl group
- Dynkin diagram automorphism $\rightsquigarrow \sigma : \Lambda \rightarrow \Lambda$ s.t. $\sigma(R) = R$
- folding procedure → root system R^σ:=R/σ ⊂ Λ^σ (except A_{2n})
- defining property: $\mathfrak{g}_{R^{\sigma}}^{\vee} \cong (\mathfrak{g}_{R}^{\vee})^{\sigma} \subset \mathfrak{g}_{R}^{\vee}$

・ロト・日本・モート モー うらくで

•
$$\sigma: [2n] := \{1, \dots, 2n\} \rightarrow [2n]$$
 by $\sigma(i) = 2n - i$

・ロト・日本・モート モー うらくで

•
$$\sigma: [2n] := \{1, \dots, 2n\} \rightarrow [2n]$$
 by $\sigma(i) = 2n - i$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

• orbits $[2n]/\sigma$:= married couples

• $\sigma: [2n] := \{1, \dots, 2n\} \rightarrow [2n]$ by $\sigma(i) = 2n - i$

- orbits $[2n]/\sigma$:= married couples
- tournament on [2n] is marriage balanced

• $\sigma: [2n] := \{1, \dots, 2n\} \rightarrow [2n]$ by $\sigma(i) = 2n - i$

- orbits [2n]/σ:= married couples
- tournament on [2n] is marriage balanced:

$$a \rightarrow b \Rightarrow \sigma(b) \rightarrow \sigma(a)$$

- $\sigma: [2n] := \{1, \dots, 2n\} \rightarrow [2n]$ by $\sigma(i) = 2n i$
- orbits [2n]/σ:= married couples
- tournament on [2n] is marriage balanced:
 a → b ⇒ σ(b) → σ(a)
- score vector of m.b. tournament is (s_1, \ldots, s_{2n})

- $\sigma: [2n] := \{1, \dots, 2n\} \rightarrow [2n]$ by $\sigma(i) = 2n i$
- orbits [2n]/σ:= married couples
- tournament on [2n] is marriage balanced:
 a → b ⇒ σ(b) → σ(a)
- score vector of m.b. tournament is (s_1, \ldots, s_{2n}) satisfies $s_i + s_{\sigma_i} = 2n - 1$

- $\sigma: [2n] := \{1, \dots, 2n\} \rightarrow [2n]$ by $\sigma(i) = 2n i$
- orbits [2n]/σ:= married couples
- tournament on [2n] is marriage balanced:
 a → b ⇒ σ(b) → σ(a)
- score vector of m.b. tournament is (s_1, \ldots, s_{2n}) satisfies $s_i + s_{\sigma_i} = 2n - 1$
- score sequence of m.b. tournament: $(s'_1 \leq \cdots \leq s'_n \leq n-1)$

- $\sigma: [2n] := \{1, \dots, 2n\} \rightarrow [2n]$ by $\sigma(i) = 2n i$
- orbits [2n]/σ:= married couples
- tournament on [2n] is marriage balanced:
 a → b ⇒ σ(b) → σ(a)
- score vector of m.b. tournament is (s_1, \ldots, s_{2n}) satisfies $s_i + s_{\sigma_i} = 2n - 1$
- score sequence of m.b. tournament: $(s'_1 \leq \cdots \leq s'_n \leq n-1)$

<ロト < 同ト < 三ト < 三ト < 三 ・ つへへ

Theorem

 $\{R^{\sigma} = B_n - tournaments\} \leftrightarrow$

{marriage balanced tournaments on [2n]}

- $\sigma: [2n] := \{1, \dots, 2n\} \rightarrow [2n]$ by $\sigma(i) = 2n i$
- orbits [2n]/σ:= married couples
- tournament on [2n] is marriage balanced:
 a → b ⇒ σ(b) → σ(a)
- score vector of m.b. tournament is (s_1, \ldots, s_{2n}) satisfies $s_i + s_{\sigma_i} = 2n - 1$
- score sequence of m.b. tournament: $(s'_1 \leq \cdots \leq s'_n \leq n-1)$

Theorem

 $\{R^{\sigma} = B_n - tournaments\} \leftrightarrow$

{marriage balanced tournaments on [2n]} with generating function: $\prod_{i=1}^{n} (y_i + x_i) \prod_{1 \le i < j \le n} (y_i y_j + x_i x_j) (x_i y_j + x_j y_i)$

- $\sigma: [2n] := \{1, \dots, 2n\} \rightarrow [2n]$ by $\sigma(i) = 2n i$
- orbits [2n]/σ:= married couples
- tournament on [2n] is marriage balanced:
 a → b ⇒ σ(b) → σ(a)
- score vector of m.b. tournament is (s_1, \ldots, s_{2n}) satisfies $s_i + s_{\sigma_i} = 2n - 1$
- score sequence of m.b. tournament: $(s'_1 \leq \cdots \leq s'_n \leq n-1)$

Theorem

 $\{R^{\sigma} = B_n - tournaments\} \leftrightarrow$

{marriage balanced tournaments on [2n]} with generating function: $\prod_{i=1}^{n} (y_i + x_i) \prod_{1 \le i < j \le n} (y_i y_j + x_i x_j) (x_i y_j + x_j y_i)|_{y_i=1} = \sum_{\lambda \in \Lambda} \dim V_{\lambda}^{\rho} x^{\lambda}$

- $\sigma: [2n] := \{1, \dots, 2n\} \rightarrow [2n]$ by $\sigma(i) = 2n i$
- orbits [2n]/σ:= married couples
- tournament on [2n] is marriage balanced:
 a → b ⇒ σ(b) → σ(a)
- score vector of m.b. tournament is (s_1, \ldots, s_{2n}) satisfies $s_i + s_{\sigma_i} = 2n - 1$
- score sequence of m.b. tournament: $(s'_1 \leq \cdots \leq s'_n \leq n-1)$

Theorem

 $\{R^{\sigma} = B_n - tournaments\} \leftrightarrow$

{marriage balanced tournaments on [2n]} with generating function: $\prod_{i=1}^{n} (y_i + x_i) \prod_{1 \le i < j \le n} (y_i y_j + x_i x_j) (x_i y_j + x_j y_i)|_{y_i=1} = \sum_{\lambda \in \Lambda} \dim V_{\lambda}^{\rho} x^{\lambda}$ {score vectors of m.b. tournaments} \leftrightarrow {weights in V^{ρ} }

・ロト ・ 四 ト ・ ヨ ト ・ ヨ ・ うへぐ

- $\sigma: [2n] := \{1, \dots, 2n\} \rightarrow [2n]$ by $\sigma(i) = 2n i$
- orbits [2n]/σ:= married couples
- tournament on [2n] is marriage balanced:
 a → b ⇒ σ(b) → σ(a)
- score vector of m.b. tournament is (s_1, \ldots, s_{2n}) satisfies $s_i + s_{\sigma_i} = 2n - 1$
- score sequence of m.b. tournament: $(s'_1 \leq \cdots \leq s'_n \leq n-1)$

Theorem

 $\{R^{\sigma} = B_n - tournaments\} \leftrightarrow$

{marriage balanced tournaments on [2n]} with generating function: $\prod_{i=1}^{n} (y_i + x_i) \prod_{1 \le i < j \le n} (y_i y_j + x_i x_j) (x_i y_j + x_j y_i)|_{y_i=1} = \sum_{\lambda \in \Lambda} \dim V_{\lambda}^{\rho} x^{\lambda}$ {score vectors of m.b. tournaments} \leftrightarrow {weights in V^{ρ} } {score sequences of m.b. tournaments} \leftrightarrow {dominant weights in V^{ρ} }

- $\sigma: [2n] := \{1, \dots, 2n\} \rightarrow [2n]$ by $\sigma(i) = 2n i$
- orbits [2n]/σ:= married couples
- tournament on [2n] is marriage balanced:
 a → b ⇒ σ(b) → σ(a)
- score vector of m.b. tournament is (s_1, \ldots, s_{2n}) satisfies $s_i + s_{\sigma_i} = 2n - 1$
- score sequence of m.b. tournament: $(s'_1 \leq \cdots \leq s'_n \leq n-1)$

Theorem

 $\{R^{\sigma} = B_n - tournaments\} \leftrightarrow$

{marriage balanced tournaments on [2n]} with generating function: $\prod_{i=1}^{n} (y_i + x_i) \prod_{1 \le i < j \le n} (y_i y_j + x_i x_j) (x_i y_j + x_j y_i)|_{y_i=1} = \sum_{\lambda \in \Lambda} \dim V_{\lambda}^{\rho} x^{\lambda}$ {score vectors of m.b. tournaments} \leftrightarrow {weights in V^{ρ} }
{score sequences of m.b. tournaments} \leftrightarrow {dominant weights in V^{ρ} }

• $[2n] \supset W = S_n \ltimes (\mathbb{Z}/2)^n \subset S_{2n}$ preserving couples

- $\sigma: [2n] := \{1, \dots, 2n\} \rightarrow [2n]$ by $\sigma(i) = 2n i$
- orbits [2n]/σ:= married couples
- tournament on [2n] is marriage balanced:
 a → b ⇒ σ(b) → σ(a)
- score vector of m.b. tournament is (s_1, \ldots, s_{2n}) satisfies $s_i + s_{\sigma_i} = 2n - 1$
- score sequence of m.b. tournament: $(s'_1 \leq \cdots \leq s'_n \leq n-1)$

Theorem

 $\{R^{\sigma} = B_n - tournaments\} \leftrightarrow$

{marriage balanced tournaments on [2n]} with generating function: $\prod_{i=1}^{n} (y_i + x_i) \prod_{1 \le i < j \le n} (y_i y_j + x_i x_j) (x_i y_j + x_j y_i)|_{y_i=1} = \sum_{\lambda \in \Lambda} \dim V_{\lambda}^{\rho} x^{\lambda}$ {score vectors of m.b. tournaments} \leftrightarrow {weights in V^{ρ} } {score sequences of m.b. tournaments} \leftrightarrow {dominant weights in V^{ρ} }

- $[2n] \bigcirc W = S_n \ltimes (\mathbb{Z}/2)^n \subset S_{2n}$ preserving couples
- games between spouses correspond to short roots of *B_n*

▲□▶▲□▶▲目▶▲目▶ 目 のへで

•
$$\sigma : [2n] := \{1, ..., 2n\} \to [2n]$$
 by $\sigma(i) = 2n - i$

・ロト・日本・モート モー うらくで

•
$$\sigma: [2n] := \{1, ..., 2n\} \to [2n] \text{ by } \sigma(i) = 2n - i$$

• marriage balanced couple(=:m.b.c.) tournament

▲□▶▲□▶▲□▶▲□▶ □ ● ● ●

- $\sigma: [2n] := \{1, \dots, 2n\} \rightarrow [2n]$ by $\sigma(i) = 2n i$
- marriage balanced couple(=:m.b.c.) tournament on [2n]

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

- $\sigma: [2n] := \{1, \dots, 2n\} \rightarrow [2n]$ by $\sigma(i) = 2n i$
- marriage balanced couple(=:m.b.c.) tournament on [2n] everyone plays everyone except their spouses and a → b ⇒ σ(b) → σ(a)

- $\sigma: [2n] := \{1, \dots, 2n\} \rightarrow [2n]$ by $\sigma(i) = 2n i$
- marriage balanced couple(=:m.b.c.) tournament on [2n] everyone plays everyone except their spouses and a → b ⇒ σ(b) → σ(a)

ション ション・ボット オーマン しょう

• $[2n] \supset W = S_n \ltimes (\mathbb{Z}/2)^{n-1} \subset S_{2n}$ preserving couples

- $\sigma: [2n] := \{1, \dots, 2n\} \rightarrow [2n]$ by $\sigma(i) = 2n i$
- marriage balanced couple(=:m.b.c.) tournament on [2n] everyone plays everyone except their spouses and a → b ⇒ σ(b) → σ(a)
- $[2n] \supset W = S_n \ltimes (\mathbb{Z}/2)^{n-1} \subset S_{2n}$ preserving couples flipping even

- $\sigma: [2n] := \{1, \dots, 2n\} \rightarrow [2n]$ by $\sigma(i) = 2n i$
- marriage balanced couple(=:m.b.c.) tournament on [2n] everyone plays everyone except their spouses and a → b ⇒ σ(b) → σ(a)
- $[2n] \supseteq W = S_n \ltimes (\mathbb{Z}/2)^{n-1} \subset S_{2n}$ preserving couples flipping even

ション ション・ボット オーマン しょう

• g.f. for score vectors of m.b.c. tournaments

 $\prod_{1 \leq i < j \leq n} (y_i y_j + x_i x_j) (x_i y_j + x_j y_i)$

- $\sigma: [2n] := \{1, \dots, 2n\} \rightarrow [2n]$ by $\sigma(i) = 2n i$
- marriage balanced couple(=:m.b.c.) tournament on [2n] everyone plays everyone except their spouses and a → b ⇒ σ(b) → σ(a)
- $[2n] \bigcirc W = S_n \ltimes (\mathbb{Z}/2)^{n-1} \subset S_{2n}$ preserving couples flipping even
- g.f. for score vectors of m.b.c. tournaments

$$\prod_{1 \le i < j \le n} (y_i y_j + x_i x_j) (x_i y_j + x_j y_i)|_{y_i = 1} \stackrel{D_n - \text{Weyl}}{=} \sum_{\lambda \in \Lambda} \dim V_{\lambda}^{\rho} x^{\lambda}$$

- $\sigma: [2n] := \{1, \dots, 2n\} \rightarrow [2n]$ by $\sigma(i) = 2n i$
- marriage balanced couple(=:m.b.c.) tournament on [2n] everyone plays everyone except their spouses and a → b ⇒ σ(b) → σ(a)
- $[2n] \supset W = S_n \ltimes (\mathbb{Z}/2)^{n-1} \subset S_{2n}$ preserving couples flipping even
- g.f. for score vectors of m.b.c. tournaments

$$\prod_{1 \le i < j \le n} (y_i y_j + x_i x_j) (x_i y_j + x_j y_i)|_{y_i=1} \stackrel{D_n \text{-Weyl}}{=} \sum_{\lambda \in \Lambda} \dim V_{\lambda}^{\rho} x^{\lambda}$$

$$D_n \text{Dynkin auto: } \tau := (n, n+1) \cdot [2n] \rightarrow [2n]$$

ション ション・ボット オーマン しょう

• D_n Dynkin auto: $\tau := (n, n+1) : [2n] \rightarrow [2n]$

- $\sigma: [2n] := \{1, \dots, 2n\} \rightarrow [2n]$ by $\sigma(i) = 2n i$
- marriage balanced couple(=:m.b.c.) tournament on [2n] everyone plays everyone except their spouses and a → b ⇒ σ(b) → σ(a)
- $[2n] \supset W = S_n \ltimes (\mathbb{Z}/2)^{n-1} \subset S_{2n}$ preserving couples flipping even
- g.f. for score vectors of m.b.c. tournaments

$$\prod_{1 \le i < j \le n} (y_i y_j + x_i x_j) (x_i y_j + x_j y_i)|_{y_i=1} \stackrel{D_n - \text{Weyl}}{=} \sum_{\lambda \in \Lambda} \dim V_{\lambda}^{\rho} x^{\lambda}$$

ション ション・ボット オーマン しょう

• D_n Dynkin auto: $\tau := (n, n+1) : [2n] \to [2n], [2n]/\tau = [2n-1]$

- $\sigma: [2n] := \{1, \dots, 2n\} \rightarrow [2n]$ by $\sigma(i) = 2n i$
- marriage balanced couple(=:m.b.c.) tournament on [2n] everyone plays everyone except their spouses and a → b ⇒ σ(b) → σ(a)
- $[2n] \supset W = S_n \ltimes (\mathbb{Z}/2)^{n-1} \subset S_{2n}$ preserving couples flipping even
- g.f. for score vectors of m.b.c. tournaments

$$\prod_{1 \le i < j \le n} (y_i y_j + x_i x_j) (x_i y_j + x_j y_i)|_{y_i=1} \stackrel{D_n - \text{Weyl}}{=} \sum_{\lambda \in \Lambda} \dim V_{\lambda}^{\rho} x^{\lambda}$$

- D_n Dynkin auto: $\tau := (n, n+1) : [2n] \to [2n], [2n]/\tau = [2n-1]$
- $\sigma : [2n-1] \to [2n-1]$ by $\sigma(i) = 2n-1-i$

- $\sigma: [2n] := \{1, \dots, 2n\} \rightarrow [2n]$ by $\sigma(i) = 2n i$
- marriage balanced couple(=:m.b.c.) tournament on [2n] everyone plays everyone except their spouses and a → b ⇒ σ(b) → σ(a)
- $[2n] \supset W = S_n \ltimes (\mathbb{Z}/2)^{n-1} \subset S_{2n}$ preserving couples flipping even
- g.f. for score vectors of m.b.c. tournaments

$$\prod_{1 \le i < j \le n} (y_i y_j + x_i x_j) (x_i y_j + x_j y_i)|_{y_i=1} \stackrel{D_n - \text{Weyl}}{=} \sum_{\lambda \in \Lambda} \dim V_{\lambda}^{\rho} x^{\lambda}$$

- D_n Dynkin auto: $\tau := (n, n + 1) : [2n] \to [2n], [2n]/\tau = [2n 1]$
- $\sigma : [2n-1] \rightarrow [2n-1]$ by $\sigma(i) = 2n-1-i$ $[2n-1]/\sigma$ has n-1 couples and one singleton $\{n\}$

- $\sigma: [2n] := \{1, \dots, 2n\} \rightarrow [2n]$ by $\sigma(i) = 2n i$
- marriage balanced couple(=:m.b.c.) tournament on [2n] everyone plays everyone except their spouses and a → b ⇒ σ(b) → σ(a)
- $[2n] \supset W = S_n \ltimes (\mathbb{Z}/2)^{n-1} \subset S_{2n}$ preserving couples flipping even
- g.f. for score vectors of m.b.c. tournaments

$$\prod_{1 \le i < j \le n} (y_i y_j + x_i x_j) (x_i y_j + x_j y_i)|_{y_i=1} \stackrel{D_n - \text{Weyl}}{=} \sum_{\lambda \in \Lambda} \dim V_{\lambda}^{\rho} x^{\lambda}$$

- D_n Dynkin auto: $\tau := (n, n+1) : [2n] \to [2n], [2n]/\tau = [2n-1]$
- $\sigma : [2n-1] \rightarrow [2n-1]$ by $\sigma(i) = 2n-1-i$ $[2n-1]/\sigma$ has n-1 couples and one singleton $\{n\}$
- marriage balanced single(=:m.b.s.) tournament

- $\sigma: [2n] := \{1, \dots, 2n\} \rightarrow [2n]$ by $\sigma(i) = 2n i$
- marriage balanced couple(=:m.b.c.) tournament on [2n] everyone plays everyone except their spouses and a → b ⇒ σ(b) → σ(a)
- $[2n] \supset W = S_n \ltimes (\mathbb{Z}/2)^{n-1} \subset S_{2n}$ preserving couples flipping even
- g.f. for score vectors of m.b.c. tournaments

$$\prod_{1 \le i < j \le n} (y_i y_j + x_i x_j) (x_i y_j + x_j y_i)|_{y_i=1} \stackrel{D_n - \text{Weyl}}{=} \sum_{\lambda \in \Lambda} \dim V_{\lambda}^{\rho} x^{\lambda}$$

- D_n Dynkin auto: $\tau := (n, n + 1) : [2n] \to [2n], [2n]/\tau = [2n 1]$
- $\sigma : [2n-1] \rightarrow [2n-1]$ by $\sigma(i) = 2n-1-i$ $[2n-1]/\sigma$ has n-1 couples and one singleton $\{n\}$
- marriage balanced single(=:m.b.s.) tournament on [2n 1]

- $\sigma: [2n] := \{1, \dots, 2n\} \rightarrow [2n]$ by $\sigma(i) = 2n i$
- marriage balanced couple(=:m.b.c.) tournament on [2n] everyone plays everyone except their spouses and a → b ⇒ σ(b) → σ(a)
- $[2n] \supset W = S_n \ltimes (\mathbb{Z}/2)^{n-1} \subset S_{2n}$ preserving couples flipping even
- g.f. for score vectors of m.b.c. tournaments

$$\prod_{1 \le i < j \le n} (y_i y_j + x_i x_j) (x_i y_j + x_j y_i)|_{y_i=1} \stackrel{D_n - \text{Weyl}}{=} \sum_{\lambda \in \Lambda} \dim V_{\lambda}^{\rho} x^{\lambda}$$

- D_n Dynkin auto: $\tau := (n, n + 1) : [2n] \to [2n], [2n]/\tau = [2n 1]$
- $\sigma : [2n-1] \rightarrow [2n-1]$ by $\sigma(i) = 2n-1-i$ $[2n-1]/\sigma$ has n-1 couples and one singleton $\{n\}$
- marriage balanced single(=:m.b.s.) tournament on [2n 1] everyone plays everyone except their spouses

- $\sigma: [2n] := \{1, \dots, 2n\} \rightarrow [2n]$ by $\sigma(i) = 2n i$
- marriage balanced couple(=:m.b.c.) tournament on [2n] everyone plays everyone except their spouses and a → b ⇒ σ(b) → σ(a)
- $[2n] \supset W = S_n \ltimes (\mathbb{Z}/2)^{n-1} \subset S_{2n}$ preserving couples flipping even
- g.f. for score vectors of m.b.c. tournaments

$$\prod_{1 \le i < j \le n} (y_i y_j + x_i x_j) (x_i y_j + x_j y_i)|_{y_i=1} \stackrel{D_n - \text{Weyl}}{=} \sum_{\lambda \in \Lambda} \dim V_{\lambda}^{\rho} x^{\lambda}$$

- D_n Dynkin auto: $\tau := (n, n+1) : [2n] \to [2n], [2n]/\tau = [2n-1]$
- $\sigma : [2n-1] \rightarrow [2n-1]$ by $\sigma(i) = 2n-1-i$ $[2n-1]/\sigma$ has n-1 couples and one singleton $\{n\}$
- marriage balanced single(=:m.b.s.) tournament on [2n 1] everyone plays everyone except their spouses, the single n plays twice with everyone

- $\sigma: [2n] := \{1, \dots, 2n\} \rightarrow [2n]$ by $\sigma(i) = 2n i$
- marriage balanced couple(=:m.b.c.) tournament on [2n] everyone plays everyone except their spouses and a → b ⇒ σ(b) → σ(a)
- $[2n] \supset W = S_n \ltimes (\mathbb{Z}/2)^{n-1} \subset S_{2n}$ preserving couples flipping even
- g.f. for score vectors of m.b.c. tournaments

$$\prod_{1 \le i < j \le n} (y_i y_j + x_i x_j) (x_i y_j + x_j y_i)|_{y_i=1} \stackrel{D_n - \text{Weyl}}{=} \sum_{\lambda \in \Lambda} \dim V_{\lambda}^{\rho} x^{\lambda}$$

- D_n Dynkin auto: $\tau := (n, n + 1) : [2n] \to [2n], [2n]/\tau = [2n 1]$
- $\sigma : [2n-1] \rightarrow [2n-1]$ by $\sigma(i) = 2n-1-i$ $[2n-1]/\sigma$ has n-1 couples and one singleton $\{n\}$
- marriage balanced single(=:m.b.s.) tournament on [2n 1]everyone plays everyone except their spouses, the single *n* plays twice with everyone and $a \rightarrow b \Rightarrow \sigma(b) \rightarrow \sigma(a)$

ション 小田 マイビット ビックタン

- $\sigma: [2n] := \{1, \dots, 2n\} \rightarrow [2n]$ by $\sigma(i) = 2n i$
- marriage balanced couple(=:m.b.c.) tournament on [2n] everyone plays everyone except their spouses and a → b ⇒ σ(b) → σ(a)
- $[2n] \supset W = S_n \ltimes (\mathbb{Z}/2)^{n-1} \subset S_{2n}$ preserving couples flipping even
- g.f. for score vectors of m.b.c. tournaments

$$\prod_{1 \le i < j \le n} (y_i y_j + x_i x_j) (x_i y_j + x_j y_i)|_{y_i=1} \stackrel{D_n - \text{Weyl}}{=} \sum_{\lambda \in \Lambda} \dim V_{\lambda}^{\rho} x^{\lambda}$$

- D_n Dynkin auto: $\tau := (n, n + 1) : [2n] \to [2n], [2n]/\tau = [2n 1]$
- $\sigma : [2n-1] \rightarrow [2n-1]$ by $\sigma(i) = 2n-1-i$ $[2n-1]/\sigma$ has n-1 couples and one singleton $\{n\}$
- marriage balanced single(=:m.b.s.) tournament on [2n-1]everyone plays everyone except their spouses, the single *n* plays twice with everyone and $a \rightarrow b \Rightarrow \sigma(b) \rightarrow \sigma(a)$

g.f. for score vectors of m.b.s. tournaments

$$\prod_{i=1}^{i-1} (y_i^2 + x_i^2) \prod_{1 \le i < j < n} (y_i y_j + x_i x_j) (x_i y_j + x_j y_i)$$

- $\sigma: [2n] := \{1, \dots, 2n\} \rightarrow [2n]$ by $\sigma(i) = 2n i$
- marriage balanced couple(=:m.b.c.) tournament on [2n] everyone plays everyone except their spouses and a → b ⇒ σ(b) → σ(a)
- $[2n] \supset W = S_n \ltimes (\mathbb{Z}/2)^{n-1} \subset S_{2n}$ preserving couples flipping even
- g.f. for score vectors of m.b.c. tournaments

$$\prod_{1 \le i < j \le n} (y_i y_j + x_i x_j) (x_i y_j + x_j y_i)|_{y_i=1} \stackrel{D_n - \text{Weyl}}{=} \sum_{\lambda \in \Lambda} \dim V_{\lambda}^{\rho} x^{\lambda}$$

- D_n Dynkin auto: $\tau := (n, n+1) : [2n] \to [2n], [2n]/\tau = [2n-1]$
- $\sigma : [2n-1] \rightarrow [2n-1]$ by $\sigma(i) = 2n-1-i$ $[2n-1]/\sigma$ has n-1 couples and one singleton $\{n\}$
- marriage balanced single(=:m.b.s.) tournament on [2n 1]everyone plays everyone except their spouses, the single *n* plays twice with everyone and $a \rightarrow b \Rightarrow \sigma(b) \rightarrow \sigma(a)$
- g.f. for score vectors of m.b.s. tournaments

$$\prod_{i=1}^{i-1} (y_i^2 + x_i^2) \prod_{1 \le i < j < n} (y_i y_j + x_i x_j) (x_i y_j + x_j y_i)|_{y_i=1} \overset{C_{n-1}\text{-Weyl}}{=}$$

ション 小田 マイビット ビックタン
Tournament folding $D_n \rightsquigarrow C_{n-1}$

- $\sigma: [2n] := \{1, \dots, 2n\} \rightarrow [2n]$ by $\sigma(i) = 2n i$
- marriage balanced couple(=:m.b.c.) tournament on [2n] everyone plays everyone except their spouses and a → b ⇒ σ(b) → σ(a)
- $[2n] \supset W = S_n \ltimes (\mathbb{Z}/2)^{n-1} \subset S_{2n}$ preserving couples flipping even
- g.f. for score vectors of m.b.c. tournaments

$$\prod_{1 \le i < j \le n} (y_i y_j + x_i x_j) (x_i y_j + x_j y_i)|_{y_i=1} \stackrel{D_n - \text{Weyl}}{=} \sum_{\lambda \in \Lambda} \dim V_{\lambda}^{\rho} x^{\lambda}$$

- D_n Dynkin auto: $\tau := (n, n+1) : [2n] \to [2n], [2n]/\tau = [2n-1]$
- $\sigma : [2n-1] \rightarrow [2n-1]$ by $\sigma(i) = 2n-1-i$ $[2n-1]/\sigma$ has n-1 couples and one singleton $\{n\}$
- marriage balanced single(=:m.b.s.) tournament on [2n 1]everyone plays everyone except their spouses, the single *n* plays twice with everyone and $a \rightarrow b \Rightarrow \sigma(b) \rightarrow \sigma(a)$
- g.f. for score vectors of m.b.s. tournaments

$$\prod_{i=1}^{i-1} (y_i^2 + x_i^2) \prod_{1 \le i < j < n} (y_i y_j + x_i x_j) (x_i y_j + x_j y_i)|_{y_i=1} \overset{C_{n-1}\text{-Weyl}}{=}$$