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Abstract. We 2nd an agreement of equivariant indices of semi-classical homomor-
phisms between pairwise mirror branes in the GL2-Higgs moduli space on a Riemann
surface. On one side we have the components of the Lagrangian brane of U(1, 1)-Higgs
bundles, whose mirror was proposed by Nigel Hitchin to be certain even exterior powers
of the hyperholomorphic Dirac bundle on the SL2-Higgs moduli space. The agreement
arises from a mysterious functional equation. This gives strong computational evidence for
Hitchin’s proposal.

1. Introduction

In the conference ‘Hitchin 70: Di3erential Geometry and Quantization’ in Aarhus in
September 2016, the 2rst and third authors gave talks on recent results on the understanding
of equivariant Verlinde formulas on Higgs moduli spaces. Here, we explain how such
techniques can be used to compute equivariant indices of semi-classical homomorphisms
between branes on Higgs moduli spaces and how, in turn, this could be used to give non-
trivial computational evidence for Hitchin’s mirror symmetry proposals in [Hi2, §7].
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Hitchin introduced the moduli space of Higgs bundles on a Riemann surface [Hi1] in
1987. In 2006, the work of Kapustin and Witten [KW] proposed an understanding of the
geometric Langlands programme using the S-duality of four-dimensional supersymmetric
Yang–Mills theory. One of the main statements is that S-duality induces mirror symme-
try between the moduli space MDR(G) of 8at G-connections on C and MDR(GL) for
the Langlands dual group GL. The precise statement is still missing, but we have more
understanding [DP1] in the semi-classical limit where the mirror symmetry should reduce
to a relative Fourier–Mukai type equivalence between D(M(G)) and D(M(GL)), where
M(G) denotes certain moduli space of G-Higgs bundles on C. Even this duality is not
completely understood, as we lack the description of the Fourier–Mukai transform on the
most singular 2bres of the Hitchin map. Consequently, we have few global results proving
aspects of this duality.

One global computational result was achieved in [HT] in 2002. There, as a consequence
of mirror symmetry, a conjecture was proposed for the agreement of certain Hodge numbers
of M(SLn) and M(PGLn), which were proved there for n = 2, 3. This conjecture for every
n has just recently been settled in [GWZ], using p-adic integration.

Here, we are studying another global approach where deeper properties of the conjec-
tured mirror symmetry could be computationally veri2ed. We set G = GL2, and C a smooth
complex projective curve of genus g > 1. The components of the M(U(1, 1)) Higgs moduli
space inside the M(GL2) moduli space can be labeled by certain characteristic classes, as
explained in [Hi2]. There are g such components and we will denote these Lagrangians by

L0, . . . , Lg−1 ⊂ M(GL2).

To be more precise, Li is the locus of Higgs bundles of the form

M1 ⊕ M2
!→ M1KC ⊕ M2KC,

where Mj are line bundles with deg(M1) = g − 1 − i, deg(M2) = i − g + 1 and ! is o3-
diagonal. For i = 0, . . . , g − 2, the Lagrangians are located in the stable locus M(GL2)

s and
so are smooth, and Li is isomorphic to an a9ne bundle over the 2ith symmetric product of
C times the Jacobian of degree g − 1 − i line bundles on C. The last component, Lg−1, is
special as it contains strictly semi-stable points as well.

As explained in [Hi2, §7], Li is a BAA brane whose mirror should be a BBB brane,
i.e. a hyperholomorphic sheaf on the mirror M(GL2) (cf. also [BS] and [GW, §6]).
Its support will be M(SL2) ⊂ M(GL2) and, roughly speaking, it is constructed from a
universal bundle E on M(SL2)× C by taking V := R1π∗(E) by the projection π to the
2rst factor. Then, Hitchin proposes that the brane Li should be mirror to #2iV. This was
checked to be correct on a generic 2bre χa := χ−1(a) of the Hitchin map in the sense that
OLi |χa is Fourier–Mukai dual to #2iV|χa . Additionally, the fact that #2iV carries a natural
hyperholomorphic structure gave more credence to the proposal that #2iV should be the
mirror of Li. However, it is unclear how to extend the relative Fourier–Mukai transform to
the most singular 2bres of the Hitchin map, in particular to the nilpotent cone χ0, and so
we did not have direct checks of the correctness to the proposal that Li is indeed relative
Fourier–Mukai dual to #2iV.
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There have recently been several works computing equivariant Verlinde formulas, on the
moduli space of Higgs bundles. Let L be the determinant line bundle on M(G), where G,
is a simply connected simple group, such as G = SLn. The natural

T := C×

action on M(G) by scaling the Higgs 2eld li:s to a T-equivariant structure on L. Although
H∗(M(G);Lk) is in2nite-dimensional, the induced T-action will have 2nite-dimensional
weight spaces and non-trivial only for non-positive weights:

H∗(M(G);Lk) =
⊕

j=∈Z≥0

H∗(M(G);Lk)−j.

We de2ne for the T-equivariant line bundle Lk (and, similarly, later for a T-equivariant
sheaf) the equivariant index as

χT
(
M(G);Lk

)
=

∑

i,j
(−1)i dim(Hi(M(G),Lk)j)t−j ∈ Z[[t]]. (1.1)

In a series of papers [GP, GPYY, AGP] following insights from studying path integrals in
certain supersymmetric quantum 2eld theories and TQFT techniques, precise formulas
have been achieved for (1.1). Equivalent formulas have been also found in [HL]. There is
also a more combinatorial understanding of the results for G = SLn as residue formulas in
a TQFT framework in [HSz].

In this paper, we compute similar characters but only on M(GL2) and, eventually,
M(SL2). Namely, we will consider the (generically) vector bundles #2iV mentioned
above, with support in M(SL2) together with a T-equivariant structure. We will also
consider the analogues of the determinant bundle L on M(GL2) with a T-equivariant
structure and, in particular, the T-equivariant coherent sheaves L2OLi on M(GL2) (for
the detailed constructions, see Section 2). With the notation Li := L2OLi for 0 ≤ i < g − 1
and #j := #2jV, our main result is the following:

Theorem 1.2 For 0 ≤ i, j < g − 1 we have

χT
(
M(GL2);Lj ⊗ #i

)
= χT

(
M(GL2);Li ⊗ #j

)
∈ Z[[t]]. (1.2)

In Corollary 6.3, we will explain how to extend this symmetry for the case of i = g − 1.
We can interpret the le:-hand side of (1.2) as the equivariant index of derived homo-

morphisms from (#2iV)∨ ∼= #2iV to L2OLj , and the right-hand side as the equivariant
index of derived homomorphisms from L2O∨

Li
∼= L2OLi to #2jV. For more details on this

see Section 7. This way, our Theorem 1.2 provides computational evidence for Hitchin’s
proposal in [Hi2, §7].

Interestingly, most of the ingredients used here have already appeared in the 2rst author’s
PhD dissertation [Ha1], which was written under the supervision of Nigel Hitchin. In a
sense, our computation could have been done almost 20 years ago. The present paper thus
outlines the importance of ideas from physics, in particular the work of Kapustin and Witten
[KW] in 2006 and further mathematical insights by Hitchin [Hi2, §7] in 2013.
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The plan of the paper is as follows. In Section 2 we introduce the C×-equivariant
coherent sheaves Li and #i on M(GL2). In Section 3, we compute the equivariant
index χT(M(GL2);Li ⊗ #j) for i < g − 1, by reducing the computation via Hirzebruch–
Riemann–Roch to an integral on the 2ith symmetric product of C, which we evaluate using
a residue formula due to Zagier. In Section 4, we 2nd a change of variables which will imply
our main symmetry observation for i, j < g − 1. In Section 5, following the technique of
Teleman and Woodward [TW], we compute the equivariant index on the whole moduli
stack and then, in Section 6, we prove Corollary 6.3. Finally, in Section 7, we sketch how
this should be a consequence of mirror symmetry.

Acknowledgements. We would like to thank Sergei Gukov and Paul Harmsen for encour-
agement and their interest in this paper, and Jørgen E. Andersen, András Szenes, Laura
Schaposnik, Nigel Hitchin, Penghui Li, Iordan Ganev and the referee for useful explanations
and comments. The research in this paper was supported by an Advanced Grant ‘Arithmetic
and physics of Higgs moduli spaces’ no. 320593 of the European Research Council, the
NCCR SwissMAP of the Swiss National Foundation, START-Project Y963-N35 of the Aus-
trian Science Fund (FWF) , the centre of excellence grant ‘Centre for Quantum Geometry
of Moduli Space’ from the Danish National Research Foundation (DNRF95), the Walter
Burke Institute for Theoretical Physics, and the US Department of Energy, O9ce of Science,
O9ce of High Energy Physics, under Award Number DE-SC0011632. In particular, the idea
of the computation in this paper arose during the ‘Retreat on Higgs bundles, real groups,
Langlands duality and mirror symmetry’ in the Bernoulli centre at EPF Lausanne in January
2016.

2. Background

Let C be a smooth complex projective curve of genus g > 1. Let M(GL2) denote the mod-
uli space of semi-stable degree zero rank 2 Higgs bundles on C. We recall [BGG, Hi2, Sch]
that the U(1, 1)-Higgs bundles in M(GL2) are degree zero rank 2 Higgs bundles

E !→ E ⊗ KC (2.1)

such that ! -= 0 and

E −!→ E ⊗ KC

is equivalent with (2.1). In other words, there exists an a : E → E automorphism of E
such that

! ◦ a = −!.

When ! -= 0, this implies that such a Higgs bundle has the form

M1 ⊕ M2

(
0 φ2
φ1 0

)

−→ (M1 ⊕ M2)⊗ KC, (2.2)
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which consists of a direct sum of two line bundles and an o3-diagonal Higgs 2eld. We can
assume

deg M2 ≤ deg M1 = g − 1 − i

for some integer i ≤ g − 1. When i < g − 1, then

φ1 ∈ H0(C; M−1
1 M2KC)

cannot be 0 because of semi-stability. As

deg(M−1
1 M2KC) = 2i,

we have that i ≥ 0.
The locus of Higgs bundles of the form (2.2) with deg(M1) = g − 1 − i for 0 ≤ i ≤ g − 1

is denoted by

Li ⊂ M(GL2).

With an argument similar to the one below for SL2, one can show that for 0 ≤ i < g − 1 the
locus Li ⊂ M(GL2) is isomorphic with a total space of a vector bundle over Ji × C2i. We
denote by Ji the Jacobian of degree i line bundles on C, by Cj the jth symmetric product of
the curve C and i := g − 1 − i.

We will also need to de2ne the sheaf L. Recall the tensor product map

τ : M(SL2)× T∗J0 → M(GL2),

which is a Galois cover, with Galois group J [2] comprising the 2-torsion points on the
Jacobian. We choose L ∈ Pic(M(GL2)) such that

τ ∗(L) = LSL2 !OT∗J0 ,

where LSL2 is the determinant line bundle on M(SL2) constructed below (2.8). L is not
unique, because

τ ∗ : Pic(M(GL2)) → Pic(M(SL2)× J0)

has a kernel isomorphic to

Pic(M(GL2))[2] ∼= J0[2].

However, when restricted to M(U(1, 1)), the ambiguity disappears. For 0 ≤ i < g − 1, we
will denote

Li := L2 ⊗ OLi
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a coherent sheaf on MGL2 , while, for i = g − 1, we de2ne

Lg−1 := (L2 ⊕ L2)⊗ OLg−1 . (2.3)

In our computation below, we will restrict to the part

L′
i := Li ∩ M(SL2) ⊂ M(SL2)

inside the moduli space M(SL2) of semi-stable rank 2 Higgs bundles with trivial determi-
nant and trace-free Higgs 2eld. In other words, L′

i is a component of the moduli space of
SU(1, 1)-Higgs bundles in M(SL2). This means to set M := M1 and choose M2 = M−1

in (2.2).
Now we give a more detailed description of L′

i ⊂ M(SL2) for 0 ≤ i ≤ g − 2. For similar
discussions, see [Ha1, Lemma 6.1.2] and [HT2, (6.1)].

De2ne maps Ji → J2i by sending M 1→ M−2K and the Abel–Jacobi map C2i → J2i by
sending D 1→ L(D). Then, we construct the 2bred product of these maps:

F′
i := C2i ×J2i Ji. (2.4)

We have the two projections prJi
: F′

i → Ji and prC2i
: F′

i → C2i. By construction, F′
i

is isomorphic to the moduli space of complexes M
φ→ M−1KC, with deg(M) = i and

φ ∈ H0('; M−2KC), in other words, of nilpotent SL2-Higgs bundles

M ⊕ M−1 !→ MKC ⊕ M−1KC

given by

! =
(

0 0
φ 0

)
.

Let

(2i ⊂ C × C2i

denote the universal divisor, and Pi a normalized universal bundle on C × Ji. By abuse of
notation, we will denote their pullbacks by prC2i

and, respectively, prJi
to C × F′

i , with the
same (2i and Pi. As i < g − 1, we have

deg(K2
C(−D)) > 2g − 2

for D ∈ C2i and so

H1(C; K2
C(−D)) = 0.
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Consequently,

Ei := prC∗
(

K2
C(−(2i)

)

is a vector bundle on F′
i .

Ei parametrizes SU(1, 1) ⊂ SL2-Higgs bundles as follows. First, note that P2
i K−1

C ((2i)

restricted to x × C is a trivial line bundle for every x ∈ F′
i and thus, by the push-pull formula,

there is a line bundle MF′
i

on F′
i such that

O((2i) ∼= MF′
i
KCP−2

i . (2.5)

Consider the rank 2 vector bundle

Ei := Pi ⊕ P−1
i MF′

i
(2.6)

on C × F′
i and the Higgs 2eld

!i =
(

0 φ′
i

φi 0

)

with

φi ∈ H0(C × Ei;P−2
i MF′

i
KC) = H0(C × Ei;O((2i))

given by the universal divisor (2i and

φ′
i ∈ H0(C × Ei;P2

i L−1
Ei

KC) = H0(C × Ei; K2
C(−(2i))

the tautological section.
Thus, (Ei,!i) is a family of stable SL2-Higgs bundles parametrized by (the total space

of) Ei. Thus, we get the embedding

ιi : Ei → M(SL2)
s ⊂ M(SL2).

We denote its image

L′
i := ιi(Ei) ⊂ M(SL2)

and note that it parametrizes all Higgs bundles of the form M ⊕ M−1 !→ MKC ⊕ M−1KC
with Higgs 2eld

! =
(

0 φ′

φ 0

)
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and such that deg M = i. This precisely agrees with a component of the SU(1, 1)-Higgs
moduli space as described in [Sch] (see also [Hi2, §7] and [Hi1, §10]). Thus, L′

i is a
connected smooth Lagrangian subvariety in the stable locus of M(SL2). Note that there
is one more component of M(SU(1, 1)) inside M(SL2), namely L′

g−1. However, it will no
longer be contained in the stable locus and will not be smooth.

We are now going to construct the vector bundles #j on L′
i for j = 0, . . . , g − 1. Hitchin

[Hi2, §7] de2nes

#j := #2jV

locally, where V is the Dirac bundle on U → M(SL2)
s for an étale open U. It is

constructed as

V := R1prC∗(EU
!U→ EU KC)

where

EU
!U→ EU KC

is a universal SL2-Higgs bundle on C × U. The universal Higgs bundle does not exist on the
whole C × M(SL2)

s but on an étale open covering, and the obstruction to glue vanishes
for the even exterior powers #j = #2jV. We note that V is a vector bundle on M(SL2)

s

as, for stable degree zero Higgs bundles (E,!), the zeroth and second hypercohomology of
E !→ EKC vanishes by [Ha2, Corollary 3.5].

Finally, we will extend the construction of V to the whole of M(SL2) as a complex of
coherent sheaves by de2ning it for an étale open U → M(SL2) by the formula

V := RprC∗(EU
!U→ EU KC)[1].

Then we de2ne

#j := #2jV

as a complex of coherent sheaves on the whole M(SL2).
When we restrict this construction of #j to L′

i for i < g − 1, then we have almost a
universal bundle on C × L′

i . Namely, (Ei,!i) is a family of stable SL2-Higgs bundles on
C × L′

i . However, Ei is not itself an SL2 bundle, as

det(Ei) = MF′
i
.

MF′
i

is pulled back from L′
i and ultimately from F′

i , which we will see has no square root.
However, on the even exterior powers, we can just tensor with integer powers of det(Ei) to
get the restriction of #j to L′

i and so we get

#j|L′
i
∼= M−j

F′
i
#2j(R1prL′

i∗(Ei
!i→ EiKC)), (2.7)

which gives the desired vector bundle on L′
i .
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We will also need T-equivariant structure on #j. To construct this, we note that Hitchin’s
construction can be done on T-equivariant étale open U → M(SL2)

s, where, from the
universal property, one gets a T-equivariant structure on EU

!U→ EU KC (cf. [HT1, §4]).
They will then glue to yield a T-equivariant structure on #j. The T-action we endow #j
is the one twisted by the trivial line bundle with a weight −j T-action on it.

To see the T-equivariant structure on #j|L′
i

in (2.7), we endow Pi with the trivial
T-action and MF′

i
with a weight minus one T-action, which will give the T-equivariant

structure on Ei in (2.6). Then (Ei,!i) becomes a T-equivariant Higgs bundle, provided
we twist the second term Ei ⊗ KC with a weight one T-equivariant trivial line bundle. The
#j|L′

i
will then inherit a T-equivariant structure, which we will further twist with a weight

−j trivial line bundle.
Finally, we will need to construct the T-equivariant determinant line bundle LSL2 on

M(SL2) (which, by abuse of notation, we will abbreviate to L). It is again constructed [Qi]
by gluing together

#2g−2(RprC∗(EU)[1]) (2.8)

from open sets U → M(SL2) in an étale open covering.
Again on L′

i , we can compute it from our family (Ei,!i) and get

L|L′
i
= M−g+1

F′
i

#2g−2(RprC∗(Ei)[1]). (2.9)

We can now de2ne our other family of T-equivariant sheaves,

L′
i := ιi∗L2|L′

i
, (2.10)

on M(SL2), supported on L′
i . For a variable s, we also denote

#s2 :=
2g−2⊕

j=0
s2j#j. (2.11)

3. Computation for i < g − 1

First, we start with a de2nition:

De!nition 3.1 Let X be a semi-projective T-variety (see [HV]) and F an T-equivariant
sheaf on it. Then de2ne

χT(X;F) :=
∑

i,j
(−1)i dim(Hi(X;F)−j)tj,

where Hi(X;F)−j is the −j-th weight space of the induced T action on Hi(X;F).
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We expect that, for a semi-projective X, the equivariant index satis2es χT(X;F) ∈
Z((t)). The following then is one of our main computational tools.

Proposition 3.2 For 0 ≤ i < g − 1 and denoting v = t
1
2 , we have

χT(M(GL2);Li ⊗ #s2) = χT(L′
i;L′

i ⊗ #s2)

= 1
2π i

∮

|z2−v2|=ε
z4i

(
(1 + s

zv )(1 + svz)
)g−1+i (

(1 + sv
z )(1 + sz

v )
)i

(1 − v2z2)2i+g−1(1 − v2/z2)2i−g+1
(

4 +
sv
z

1 + sv
z

+ svz
1 + svz

+ 4v2z2

1 − v2z2 +
4v2

z2

1 − v2

z2

−
s

zv
1 + s

zv
−

sz
v

1 + sz
v

)g
dz
z

∈ Z[[t, s]].

(3.3)

Remark 3.4 In the right-hand side of (3.3), v is treated as a 2xed complex number close to 1,
andε is a su9ciently small positive real number. In particular, the contour |z2 − v2| = ε

will have two components around the two square roots ±v of t. Thus, the result could
also be computed algebraically as the sum of the residues of the di3erential form when
z equals the two square roots of t.

Proof As L′
i is the total space of the T-equivariant vector bundle Ei, where the T-action has

weight two, we have that

χT(L′
i;L′

i ⊗ #s2) = χT(F′
i ;L2 ⊗ #s2 ⊗ Symt2(E∗

i ))

=
∫

F′
i

ch(L2)ch(#s2)ch(Symt2(E∗
i ))td(TF′

i
). (3.5)

Recall [HT1, §5] that we have

c1((2i) = 2i ⊗ σ +
2g∑

l=1

ξl ⊗ el + η ⊗ 1 ∈ H2(C2i × C),

where σ is generator of H2(C), and e1, . . . , e2g are canonical symplectic generators of
H1(C). Thus, η ∈ H2(C2i), and ξ1, . . . ,ξ2g ∈ H1(C2i). A theorem of Macdonald [Mac,
(6.3)] asserts that the cohomology ring H∗(Cm) is generated by η and the ξj. It is
convenient to introduce

θj = ξjξj+g

and

θ =
g∑

j=1
θj ∈ H2(C2i).
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We note the identity



2g∑

l=1

ξl ⊗ el




2

= −2θσ (3.6)

used below.
By Grothendieck–Riemann–Roch we 2nd that

ch(Ei) = prF′
i ∗

(
ch(K2

C(−(2i))td(C)
)

= prF′
i ∗



exp



(4g − 4 − 2i) ⊗ σ −
2g∑

l=1
ξl ⊗ el − η ⊗ 1



(1 + (1 − g)σ )





= prF′
i ∗







(4g − 4 − 2i − θ)exp(−η) ⊗ σ −
2g∑

l=1
exp(−η)ξl ⊗ el + exp(−η) ⊗ 1



(1 + (1 − g)σ )





= prF′
i ∗



((4g − 4 − 2i − θ + 1 − g)exp(−η)) ⊗ σ +
2g∑

l=1
exp(−η)ξl ⊗ el + exp(−η) ⊗ 1





= (3g − 3 − 2i − θ)exp(−η) (3.7)

= (2g − 3 − 2i)exp(−η) +
g∑

i=1
exp(−η − θi).

Thus, introducing ζ = exp (η), we have

ch(Symt2 E∗
i ) = 1

(1 − t2ζ )2i−1 ∏g
i=1(1 − t2ζ exp(θi))

= 1

(1 − t2ζ )2i+g−1 exp
(
− t2ζθ

1−t2ζ

) (3.8)

as
g∏

i=1
(1 − t2ζ exp(θi)) =

g∏

i=1
(1 − t2ζ(1 + θi)) =

g∏

i=1
(1 − t2ζ − t2ζθi)

= (1 − t2ζ )g
g∏

i=1

(
1 − t2ζθi

1 − t2ζ

)
= (1 − t2ζ )g

g∏

i=1
exp

(
− t2ζθi

1 − t2ζ

)

= (1 − t2ζ )g exp
(

− t2ζθ

1 − t2ζ

)
.

Similar computation, using the formula for total Chern class [Mac, (14.5)], yields

td(TC2i) =
(

η

1 − 1/ζ

)2i−g+1
exp

(
θ

ζ − 1
− θ

η

)
. (3.9)
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To compute the remaining Chern characters in (3.5), we recall that

c1(Pi) = i ⊗ σ +
2g∑

l=1

τl ⊗ el ∈ H2(J2i × C).

Comparing with (2.5), we see that

ch(P2
2i) = ch((i)ch(K−1

C )ch(M−1
F′

i
),

and the fact that MF′
i

is pulled back from F′
i implies that on F′

i we have

τl = ξl/2

and

ch(MF′
i
) = ζ. (3.10)

We need now to compute the T-equivariant Chern character of Ei. From (2.6) and the
fact that T acts on the second summand with weight minus one, we get

chT(Ei) = ch(Pi) + t ch(P−1
i )ch(MF′

i
) = exp



i ⊗ σ +
2g∑

l=1

ξl/2 ⊗ el





+ tζ exp



−i ⊗ σ −
2g∑

l=1

ξl/2 ⊗ el



.

It follows from Grothendieck–Riemann–Roch that

chT(Vi) = −chT(RprC∗(Ei
!i→ EiKC)) = prC∗

(
chT(Ei)(−1 + t−1ch(KC))td(C)

)

= prC∗







exp



i ⊗ σ +
2g∑

l=1

ξl/2 ⊗ el



 + tζ exp



−i ⊗ σ −
2g∑

l=1

ξl/2 ⊗ el









(−1 + t−1 + (g − 1)(1 + t−1)σ )
)

= prC∗
(((

1 + (i − θ/4)⊗ σ
)
+ tζ

(
1 + (−i − θ/4)⊗ σ

))

(−1 + t−1 + (g − 1)(1 + t−1)σ )
)

=
(
(i − θ/4)+ tζ(−i − θ/4)

)
(t−1 − 1)+ (1 + tζ )(g − 1)(t−1 + 1)

= i(t−1 − 1)(1 − tζ )− θ/4(t−1 − 1)(1 + tζ )+ (g − 1)(t−1 + 1)(1 + tζ )

= i(t−1 − 1)(1 − tζ )− eθi/4(t−1 − 1)(1 + tζ )+ g(t−1 − 1)(1 + tζ )

+ (g − 1)(t−1 + 1)(1 + tζ ).
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Thus, we have

chT(#s(Vi)) =
(

(1 + s
t )(1 + stζ )

(1 + s)(1 + sζ )

)i g∏

i=1

(1 + seθi/4)(1 + stζ eθi/4)

(1 + s
t eθi/4)(1 + sζ eθi/4)

(
(1 + s

t )(1 + sζ )

(1 + s)(1 + stζ )

)g

((1 + s/t)(1 + sζ )(1 + s)(1 + stζ ))g−1

=
exp

(
sθ/4
1+s + stζθ/4

1+stζ

)

exp
( s

t θ/4
1+ s

t
+ sζθ/4

1+sζ

) ((1 + s/t)(1 + stζ ))g−1+i ((1 + s)(1 + sζ ))i .

(3.11)

Let

s′ := s
ζ 1/2 .

Recalling the extra equivariant twist we endowed #i in the paragraphs a:er (2.7),
we have

chT(#s2) = (chT(#s′(Vi))+ chT(#−s′(Vi)))/2. (3.12)

Finally, we compute

chT(RprC∗(Ei)[1])

= prC∗



−



exp



i ⊗ σ +
2g∑

l=1

ξl/2 ⊗ el



 + tζ exp



−i ⊗ σ −
2g∑

l=1

ξl/2 ⊗ el









(1 + (1 − g)σ )
)

= prC∗
(
−

(
1 + (i − θ/4)⊗ σ

)
− tζ

(
1 + (−i − θ/4)⊗ σ )

)
(1 + (1 − g)σ )

)

= i(tζ − 1)+ θ/4(1 + tζ )+ (g − 1)(tζ + 1)

= i(tζ − 1)+
g∑

i=1
eθi/4(1 + tζ )− (tζ + 1);

thus,

chT(det(RprC∗(Ei)[1])) = (tζ )i+g−1eθ/2

and so, by (2.9) and (3.10),

chT(L|L′
i
) = tiζ ieθ/2. (3.13)

Recall the following integral formula of Zagier’s from [Th, (7.2)]. For any power
series A(x) ∈ C[[x]] and B(x) ∈ C[[x]],

∫

Cn

A(η)exp(B(η)σ ) = Resx=0

(
A(x)(1 + xB(x))g

xn+1 dx
)

.
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We also let

z = e
x−u

2 ∈ C[[x, u]],

in particular dx = 2dz
z . Here, u is such that

e−u = t.

We also introduce

v := e
−u

2 .

By recalling that prC2i
: F′

i → C2i is a 22g cover, we will now compute
∫

F′
i

chT(L′
i) chT(#s′(Vi)) chT(Symt2 E∗

i ) td(TF′
i
)

=
∫

F′
i

(tζ )2i
exp

(
θ+ s′θ/4

1+s′ + s′tζθ/4
1+s′tζ + t2ζθ

1−t2ζ
+ θ

ζ−1

)

exp

( s′
t θ/4
1+ s′

t
+ s′ζθ/4

1+s′ζ + θ
η

)

(
(1+ s′

t )(1+s′tζ )
)g−1+i

((1+s′)(1+s′ζ ))i
η2i−g+1

(1−t2ζ )2i+g−1(1−1/ζ )2i−g+1

= 22gResx=0z4i
(
(1 + s

zv )(1 + svz)
)g−1+i (

(1 + sv
z )(1 + sz

v )
)i x−g

(1 − v2z2)2i+g−1(1 − v2/z2)2i−g+1
(

1 + x

(

1 +
sv
4z

1 + sv
z

+ svz/4
1 + svz

+ v2z2

1 − v2z2 +
v2

z2

1 − v2

z2

−
s

4zv
1 + s

zv
−

sz
4v

1 + sz
v

− 1
x

))g

dx

= Resx=0z4i
(
(1 + s

zv )(1 + svz)
)g−1+i (

(1 + sv
z )(1 + sz

v )
)i

(1 − v2z2)2i+g−1(1 − v2/z2)2i−g+1
(

4 +
sv
z

1 + sv
z

+ svz
1 + svz

+ 4v2z2

1 − v2z2 +
4v2

z2

1 − v2

z2

−
s

zv
1 + s

zv
−

sz
v

1 + sz
v

)g

dx

= 1
2π i

∮

|z−v|=ε
z4i

(
(1 + s

zv )(1 + svz)
)g−1+i (

(1 + sv
z )(1 + sz

v )
)i

(1 − v2z2)2i+g−1(1 − v2/z2)2i−g+1
(

4 +
sv
z

1 + sv
z

+ svz
1 + svz

+ 4v2z2

1 − v2z2 +
4v2

z2

1 − v2

z2

−
s

zv
1 + s

zv
−

sz
v

1 + sz
v

)g
2dz

z
.

We notice that
∫

F′
i

chT(Li)chT(#−s′(Vi))chT(Symt2 E∗
i ) td(TF′

i
)

will yield the same result with z replaced by −z.
Thus, (3.12) implies the proposition. !
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4. The Symmetry for i, j < g − 1

First, we rewrite the right-hand side of (3.3) in a more manageable form.
Introduce the notations

f (z, s, v) = z4(1 − v2/z2)2(1 + s
zv )(1 + svz)

(1 − v2z2)2(1 + sv
z )(1 + sz

v )
(4.1)

and

h(z, s, v) = z
∂ f
∂z

(1 + s
zv )(1 + svz)(1 + sv

z )(1 + sz
v )

(1 − v2/z2)(−v2z2 + 1)
.

We can compute

z
∂
∂z f (z, s, v)
f (z, s, v)

=
(

4 +
sv
z

1 + sv
z

+ svz
1 + svz

+ 4v2z2

1 − v2z2 +
4v2

z2

1 − v2

z2

−
s

zv
1 + s

zv
−

sz
v

1 + sz
v

)

. (4.2)

With this notation, for i < g − 1, we can rewrite the right-hand side of (1.1) as

1
2π i

∮

|(z2−v2)(1+ s
zv )(1+svz)|=ε

hg−1

f i
df
f

,

because the integrand has no pole at z = −s/v or z = −1/vs. Thus, for 0 ≤ i < g − 1 and
0 ≤ j ≤ g − 1, (3.3) gives

χT(M(GL2);Li ⊗ #j)) = 1
(2π i)2

∮

|s|=ε

∮

| f |=ε

hg−1

f is2j
df
f

ds
s

. (4.3)

Proposition 4.4 For any integers i and j we have

1
(2π i)2

∮

|s|=ε

∮

| f |=ε

hg−1

f is2j
df
f

ds
s

= 1
(2π i)2

∮

|s|=ε

∮

| f |=ε

hg−1

f js2i
df
f

ds
s

.

Proof To show that h is ‘symmetric’ in f and s2, we consider

w =
(

(sz + v)(vz + s)
(szv + 1)(sv + z)

) 1
2

.

Then, using (4.5), we 2nd

f (w, f (z, s, v)
1
2 , v) = s2
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and that

h(w, f (z, s, v)
1
2 , v) = h(z, s, v).

One can check these functional equations by noting that h and f depend only on z2, s2

and zs; thus, the substitutions z = w and s = f
1
2 can be done polynomially.

Thus, consider ϕ : C2 → C2 by

ϕ(z, s) = (w, f (z, s, v)
1
2 )

de2ned on a dense open subset of the source, by avoiding the poles of f and w, and also
choosing compatible branches of the two square roots, so that

wf
1
2 = z2(1 − v2/z2)(vz + s)

(1 − v2z2)(sv + z)
. (4.5)

Then we see that

ϕ∗
(

df
f

)
= ds2

s2 = 2ds
s

,

ϕ∗
(

ds
s

)
= df

1
2

f
1
2

= 1
2

df
f

,

and so

ϕ∗
(

df ∧ ds
fs

)
= ds ∧ df

sf
.

Thus, we can compute
∮

|s2|=| f |=ε

hg−1

f is2j
df ∧ ds

fs
=

∮

| f |=|s2|=ε
ϕ∗

(
hg−1

f is2j
df ∧ ds

fs

)
=

∮

| f |=|s2|=ε

hg−1

sif 2j
ds ∧ df

sf

=
∮

|s2|=| f |=ε

hg−1

sif 2j
df ∧ ds

fs
,

proving the proposition. !

Remark 4.6 We can observe that

f (1/z, s, v) = f (z, s, v)−1

and that

h(1/z, s, v)
f (1/z, s, v)

= h(z, s, v)
f (z, s, v)

.
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Consequently, a:er the change of variables z 1→ 1/z, we have

∮

|s2|=| f |=ε

hg−1

f is2j
df ∧ ds

fs
=

∮

|s2|=|1/f |=ε

hg−1

f 2g−2−is2j
−df ∧ ds

fs

=
∮

|s2|=| f |=ε

hg−1

f 2g−2−is2j
df ∧ ds

fs
, (4.7)

where we used the residue theorem and the fact that the poles of the integrand are
located at the zeros of f and 1/f . Using Proposition 4.4, this yields

∮

|s2|=| f |=ε

hg−1

f is2j
df ∧ ds

fs
=

∮

|s2|=| f |=ε

hg−1

f is2(2g−2−j)
df ∧ ds

fs
,

which is expected in light of the role of s in labelling the various exterior powers of V as
in (2.11).

Remark 4.8 We can also notice that, for i < 0,

∮

|s2|=| f |=ε

hg−1

f is2j
df ∧ ds

fs
= 0, (4.9)

because the integrand has no pole at zeroes of f . From Proposition 4.4 and (4.7), we
get that, for j < 0 and j > 2g − 2,

∮

|s2|=| f |=ε

hg−1

f is2j
df ∧ ds

fs
= 0. (4.10)

For 0 ≤ i < g − 1, this follows from the fact that V is a vector bundle of rank 4g − 4 on
M(GL2)

s. We will also give an interpretation of this for i = g − 1 below in Remark 6.2.

Finally, by combining the previous Proposition 4.4 with (4.3), we have now the following
result, which is identical to our Theorem 1.2 from the introduction.

Corollary 4.11 For 0 ≤ i, j < g − 1, we have

χT(M(GL2);Li ⊗ #j) = χT(M(GL2);Lj ⊗ #i)

5. Computation over the Moduli Stack

In this section, we will continue the study of the equivariant indices of #j, but now over the
moduli stack of Higgs bundles. This means that we will also incorporate the contribution of
unstable Hitchin pairs. The bene2t is that we can now apply the very powerful techniques
developed by Teleman and Woodward in [TW].



206 | mirror symmetry with branes by equivariant verlinde

As this approach has the advantage of being easily generalizable to other Lie groups, we
will 2rst take G to be a general connected 2nite-dimensional reductive group over C, and
will only specify it to be SL(2,C) or GL(2,C) at a later stage. We assume π1(G) has no
torsion. Let G0 be a real form of G, whose fundamental group again is assumed to be free.
We consider the moduli space of G0-Higgs bundles, following [GGM]. The Lie algebra of
G0 is denoted as g0 and satis2es g0 ⊗R C 3 g. It admits the Cartan decomposition

g0 = h ⊕ m.

Here, h is the Lie algebra of the maximal compact subgroup H ⊂ G0 and, as the adjoint
action of H preserves the Cartan decomposition, m will carry an H-representation. We
denote the set of weights as R(m). Over the curve C, a G0-Higgs bundle is a pair (E,ϕ),
where E is a holomorphic principal HC-bundle over C and

ϕ ∈ H0(C, E(mC)⊗ KC),

where E(mC) := E ×HC mC is the mC-bundle associated to E.
One can de2ne the moduli space M(G0) of semi-stable G0-Higgs bundles, over which

there is again a T-action acting by scaling the Higgs 2eld, and one can consider the equiv-
ariant index of various vector bundles over it. To apply the result of [TW], we will 2rst work
with the moduli stack of G0-Higgs bundles, which is de2ned as follows. Denote E∗(hC) the
vector bundle associated to the universal HC-bundle over C × BunHC , and π the projection
C × BunHC→BunHC . Then the moduli stack of G0-Higgs bundles is

M(G0) = Spec
BunHC

Sym
(

Rπ∗(E∗(hC))[1]
)

.

Over M(G0), we say a line bundle L has level k ∈ H4(BHC,Z) if c1(L) is the image
of k under the injective transgression homomorphism H4(BHC,Z)→H2(BunHC ,Z); k
de2nes a quadratic form on h and, following [TW], we call a line bundle admissible if
k > −h has a quadratic form with h := − 1

2 Trh. For a line bundle L of level k, we will
usually refer to it as Lk, with slightly abusive use of notation, to make the level explicit.
When H4(BHC,Z) = Z, k is an integer, and Lk will be the kth tensor power of the
level-one line bundle L; T also acts on M(G0) by scaling the Higgs 2eld, and we will
consider admissible line bundles that are equivariant, whose equivariant index is what
we are a:er. But, before presenting the formula for this index, we 2rst need to introduce
some notations.

Consider the function on the Cartan subalgebra t ⊂ hC,

D : ξ 1→ k + h
2

(ξ ,ξ)− Trh
(

Li2(teξ )
)

,

and the map from T, the Cartan of HC, to T∨:

χt = e(k+h)(·,·) ∏

µ∈R(m)

(
1 − teµ

)µ .
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We let Ft be the preimage of e2π iρ in the regular part of T. It is obvious that Ft is invariant
under the action of the Weyl group WH of H. Combined with the Killing form, D de2nes an
endomorphism on t which we denote as H†

t ; 2nally, we de2ne

θt :=
∏

α(1 − eα)
∏

µ∈R(m)(1 − teµ)

det H†
t

,

where α in the 2rst product in the numerator runs over all roots of h. Then we have the
following theorem.

Theorem 5.1 (Equivariant Verlinde formula for real groups) The equivariant index of Lk

over M(G0) is given by

χT(M(G0),Lk) =
∑

f ∈Ft/WH

θt(f )1−g . (5.2)

Proof From the map M(G0)→BunHC , we have

χT(M(G0),Lk) = χ
(

BunHC ,Lk ⊗ #−tRπ∗(E∗(hC))
)

.

Here, χ on the right-hand side denotes the usual (non-equivariant) index of a K-
theory class over BunHC . Also, we have abusively used Lk to denote its restriction to
BunHC , and used the identity Symt

(
V[1]

)
= #−tV for arbitrary class K-theory V .

Then, the right-hand side of the equation can be handled by Theorem 2.15 of [TW].
The computation is a straightforward modi2cation of that in the proof of Theorem 7
in [AGP], with the adjoint representation now replaced with m. !

Remark 5.3 In fact, the theorem holds for more general non-compact subgroups G0 ⊂ G
that are not real forms of G. For example, it holds when G0 = G is the entire group, for
which the index formula just becomes the equivariant Verlinde formula for G studied
in [GP, GPYY, AGP, HL].

Example 5.4 (G0 = SL(2,R)) In this case, H = U(1), and mC is the two-dimensional rep-
resentation that decomposes as C+2 ⊕ C−2, where the subscripts denote the weights
of the U(1)-action. We parametrize H by an angle ϑ in [0, 2π). Then Ft is the set of
solutions to the equation

e2kiϑ
(

1 − te−2iϑ

1 − te2iϑ

)2

= 1,

and

θt = (1 − te2iϑ )(1 − te−2iϑ )

det H†
t

,
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where H†
t is the Hessian of

D : ϑ 1→ −kϑ2 −
(

Li2(te2iϑ )+ Li2(te−2iϑ )
)

.

Example 5.5 (G0 = U(1, 1)) This is very similar to the previous case. We now have H =
U(1)× U(1) and mC = C1,−1 ⊕ C−1,1, where subscripts again denote weights under
U(1)× U(1). We can identify H with diagonal 2 × 2 matrices diag{eiϑ1 , eiϑ2}, and it is
convenient to consider the combination ϑ = (ϑ1 − ϑ2)/2, ϑ ′ = (ϑ1 + ϑ2)/2, both
in [0, 2π). The level is given by two integers k and k′, corresponding to, respectively,
the non-abelian and abelian parts of U(1, 1). Now, Ft is given by the solutions to the
following set of equations:

e2kiϑ
(

1 − te−2iϑ

1 − te2iϑ

)2

= 1,

e2k′iϑ ′ = 1

and

θt = (1 − te2iϑ )(1 − te−2iϑ )

det H†
t

,

where H†
t is the Hessian of

D : ϑ 1→ −kϑ2 − k′ϑ ′2 −
(

Li2(te2iϑ )+ Li2(te−2iϑ )
)

.

It is easy to relate the U(1, 1) case to the previous case of G0 = SL(2,R), as
the equations for ϑ are the same, while the new variable ϑ ′ takes value in
{0, π

k , 2π
k , . . . , (2k−1)π

k }. Using

det H†,U(1,1)
t = det H†,SL(2,R)

t · k′,

we have

χT
(
MU(1,1),Lk

)
= k′g · χT

(
MSL(2,R),Lk

)
.

In our study of mirror symmetry between moduli spaces of Higgs bundles, it is also useful
to consider indices of exterior powers of V. On the moduli space, V can only be de2ned
locally, but it exists globally on the stack M(SL(2,C)) as a hypercohomology complex
RprC∗(E !→ E ⊗ KC)[1], which we will continue to denote as V.

There are several moduli stacks we would like to consider, with natural morphisms
between them:

BunC× → BunSL(2,C)

↓ ↓
M(SU(1, 1)) → M(SL(2,C)).
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The vertical morphisms are closed immersions, while the horizontal ones are not. The
morphism at the bottom will also become a closed immersion if M(SU(1, 1)) is replaced
with M′(SU(1, 1)) = M(SU(1, 1))/W , where W = Z/2Z is the Weyl group of SL(2,C).
The complex V can be restricted to M′(SU(1, 1)) as well as be pulled back to every corner
of the above diagram. To avoid clutter, we will continue denoting the resulting complexes
on M′(SU(1, 1)) and M(SU(1, 1)) as V, while we will denote the pullback to BunC× and
BunSL(2,C) in a di3erent font as V. On the other hand, we will use Lk for the kth tensor
power of the determinant line bundle that also exists on all the 2ve stacks mentioned above.

To study the index of V and its exterior powers, it is useful to have the following
proposition.

Proposition 5.6 In the rational equivariant K-theory of BunSL(2,C), we have

V = (v−1 + v)(g − 1)Ex + (v−1 − v)EC,

where Ex and EC are obtained !om the rank 2 universal bundle E over BunSL(2,C) × C by,
respectively, restricting to a point x ∈ C and slanting with the fundamental class of C.

Proof As V = v−1Rπ∗(E ⊗ KC)− vRπ∗(E), the proposition directly follows from two
identities in the K-theory of BunSL(2,C),

Rπ∗(E) = (1 − g)Ex + EC,

and

Rπ∗(E ⊗ KC) = (g − 1)Ex + EC. !

Now we consider the index of #sV on the moduli stack of SU(1, 1)-Higgs bundles
M(SU(1, 1)). As the maximal compact subgroup of SU(1, 1) is U(1), we use the morphism

p : M(SU(1, 1)) → BunC× = Pic(C)× BC×

to reduce the index computation over M(SU(1, 1)) to an index computation over BunC× .
To give the index formula explicitly, we parametrize the complexi2ed maximal compact
subgroup HC = C× by z, and denote the set of solutions of

z2k
(

1 − v2z−2

1 − v2z2

)2 (
1 + sv−1z−1

1 + sv−1z

)(
1 + svz

1 + svz−1

)
= 1 (5.7)

as F′
t,s. De2ne

θ ′
t,s := 1

det H′†
t,s

· (1 − v2z2)(1 − v2z−2)

(1 + sv−1z)(1 + sv−1z−1)(1 + svz)(1 + svz−1)
, (5.8)
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where det H′†
t,s is given by

[(

2k + 4v2z2

1 − v2z2 + 4v2z−2

1 − v2z−2 − sv−1z
1 + sv−1z

− sv−1z−1

1 + sv−1z−1 + svz
1 + svz

+ svz−1

1 + svz−1

)]

. (5.9)

Then we have

Theorem 5.10 For Lk a line bundle on M(SU(1, 1)) with level k ≥ 0, the T-equivariant index
of Lk ⊗ #sV is given by

χT
(
M(SU(1, 1)),Lk ⊗ #sV

)
=

∑

f ∈F′
t,s

θ ′
t,s(f )1−g . (5.11)

Proof When s = 0, the theorem becomes the Verlinde formula for SU(1, 1)-Higgs bundles
discussed earlier. We now highlight the e3ect of turning on s.

The 2rst step is to rewrite #sV on BunC× into a form that Theorem 2.15 of [TW]
can handle. To achieve this, we will start with rewriting #sV over BunSL(2,C). Recall
2rst that, from the universal SL(2,C)-bundle over BunSL(2,C) × C and a SL(2,C)

representation R, one can obtain a vector bundle, denoted as E(R). We obviously have
E = E(RF), where RF is the two-dimensional fundamental representation of SL(2,C).
One can obtain classes Ex(R) and EC(R) in the K-theory of BunSL(2,C) similar to the
construction of Ex and EC. Using the identity

#s = exp



−
∑

p>0

(−s)pψp

p





with ψp denoting the pth Adams operation and the relation ψpEC(R) = EC(ψpR)/p,
one can rewrite

#sV = Ex(#s((v + v−1)RF))⊗(g−1) ⊗ exp



−
∞∑

p=1

(−s)pEC(ψp((v−1 − v)RF))

p2



. (5.12)

Similarly, on BunC× , we denote E(Rn) the line bundle associated to the universal line
bundle via the weight-n representation over BunC× × C. As before, we can construct
K-theory classes Ex(Rn) and EC(Rn) over BunC× . From (5.12), one can deduce the
following identity in the K-theory of BunC× :

#sV = Ex(#s((v + v−1)(R1 + R−1)))
⊗(g−1)

⊗ exp



−
∞∑

p=1

((−s/v)p − (sv)p)EC(Rp + R−p)

p2



 . (5.13)
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Since

M(SU(1, 1)) = Spec
BunC×

Sym(Rπ∗E(R2 + R−2)[1]),

we have the equality

χT
(
M(SU(1, 1)),Lk ⊗ #sV

)
= χ

(
BunC× ,Lk ⊗ #sV ⊗ #−tRπ∗E(R2 + R−2)

)
,

and the theorem follows from a direct computation using Theorem 2.15 of [TW]
applied to BunC× . With the parametrization of the complexi2ed maximal compact
subgroup of SU(1, 1) by z, the character of Rn is given by zn. Then Theorem 2.15 of
[TW] tells us that the 2rst factor Ex(#s((v + v−1)(R1 + R−1))

⊗(g−1) in (5.13) will
result in an additional s-dependent factor,

TrRs(z),

in θ
′1−g
s,t , with Rs being the virtual representation

(
#s

(
(v + v−1)(R1 + R−1)

))⊗(g−1).
It is easy to see that the character of Rs is given by

[
(1 + svz)(1 + svz−1)(1 + sv−1z−1)(1 + sv−1z)

]g−1 .

On the other hand, the second factor in (5.13) will modify both θ ′
s=0,t and F′

s=0,t .
The modi2cation to the former is only through det H′†

t,s, which is now given by the
Hessian of the function

D′
s = D′

s=0 +
∞∑

p=1

((−sv)p − (−s/v)p)Trψp(R1+R−1)(z)
p2 .

Since Trψp(R1+R−1)(z) = zp + z−p, the summation over p in the above can be written
as the sum of four terms,

∞∑

p=1

((−sv)p − (−s/v)p)
(

zp + z−p)

p2 = Li2(−svz−1)+ Li2(−svz)− Li2(−sv−1z)

− Li2(−sv−1z−1).

Computing the Hessian of D′
s gives the desired det H′†

t,s.
Now we determine the set F′

s,t . When s = 0, it is given by the set of solutions to the
‘Bethe ansatz equations’,

z2k
(

1 − v2z−2

1 − v2z2

)2
= 1.
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When s is turned on, from Theorem 2.15 of [TW], a new factor will be included in the
le:-hand side of the above equation, given by

exp



−
∞∑

p=1

((−sv)p − (−s/v)p)(zp − z−p)

p



 =
(

1 + sv−1z−1

1 + sv−1z

)(
1 + svz

1 + svz−1

)
.

Taking into account all three modi2cations proves the theorem. !

In previous sections, we studied the index over the smooth part of the ‘real slice’
M′(SU(1, 1)) ⊂ M(SL(2,C)), for which we have the following.

Theorem 5.14 The equivariant index of Lk ⊗ #sV on M′(SU(1, 1)),

χT
(
M′(SU(1, 1)),Lk ⊗ #sV

)
= 1

2

∑

f ∈F′
t,s

θ ′
t,s(f )1−g , (5.14)

is equal to one-half of the equivariant indexχT
(
M(SU(1, 1)),Lk ⊗ #sV

)
onM(SU(1, 1)).

Proof This theorem follows from the facts that M′(SU(1, 1)) = M(SU(1, 1))/W , and
Lk ⊗ #sV is invariant under the action of the Weyl group W = Z/2Z. !

6. Symmetry for i = g − 1

To compare the formula (5.15) for k = 2 with the formula (4.3), we rewrite it in the same
residue form. First, we note that the le:-hand side of (5.7) for k = 2 equals f (z, s, v) from
(4.1). We also see that (5.9) agrees with

z
∂
∂z f (z, s, v)
f (z, s, v)

,

which is computed in (4.2). Finally, we see from (5.8) that

θ ′
t,s = f (z, s, v)

h(z, s, v)
.

By recalling that F′
t,s denotes the set of solutions of f = 1, which are all simple zeroes, we can

compute

∑

ϕ∈F′
t,s

θ ′
t,s(ϕ)1−g =

∑

a∈F′
t,s

(
h(a, s, v)
f (a, s, v)

)g−1
= 1

2π i

∮

|1−f |=ε

(
h
f

)g−1 1
1 − f

−df
f

= 1
2π i

∮

| f |=ε

(
h
f

)g−1 1
1 − f

df
f

+ 1
2π i

∮

|z2v2−1|=ε

(
h
f

)g−1 1
1 − f

df
f

= 1
2π i

∮

| f |=ε

∞∑

j=0

(
h
f

)g−1
f j df

f
− 1

2π i

∮

|z2v2−1|=ε

∞∑

j=1

(
h
f

)g−1
f −j df

f
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= 1
2π i

∮

| f |=ε

∞∑

j=0

(
h
f

)g−1
f j df

f
+ 1

2π i

∮

| f |=ε

∞∑

j=1

(
h
f

)g−1
f −j df

f

= 1
2π i

∮

| f |=ε

(
h
f

)g−1 df
f

+
g−2∑

i=0
χT(M(GL2);Li ⊗ #s2)+ 1

2π i

∮

| f |=ε

∞∑

j=1

(
h
f

)g−1
f j df

f

= 1
2π i

∮

| f |=ε

(
h
f

)g−1 df
f

+ 2
g−2∑

i=0
χT(M(GL2);Li ⊗ #s2).

In the third equation, we used the residue theorem and the fact that the poles of the
integrand are the zeroes of 1 − f , f and z2v2 − 1. In the fourth equation we see that the
power series expansions converge on the respective contours. In the 2:h equation, we used
the residue theorem again, noting that the only poles of the integrand are the zeroes of f and
z2v2 − 1. In the sixth, we used (4.3), (4.9) and (4.7). Finally, in the seventh equation, we
used (4.3) and (4.9) again.

Thus, from (5.14),

χT
(
M′(SU(1, 1)),L2 ⊗ #sV

)
= 1

2
1

2π i

∮

| f |=ε

(
h
f

)g−1 df
f

+
g−1∑

j=1

1
2π i

∮

| f |=ε

(
h
f

)g−1
f j df

f
. (6.1)

Remark 6.2 From the observation in Remark 4.8, we see that, even though V and, conse-
quently, #s are no longer vector bundles on M′(SU(1, 1)), cohomologically, V behaves
like a rank 4g − 4 vector bundle on M′(SU(1, 1)). Interestingly, the same observation
about the virtual Dirac bundle V was the crucial point in the proof of the vanishing of
the intersection form on the rank 2 odd degree Higgs moduli space in [Ha1, Ha2].

From (6.1), we also get

2χT
(
M′(SU(1, 1)),L2 ⊗ #sV

)
− 2

g−2∑

i=0
χT(M(GL2);Li ⊗ #s2) = 1

2π i

∮

| f |=ε

(
h
f

)g−1 df
f

.

We can now combine Theorem 5.14 and Proposition 4.4 with the computation above
and deduce the following:

Corollary 6.3 For 0 ≤ j < g − 1, we have

2χT
(
M′(SU(1, 1)),L2 ⊗ #2jV

)
− 2

g−2∑

i=0
χT(M(GL2);Li ⊗ #j)

= χT(M(GL2);Lj ⊗ #g−1).
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Remark 6.4 For a completely symmetrical picture, we would like to see the le:-hand side
agree with χT(M(GL2);Lg−1 ⊗ #j) with the special convention for Lg−1 in (2.3). It
seems, however, that the non-semi-stable locus in M′(SU(1, 1)) will contribute non-
trivially to the equivariant index. We expect that a modi2cation of the extension of the
Dirac complex #sV to M(SL2) will solve this problem.

7. Re"ection of Mirror Symmetry

If F1 and F2 are T-equivariant coherent sheaves on a semi-projective (cf. [HV]) T-variety
X, then we can de2ne (cf. [Gu, (2.23),(3.4)]) the equivariant Euler form as

χT(X;F1,F2) =
∑

k,l

dim(Hk(RHom(F1,F2))
l)(−1)kt−l

=
∑

k,l

dim(HomDcoh(X)(F1,F2[k])l)(−1)kt−l

=
∑

k,l

dim(Extk(X;F1,F2)
l)(−1)kt−l ∈ C((t)),

which we can compute by Hirzebruch–Riemann–Roch and localization:

χT(X;F1,F2) =
∫

X
chT(F1)

∗ chT(F2) tdT(X)

=
∫

XT
chT(F1)

∗|XT chT(F2|XT)chT(Sym(N∗
XT)) td(XT),

where NXT is the normal bundle of XT in X and for

a = a0 + a2 + ·· · + a2 dim(X) ∈ H2∗(X).

We de2ne the class

a∗ =
∑

(−1)ia2i ∈ H2∗(X).

Corollary 7.1 When 0 ≤ i, j < g − 1,

χT(M(GL2);Li,#j) = −tg−1χT(M(GL2);#i,Lj).

Proof We expect that

L∨
i

∼= Li[−4g + 3] (7.2)

and

#i
∨ ∼= #i[−2g], (7.3)
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as self-dualities in the derived category Dcoh(M(GL2)). Indeed, (7.3) holds on
M(GL2)

s because there it is a push-forward of a vector bundle from M(SL2)
s of

codimension 2g with a trivial normal bundle and, as [Hi2, §7, Remarks 1, 2] argues,
the vector bundle #i|M(SL2)s is self-dual, due to the quaternionic structure on it. On
the other hand, (7.2) holds for i < g − 1, because of [Hu, Corollary 3.40], using that
M(GL2)

s is symplectic and by the following

Lemma 7.4 For 0 ≤ i < g − 1, we have

KLi = L4|Li = L2
i |Li . !

Proof This follows from c1(KL′
i
|F′

i
) = c1(L4|F′

i
). Starting with [Mac, (14.10)] and (3.7),

we compute

c1(KL′
i
|F′

i
) = c1(KF′

i
)c1(E∗

i ) = (g − 2i − 1)η + θ + (3g − 3 − 2i)η + θ

= (4g − 4 − 4i)η + 2θ = 4c1(L|F′
i
).

from (3.13). !

To also trace how the T-action intertwines these isomorphisms, we compute using
[CG, Lemma 5.4.9]:

chT(Li)
∗|Li = chT




∑

j
(−1)j#jN∗

Li




∗

chT(L−2|Li)

= chT




∑

j
(−1)j#jNLi



chT(L−2|Li)

= (−1)4g−3ecT1 (NLi )

chT(SymN∗
Li
)

chT(L−2|Li).

Consequently,

chT(Li)
∗|F′

i
= (−1)4g−3ecT1 (NLi |F′

i
)

chT(SymN∗
Li
)

chT(L−2|F′
i
) = (−1)4g−3ecT1 (E∗

i )+cT1 (T∗
Fi )+cT1 (L−2|F′

i
)

chT(SymN∗
Li
)

= (−1)4g−3e(g−1+2i)(η−u)+θ+(g−1−2i)η+θ+(g+2i)u−2i(η−u)−θ

chT(SymN∗
Li
)

=
−chT(L2|F′

i
)t−1

chT(SymN∗
Li
)

= −chT(Li|F′
i
)t−1. (7.5)

Here, we used

cT
1 (E∗

i ) = (g − 1 + 2i)(η − u)+ θ
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from (3.7) and the facts that rank(E∗
i ) = g − 1 + 2i and the T-action has weight minus

one on E∗
i . We also used

cT
1 (T∗

Fi) = (g − 1 − 2i)η + θ + (g + 2i)u

from [Mac, (14.10)] and rank(T∗
Fi
) = g + 2i and the T-action has weight one on T∗

Fi
.

Finally,

cT
1 (L−2|F′

i
) = −2i(η − u)− θ ,

from (3.13) . Similarly,

ch(#j)
∗|F′

i
=

(−1)2gt−gchT(#j∗|F′
i
)

chT(SymNFi
F′

i
)

=
t−gchT(#j|F′

i
)

chT(SymNFi
F′

i
)

,

because, from (3.11) and (3.12), we can deduce

chT(#j∗|F′
i
) = chT(#j|F′

i
).

Thus, we can compute from (7.5)

χT(M(GL2);Li,#j) =
∫

F′
i

chT(Li)
∗|F′

i
chT(#j|F′

i
)chT(SymN∗

F′
i
) td(F′

i)

=
∫

F′
i

−t−1ch(L2|F′
i
)chT(#j|F′

i
)chT(SymE∗

i ) td(F′
i) = −t−1χT(M(GL2);Li ⊗ #j).

On the other side, we have

χT(M(GL2);#i,Lj) =
∫

F′
j

chT(#i)
∗|F′

i
chT(Lj|F′

j
)chT(SymN∗

F′
i
) td(F′

i)

=
∫

F′
i

t−g chT(#i|F′
j
)chT(SymN∗

F′
i
) td(F′

i) = t−gχT(M(GL2);#i ⊗ Lj),

and the result follows. !

Remark 7.6 Based on the Fourier–Mukai transform on the generic 2bres of the Hitchin
map, we expect that (the semi-classical limit of the) mirror of Li will be the shi:ed
coherent sheaf #i[−g] and that of #j the shi:ed coherent sheaf Lj[−3g + 3]. This
explains the sign in Corollary 7.1.

Remark 7.7 The extra tg−1 factor in Corollary 7.1 seems to be necessary, and the reason
for its appearance could be the fact that the canonical bundle KM(SL2) is trivial with a
weight 3g − 3 equivariant structure and therefore has no square root for g even.
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