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Abstract. We count points over a finite field on wild character varieties of Riemann surfaces for
singularities with regular semisimple leading term. A new feature in our counting formulas is the
appearance of characters of Yokonuma–Hecke algebras. Our result leads to the conjecture that
the mixed Hodge polynomials of these character varieties agree with the previously conjectured
perverse Hodge polynomials of certain twisted parabolic Higgs moduli spaces, indicating the pos-
sibility of a P = W conjecture for a suitable wild Hitchin system.
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0.1. A conjecture

Let C be a complex smooth projective curve of genus g ∈ Z≥0, with divisor

D = p1 + · · · + pk + rp

where p1, . . . , pk, p ∈ C are distinct points, p having multiplicity r ∈ Z≥0 with k ≥ 0
and k + r ≥ 1. For n ∈ Z≥0, let Pn denote the set of partitions of n and set P :=

⋃
n Pn.

Let µ = (µ1, . . . , µk) ∈ Pkn denote a k-tuple of partitions of n, and we write |µ| := n. We
denote by Mµ,r

Dol the moduli space of stable parabolic Higgs bundles (E, φ) with quasi-
parabolic structure of type µi at the pole pi , with generic parabolic weights and fixed
parabolic degree, and a twisted (meromorphic) Higgs field

φ ∈ H 0(C;End(E)⊗KC(D))

with nilpotent residues compatible with the quasi-parabolic structure at the poles pi (but
no restriction on the residue at p). Then Mµ,r

Dol is a smooth quasi-projective variety of
dimension dµ,r with a proper Hitchin map

χµ,r
:Mµ,r

Dol → Aµ,r
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defined by taking the characteristic polynomial of the Higgs field φ and thus taking values
in the Hitchin base

Aµ,r
:=

n⊕
i=1

H 0(C;KC(D)
i).

As χµ,r is proper it induces as in [dCM] a perverse filtration P on the rational cohomol-
ogy H ∗(Mµ,r

Dol ) of the total space. We define the perverse Hodge polynomial as

PH(Mµ,r
Dol ; q, t) :=

∑
dim(GrPi H

k(Mµ,r
Dol ))q

i tk.

The recent paper [CDDP] by Chuang–Diaconescu–Donagi–Pantev gives a string-the-
oretical derivation of the following mathematical conjecture.

Conjecture 0.1.1. We expect

PH(Mµ,r
Dol ; q, t) = (qt

2)dµ,rHµ,r(q
1/2,−q−1/2t−1).

Here, Hµ,r(z, w) ∈ Q(z, w) is defined by the generating function formula

∑
µ∈Pk

(−1)r|µ|w−dµ,rHµ,r(z, w)

(z2 − 1)(1− w2)

k∏
i=1

mµi (xi)

= Log
(∑
λ∈P

Hg,r
λ (z, w)

k∏
i=1

H̃λ(z
2, w2
; xi)

)
. (0.1.2)

The notation is explained as follows. For a partition λ ∈ P we denote

Hg,r
λ (z, w) =

∏ (−z2aw2l)r(z2a+1
− w2l+1)2g

(z2a+2 − w2l)(z2a − w2l+2)
, (0.1.3)

where the product is over the boxes in the Young diagram of λ and a and l are the arm
length and the leg length of the given box. We denote bymλ(xi) the monomial symmetric
functions in the infinitely many variables xi := (xi1 , xi2 , . . . ) attached to the puncture pi .
H̃λ(q, t; xi) denotes the twisted Macdonald polynomials of Garsia–Haiman [GH], which
is a symmetric function in the variables xi with coefficients from Q(q, t). Finally, Log is
the plethystic logarithm (see e.g. [HLV1, §2.3.3] for a definition).

The paper [CDDP] gives several pieces of evidence for Conjecture 0.1.1. On physical
grounds it argues that the left hand side should be the generating function for certain re-
fined BPS invariants of some associated Calabi–Yau 3-orbifold Y , which the authors then
relate by a refined Gopakumar–Vafa conjecture to the generating function of the refined
Pandharipande–Thomas invariants of Y . In turn they can compute the latter in some cases
using the recent approach of Nekrasov–Okounkov [NO], finding agreement with Con-
jecture 0.1.1. Another approach is to use another duality conjecture—the so-called “ge-
ometric engineering”—which conjecturally relates the left hand side of Conjecture 0.1.1
to generating functions for equivariant indices of some bundles on certain nested Hilbert
schemes of points on the affine plane C2. They compute this using work of Haiman [Hai]
and find agreement with the right hand side of Conjecture 0.1.1.
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Purely mathematical evidence for Conjecture 0.1.1 comes through a parabolic version
of the P = W conjecture of [dCHM], in the case when r = 0. In this case, by non-
abelian Hodge theory we expect the parabolic Higgs moduli space Mµ

Dol := Mµ,0
Dol to

be diffeomorphic to a certain character variety Mµ
B , which we will define more carefully

below. The cohomology of Mµ
B carries a weight filtration, and we denote by

WH(Mµ
B ; q, t) :=

∑
i,k

dim(GrW2iH
k(Mµ

B))q
i tk

the mixed Hodge polynomial of Mµ
B . The P = W conjecture predicts that the per-

verse filtration P on H ∗(Mµ
Dol) is identified with the weight filtration W on H ∗(Mµ

B)

via non-abelian Hodge theory. In particular, P = W would imply PH(Mµ
Dol; q, t)

= WH(Mµ
B ; q, t), and Conjecture 0.1.1 for r = 0; PH(Mµ

Dol; q, t) replaced with
WH(Mµ

B ; q, t) was the main conjecture in [HLV1].
It is interesting to recall what inspired Conjecture 0.1.1 for r > 0. Already in [HV,

Section 5], detailed knowledge of the cohomology ring H ∗(M(2),r
Dol ) from [HT] was

needed for the computation of WH(M(2)
B ; q, t). In fact, it was observed in [dCHM] that

the computation in [HV, Remark 2.5.3] amounted to a formula for PH(Mµ
Dol; q, t), which

is the first non-trivial instance of Conjecture 0.1.1. This twist by r was first extended for
the conjectured PH(M(n),r

Dol ) in [Mo] to match the recursion relation in [CDP]; it was
then generalized in [CDDP] to Conjecture 0.1.1. We notice that the twisting by r only
slightly changes the definition of Hg,r(z, w) above and the rest of the right hand side of
Conjecture 0.1.1 does not depend on r .

It was also speculated in [HV, Remark 2.5.3] that there is a character variety whose
mixed Hodge polynomial would agree with the one conjectured for PH(Mµ,r

Dol ; q, t)

above.

Problem 0.1.4. Is there a character variety whose mixed Hodge polynomial agrees with
PH(Mµ,r

Dol ; q, t)?

A natural idea to answer this question is to look at the symplectic leaves of the natural
Poisson structure on Mµ,r

Dol . The symplectic leaves should correspond to moduli spaces
of irregular or wild Higgs moduli spaces. By the wild non-abelian Hodge theorem [BB]
those will be diffeomorphic to wild character varieties.

0.2. Main result

In this paper we will study a class of wild character varieties which will conjecturally
provide a partial answer to the problem above. Namely, we will look at wild character
varieties allowing irregular singularities with polar part having a diagonal regular leading
term. Boalch [B3] gives the following construction.

Let G := GLn(C) and let T ≤ G be the maximal torus of diagonal matrices. Let
B+ ≤ G (resp. B− ≤ G) be the Borel subgroup of upper (resp. lower) triangular matrices.
Let U = U+ ≤ B+ (resp. U− ≤ B−) be the respective unipotent radicals, i.e., the group
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of upper (resp. lower) triangular matrices with 1s on the main diagonal. We fix m ∈ Z≥0
and

r := (r1, . . . , rm) ∈ Zm>0.

For µ ∈ Pkn we also fix a k-tuple (C1, . . . , Ck) of semisimple conjugacy classes such that
the class Ci ⊂ G is of the type

µi = (µi1, µ
i
2, . . . ) ∈ Pn;

in other words, Ci has eigenvalues with multiplicities µij . Finally, we fix

(ξ1, . . . , ξm) ∈ (Treg)m,

an m-tuple of regular diagonal matrices, such that the k +m-tuple

(C1, . . . , Ck,Gξ1, . . . ,Gξm)

of semisimple conjugacy classes is generic in the sense of Definition 1.2.9. Then define

Mµ,r
B := {(Ai, Bi)

n
i=1 ∈ (G× G)g, Xj ∈ Cj , Cj ∈ G, (Sj2i−1, S

j

2i)
rj
i=1 ∈ (U− × U+)rj |

(A1, B1) · · · (Ag, Bg)X1 · · ·XkC
−1
1 ξ1S

1
2r1 · · · S

1
1C1 · · ·C

−1
m ξmS

m
2rm · · · S

m
1 Cm = In}//G,

where the affine quotient is by the conjugation action of G on the matrices Ai, Bi, Xi, Ci
and the trivial action on Sji . Under the genericity condition as above, Mµ,r

B is a smooth
affine variety of dimension dµ,r given by (1.2.14). In particular, when m = 0, we have
the character varieties Mµ

B =Mµ,∅
B of [HLV1, Conjecture 0.2.1].

The main result of this paper is the following:

Theorem 0.2.1. Let µ ∈ Pkn be a k-tuple of partitions of n and r be anm-tuple of positive
integers, and let Mµ,r

B be the generic wild character variety as defined above. Then

WH(Mµ,r
B ; q,−1) = qdµ,rHµ̃,r(q

1/2, q−1/2),

where

µ̃ := (µ1, . . . , µk, (1n), . . . , (1n)) ∈ Pk+mn

is the type of

(C1, . . . , Ck,Gξ1, . . . ,Gξm)

and

r := r1 + · · · + rm.



Arithmetic and representation theory of wild character varieties 2999

The proof of this result follows the route introduced in [HV, HLV1, HLV2]. Using
a theorem of Katz [HV, Appendix], it reduces the problem of the computation of
WH(Mµ,r

B ; q,−1) to counting Mµ,r
B (Fq), i.e., the Fq -points of Mµ,r

B . We count them
by using a non-abelian Fourier transform. The novelty here is the determination of the
contribution of the wild singularities to the character sum.

The latter problem is solved via the character theory of the Yokonuma–Hecke algebra,
which is the convolution algebra on

C[U(Fq)\GLn(Fq)/U(Fq)],

where U is as above. The main computational result, Theorem 3.3.4, is an analogue of a
theorem of Springer (cf. [GP, Theorem 9.2.2]) which gives an explicit value for the trace
of a certain central element of the Hecke algebra in a given representation.

This theorem, in turn, rests on a somewhat technical result relating the classification
of the irreducible characters of the group N = (F×q )n oSn to that of certain irreducible
characters of GLn(Fq). To explain it briefly, if Qn denotes the set of maps from 01 = F̂×q
(the character group of F×q ) to the set of partitions of total size n (see Section 2.7 for defi-
nitions and details), then Qn parametrizes both Irr N and a certain subset of Irr GLn(Fq).
Furthermore, both of these sets are in bijection with the irreducible characters of the
Yokonuma–Hecke algebra. Theorem 2.9.5 clarifies this relationship, establishing an ana-
logue of a result proved by Halverson and Ram [HR, Theorem 4.9(b)], though by different
techniques.

Our main result Theorem 0.2.1 then leads to the following conjecture.

Conjecture 0.2.2. We have

WH(Mµ,r
B ; q, t) = (qt

2)dµ,rHµ̃,r(q
1/2,−q−1/2t−1).

This gives a conjectural partial answer to our Problem 0.1.4 originally raised in [HV,
Remark 2.5.3]. Namely, in the cases when at least one of the partitions µi is (1n), we
can conjecturally find a character variety whose mixed Hodge polynomial agrees with the
mixed Hodge polynomial of a twisted parabolic Higgs moduli space. This class does not
yet include the example studied in [HV, Remark 2.5.3], where there is a single trivial par-
tition µ = ((n)). We expect that those cases could be covered by using more complicated,
possibly twisted, wild character varieties.

Finally, we note that a recent conjecture [STZ, Conjecture 1.12] predicts that in the
case when g = 0, k = 0, m = 1 and r = r1 ∈ Z>0, the mixed Hodge polynomial of
our (and more general) wild character varieties, are intimately related to refined invariants
of links arising from Stokes data. Our formulas in this case should be related to refined
invariants of the (n, rn) torus links. We hope that the natural emergence of Hecke algebras
in the arithmetic of wild character varieties will shed new light on Jones’s approach [Jo]
to the HOMFLY polynomials via Markov traces on the usual Iwahori–Hecke algebra and
the analogous Markov traces on the Yokonuma–Hecke algebra (cf. [J1, CL, JP]).

The structure of the paper is as follows. Section 1 reviews mixed Hodge structures on
the cohomology of algebraic varieties, the theorem of Katz mentioned above, and gives
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the precise definition of a wild character variety from [B3]. In Section 2 we recall the
abstract approach to Hecke algebras; the explicit character theory of the Iwahori–Hecke
and Yokonuma–Hecke algebras is also reviewed and clarified. In Section 3 we recall
the arithmetic Fourier transform approach of [HLV1] and perform the count on the wild
character varieties. In Section 4 we prove our main Theorem 0.2.1 and discuss our main
Conjecture 0.2.2. In Section 5 we compute some specific examples of Theorem 0.2.1 and
Conjecture 0.2.2, when n = 2, with particular attention paid to the cases when Mµ,r

B is a
surface.

1. Generalities

1.1. Mixed Hodge polynomials and counting points

To motivate the problem of counting points on an algebraic variety, we remind the reader
of some facts concerning mixed Hodge polynomials and varieties with polynomial count,
more details of which can be found in [HV, §2.1]. Let X be a complex algebraic variety.
The general theory of [D1, D2] provides a mixed Hodge structure on the compactly sup-
ported cohomology of X: that is, there is an increasing weight filtrationW• on H j (X,Q)
and a decreasing Hodge filtration F • on H j (X,C). The mixed Hodge numbers of X are
defined as

hp,q;j (X) := dimC GrpF GrWp+q H
j (X,C),

the mixed Hodge polynomial of X by

H(X; x, y, t) :=
∑

hp,q;j (X)xpyq tj ,

and, when X is smooth, the E-polynomial of X by

E(X; x, y) := (xy)dimXH(X; 1/x, 1/y,−1).

We could also define the mixed weight polynomial

WH(X; q, t) =
∑

dimC GrWk H
j (X,C) qk/2tj = H(X; q1/2, q1/2, t)

which, for a smooth X, specializes to the weight polynomial

E(q) := qdimXWH(X; 1/q,−1) = E(X; q1/2, q1/2).

One observes that the Poincaré polynomial P(X; t) is given by

P(X; t) = H(X; 1, 1, t).

Suppose that there exists a separated scheme X over a finitely generated Z-algebra R,
such that for some embedding R ↪→ C we have

X ×R C ∼= X;
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in that case we say that X is a spreading out of X. If, further, there exists a polynomial
PX(w) ∈ Z[w] such that for any homomorphism R → Fq (where Fq is the finite field
of q elements), one has

|X (Fq)| = PX(q),

then we say that X has polynomial count and PX is the counting polynomial of X. The
motivating result is then the following.

Theorem 1.1.1 (N. Katz, [HV, Theorem 6.1.2]). Suppose that the complex algebraic
variety X is of polynomial count with counting polynomial PX. Then

E(X; x, y) = PX(xy).

Remark 1.1.2. Thus, in the polynomial count case we find that the count polynomial
PX(q) = E(X; q) agrees with the weight polynomial. We also expect our varieties to
be Hodge–Tate, i.e., hp,q;j (X) = 0 unless p = q, in which case H(X; x, y, t) =
WH(X; xy, t). Thus, in these cases we are not losing information by considering
WH(X; xy, t) (resp. E(X; q)) instead of the usual H(X; x, y, t) (resp. E(X; x, y)).

1.2. Wild character varieties

The wild character varieties we study in this paper were first mentioned in [B2, §3, Re-
mark 5], as a then new example in quasi-Hamiltonian geometry—a “multiplicative” vari-
ant of the theory of Hamiltonian group actions on symplectic manifolds—with a more
thorough (and more general) construction given in [B3, §8]. We give a direct definition
here for which knowledge of quasi-Hamiltonian geometry is not required; however, as we
appeal to results of [B3, §9] on smoothness and the dimension of the varieties in question,
we use some of the notation of [B3, §9] to justify the applicability of those results.

1.2.1. Definition. We now set some notation which will be used throughout. Let G :=
GLn(C) and fix the maximal torus T ≤ G consisting of diagonal matrices; let g := gln(C)
and t := Lie(T) be the corresponding Lie algebras. Let B+ ≤ G (resp., B− ≤ G) be the
Borel subgroup of upper (resp., lower) triangular matrices. Let U = U+ ≤ B+ (resp.,
U− ≤ B−) be the unipotent radical, i.e., the group of upper (resp., lower) triangular
matrices with 1s on the main diagonal; note that each of these subgroups is normalized
by T.

Definition 1.2.1. For r ∈ Z>0, we set

Ar
:= G× (U+ × U−)r × T.

An element of Ar will typically be written (C, S, t) with

S = (S1, . . . , S2r) ∈ (U+ × U−)r ,
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where Si ∈ U+ if i is odd and Si ∈ U− if i is even. The group T acts on (U+ × U−)r by

x · S = (xS1x
−1, . . . , xS2rx

−1);

the latter tuple will often be written simply as xSx−1.
We fix g, k,m ∈ Z≥0 with k +m ≥ 1. Fix also a k-tuple

C := (C1, . . . , Ck)

of semisimple conjugacy classes Cj ⊆ G; the multiset of multiplicities of the eigenvalues
of each Cj determines a partition µj ∈ Pn. Hence we obtain a k-tuple

µ := (µ1, . . . , µk) ∈ Pkn ,

which we call the type of C. Fix also

r := (r1, . . . , rm) ∈ Zm>0.

We will write r :=
∑m
α=1 rα . Now consider the product

Rg,C,r
:= (G× G)g × C1 × · · · × Ck ×Ar1 × · · · ×Arm .

The affine variety Rg,C,r admits an action of G× Tm given by

(y, x1, . . . , xm) · (Ai, Bi, Xj , Cα, S
α, tα)

= (yAiy
−1, yBiy

−1, yXjy
−1, xαCαy

−1, xαSαx
−1
α , tα) (1.2.2)

where 1 ≤ i ≤ g, 1 ≤ j ≤ k and 1 ≤ α ≤ m.
Now, fixing an element ξ = (ξ1, . . . , ξm) ∈ Tm, we define a closed subvariety of

Rg,C,r by

Ug,C,r,ξ :=
{
(Ai, Bi, Xj , Cα, S

α, tα) ∈ Rg,C,r
:

g∏
i=1

(Ai, Bi)

k∏
j=1

Xj

m∏
α=1

C−1
α ξαS

α
2rα · · · S

α
1Cα = In, tα = ξα, 1 ≤ α ≤ m

}
(1.2.3)

where the product means we write the elements in the order of their indices:

d∏
i=1

yi = y1 · · · yd .

It is easy to see that Ug,C,r,ξ is invariant under the action of G×Tm. Finally, we define the
(generic) genus g wild character variety with parameters C, r, ξ as the affine geometric
invariant theory quotient

Mg,C,r,ξ
B := Ug,C,r,ξ/(G× Tm) = SpecC[Ug,C,r,ξ ]G×Tm . (1.2.4)

Since g will generally be fixed and understood, we will typically omit it from the notation.
Furthermore, since the invariants we compute depend only on the tuples µ and r, rather
than the actual conjugacy classes C and ξ , we will usually abbreviate our notation to
Mµ,r

B and Uµ,r.
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Remark 1.2.5. The space Ar defined at the beginning of Definition 1.2.1 is a “higher fis-
sion space” in the terminology of [B3, §3]. These are spaces of local monodromy data for
a connection with a higher order pole. To specify a de Rham space—these are constructed
in [BB], along with their Dolbeault counterparts—at each higher order pole, one speci-
fies a “formal type” which is the polar part of an irregular connection which will have
diagonal entries under some trivialization; this serves as a “model” connection. The de
Rham moduli space then parametrizes holomorphic isomorphism classes of connections
which are all formally isomorphic to the specified formal type. Locally these holomor-
phic isomorphism classes are distinguished by their Stokes data, which live in the factor
(U+×U−)r appearing in Ar . The factor of T appearing is the “formal monodromy” which
differs from the actual monodromy by the product of the Stokes matrices, as appearing
in the last set of factors in the expression (1.2.3). The interested reader is referred to [B1,
§2] for details about Stokes data.

Remark 1.2.6. As mentioned above, these wild character varieties were constructed in
[B3, §8] as quasi-Hamiltonian quotients. In quasi-Hamiltonian geometry, one speaks of
a space with a group action and a moment map into the group. In this case, we had an
action on Rµ,r given in (1.2.2) and the corresponding moment map 8 : Rµ,r

→ G×Tm

would be

(Ai, Bi, Xj , Cα, Sα, tα) 7→
( g∏
i=1

[Ai, Bi]

k∏
j=1

Xj

m∏
α=1

C−1
α tαS

α
2rα · · · S

α
1Cα, t

−1
1 , . . . , t−1

m

)
.

Then one sees that Uµ,r
= 8−1((In, ξ

−1)) and so Mµ,r
B = 8−1((In, ξ

−1))/(G× T m) is
a quasi-Hamiltonian quotient.

Remark 1.2.7. By taking determinants in (1.2.3) we observe that a necessary condition
for Uµ,r, and hence Mµ,r

B , to be non-empty is that

k∏
j=1

det Cj ·
m∏
α=1

det ξα = 1; (1.2.8)

note that det Sαp = 1 for 1 ≤ α ≤ m and 1 ≤ p ≤ 2rα .

1.2.2. Smoothness and dimension computation. We recall [HLV1, Definition 2.1.1].

Definition 1.2.9. The k-tuple C = (C1, . . . , Ck) is generic if the following holds. If
V ⊆ Cn is a subspace stable by some Xi ∈ Ci for each i such that

k∏
i=1

det(Xi |V ) = 1 (1.2.10)

then either V = 0 or V = Cn. When additionally ξ = (ξ1, . . . , ξm) ∈ Tm, we say that

C × ξ = (C1, . . . , Ck, ξ1, . . . , ξm)

is generic if (C1, . . . , Ck,Gξ1, . . . ,Gξm) is, where Gξi is the conjugacy class of ξi in G.
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Remark 1.2.11. It is straightforward to see that the genericity of (C1, . . . , Ck) for a
k-tuple of semisimple conjugacy classes can be formulated in terms of the spectra of
the matrices in Ci as follows. Let

Ai := {αi1, . . . , α
i
n}

be the multiset of eigenvalues of a matrix in Ci for i = 1 . . . k. Then (C1, . . . , Ck) is
generic if and only if the following non-equalities (1.2.12) hold. Write

[A] :=
∏
α∈A

a

for any multiset A ⊆ Ai . The non-equalities are

[A′1] · · · [A
′

k] 6= 1 (1.2.12)

for A′i ⊆ Ai of the same cardinality n′ with 0 < n′ < n.

Theorem 1.2.13. For a generic choice of C×ξ (in the sense of Definition 1.2.9), the wild
character variety Mµ,r

B is smooth. Furthermore, the G × Tm action on Uµ,r is scheme-
theoretically free. Finally,

dimMµ,r
B = (2g + k − 2)n2

− ‖µ‖2 + n(n− 1)(m+ r)+ 2 =: dµ,r, (1.2.14)

where r :=
∑m
α=1 rα and

‖µ‖2 =

k∑
j=1

j̀∑
p=1

(µ
j
p)

2 for µj = (µj1, . . . , µ
j

j̀
).

The first statement is a special case of [B3, Corollary 9.9], the second follows from the
observations following [B3, Lemma 9.10], and the dimension formula comes from [B3,
§9, (41)]. To see that our wild character varieties are indeed special cases of those con-
structed there, one needs to see that the “double” D = G × G (see [B3, Example 2.3])
is a special case of a higher fission variety, as noted in [B3, §3, Example (1)], and that
D//C−1G ∼= C for a conjugacy class C ⊂ G. Then one may form the space

Sg,k,r := D~Gg ~G D~Gk ~G Ar1 ~G · · ·~G Arm//G

in the notation of [B3, §§2,3] and see that Mµ,r
B is a quasi-Hamiltonian quotient of the

above space by the group Gk × Tm at the conjugacy class (C × ξ), and is hence a wild
character variety as defined in [B3, p. 342].

To see that the genericity condition given in [B3, §9, (38), (39)] specializes to ours
(Definition 1.2.9), we observe that for G = GLn(C) the Levi subgroup L of a maximal
standard parabolic subgroup P corresponds to a subgroup of matrices consisting of two
diagonal blocks, and as indicated earlier in the proof of [B3, Corollary 9.7], the map
denoted prL takes the determinant of each factor. In particular, it takes the determinant of
the relevant matrices restricted to the subspace preserved by P . But this is the condition
in Definition 1.2.9.

Finally, using [B3, §9, (41)] and the fact that dim U+ = dim U− =
(
n
2

)
, it is straight-

forward to compute the dimension as (1.2.14).
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2. Hecke algebras

In the following, we describe the theory of Hecke algebras that we will need for our main
results. Let us first explain some notation that will be used. Typically, the object under
discussion will be a C-algebra A which is finite-dimensional over C. We will denote its
set of (isomorphism classes of) representations by Rep A and the subset of irreducible
representations by Irr A; since it will often be inconsequential, we will often also freely
confuse an irreducible representation with its character. Of course, if A = C[G] is the
group algebra of a group G, then we often shorten IrrC[G] to IrrG. We will also some-
times need to consider “deformations” or “generalizations” of these algebras. If H is an
algebra that is free of finite rank over C[u±1

] then its extension C(u) ⊗C[u±1] H to the
quotient field C(u) of C[u±1

] will be denoted by H(u). Note that this abbreviates the
notation C(u)H in [CPA] and [GP, §7.3]. Now, if z ∈ C× and θz : C[u±1

] → C is the
C-algebra homomorphism which maps u 7→ z, then we may consider the “specialization”
C⊗θz H of H to u = z, which we will denote by H(z).

2.1. Definitions and conventions

LetG be a finite group and H ≤ G a subgroup. Given a subset S ⊆ G, we will denote its
indicator function by IS : G→ Z≥0, that is,

IS(x) =

{
1, x ∈ S,

0, otherwise.

Let M be the vector space of functions f : G→ C such that

f (hg) = f (g)

for all h ∈ H and g ∈ G. Clearly, M can be identified with the space of complex-valued
functions onH\G and so has dimension [G : H ]. We may choose a set V of rightH -coset
representatives, so that

G =
∐
v∈V

Hv. (2.1.1)

Such a choice gives a basis

{fv := IHv}v∈V (2.1.2)

of M . Furthermore, we have a G-action on M via

(g · f )(x) := f (xg). (2.1.3)

With this action, M is identified with the induced representation IndGH 1H of the trivial
representation 1H on H .
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The Hecke algebra associated to G and H , which we denote by H (G,H), is the
vector space of functions ϕ : G→ C such that

ϕ(h1gh2) = ϕ(g)

for h1, h2 ∈ H and g ∈ G. It has the following convolution product:

(ϕ1 ∗ ϕ2)(g) :=
1
|H |

∑
a∈G

ϕ1(ga
−1)ϕ2(a) =

1
|H |

∑
b∈G

ϕ1(b)ϕ2(b
−1g). (2.1.4)

Furthermore, there is an action of H (G,H) on M , where, for ϕ ∈ H (G,H), f ∈ M ,
and g ∈ G, one has

(ϕ.f )(g) :=
1
|H |

∑
x∈G

ϕ(x)f (x−1g). (2.1.5)

One easily checks that this is well defined (by which we mean that ϕ.f ∈ M).
It is clear that H (G,H) may be identified with C-valued functions on H\G/H , and

hence it has a basis indexed by the double H -cosets in G. Let W ⊆ G be a set of double
coset representatives which contains e (the identity element of G), so that

G =
∐
w∈W

HwH. (2.1.6)

Then for w ∈W, we will set

Tw := IHwH ;

these form a basis of H (G,H).

Proposition 2.1.7 ([I, Proposition 1.4]). Under the convolution product (2.1.4),
H (G,H) is an associative algebra with identity Te = IH . The action (2.1.5) yields a
unital embedding of algebras H (G,H) → EndCM whose image is EndGM . Thus we
may identify

H (G,H) = EndG IndGH 1H .

Remark 2.1.8 (Relation to the group algebra). The group algebra C[G]may be realized
as the space of functions σ : G→ C with the multiplication

∗G : C[G] ⊗C C[G] → C[G], (σ1 ∗G σ2)(x) =
∑
a∈G

σ1(a)σ2(a
−1x).

It is clear that we have an embedding of vector spaces

ι :H (G,H) ↪→ C[G]

and it is easy to see that if ϕ1, ϕ2 ∈H (G,H) then

ι(ϕ1) ∗G ι(ϕ2) = |H |(ϕ1 ∗ ϕ2), (2.1.9)
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where the convolution product on the right hand side is in H (G,H). Furthermore, the
inclusion takes the identity element Te ∈ H (G,H) to IH , which is not the identity
element in C[G]. Thus, while the relationship between multiplication in H (G,H) and
that in C[G] will be important for us, we should be careful to note that ι is not an algebra
homomorphism. When we deal with indicator functions for double H -cosets, we will
write Tv , v ∈ W, when we consider it as an element of H (G,H), and IHvH when we
think of it as an element of C[G]. We will also be careful to indicate the subscript in ∗G
when we mean multiplication in the group algebra (as opposed to the Hecke algebra).

We will need some refinements regarding Hecke algebras taken with respect to different
subgroups.

2.1.1. Quotients. Let G be a group, H ≤ G a subgroup, and suppose that H = K o L

for some subgroups K,L ≤ H . Our goal is to show that there is a natural surjection
H (G,K)�H (G,H). We note that sinceK ≤ H , there is an obvious inclusion of vec-
tor spaces H (G,H) ⊆ H (G,K), when thought of as bi-invariant G-valued functions.
We will write ∗K and ∗H for the convolution product in the respective Hecke algebras.
From (2.1.9), we easily see that for ϕ1, ϕ2 ∈H (G,H),

ϕ1 ∗K ϕ2 = |L|(ϕ1 ∗H ϕ2). (2.1.10)

Let W = WK
⊆ G be a set of double K-coset representatives such that L ⊆ W ; note

that K`K = `K = K` for ` ∈ L. If ` ∈ L and w ∈ W , then it follows from [I, Lemma
1.2] that T` ∗K Tw = T`w. From this it is easy to see that

E = EL :=
1
|L|

∑
`∈L

T`

is an idempotent in H (G,K). In fact, E = |L|−1IH = |L|−1
1H (G,H), thought of as

bi-invariant functions on G.

Lemma 2.1.11. If WK
⊆ NG(L) then E is central in H (G,K).

Proof. It is enough to show that E ∗K Tw = Tw ∗K E for any w ∈ W . One has

E ∗K Tw =
1

|L||K|

∑
`∈L

T` ∗K Tw =
1
|H |

∑
`∈L

T`w =
1
|H |

∑
`∈L

Tw(w−1`w) =
1
|H |

∑
m∈L

Twm

= Tw ∗K E. ut

Proposition 2.1.12. If E is central in H (G,K) then there exists a surjective algebra
homomorphism H (G,K)→H (G,H) which takes 1H (G,K) to 1H (G,H), given by

α 7→ |L|(E ∗K α).
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Proof. It is easy to check that this map is well defined, i.e., if α is K-bi-invariant, then
|L|(E ∗K α) is H -bi-invariant. To check that the map preserves the convolution product,
one uses the fact that E is a central idempotent and (2.1.10) to see that

|L|(E ∗K (α ∗K β)) = |L|((E ∗K α) ∗K (E ∗K β)) = |L|(E ∗K α) ∗H |L|(E ∗K β).

By the remark preceding Lemma 2.1.11, this map preserves the identity. Finally, it is
surjective, because given ϕ ∈ H (G,H), as mentioned above we may think of it as an
element of H (G,K) and we find |L|−1ϕ 7→ α. ut

2.1.2. Inclusions. Suppose now thatG is a group L,H ≤ G are subgroups and letK :=
H ∩ L. Assume H = K n U for some subgroup U ≤ G and L ≤ NG(U). We write ∗K
and ∗H for the convolution products in H (L,K) and H (G,H), respectively.

Lemma 2.1.13. Suppose x, y ∈ L are such that x ∈ HyH . Then x ∈ KyK .

Proof. We write x = h1yh2 for some h1, h2 ∈ H . Since H = K n U , we may write
h1 = ku for some k ∈ K and u ∈ U . Then x = ky(y−1uy)h2, but since y ∈ L ≤ NG(U),
we have v := y−1uy ∈ U ≤ H and so vh2 ∈ H . But also vh2 = (ky)−1x ∈ L, so
vh2 ∈ K = H ∩ L, and hence x = ky(vh2) ∈ KyK . ut

Proposition 2.1.14. One has an inclusion of Hecke algebras H (L,K) ↪→ H (G,H),
taking 1H (L,K) to 1H (G,H), given by ϕ 7→ ϕH , where

ϕH (g) :=
1
|K|

∑
x∈L

ϕ(x)IH (x−1g).

Proof. It is clear that this is a map of vector spaces. To show that it preserves multiplica-
tion, let ϕ1, ϕ2 ∈H (L,K). Then

(ϕH1 ∗H ϕ
H
2 )(g) =

1
|H |

∑
a∈G

ϕ1(a)ϕ2(a
−1g)

=
1

|H | |K|2

∑
x,y∈L
a∈G

ϕ1(y)IH (y−1a)ϕ2(x)IH (x−1a−1g)

=
1

|U | |K|3

∑
x,y∈L
a∈yH

ϕ1(y)ϕ2(x)IH (x−1a−1g)

=
1

|U | |K|3

∑
x,y∈L
h∈H

ϕ1(y)ϕ2(x)IH (x−1h−1y−1g)

=
1

|U | |K|3

∑
x,y∈L

k∈K,u∈U

ϕ1(y)ϕ2(x)IH (x−1k−1u−1y−1g).
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After the substitution x = k−1z, this becomes

(ϕH1 ∗H ϕ
H
2 )(g) =

1
|U | |K|3

∑
y,z∈L

k∈K,u∈U

ϕ1(y)ϕ2(k
−1z)IH (z−1u−1y−1g)

=
1

|U | |K|2

∑
y,z∈L
u∈U

ϕ1(y)ϕ2(z)IH ((z−1u−1z)z−1y−1g)

=
1
|K|2

∑
y,z∈L

ϕ1(y)ϕ2(z)IH (z−1y−1g)

and with z = y−1x,

(ϕH1 ∗H ϕ
H
2 )(g) =

1
|K|2

∑
x,y∈L

ϕ1(y)ϕ2(y
−1x)IH (x−1g)

=
1
|K|

∑
x∈L

(ϕ1 ∗K ϕ2)(x)IH (x−1g) = (ϕ1 ∗K ϕ2)
H (g).

It is easy to see that 1HH (L,K)
= IHK = IH = 1H (G,H), so we do indeed get a map of

algebras.
To see that it is injective, let V ⊆ L be a set of doubleK-coset representatives, so that

{T
H (L,K)
x }x∈V is a basis of H (L,K). Lemma 2.1.13 says that ifW is a set of doubleH -

coset representatives in G, then we may take V ⊆ W . We write {TH (G,H)
w }w∈W for the

corresponding basis of H (G,H), with the superscripts denoting which Hecke algebra
the element lies in. Then we observe that

(TH (L,K)
x )H (x) =

1
|K|

∑
y∈L

TH (L,K)
x (y)IH (y−1x) =

1
|K|

∑
y∈KxK

IH (y−1x) > 0.

This says that the TH (G,H)
x -component of (TH (L,K)

x )H is non-zero, but as V ⊆ W , the
set {TH (G,H)

x }x∈V is linearly independent, and hence so is the image {(TH (L,K)
x )H }x∈V

of the basis of H (L,K). ut

2.2. Iwahori–Hecke algebras of type An−1

Let G be the algebraic group GLn defined over the finite field Fq . Let T ≤ G be the maxi-
mal split torus of diagonal matrices. There will be a corresponding root system with Weyl
group Sn, the symmetric group on n letters, which we will identify with the group of
permutation matrices. Let B ≤ G be the Borel subgroup of upper triangular matrices. Let
the finite-dimensional algebra H (G,B) be as defined above. The Bruhat decomposition
for G, with respect to B, allows us to think of Sn as a set of double B-coset represen-
tatives, and hence {Tw}w∈Sn

gives a basis of H (G,B). Furthermore, the choice of B
determines a set of simple reflections {s1, . . . , sn−1} ⊆ Sn; we will write Ti := Tsi . The
main result of [I, Theorem 3.2] gives the following characterization of H (G,B) in terms
of generators and relations:
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(a) If w = si1 · · · sik is a reduced expression for w ∈ Sn, then Tw = Ti1 · · · Tik . Hence
H (G,B) is generated as an algebra by T1, . . . , T`.

(b) For 1 ≤ i ≤ `, T 2
i = qTi + (q − 1)1.

2.2.1. A generic deformation. If u is an indeterminate over C, we may consider the
C[u±1

]-algebra Hn generated by elements T1, . . . ,Tn−1 subject to the relations

(a) TiTj = TjTi for all i, j = 1, . . . , n− 1 such that |i − j | > 1;
(b) TiTi+1Ti = Ti+1TiTi+1 for all i = 1, . . . , n− 2;
(c) T2

i = u · 1+ (u− 1)Ti ;

Hn is called the generic Iwahori–Hecke algebra of type An−1 with parameter u. Setting
u = 1, we see that the generators satisfy the relations of the generating transpositions
for Sn, and [I, Theorem 3.2] shows that for u = q these relations give the Iwahori–Hecke
algebra above, so (cf. [CR, (68.11) Proposition])

Hn(1) ∼= C[Sn], Hn(q) ∼=H (G,B). (2.2.1)

2.3. Yokonuma–Hecke algebras

Let T ≤ B ≤ G be as in the previous example, and let U ≤ B be the unipotent radical of B,
namely, the group of upper triangular unipotent matrices. Then the algebra H (G,U),
first studied in [Y1], is called the Yokonuma–Hecke algebra associated to G,B,T. Let
N(T) be the normalizer of T in G; N(T) is the group of monomial matrices (i.e., those
matrices for which each row and each column has exactly one non-zero entry) and one has
N(T) = T o Sn, where the Weyl group Sn acts by permuting the entries of a diagonal
matrix. We will often write N for N(T). By the Bruhat decomposition, one may take
N ≤ G as a set of double U-coset representatives. Section 2.1 describes how H (G,U)
has a basis {Tv : v ∈ N(T)}.

2.3.1. A generic deformation. The algebra H (G,U) has a presentation in terms of gen-
erators and relations due to [Y1, Y2], which we now describe and which we will make
use of later on. For this consider the C[u±1

]-algebra Yd,n generated by the elements

Ti, i = 1, . . . , n− 1, and hj , j = 1, . . . , n,

subject to the following relations:

(a) TiTj = TjTi for all i, j = 1, . . . , n− 1 such that |i − j | > 1;
(b) TiTi+1Ti = Ti+1TiTi+1 for all i = 1, . . . , n− 2;
(c) hihj = hjhi for all i, j = 1, . . . , n;
(d) hjTi = Tihsi (j) for all i = 1, . . . , n − 1 and j = 1, . . . , n, where si := (i, i + 1)
∈ Sn;

(e) hdi = 1 for all i = 1, . . . , n;



Arithmetic and representation theory of wild character varieties 3011

(f) T2
i = ufi fi+1 + (u− 1)eiTi for i = 1, . . . , n− 1, where

ei :=
1
d

d∑
j=1

h
j
i h
−j

i+1 for i = 1, . . . , n− 1, (2.3.1)

fi :=

{
h
d/2
i for d even,

1 for d odd,
for i = 1, . . . , n. (2.3.2)

In Theorem 2.4.3 below, we will see that H (G,U) arises as the specialization Yq−1,n(q).

Remark 2.3.3. The modern definition of Yd,n in terms of generators and relations takes
fi = 1, regardless of the parity of d (cf. [CPA] and [J2]). We decided to take that of [Y1]
so that the meaning of the generators is more transparent. Again, this will be clearer from
Theorem 2.4.3 and its proof.

2.4. Some computations in H (G,U) and Yd,n(u)

We continue with the context of the previous subsection. There is a canonical surjection
p : N→ Sn, which allows us to define the length of an element v ∈ N to be that of p(v);
we will denote this length by `(v).

Lemma 2.4.1. If v1, v2 ∈ N are such that `(v1v2) = `(v1)+`(v2), then Tv1∗Tv2 = Tv1v2 .
In particular, if h ∈ T and v ∈ N then Th ∗ Tv = Thv .

Proof. This follows readily from [I, Lemma 1.2] and the fact that, in the notation there,
ind(v) = q`(v) for v ∈ N. ut

Our first task is to describe the relationship of Yd,n to H (G,U), as alluded to at the
beginning of Section 2.3.1. To do this, we follow the approach in [GP, (7.4), (8.1.6)]. For
example, the u = 1 specialization of Yq−1,n gives

Yq−1,n(1) = C⊗θ1 Yq−1,n ∼= C[N] = C[(F×q )
n oSn], (2.4.2)

the group algebra of the normalizer in G of the torus T (Fq).

Theorem 2.4.3. Let q be a prime power and fix a multiplicative generator tg ∈ F×q . For
t ∈ F×q , let hi(t) ∈ T be the diagonal matrix obtained by replacing the ith diagonal entry
of the identity matrix by t . Finally, let si ∈ N denote the permutation matrix corresponding
to (i, i + 1) and

ωi := sihi(−1) = hi+1(−1)si ∈ N.

Then one has an isomorphism Yq−1,n(q) ∼=H (G,U) of C-algebras under which

Ti 7→ Tωi ∈H (G,U) and hi 7→ Thi (tg) ∈H (G,U).
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Note that ωi is the matrix obtained by replacing the 2×2 submatrix of the identity matrix
formed by the ith and (i + 1)st rows and columns by[

0 1
−1 0

]
.

Proof of Theorem 2.4.3. It is sufficient to show that Tωi , Thj (tg) satisfy the relations pre-
scribed for Ti, hj in Section 2.3.1. Lemma 2.4.1 makes most of these straightforward.
The computation in [Y1, Théorème 2.4◦] gives

T 2
ωi
= qThi (−1)hi+1(−1) +

∑
t∈F×q

Thi (t)hi+1(t−1)Tωi ,

which is (f) . ut

The longest element w0 ∈ W = Sn is the permutation
∏bn/2c
i=1 (i, n + 1 − i) (the order

of the factors is immaterial since this is a product of disjoint transpositions) and is of
length

(
n
2

)
. We may choose a reduced expression

w0 = si1 · · · si(n2)
. (2.4.4)

With the same indices as in (2.4.4), we define

ω0 := ωi1 · · ·ωi(n2)
∈ N and T0 := Ti1 · · ·Ti(n2)

∈ Yd,n. (2.4.5)

Using the braid relations (a) and (b) and arguing as for Matsumoto’s Theorem [GP, The-
orem 1.2.2], one sees that T0 is independent of the choice of reduced expression (2.4.4).
Now, Lemma 2.4.1 shows that

Tω0 = Tωi1
· · · Tωi

(n2)
∈H (G,U)

and Theorem 2.4.3 shows that this corresponds to T0 ∈ Yq−1,n(q).

Lemma 2.4.6. The element T2
0 is central in Yd,n. It follows, by specialization, that T 2

ω0
is central in H (G,U).

Proof. Proceeding as in [GP, §4.1], we define a monoid B+ generated by

T1, . . . , Tn−1, h1, . . . , hn

subject to the relations

(a) TiTj = TjTi for 1 ≤ i, j ≤ n− 1 with |i − j | > 1;
(b) TiTi+1Ti = Ti+1TiTi+1 for 1 ≤ i ≤ n− 2;
(c) hjTi = Tihsi (j) for 1 ≤ i ≤ n− 1 and 1 ≤ j ≤ n, where si := (i, i + 1) ∈ Sn.
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Observe that these are simply relations (a), (b) and (d) given for Yd,n in Section 2.3.1;
one can define the monoid algebra C[u±1

][B+] of which Yd,n will be a quotient via the
mapping

Ti 7→ Ti, hj 7→ hj ,

for 1 ≤ i ≤ n− 1 and 1 ≤ j ≤ n.
Letting

T0 := Ti1 · · · Ti(n2)
∈ C[u±1

][B+],

it is enough to show that T0 is central in C[u±1
][B+]. Arguing as in the proof of [GP,

Lemma 4.1.9], one sees that T2
0 commutes with each Ti, 1 ≤ i ≤ n − 1. Furthermore,

relation (c) and (3.2.5) give

hjT
2
0 = T2

0hw2
0(j)
= T2

0hj ,

provided we note that w2
0 = 1 implies w0 = w

−1
0 = si(n2)

· · · si1 . ut

The following will be useful when we look at representations.

Lemma 2.4.7. The element ei defined in (2.3.1) commutes with Ti in Yd,n(u).

Proof. By relation (d), we see that Ti(h
j
i h
−j

i+1) = (h
−j
i h

j

i+1)Ti . The lemma follows by
averaging over j = 1, . . . , d and observing that both hi and hi+1 have order d. ut

Lemma 2.4.8. The elements T1, . . . ,Tn−1 ∈ Yd,n(u) are all conjugate.

Proof. From relation (f) in Section 2.3.1, we see that each Ti is invertible, with inverse

T−1
i = u

−1(Ti − (u− 1)ei)fi fi+1.

Then

(TiTi+1Ti)Ti+1(TiTi+1Ti)
−1
= (TiTi+1Ti)Ti+1(Ti+1TiTi+1)

−1
= Ti,

and the statement follows by transitivity of the conjugacy relation. ut

2.5. The double centralizer theorem

The following is taken from [KP, §3.2]. Let K be an arbitrary field,A a finite-dimensional
algebra over K, and W a finite-dimensional (left) A-module. Recall that W is said to be
semisimple if it decomposes as a direct sum of irreducible submodules. IfA is semisimple
as a module over itself then it is called a semisimple algebra; the Artin–Wedderburn the-
orem then states that any such A is a product of matrix algebras over (finite-dimensional)
division K-algebras. If U is a finite-dimensional simple A-module, then the isotypic com-
ponent of W of type U is the direct sum of all submodules of W isomorphic to U . The
isotypic components are then direct summands of W and their sum gives a decomposi-
tion of W precisely when the latter is semisimple; in this case, it is called the isotypic
decomposition of W . We recall the following, which is often called the “double central-
izer theorem.”
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Theorem 2.5.1. Let W a finite-dimensional vector space over K, let A ⊆ EndKM be a
semisimple subalgebra, and let

A′ = EndAW := {b ∈ EndKW : ab = ba ∀a ∈ A}

be its centralizer subalgebra. Then A′ is also semisimple and there is a direct sum de-
composition

W =

r⊕
i=1

Wi

which is the isotypic decomposition of W as either an A-module or an A′-module. In
fact, for 1 ≤ i ≤ r , there is an irreducible A-module Ui and an irreducible A′-module
U ′i such that if Di := EndA Ui (this is a division K-algebra by Schur’s lemma), then
EndA′ U ′i ∼= D

op and
Wi
∼= Ui ⊗Di U

′

i .

Remark 2.5.2. If K is algebraically closed, then there are no non-trivial finite-dimen-
sional division algebras over K, and so in the statement above, the tensor product is
over K.

We are interested in the case where K = C (so within the scope of the above remark), H
and G are as in Section 2.1, W = IndGH 1H is the induction of the trivial representation
of a subgroup H ≤ G to G, and A is the image of the group algebra C[G] in EndCW .
Then A is semisimple, and via Proposition 2.1.7 we know A′ = H (G,H). We can then
conclude the following.

Corollary 2.5.3. The Hecke algebra H (G,H) is semisimple.

Furthermore, one observes that the kernel of the induced representation IndGH 1H is given
by
⋂
g∈G gHg

−1. Thus, applying Theorem 2.5.1 with A =H (G,H), since its commut-
ing algebra is the image of the G-action, we may state the following.

Corollary 2.5.4. If
⋂
g∈G gHg

−1 is trivial, then

C[G] ∼= EndH (G,H) IndGH 1H .

2.6. Representations of Hecke algebras

We return to the abstract situation of Section 2.1. By a representation of H (G,H) we
will mean a pair (W, ρ) consisting of a finite-dimensional complex vector space V and
an identity-preserving homomorphism ρ :H (G,H)→ EndCW . Let (V , π) be a repre-
sentation of G and let V H ⊆ V be the subspace fixed by H . Then V H is a representation
of the Hecke algebra H (G,H) via the action

ϕ.v :=
1
|H |

∑
a∈G

ϕ(a)π(a) · v (2.6.1)
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for ϕ ∈ H (G,H) and v ∈ V H . It is easy to check that ϕ.v ∈ V H , so that this is well
defined.

Note that upon choosing a basis vector for the trivial representation 1H ofH , we may
identify

HomH (1H ,ResGH V ) ∼= V
H

by taking an H -morphism to the image of the basis vector. Thus, we have defined a map

DH : RepG→ Rep H (G,H), (V , π) 7→ HomH (1H ,ResGH V ) ∼= V
H .

Let us now set
Irr(G : H) := {ζ ∈ IrrG : (ζ,1GH ) > 0}, (2.6.2)

where ( , ) is the pairing on characters; the condition is equivalent to HomH (1H ,ResGH ζ )
6= 0. We can now give the following characterization of irreducible representations of
H (G,H), which in the more general case of locally compact groups is [BZ, Proposi-
tion 2.10].

Proposition 2.6.3. If (V , π) is an irreducible representation of G, then V H is an irre-
ducible representation of H (G,H), and every irreducible representation of H (G,H)

arises in this way, that is, DH restricts to a bijection DH : Irr(G : H)
∼
−→ Irr H (G,H).

Since C[G] and H (G,H) are semisimple, we can apply Theorem 2.5.1 to W =

IndGH 1H . If we denote the set of irreducible representations of G by IrrG, we find that

IndGH 1H =

⊕
V∈IrrG
VH 6={0}

V ⊗ V H , (2.6.4)

with elements of G acting on the left side of the tensor product and those of H (G,H)

acting on the right. One has a consistency check here: for an irreducible representation V
of G, the multiplicity of V in IndGH 1H is given by

dim HomG(IndGH 1H , V ) = dim HomH (1H ,ResGH V ) = dimV H ,

which is confirmed by the decomposition in (2.6.4).

2.6.1. Traces. Let M ∼= IndGH 1H be as in Section 2.1. Observe that if X ∈ EndCM ,
then relative to the basis (2.1.2), its trace is computed as

trM X =
∑
v∈V

(X.fv)(v).

Lemma 2.6.5. Let g ∈ G and ϕ ∈ H (G,H) and consider gϕ = ϕg ∈ EndC IndGH 1H

(where g is thought of as an element of EndC IndGH 1H via (2.1.3)). Then

tr(gϕ) =
1
|H |

∑
x∈G

ϕ(xgx−1) =
∑

V∈Irr(G:H)

χV (g)χDH (V )(ϕ)

where χV is the character of the G-module V , and χDH (V ) is that of the H (G,H)-
module DH (V ).
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Proof. In the notation of (2.1.2),

|H | tr(gϕ) = |H |
∑
v∈V

((gϕ).fv)(v) = |H |
∑
v∈V

(ϕ.fv)(vg) =
∑
v∈V

∑
y∈G

ϕ(y)fv(y
−1vg)

=

∑
v∈V

∑
y−1vg∈Hv

ϕ(y) =
∑
v∈V

∑
y∈vgv−1H

ϕ(y) =
∑
v∈V

∑
h∈H

ϕ(vgv−1h−1)

=

∑
v∈V

∑
h∈H

ϕ((hv)g(hv)−1) =
∑
x∈G

ϕ(xgx−1),

where we use (2.1.1) at the last line. On the other hand, if g, ϕ are as in the lemma, then
applying gϕ = ϕg to the decomposition (2.6.4), we get

tr(gϕ) =
∑

V∈Irr(G:H)

χV (g)χDH (V )(ϕ). ut

2.6.2. Induced representations. Let G, H , L, K and U be as in Section 2.1.2. Then
one sees that L ∩ U is trivial and hence we may define P := L n U . The inclusion
H (L,K) ↪→H (G,H) given by Proposition 2.1.14 allows us to induce representations
from H (L,K) to H (G,H): if V is an H (L,K)-representation, then

IndH (G,H)

H (L,K)
V :=H (G,H)⊗H (L,K) V,

yielding a map Rep H (L,K)→ Rep H (G,H).
We also have a “parabolic induction” functor: for V ∈ RepL, we define

RGLV := IndGP InflPL V, (2.6.6)

which gives a map RepL → RepG. Let Rep(G : H) denote the set of isomorphism
classes of (finite-dimensional) representations ofG at least one of whose irreducible com-
ponents lies in Irr(G : H). We claim that if V ∈ Irr(L : K), then RGLV ∈ Rep(G : H)
and hence RGL yields a map

RGL : Irr(L : K)→ Rep(G : H).

We know that V ∈ Irr(L : K) if and only if HomK(1K ,ResLK V ) 6= 0. The latter implies

0 6= HomH (1H ,ResPH InflPL V ) = HomP (IndPH 1H , InflPL V ).

Now, inducing to G in both factors1 yields

0 6= HomG(IndGP IndPH 1H , IndGP InflPL V ) = HomG(IndGH 1H , R
G
LV )

= HomH (1H ,ResGH R
G
LV ),

which proves the claim.
Our goal here is to show that D-operators are compatible with these induction opera-

tions. Here is the precise statement.

1 If B ∈ IrrP , then 1IndB ∈ EndG(IndG
P
B, IndG

P
B), so HomP (B,ResG

P
IndG

P
B) 6= 0, and thus

B is an irreducible component of ResG
P

IndG
P
B. It follows that ifA and B are any P -representations

with HomP (A,B) 6= 0 then HomG(IndG
P
A,HomG

P
B) 6= 0.
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Proposition 2.6.7. Assume that
⋂
`∈L `K`

−1 is trivial. Then the following diagram com-
mutes:

Irr(L : K)

RGL
��

DK // Irr H (L,K)

Ind
��

Rep(G : H)
DH // Rep H (G,H)

Proof. By the assumption, Lemma 2.5.4 gives us

C[L] ∼= EndH (L,K) IndLK 1K = IndLK 1K ⊗H (L,K) (IndLK 1K)
∗.

Therefore, given V ∈ Irr(L : K), we may rewrite this as

V ∼= C[L] ⊗C[L] V = IndLK 1K ⊗H (L,K) (IndLK 1K)
∗
⊗C[L] V (2.6.8)

where now we are taking the L-action on the first factor IndLK 1K . Since

(IndLK 1K)
∗
⊗C[L] V = HomL(IndLK 1K , V ) = HomK(1K ,ResLK V ) = DK(V ),

(2.6.8) gives
V ∼= IndLK 1K ⊗H (L,K) DK(V ).

Now, applying RGL to both sides, one gets

RGLV
∼= R

G
L (IndLK 1K ⊗H (L,K) DK(V )) = RGL (IndLK 1K)⊗H (L,K) DK(V ), (2.6.9)

as the L-action is on the first factor. Now, using the natural isomorphisms of functors

InflPL IndLK = IndPH InflHK , IndGP IndPH = IndGH

and the fact that InflHK 1K = 1H , we can simplify

RGL (IndLK 1K) = IndGP InflPL IndLK 1K = IndGP IndPH InflHK 1K = IndGH 1H ,

and so (2.6.9) becomes

RGLV
∼= IndGH 1H ⊗H (L,K) DK(V ).

Applying now the functor DH = HomH (1H ,ResGH (−)) to both sides, and again
noting that the G-action on the right hand side is on the first factor, we get

DH (RGLV ) ∼= HomH (1H ,ResGH IndGH 1H )⊗H (L,K) DK(V )

= EndG(IndGH 1H , IndGH 1H )⊗H (L,K) DK(V )

=H (G,H)⊗H (L,K) DK(V ) = IndH (G,H)

H (L,K)
DK(V ). ut
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2.7. Character tables

We now review some facts about the character tables of some finite groups which will be
used in our counting arguments later. In this section and later, if A is an abelian group,
we often denote its group of characters by Â := Hom(A,C×).

2.7.1. Character table of GLn(Fq). We follow the presentation of [Ma, Chapter IV].
Fix a prime power q. Let 0n := F̂×qn be the dual group of F×qn . For n |m, the norm maps
Nmn,m : F×qm → F×qn yield an inverse system, and hence the 0n form a direct system
whose colimit we denote by

0 := lim
−→

0n.

There is a natural action of the Frobenius Frobq : F
×

q → F×q , given by γ 7→ γ q , restrict-
ing to each F×qn and hence inducing an action on each 0n and hence on 0; we identify 0n
with 0Frobnq . Let 2 denote the set of Frobq -orbits in 0.

The weighted size of a partition λ = (λ1, λ2, . . .) ∈ P is

n(λ) :=
∑
i≥1

(i − 1)λi =
∑
j≥1

(
λ′j

2

)
where, as usual, λ′ = (λ′1, λ

′

2, . . .) is the conjugate partition of λ, i.e., λ′i is the number
of λj ’s not smaller than i. The hook polynomial of λ is defined as

Hλ(q) :=
∏
�∈λ

(qh(�) − 1) (2.7.1)

where the product is taken over the boxes in the Ferrers diagram (cf. [Sta, 1.3]) of λ, and
h(�) is the hook length of the box � in position (i, j) defined as

h(�) := λi + λ
′

j − i − j + 1.

By [Ma, IV (6.8)] there is a bijection between the irreducible characters of GLn(q)
and the set of functions 3 : 2 → P which are stable under the Frobenius action and
having total size

|3| :=
∑
γ∈2

|γ | |3(γ )|

equal to n. Under this correspondence, the character χG
3 corresponding to 3 has degree∏n

i=1(q
i
− 1)

q−n(3
′)H3(q)

(2.7.2)

where

H3(q) :=
∏
γ∈2

H3(γ )(q
|γ |), (2.7.3)

n(3) :=
∑
γ∈2

|γ |n(3(γ )). (2.7.4)
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Remark 2.7.5. There is a class of irreducible characters of GLn(Fq), known as the
unipotent characters, which are also parametrized by Pn. Given λ ∈ Pn, the associated
unipotent character χG

λ is the one corresponding to, in the description above, the function
3λ : 2→ P , where3λ takes the (singleton) orbit of the trivial character in 01 to λ ∈ Pn
and all other orbits to the empty partition.

In fact, any ψ ∈ 01 = F̂×q is a singleton orbit of Frobq and so we may view 01 as a
subset of 2. Thus, if we let Qn denote the set of maps 3 : 01 → P of total size n, i.e.,

|3| =
∑
ψ∈01

|3(ψ)| = n,

then Qn is a set of maps 2→ P of size n. The set of characters of GLn(Fq) correspond-
ing to the maps in Qn will also be important for us later.

The following description of the characters corresponding to Qn can be found in the
work of Green [Gr]. Suppose n1, n2 are such that n = n1 + n2. Let L = GLn1(Fq) ×
GLn2(Fq) and view it as the subgroup of GLn(Fq) of block diagonal matrices, U12 ≤ G
the subgroup of upper block unipotent matrices, and P := LnU12 the parabolic subgroup
of block upper triangular matrices. The ◦-product−◦− : Irr GLn1(Fq)×Irr GLn2(Fq)→
Rep GLn(Fq) is defined as

χ1 ◦ χ2 = R
G
L (χ1 ⊗ χ2) = IndG

P InflP
L(χ1 ⊗ χ2). (2.7.6)

Now, given 3 ∈ Qn, we will often write ψ1, . . . , ψr ∈ 01 for the distinct elements for
which ni := |3(ψi)| > 0 (note that

∑
i ni = n) and λi := 3(ψi). For each 1 ≤ i ≤ r ,

we have the unipotent representation χG
λi

of GLni (Fq), described above, as well as the
character ψG

i := ψi ◦ det : GLni (Fq) → F×q → C×. Then the irreducible character χG
3

of GLn(Fq) associated to 3 ∈ Qn is

χG
3 := (χ

G
3(ψ1)

⊗ ψG
1 ) ◦ · · · ◦ (χ

G
3(ψr )

⊗ ψG
r ). (2.7.7)

The fact that it is irreducible is attributable to [Gr]. One may also think of the tuple of
characters of the GLni (Fq) as yielding one on the product, which may be viewed as the
Levi of some parabolic subgroup of GLn(Fq). Then the above ◦-product is the parabolic
induction of the character on the Levi.

2.7.2. Character table of N. Recall the isomorphisms N ∼= ToSn = (F×q )noSn. Our
aim is to describe Irr N, but let us begin with a description of the irreducible represen-
tations of each of its factors. One has Irr T = T̂, the dual group. Furthermore, it is well
known that IrrSn is in natural bijection with the set Pn of partitions of n: to λ ∈ Pn one
associates the (left) submodule of C[Sn] spanned by its “Young symmetrizer” [FH, §4.1];
we will denote the resulting character by χS

λ .
To describe Irr N explicitly, we appeal to [Se, §8.2, Proposition 25], which treats the

general situation of a semidirect product with abelian normal factor. If ψ ∈ T̂ then ψ
extends to a (1-dimensional) character of ToStabψ (note that if we identify T̂ = (̂F×q )n,
then Sn acts by permutations) trivial on Stabψ ; so now, given χ ∈ Irr(Stabψ), we get
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ψ⊗χ ∈ Irr(ToStabψ). The result cited above says that IndN
ToStabψ ψ⊗χ is irreducible

and in fact all irreducible representations of N arise this way (with the proviso that we get
isomorphic representations if we start with characters in the Sn-orbit of ψ).

If we write ψ = (ψ1, . . . , ψn) ∈ (̂F×q )n, then Stabψ ∼= Sn1 × · · · ×Snr where the
ni are the multiplicities with which the ψj appear. Further, χ ∈ Irr(Stabψ) = IrrSn1 ×

· · ·× IrrSnr so χ is an exterior tensor product χS
λ1
⊗· · ·⊗χS

λr
with λi ∈ Pni . Thus, from

Indψ ⊗ χ , we may define a map 3 : 01 → P by setting 3(ψj ) = λi where j is among
the indices permuted by Sni , and letting 3(ϕ) be the empty partition if ϕ ∈ F̂×q does not
appear in ψ . In this way, we get a map 3 : 01 → P of total size n, i.e., an element of Qn

defined in Remark 2.7.5.
Conversely, given 3 ∈ Qn, let ψi ∈ 01, ni and λi ∈ Pni be as in the paragraph

preceding (2.7.7). Let Ti := (F×q )ni and set Ni := Ti o Sni . Observe that if ψ ∈ T̂
is defined by taking the ψi with multiplicity ni , then

∏r
i=1 Ni = T o Stabψ . Now, ψi

defines a character of Ni by

(t1, . . . , tni , σ ) 7→

ni∏
j=1

ψi(tj ),

and χS
λi

defines an irreducible representation of Sni and hence of Ni . Hence we get

χ
Ni
λi ,ψi
:= χS

λi
⊗ ψi ∈ Irr Ni .

Taking their exterior tensor product and then inducing to N gives the irreducible repre-
sentation

χN
3 := IndN∏

Ni

⊗
i

χ
Ni
λi ,ψi
∈ Irr N. (2.7.8)

It is in this way that we will realize the bijection Qn
∼
−→ Irr N.

It will be convenient to define for 3 ∈ Qn the function 3̃ ∈ Qn as

3̃(ψ) :=

{
3(ψ)′ for ψ odd,
3(ψ) for ψ even,

(2.7.9)

where ψ is said to be even if ψ(−1Fq ) = 1C, and odd otherwise.

2.8. Parameter sets for IrrHn

Here, we take up again the notation introduced at the beginning of Section 2.2. Given a
partition λ ∈ Pn, we will be able to associate to it three different characters: the unipotent
character χG

λ of G described in Remark 2.7.5, which we will see below is, in fact, an
element of Irr(G : B); a character χH

λ ∈ Irr H (G,B); and the irreducible character χS
λ

of the symmetric group Sn. The discussions in Sections 2.2 and 2.6 suggest that there are
relationships amongst these, and the purpose of this section is indeed to clarify this.

To a partition ν ∈ Pn, say ν = (ν1, . . . , ν`), one can associate a subgroup Sν :=

Sν1 × · · · ×Sν` ≤ Sn and then consider the character τSν of the induced representation
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IndSn

Sν
1Sν

. Then these characters are related to those of the irreducible representations
χS
λ (see Section 2.7.1) by the Kostka numbersKλν [FH, Corollary 4.39], via the relation-

ship
τSν =

∑
λ∈Pn

Kλνχ
S
λ . (2.8.1)

Also to ν ∈ Pn one can associate a standard parabolic subgroup Pν ≤ G whose
Levi factor Lν is isomorphic to GLν1(F1)× · · · × GLν`(Fq). Then one may consider the
character τG

ν := IndG
Pν
1Pν of the parabolic induction of the trivial representation.2

Then if λ ∈ Pn and χG
λ denotes the corresponding unipotent characters (as described

in Remark 2.7.5), the following remarkable parallel with representations of the symmetric
group was already observed in [Ste, Corollary 1]:

τG
ν =

∑
λ∈Pn

Kλνχ
G
λ . (2.8.2)

In particular, as Kλλ = 1 for all λ ∈ Pn, we see that χG
λ is a component of τG

λ and hence
of τG

(1n), which is the character of IndG
B 1B. This shows that

{χG
λ : λ ∈ Pn} ⊆ Irr(G : B). (2.8.3)

Now consider the specializations (2.2.1) of Hn corresponding to θq , θ1 : C[u±1
] → C.

Since Hn(u) is split semisimple [CR, (68.12) Corollary], Tits’s deformation theorem
([CR, (68.20) Corollary], [GP, 7.4.6 Theorem]) applies to give bijections

dθq : IrrHn(u)
∼
−→ IrrHn(q) = Irr H (G,B), dθ1 : IrrHn(u)

∼
−→ IrrHn(1) = IrrSn,

where a character X : Hn → C[u±1
] (the characters of Hn(u) are in fact defined over

C[u±1
] by [GP, Proposition 7.3.8]) is taken to its specialization Xz : Hn → C ⊗θz

C[u±1
] = C for z = 1 or z = q. We can thus define the composition

TB := dθq ◦ d
−1
θ1
: IrrSn

∼
−→ Irr H (G,B). (2.8.4)

Now, we have bijections (using Proposition 2.6.3 for the one on the left)

Irr(G : B)
DB

''

IrrSn

TB

xx
Irr H (G,B)

(2.8.5)

and since |IrrSn| = |Pn| all of the sets are of this size, so the inclusion in (2.8.3) is in
fact an equality

Irr(G : B) = {χG
λ : λ ∈ Pn}.

Furthermore, the following holds.

2 By [DM, Proposition 6.1], τG
ν depends only on the isomorphism class of Lν (rather than the

parabolic Pν ), which in turn depends only on ν.
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Proposition 2.8.6 ([HR, Theorem 4.9(b)]). For λ ∈ Pn, one has

DB(χ
G
λ ) = TB(χ

S
λ ).

Proof. [CR, (68.24) Theorem] states that the bijection D−1
B ◦TB : IrrSn

∼
−→ Irr(G : B)

satisfies (
(D−1

B ◦TB)(χ
S
λ ), τ

G
ν

)
= (χS

λ , τ
S
ν )

for all ν ∈ Pn. Since the right hand side is, from (2.8.1),Kλν , formula (2.8.2) implies that
we must have D−1

B ◦TB(χ
S
λ ) = χ

G
λ . ut

This allows us to unambiguously define, for each λ ∈ Pn, an irreducible representation
χH
λ ∈ Irr H (G,B) by

χH
λ := DB(χ

G
λ ) = TB(χ

S
λ ).

2.9. Parameter sets for IrrYd,n

In Section 2.7, we saw that the set Qn was used to parametrize both the irreducible rep-
resentations of Irr N (Section 2.7.2) and a subset of those of G = GLn(Fq) (Remark
2.7.5). We will see (in Remark 2.9.20) that the latter subset is in fact Irr(G : U), which
by Proposition 2.6.3 yields the irreducible representations of H (G,U), and furthermore
that Tits’s deformation theorem again applies to the generic Yokonuma–Hecke algebra,
which gives a bijection of these representations with Irr N. The purpose of this section is
to establish, as in Section 2.8, the precise correspondence between the relevant irreducible
representations in terms of the elements of the parameter set Qn.

Let us proceed with the argument involving Tits’s deformation theorem. Recall from
Theorem 2.4.3 that we have isomorphisms

H (G,U) ∼= Yq−1,n(q) and C[N] ∼= Yq−1,n(1)

by specializing Yq−1,n at u = q and u = 1, respectively. Thus, both H (G,U) ∼=
Yq−1,n(q) and C[N] ∼= Yq−1,n(1) are split semisimple by [CPA, Proposition 9], and
Yd,n(u) is also split by [CPA, 5.2].3 Thus, the deformation theorem ([CR, (68.20) Corol-
lary], [GP, 7.4.6 Theorem]) again applies to yield bijections

dθq : IrrYq−1,n(u)
∼
−→ IrrYq−1,n(q) = Irr H (G,U),

dθ1 : IrrYq−1,n(u)
∼
−→ IrrYq−1,n(1) = Irr N,

(2.9.1)

where we denote by θq : C[u±1
] → C the C-algebra homomorphism sending u to q.

Again, [GP, Proposition 7.3.8] applies to show that if X ∈ IrrYd,n(u), then in fact X

3 Strictly speaking, [CPA] considers Yd,n(v) where v2
= u. However, one can define all irre-

ducible representations in [CPA, Proposition 5] of Yd,n(v) already over Yd,n(u) by a slight change
in the defining formulas of [CPA, Proposition 5] (see [CPo, Theorem 3.7]).
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maps Yd,n into C[u±1
], and the bijections in (2.9.1) are in fact the specializations of X .

We may put these together to obtain a bijection

TU := dθq ◦ d
−1
θ1
: Irr N→ Irr H (G,U). (2.9.2)

Furthermore, [GP, Remark 7.4.4] tells us that

dθq (X ) = θq(X ) and dθ1(X ) = θ1(X ). (2.9.3)

In particular, the dimensions of the irreducible representations of H (G,U) and C[N]
agree. Thus, we may conclude from Wedderburn’s theorem that the Hecke algebra
H (G,U) and the group algebra C[N] are isomorphic as abstract C-algebras.

Defining DU : Irr(G : U) → Irr H (G,U) as in Proposition 2.6.3, we get a diagram
like that at (2.8.5):

Irr(G : U)
DU

''

Irr N
TU

yy
Irr H (G,U)

(2.9.4)

For every3 ∈ Qn we will define a character XY
3 ∈ IrrYd,n(u) (see (2.9.24) in Section

2.9.4 below) such that

XY
3 ⊗θ1 C = dθ1(X

Y
3 ) = χ

N
3̃
∈ Irr N

is the one described in Section 2.7.2 for the modified 3̃. This together with the u = q

specialization

XY
3 ⊗θq C = dθq (X

Y
3 ) = χ

H
3 ∈ Irr H (G,U)

will satisfy

TU(χ
N
3̃
) = χH

3 .

As in Section 2.6, for a character χG
3 ∈ Irr(G : U) one defines

DU(χ
G
3) := HomU(1U,ResG

U χ
G
3),

namely, the subspace of U-invariants, as in Proposition 2.6.3.
Our definition of XY

3 will be such that the χG
3 from Section 2.7.1 is mapped by DU to

the same χH
3 , thus proving the main result of this section.

Theorem 2.9.5. Let the characters χG
3 and χN

3̃
be those described in Sections 2.7.1

and 2.7.2, respectively. Then the set Qn parametrizes the pairs of irreducible representa-
tions (V , V U) from Proposition 2.6.3 in such a way that the characters

χG
3 ∈ Irr(G : U) and χN

3̃
∈ Irr N

satisfy
DU(χ

G
3) = TU(χ

N
3̃
) ∈ Irr H (G,U).
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Inspired by the construction of Irr N in Section 2.7.2, we establish a parallel with the
technique of parabolic induction to build the character table of G using the unipotent
characters as building blocks.

The rest of this section is devoted to studying the bijections DU,TU,DB and TB more
carefully. In Section 2.9.1 we prove the compatibility between them. In Section 2.9.2
we analyze their behaviour under a twist by a degree one character. In Section 2.9.3 we
check their interplay with parabolic induction and exterior tensor products. Finally, in
Section 2.9.4 we construct the character table of the generic Yokonuma–Hecke algebra,
as a common lift of both Irr N and Irr(G : U).

2.9.1. From B to U. Let us start by checking that the correspondence for the unipotent
characters χG

λ in the H (G,U)-case agrees with the one in the H (G,B)-case (cf. Remark
2.7.5). Taking G = G, H = B, K = U and L = T in Proposition 2.1.12, noting that
Lemma 2.1.11 applies as the set N of double U-coset representatives normalizes T, we
get a surjective homomorphism H (G,U)�H (G,B), and hence we obtain an inflation
map Infl : Rep H (G,B)→ Rep H (G,U), taking Irr H (G,B) to Irr H (G,U). We can
then make the following precise statement.

Proposition 2.9.6. The following diagram is commutative:

Irr(G : B)
_�

��

DB // Irr H (G,B)
_�

Infl
��

IrrSn
TBoo

_�

Infl
��

Irr(G : U)
DU // Irr H (G,U) Irr N

TUoo

(2.9.7)

where the top horizontal arrows are the bijections in (2.8.5), the bottom horizontal arrows
those in (2.9.4), the leftmost vertical arrow is the natural inclusion and the other two are
the inflation maps.

Proof. We know from Proposition 2.6.3 that DB maps χG
λ to the character χH

λ ∈

Irr H (G,B) given by

χH
λ = HomB(1B,ResG

B χ
G
λ ) = HomG(IndG

B 1B, χ
G
λ ).

We want to replace IndG
B 1B by IndG

U 1U. Let us take a closer look at the latter. It is canon-
ically isomorphic to IndG

B IndB
U 1U, but since B = U o T, we have IndB

U 1U = InflB
T C[T],

where C[T] is the regular representation of T. Since C[T] is the direct sum of the degree
one characters φ : T→ C×, the group of which we denote by T̂, one finds that InflB

T C[T]
is the sum of the inflations φ : B→ C×, hence

IndG
U 1U =

⊕
φ∈T̂

IndG
B φ,

and
HomG(IndG

U 1U, χ
G
λ ) =

⊕
φ∈T̂

HomG(IndG
B φ, χ

G
λ ). (2.9.8)
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For any φ ∈ T̂ one has

HomG(IndG
B φ, IndG

B 1B) = HomB(φ,ResG
B IndG

B 1B),

which by the Mackey decomposition becomes

∑
σ∈B\G/B

HomB(φ, IndB
B∩σ−1Bσ (1B∩σ−1Bσ ))

=

∑
σ∈B\G/B

HomB∩σ−1Bσ (ResB
B∩σ−1Bσ φ,1B∩σ−1Bσ )

where σ runs over a full set of B-double coset representatives. Since T ⊆ B ∩ σ−1Bσ
acts non-trivially on ResB

B∩σ−1Bσ
(φ) for φ non-trivial, the only non-vanishing term in this

last sum is the one with φ = 1B.
Since χG

λ is a constituent of IndG
B 1B, only one summand on the right hand side of

(2.9.8) does not vanish and we end up with

HomG(IndG
U 1U, χ

G
λ ) = HomG(IndG

B 1B, χ
G
λ ).

The irreducible H (G,U)-representation associated to χG
λ is

HomU(1U,ResG
U χ

G
λ ) = HomG(IndG

U 1U, χ
G
λ ),

which is thus isomorphic to HomG(IndG
B 1B, χ

G
λ ) with the H (G,U)-module structure

induced by the surjection H (G,U)→ H (G,B) coming from Proposition 2.1.12. This
proves the commutativity of the left square in (2.9.7).

The right one is also commutative since all the non-horizontal arrows in

IrrHn(u)_�

Infl
��

dθq

ww

dθ1

%%
Irr H (G,B)

_�

Infl

��

IrrSn
oo TB

_�

Infl

��

IrrYn(u)
dθq

ww

dθ1

%%
Irr H (G,U) Irr N

TUoo

arise from taking tensor products. ut
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2.9.2. Twisting by characters of F×q . In order to deal with character twists, we extend the
Iwahori–Hecke algebra as follows. For d, n ≥ 1 we introduce the C[u±1

]-algebra Hd,n
defined by

Hd,n := Hn[h]/(h
d
− 1) = Hn ⊗C C[Cd ]

where Cd is the cyclic group of order d and h ∈ Cd a generator. As usual, denote by
Hd,n(u) the corresponding C(u)-algebra C(u)⊗C[u±1] Hd,n.

Since Hd,n(u) is a tensor product of semisimple algebras it is also semisimple and its
set of characters is the cartesian product of those of its factors. Concretely, for λ ∈ Pn
and ψ ∈ IrrC[Cd ] we define XHd,n

λ,ψ to be the exterior tensor product

XHd,n
λ,ψ := XHn

λ ⊗ ψ ∈ IrrHd,n(u) = IrrHn(u)× IrrC[Cd ]. (2.9.9)

These are all the irreducible representations of Hd,n(u), and they all come from localizing
certain finitely generated representations of Hd,n that we also denote by XHd,n

λ,ψ .
There is a natural quotient

Yd,n � Hd,n (2.9.10)

that sends the hi ∈ Yd,n to h ∈ Hd,n and the Ti ∈ Yd,n to the Ti from Hn.

The u = 1 specialization gives

C⊗θ1 Hd,n ' C[Sn] ⊗C C[Cd ] = C[Sn × Cd ],

and the u = q specialization gives

C⊗θq Hd,n 'H (G,B)⊗C C[Cd ],

which in the d = q − 1 case gives

H (G,B)[F×q ] 'H (G,B1) where B1 = B ∩ SLn(Fq).

Here

Irr H (G,B1) = Irr H (G,B)× IrrF×q

and the u = q specialization of the natural map (2.9.10) becomes

H (G,U)�H (G,B)[F×q ] (2.9.11)

where, for σ ∈ Sn and t ∈ T, the corresponding basis elements are mapped as follows:

H (G,U) 3 Tσ 7→ Tσ ∈H (G,B),

H (G,U) 3 Tt 7→ det t ∈ F×q ⊆H (G,B)[F×q ].
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Remark 2.9.12. The Ti from Yq−1,n corresponds to ωi ∈ T oSn, whereas the Ti from
Hq−1,n corresponds to σi ∈ Sn ⊆ F×q × Sn. Therefore, the u = 1 specialization of
(2.9.10) gives the surjection

ToSn � F×q ×Sn, ToSn 3 (t, σ ) 7→ ((det t)(sgn σ), σ ) ∈ F×q ×Sn, (2.9.13)

where sgn σ = (−1)`(σ ) ∈ F×q . For this reason we define

Ĩnfl : Irr(Sn × F×q )→ Irr N

as composition with the map (2.9.13). Thus, for χ
F×q S
λ,ψ := χ

S
λ ⊗ ψ ∈ Irr(F×q ×Sn) and

(t, σ ) ∈ N, we have

Ĩnfl
(
χ
F×q S
λ,ψ

)
(t, σ ) = ψ((sgn σ)(det t))χS

λ (σ ). (2.9.14)

Remark 2.9.15. In general, we reserve the notation Infl for inflation by the natural quo-
tient. In this case it is

T oSn � F×q ×Sn

mapping (t, σ ) ∈ T oSn to (det t, σ ). Therefore, by (2.9.14),

Ĩnfl
(
χ
F×q S
λ,ψ

)
(t, σ ) = ψ(sgn σ) Infl

(
χ
F×q S
λ,ψ

)
(t, σ ).

Since ψ ◦ sgn ∈ IrrSn is the sign representation when ψ is an odd (i.e., non-square)
character, and is trivial when ψ is even (i.e., the square of a character), and tensoring with
the sign representation amounts to taking the transpose partition λ′, we see that

Ĩnfl(χλ,ψ ) =

{
Infl(χ

λ′,ψ
) for ψ odd,

Infl(χλ,ψ ) for ψ even,

where the superscripts F×q S have been omitted.

Remark 2.9.16. In any case we have

Ĩnfl
(
χ
F×q S
λ,ψ

)
(t) = ψ(det t)χS

λ (1) = Infl
(
χ
F×q S
λ,ψ

)
(t)

for t ∈ T ⊆ N, and

Ĩnfl
(
χ
F×q S
λ,ψ

)
(ωi) = χ

S
λ (si) = Infl

(
χ
F×q S
λ,ψ

)
(si)

where ωi, si ∈ N as in Theorem 2.4.3. Thus, by definition of the characters χN
3 ∈ IrrZ≥0

for 3 ∈ Qn in Section 2.7.2 and (2.7.9),

χN
3̃
(t) = χN

3(t) and χN
3̃
(ωi) = χ

N
3(si) (2.9.17)

for 3 ∈ Qn, t ∈ T, and ωi , si ∈ N as before.
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Let χG
λ ∈ Irr(G : B) ⊆ Irr(G : U) be a unipotent character and let ψ ∈ 01 = F̂×q . As

in Remark 2.7.5, we have ψG
:= ψ ◦ det : G→ C× and we consider the representation

χG
λ ⊗ψ

G. Since U ⊆ kerψG, we have dim (χG
λ ⊗ψ

G)U = dim (χG
λ )

U > 0, so χG
λ ⊗ψ

G
∈

Irr(G : U). Thus, taking tensor products gives a map Irr(G : B)× F̂×q → Irr(G : U).

Proposition 2.9.18. Let ψ ∈ 01 be as above. Then the following diagram is commuta-
tive:

Irr(G : B)
DB //

_�

−⊗ψ

��

Irr H (G,B)
_�

−⊗ψ

��

IrrSn
TBoo

_�

−⊗ψ

��
Irr(G : B)× F̂×q

(DB,id) //
_�

−⊗−

��

Irr(H (G,B)[F×q ])
_�

Infl
��

Irr(Sn × F×q )
(TB,id)oo

_�

Ĩnfl
��

Irr(G : U)
DU // Irr H (G,U) Irr N

TUoo

Proof. The commutativity of the squares on the left largely comes from the formula
(2.6.1) for the action of the Hecke algebra, as well as noting that the H (G,U)-action
factors through the surjection onto H (G,B)[F×q ] = H (G,B1), which comes from ei-
ther (2.9.11) or Proposition 2.1.12.

The squares on the right are also commutative since all the non-horizontal arrows in

IrrHn(u)_�

⊗ψ

��

dθq

uu

dθ1

((
Irr H (G,B)

_�

−⊗ψ

��

IrrSn
oo TB

_�

−⊗ψ

��

Irr(Hn(u)[F×q ])
_�

Infl

��

dθq

vv

dθ1

''
Irr(H (G,B)[F×q ])

_�

Infl

��

Irr(Sn × F×q )oo (TB,id)

_�

Ĩnfl

��

IrrYn(u)
dθq

uu

dθ1

((
Irr H (G,U) Irr N

TUoo

arise from tensor products. ut

2.9.3. Parabolic induction. We now check that the parabolic induction of a product of ir-
reducible representations is compatible with the operations DU (coming from Section 2.6)
and TU (defined at (2.9.2)).
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Suppose n1, n2 are such that n = n1 + n2. For i = 1, 2, let Gi := GLni (Fq), and
let Bi , Ui , and Ni be the respective subgroups of Gi as described at the beginning of
Section 2.3. Let L = G1 × G2 and view it as the subgroup of G = GLn(Fq) of block
diagonal matrices; let U12 ≤ G be the subgroup of upper block unipotent matrices and
P := LU12 the corresponding parabolic subgroup. If BL := L ∩ B, then its unipotent
radical is UL = L ∩ U = U1 × U2. One may also identify N1 × N2 with a (proper)
subgroup of N.

Remark 2.9.19. Observe that U = ULnU12 and L normalizes U12, so that, withG = G,
H = U, L = L, K = UL and U = U12, we are in the situation of Section 2.1.2, and
Proposition 2.1.14 gives an inclusion H (L,UL) ↪→H (G,U). Furthermore, the functor
RG

L : Rep L→ Rep G defined at (2.6.6) is the usual parabolic induction functor.

Remark 2.9.20. For i = 1, 2, let ψ1, ψ2 ∈ F̂×q be distinct and let λi ∈ Pni . Then by the

discussion preceding Proposition 2.9.18, χG
λi
⊗ ψ

Gi
i ∈ Irr(Gi : Ui). Thus, Remark 2.9.19

makes the discussion preceding Proposition 2.6.7 relevant: it says that (χG
λ1
⊗ ψ

G1
1 ) ◦

(χG
λi
⊗ ψ

Gi
i ) ∈ Rep(G : U). However, this ◦-product is irreducible, as mentioned in

Remark 2.7.5, so in fact it lies in Irr(G : U). By a straightforward inductive argument,
we see that for every 3 ∈ Qn, one has χG

3 ∈ Irr(G : U) (as defined in Remark 2.7.5).
We repeat the argument of Section 2.8 to show that Irr(B : G) consists of precisely the
unipotent representations: one has an inclusion

{χG
3 : 3 ∈ Qn} ⊆ Irr(G : U),

but since |Irr(G : U)| = |Irr H (G,U)| = |Irr N| = |Qn| via the bijections DU and TU,
we must have equality.

Remark 2.9.21. Since

HomUL(1UL ,ResL
UL
(χ

G1
1 ⊗ χ

G2
2 ))

∼= HomU1(1U1 ,ResG1
U1
χ

G1
1 )⊗C HomU2(1U2 ,ResG2

U2
χ

G2
2 )

as modules over the algebra H (L,UL) ∼=H (G1,U1)⊗H (G2,U2), one has

DUL(χ
G1
1 ⊗ χ

G2
2 ) ∼= DU1(χ

G1
1 )⊗ DU2(χ

G2
2 ). (2.9.22)

Proposition 2.9.23. The following diagram is commutative:

Irr(G1 : U1)× Irr(G2 : U2)

−◦−

��

DUL // Irr H (L,UL)

Ind
��

Irr(N1 × N2)
TULoo

Ind
��

Rep(G : U)
DU // Rep H (G,U) Rep N

TUoo
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Proof. Commutativity of the left square comes from Proposition 2.6.7, which applies by
Remark 2.9.19 and by observing that

⋂
`∈L `UL`

−1 is trivial.
Let us take representations XY

1 ,X
Y
2 of Yq−1,n1(u) and Yq−1,n2(u) and denote their

corresponding u = 1 specializations by χN1
1 and χN2

2 , and their u = q specializations by
χ

H1
1 and χH2

2 , respectively, so that

TUi (χ
Ni
i ) = χ

Hi

i .

For i = 1, 2 we write χGi
i for the corresponding Gi representation, in such a way that

χ
Hi

i agrees with

HomUi (1Ui ,ResGi
Ui χ

Gi
i ),

namely, the H (Gi,Ui)-representation DUi (χ
Gi
i ).

By (2.9.22), the commutativity of the right square follows since the vertical and diag-
onal arrows in

Irr(Yn1(u)⊗C(u) Yn2(u))

Ind
��

dθq

uu

dθ1

))
Irr H (L,UL)

Ind

��

Irr(N1 × N2)oo
TUL

Ind

��

RepYn(u)
dθq

uu

dθ1

))
Rep H (G,U) Rep N

TUoo

come from taking tensor products. Namely

IndH (G,U)
H (L,UL)

TU(χ
N1
1 ⊗ χ

N2
2 ) =H (G,U)⊗H (L,UL)

(χ
H1
1 ⊗ χ

H2
2 )

happens to be the u = q specialization of

Yn ⊗Yn1⊗Yn2
(XY

1 ⊗ XY
2 ).

Taking the u = 1 specialization gives

C[N] ⊗C[N1×N2]
(χ

N1
1 ⊗ χ

N2
2 ) = IndN

N1×N2
(χ

N1
1 ⊗ χ

N2
2 ),

thus proving

IndH (G,U)
H (L,UL)

TUL(χ
N1
1 ⊗ χ

N2
2 ) = TU(IndN

N1×N2
(χ

N1
1 ⊗ χ

N2
2 )). ut
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2.9.4. Proof of Proposition 2.9.5. We define a family of representations of Yq−1,n
parametrized by Qn whose u = 1 specialization matches that of Section 2.7.2, and whose
u = q specialization gives the DU image of the characters described in Remark 2.7.5.

Given a partition λ ` n and a character ψ : F×q → C×, let us define a representation
XYq−1,n
λ,ψ of Yq−1,n by inflating the Hq−1,n-representation XHn

λ ⊗ ψ from (2.9.9) via the
natural quotient (2.9.10).

Now, for 3 ∈ Qn, let ψi , λi , ni be as in the paragraph preceding (2.7.7) and consider
the C[u±1

]-algebra
Y(ni ) :=

⊗
i

Yq−1,ni

which may be embedded in Yq−1,n by a choice of ordering of the indices i. This has the
representation

X
Y(ni )
3 :=

⊗
i

X
Yq−1,ni
λi ,ψi

where the tensor is over C[u±1
], and we may define XY

3 as the induced character

XY
3 := Ind

Yq−1,n
Y(ni )

X
Y(ni )
3 . (2.9.24)

We are now in a position to prove Proposition 2.9.5.

Proof of Proposition 2.9.5. Take a 3 ∈ Qn and the corresponding pairs (λi, ψi) with
3(ψi) = λi , and define ni = |λi |. Let us write Ni = (F×q )ni o Sni , Gi = GLni (Fq),
L =

∏
i Gi viewed as the subgroup of block diagonal matrices of G, and UL the product

of the upper triangular unipotent subgroups.
Consider the Yq−1,n-representation XY

3 defined in (2.9.24). Its u = 1 and u = q spe-
cializations give, by the commutativity of the squares on the right in Proposition 2.9.18,

χN
3̃
:= IndN∏

Ni

⊗
i

Ĩnfl(χ
Sni

λi
⊗ ψi) and χH

3 := IndH (G,U)
H (L,UL)

⊗
i

Infl(χ
Hni
λi
⊗ ψi)

where we regard
∏
i Ni as a subgroup of N embedded by the same choice of indices as

for Y(ni ) in Yq−1,n. Therefore,
TU(χ

N
3̃
) = χH

3 . (2.9.25)

The character χG
3 ∈ Irr(G : U) was defined at (2.7.7). Applying DU, one gets, by

Proposition 2.9.23 and an inductive argument,

DU(χ
G
3) = IndH (G,U)

H (L,UL)

⊗
i

DUi (χ
Gi
λi
⊗ ψi) = IndH (G,U)

H (L,UL)

⊗
i

DBi (χ
Gi
λi
)⊗ ψi

= IndH (G,U)
H (L,UL)

⊗
i

χ
Hni
λi
⊗ ψi,

where we have used Proposition 2.9.18 and Proposition 2.9.6 for the last two equalities.
But this is exactly χH

3 . So we may conclude by taking a second look at (2.9.25). ut
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Remark 2.9.26. One can use this construction to give another proof of the splitting of
Yd,n(u), together with a list of its irreducible representations parametrized by the set

Qd,n :=

{
3 : Ĉd → P :

∑
φ∈Ĉd

|3(φ)| = n
}

where Cd is the cyclic group with d elements.
Given a function3 ∈ Qd,n we consider the set of pairs (ψi, λi) with3(ψi) = λi and

ni = |λi | adding up to n. Define

X
Y(ni )
3 :=

⊗
i

XYd,ni
λi ,ψi

for the C[u±1
]-algebra Y(ni ) :=

⊗
i Yd,ni , where XYd,n

λ,ψ stands for the inflation of the

XHd,n
λ,ψ from (2.9.9).

The induced characters XY
3 := IndYd,n(u)Y(ni )(u)

X
Y(ni )
3 are defined over C(u) since the XHn

λ

are (cf. [BC, Theorem 2.9]). We extend scalars to some finite Galois extension K/C(u)
so that Yd,n becomes split. One can also extend the u = 1 specialization as in [GP, 8.1.6],
and KYd,n becomes isomorphic to K[Cnd oSn], being a deformation of C[Cnd oSn]. The
specializations

χ
CndoSn

3 := dθ1(X
Y
3 )

are all the irreducible characters of Cnd oSn as in Section 2.7.2 (by invoking again [Se,
§8.2, Proposition 25]). Therefore, Yd,n(u) is split semisimple and the XY

3 form the full
list of irreducibles.

3. Counting on wild character varieties

3.1. Counting on quasi-Hamiltonian fusion products

Here we describe the technique we use to count the points on wild character varieties,
which was already implicitly used in [HV, HLV1]. The idea is to use the construction of
the wild character variety as a quotient of a fusion product and reduce the point-counting
problem to one on each of the factors. Then the counting function on the entire variety
will be the convolution product of those on each of the factors. This can be handled by a
type of Fourier transform as in the references above.

3.1.1. Arithmetic harmonic analysis. In carrying out our computations, we will employ
the technique of “arithmetic harmonic analysis,” which is an analogue of the Fourier
transform for non-abelian finite groups such as GLn(Fq). This is described in [HLV1,
§3], a part of which we reproduce here for the convenience of the reader.
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Let G be a finite group, IrrG the set of irreducible characters of G, C(G•) the vector
space of class functions (i.e., functions which are constant on conjugacy classes) on G,
and C(G•) the space of functions on the set IrrG. We define isomorphisms

F• : C(G•)→ C(G•), F• : C(G•)→ C(G•)

by

F•(f )(χ) :=
∑
x∈G

f (x)
χ(x)

χ(e)
, F•(F )(x) :=

∑
χ∈IrrG

F(χ)χ(e)χ(x).

Note that these are not quite mutually inverse, but will be up to a scalar; precisely,

F• ◦ F• = |G| · 1C(G•), F• ◦ F• = |G| · 1C(G•).

It is clear that C(G•) is a subspace of the group algebra C[G]; it is not difficult to
verify that it is in fact a subalgebra for the convolution product ∗G. We can define a
product on C(G•) simply by pointwise multiplication:

(F1 · F2)(χ) := F1(χ)F2(χ).

Then F• and F• have the important properties that

F•(f1 ∗G f2) = F•(f1) · F•(f2), |G| · F•(F1 · F2) = F•(F1) ∗G F•(F2) (3.1.1)

for f1, f2 ∈ C(G•) and F1, F2 ∈ C(G
•).

3.1.2. Set-theoretic fusion. Let G be a finite group, M a (left) G-set and µ : M → G an
equivariant map of sets (whereG acts on itself by conjugation). We may define a function
N : G→ Z≥0 by

N(x) := |µ−1(x)|.

The equivariance condition implies that m 7→ a · m gives a bijection µ−1(x) ↔

µ−1(axa−1) for a, x ∈ G, and hence it is easy to see that N ∈ C(G•).
Suppose M1 and M2 are two G-sets and µ1 : M1 → G and µ2 : M2 → G are

equivariant maps, and let M := M1 ×M2 and define µ : M → G by

µ(m1, m2) = µ1(m1)µ2(m2).

Then since for x ∈ G,

µ−1(x) =
∐
a∈G

µ−1
1 (a)× µ−1

2 (a−1x),

a straightforward computation gives

NM = NM1 ∗G NM2 . (3.1.2)
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3.2. Counting via Hecke algebras

Recall the notation of Section 2.1. Let V ⊆ G be a set of double H -coset representatives
as in (2.1.6). Let k ∈ Z>0, x ∈ G and

v = (v1, w1, . . . , vk, wk) ∈ V
2k.

For h ∈ H we set

Nh(x, v) := {(a, a1, . . . , ak) ∈ G× v1Hw1H × · · · × vkHwkH : axa
−1
= ha1 · · · ak}.

Often we will abbreviate N (x, v) := N1(x, v). We are interested in the function

N : G× V 2k
→ Z≥0, (x, v) 7→ |N (x, v)|. (3.2.1)

Proposition 3.2.2. One has

N(x, v) =
|H |2k

|Hv1H | . . . |HvkH |
tr(xTv1 ∗ Tw1 ∗ · · · ∗ Tvk ∗ Twk ).

Proof. For h ∈ H , we have bijections

N (x, v)↔ Nh(x, v), (a, a1, . . . , ak−1, ak)↔ (ha, a1, . . . , ak−1, akh
−1)

and hence |N (x, v)| = |Nh(x, v)|. From this, we get

N(x, v) =
1
|H |

∑
h∈H

|Nh(x, v)|.

On the other hand,∑
a∈G

(IH ∗G Iv1Hw1H ∗G · · · ∗G IvkHwkH )(axa
−1)

=

∑
a∈G

∑
h∈G

IH (h)(Iv1Hw1H ∗G · · · ∗G IvkHwkH )(h
−1axa−1)

=

∑
h∈H

∑
a∈G

(Iv1Hw1H ∗G · · · ∗G IvkHwkH )(h
−1axa−1) =

∑
h∈H

|Nh(x, v)|.

Hence

N(x, v) =
1
|H |

∑
a∈G

(IH ∗G Iv1Hw1H ∗G · · · ∗G IvkHwkH )(axa
−1). (3.2.3)

Therefore, if we set

ϕv := IH ∗G Iv1Hw1H ∗G · · · ∗G IvkHwkH

then Lemma 2.6.5 applied to (3.2.3) gives us

N(x, v) = tr(xϕv). (3.2.4)
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To compute ϕv in H (G,H) we need

Lemma 3.2.5. For v, v1, w1 ∈ V , one has

(a) |H ∩ v−1Hv| =
|H |2

|HvH |
;

(b) IH ∗G IvH = |H |2

|HvH |
IHvH = IHv ∗G IH ;

(c) IH ∗G Iv1Hw1H = IHv1 ∗G IHw1H ;

(d) Iv1Hw1H ∗G IH = |H |Iv1Hw1H .

Proof. One finds in [I, §1] a bijection (H ∩ v−1Hv)\H ↔ H\HvH given by

(H ∩ v−1Hv)h 7→ Hvh.

This quickly yields (a).
Now we let x ∈ G and evaluate

(IH ∗G IvH )(x) =
∑
h∈G

IH (h)IvH (h−1x) =
∑
h∈H

IvH (h−1x).

If x 6∈ HvH , then h−1x 6∈ vH for any h ∈ H , and so the above is zero. On the other
hand, if x = h0vh for some h0 ∈ H and h ∈ H , then the above evaluates to

|{h ∈ H : h−1h0vh ∈ vH }| = |{h ∈ H : v
−1hv ∈ H }| = |H ∩ v−1Hv| =

|H |2

|HvH |
,

with the use of (a) for the last step. The second equality in (b) is proved similarly.
For (c), we have

(IHv1 ∗G IHw1H )(x) =
∑
a∈G

IHv1(a)IHw1H (a
−1x) =

∑
a∈H

IHv1(hv1)IHw1H (v
−1
1 h−1x)

=

∑
h∈H

IH (h)Iv1Hw1H (h
−1x) = (IH ∗G Iv1Hw1H )(x).

Finally, for (d) we compute

(Iv1Hw1H ∗G IH )(x) =
∑
a∈G

Iv1Hw1H (xa
−1)IH (a) =

∑
h∈H

Iv1Hw1H (xh
−1)

=

∑
h∈H

Iv1Hw1H (x) = |H |Iv1Hw1H . ut

We can conclude the proof of Proposition 3.2.2 by noting that

IH ∗G Iv1Hw1H = IHv1 ∗G IHw1H =
|Hw1H |

|H |2
IHv1 ∗G IH ∗G Iw1H

=
|Hw1H |

|H |3
IHv1 ∗G IH ∗G IH ∗G Iw1H =

|H |

|Hv1H |
IHv1H ∗G IHw1H

=
|H |2

|Hv1H |
Tv1 ∗ Tw1 , (3.2.6)
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using IH = IH ∗GIH
|H |

, (2.1.9) and the relation between the two different products ∗G and ∗
explained in Remark 2.1.8. Thus, by Lemma 3.2.5(d) and (3.2.6),

ϕv =
1
|H |k

IH ∗G Iv1Hw1H ∗G IH ∗G Iv2Hw2H ∗G · · · ∗G IH ∗G IvkHwkH

=
|H |2k

|Hv1H | . . . |HvkH |
Tv1 ∗ Tw1 ∗ · · · ∗ Tvk ∗ Twk .

This and (3.2.4) imply Proposition 3.2.2. ut

Remark 3.2.7. When k = 1 and v1 = 1, Proposition 3.2.2 gives a character formula for
the cardinality of the intersection of conjugacy classes and Bruhat strata and appears in
[L, 1.3.(a)]. In fact, the computation there is what led us to Proposition 3.2.2.

3.3. Character values at the longest element

From now on we will let G, T, B, U and N be as in Section 2.3. We need to compute
certain values of the characters of H (G,U).

Remark 3.3.1. Let (V , π) be a representation of Yd,n(u), and fix i ∈ [1, n − 1]. The
element ei is the idempotent projector to the subspace Vi of V where hih−1

i+1 acts trivially
and there is a direct sum decomposition V = Vi

⊕
Wi , whereWi := ker ei . Lemma 2.4.7

shows that this decomposition is preserved by Ti . Over Vi, the endomorphism Ti satisfies
the quadratic relation

Ti |
2
Vi
= u · 1+ (u− 1)Ti |Vi , (3.3.2)

whereas over Wi it satisfies
Ti |

4
Wi
= u2

· 1. (3.3.3)

Theorem 3.3.4. For X ∈ IrrYd,n(u) the element T2
0 acts by scalar multiplication by

zX = u
fX (3.3.5)

where fX :=
(
n
2

)(
1+ X1(ω)

X1(1)

)
and ω ∈ N is any of the ωi from Theorem 2.4.3 (all such are

conjugate). In particular, on specializing to u = q, the central element T 2
ω0
∈ H (G,U)

acts by the scalar qfX .

Proof. Let (V , π) be an irreducible representation affording X . In the notation of Re-
mark 3.3.1, (3.3.2) shows that the possible eigenvalues of Ti |Vi are u and −1, and (3.3.3)
shows that those of Ti |Wi are ±

√
u, ±i

√
u. Thus,

X (Ti) = m+1
√
u−m−1

√
u+m⊕1 i

√
u−m	1 i

√
u−m0 +m2u

where m+1 , m
−

1 , m
⊕

1 , m
	

1 , m0 and m2 are the respective multiplicities of
√
u,−
√
u, i
√
u,

−i
√
u,−1 and u as eigenvalues of Ti .
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Since X (Ti) ∈ C[u±1
], we know m+1 = m

−

1 =: m1 and m⊕1 = m
	

1 =: m
◦

1, and so

X (Ti) = −m0 +m2u, (3.3.6)
dimV = X (1) = 2m1 + 2m◦1 +m0 +m2, (3.3.7)

detπ(Ti) = (−1)m0(
√
u)m1(−

√
u)m1(i

√
u)m

◦

1(−i
√
u)m

◦

1um2

= (−1)m0+m1um1+m
◦

1+m2 . (3.3.8)

Since T2
0 is central, Schur’s lemma implies that it acts by scalar multiplication by some

zX ∈ C[u±1
]. Let i1, . . . , i(n2) be as in (2.4.4). Taking determinants we find

zdimV
X = detπ(T2

0) = det(π(Ti1 · · ·Ti(n2)
))2 = detπ(Ti)n(n−1) (3.3.9)

for any 1 ≤ i ≤ n− 1 since the Ti are all conjugate (Lemma 2.4.8).
Now, under the specialization u = 1, Ti maps to ωi and so (3.3.6) gives

X1(ωi) = −m0 +m2. (3.3.10)

Substituting (3.3.8) into (3.3.9) gives

zdimV
X = u(

n
2)(2m1+2m◦1+2m2) = u(

n
2)(2m1+2m◦1+m0+m2−m0+m2) = u(

n
2)(X (1)+X1(ωi )),

where we use (3.3.7) and (3.3.10) for the last equality. Taking X (1)th roots, we find

zX = ζu
fX

where ζ is some root of unity and fX is as in the statement (recall that X1(1) = X (1)).
It remains to show that ζ = 1. We do this by specializing u = 1. We note that in this

specialization θ1(T
2
0) = σ

2
0 = 1 ∈ C[N]. Then

ζX (1) = θ1(X (T2
0)) = X1(θ1(T

2
0)) = X1(1)

by (2.9.3), and thus ζ = 1. ut

Remark 3.3.11. For X = X3, 3 ∈ Qn, by Remark 2.9.16 and Theorem 2.9.5 we have

f3 := fX =

(
n

2

)(
1+

X1(ω)

X (1)

)
=

(
n

2

)(
1+

χN
3̃
(ω)

χN
3̃
(1)

)
=

(
n

2

)(
1+

χN
3(s)

χN
3(1)

)
(3.3.12)

with s ∈ N any transposition.

Remark 3.3.13. With the modern definition of Yd,n (as in Remark 2.3.3) one can also
define the element Ts0 := Tsi1 . . .Tsi(n2)

for any factorization w0 = si1 . . . si(n2)
of the

longest element of Sn, as in (2.4.4). By the argument in Lemma 2.4.6 we see that T2
s0

is also central. For a 3 ∈ Qd,n (as in Remark 2.9.26) and its associated irreducible
representation of Yd,n(u), the same argument as for Theorem 3.3.4 proves that T2

s0
acts

by scalar multiplication by uf3 (as in (3.3.12)).
Therefore, this T2

s0
corresponds to our T2

0.
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Lemma 3.3.14. Let 3 ∈ Qn and f3 = fX3 be as in (3.3.12). Then

f3 =

(
n

2

)
+ n(3′)− n(3), (3.3.15)

with the notation of (2.7.4) from Section 2.7.1.

Proof. If λ ∈ Pn and χS
λ ∈ IrrSn is the corresponding irreducible character of Sn and

s ∈ Sn is a simple transposition then by [FH, Exercise 4.17(c)] or [F, §7 (16.)],

χS
λ (s) =

2χS
λ (1)

n(n− 1)

r∑
i=1

((
bi + 1

2

)
−

(
ai + 1

2

))
(3.3.16)

where the ai and bi are the number of boxes below and to the right of the ith box of the
diagonal in the Young diagram of λ. By writing j − i in the box (i, j) and computing the
sum in two ways we see at once that

r∑
i=1

((
bi + 1

2

)
−

(
ai + 1

2

))
= n(λ′)− n(λ). (3.3.17)

From this and (3.3.16), we get(
n

2

)(
1+

χS
λ (s)

χS
λ (1)

)
=

(
n

2

)
+ n(λ′)− n(λ).

It remains to prove the analogous formula for χN
3 ∈ Irr N with 3 ∈ Qn.

Since we are working in N, we will omit the superscript and simply write χ3. The
description of the character χ3 was given in Section 2.7.2 and in particular by the induc-
tion formula (2.7.8). We will use the notation established there. We will make the further
abbreviations N(ψ) := T× Stabψ =

∏
i Ni and

χ
N(ψ)
3 :=

⊗
i

χ
Ni
λi ,ψi
∈ Irr N(ψ),

χ
ψ
3 := χ

S
λ1
⊗ · · · ⊗ χS

λr
∈ Irr(Stabψ) = Irr(Sn1 × · · · ×Snr ).

In this notation, χ3 = IndN
N(ψ) χ

N(ψ)
3 .

Let us evaluate χ3 at any transposition σ ∈ Sn ≤ T oSn = N. Since

χ
N(ψ)
3 (1) = χψ3 (1) and [N : T o Stabψ] = [Sn : Stabψ]

we have
χ3(1) = χ

ψ
3 (1)[Sn : Stabψ]. (3.3.18)

Throughout the remainder of the proof, we will write g = ξπ ∈ T × Sn = N for a
general element of N. By (2.7.8) we have

χ3(σ ) =
1

|T o Stabψ |

∑
g∈ToStabψ

χ
N(ψ)
3 (gσ) (3.3.19)
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where χN(ψ)
3 is extended by 0 outside of T o Stabψ , and

gσ = gσg−1
= ξ(πσ)ξ−1

= ξ . (
πσ)(ξ−1) . (πσ).

Note that πσ ∈ Sn and hence (
πσ)(ξ−1) ∈ T. When (πσ) ∈ Stabψ we have

ψ(ξ . (
πσ)(ξ−1)) = ψ(ξ)ψ((

πσ)(ξ−1)) = ψ(ξ)ψ (
πσ)(ξ−1) = ψ(ξ)ψ(ξ−1) = 1.

Then

χ
N(ψ)
3 =

{
χ
ψ
3 (

πσ) if πσ ∈ Stabψ,
0 otherwise,

and (3.3.19) becomes

χ3(σ ) =
1

|Stabψ |

∑
π∈Stabψ

χ
ψ
3 (

πσ) = IndSn

Stabψ (χ
ψ
3 )(σ ).

Since σ is a transposition, the latter can be computed as

χ3(σ ) =
1

|Stabψ |

4∑
j=1

(
χS
λj
(πσ)

∏
i 6=j

χS
λi
(1)
)
|{π ∈ Sn :

πσ is in the j th factor}|.

(3.3.20)

The quantity in the summation is the order of the stabilizer of the set of transpositions s
in the j th factor of Stabψ = Sn1 × · · · ×Snr , acted upon by Sn. It is thus equal to(

nj

2

)
2(n− 2)! =

(
nj

2

)(
n

2

)−1

n!,

and (3.3.20) becomes (
n

2

)
χ3(σ )

χ
ψ
3 (1)

=
|Sn|

|Stabψ |

k∑
j=1

(
nj

2

)χS
λj
(sj )

χS
λj
(1)

where sj ∈ Snj is any transposition. By (3.3.18) this becomes

(
n

2

)
χ3(σ )

χ3(1)
=

k∑
j=1

(
nj

2

)χS
λj
(sj )

χS
λj
(1)

,

and finally by (3.3.16) and (3.3.17) this becomes(
n

2

)
χ3(σ )

χ3(1)
=

k∑
j=1

n(λ′j )− n(λj ) = n(3
′)− n(3),

from which (3.3.15) follows. ut
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3.4. Counting at higher order poles

For r ∈ Z>0, v ∈ T and g ∈ G let us now define

N r
v (g) :=

∣∣∣{(a, S1, S2, . . . , S2r−1, S2r) ∈ G× (U+ × U−)r :

aga−1
= v

r∏
i=1

(S2(r+1−i)S2(r−i)+1)
}∣∣∣

where U+ := U and U− := U−(Fq), U− being the unipotent radical of B−, the Borel
opposite to B.

Theorem 3.4.1. We have

N r
v (g) =

∑
3∈Qn

χG
3(g)χ

H
3 (Tv)q

rf3 . (3.4.2)

Proof. Recall that the multiplication map T×U− ×U+→ G is an open immersion and
that U− = ω0U+ω0, so that every element of ω0Uω0U has a unique factorization into a
pair from U− × U+, and similarly for vω0Uω0U and vU− × U+. Thus, it follows that

N r
v (g) = N(g, v)

where v = (v1, w1, . . . , vr , wr) with v1 = vω0, vi = ω0 for i > 1 and wi = ω0 for all i.
So by Proposition 3.2.2 we have

N r
v (g) = N(g, v) =

∑
3∈Qn

χG
3(g)χ

H
3 (Tvω0 ∗Tω0 ∗T

2r−2
ω0

) =
∑
3∈Qn

χG
3(g)χ

H
3 (Tv ∗T

2r
ω0
).

Theorem 3.3.4 states that T 2
ω0

acts by the scalar qf3 in the irreducible representation
corresponding to 3, and the result follows. ut

3.5. Values at generic regular semisimple Fq -rational elements

Here we compute our count function in the case when v ∈ Treg, i.e., when v has distinct
eigenvalues.

Proposition 3.5.1. Let v ∈ Treg. Then

N r
v (g) =

∑
3∈Qn

χG
3(g)

χG
3(1)

(
qrf3

χG
3(v)|G|

χG
3(1)

)
χG
3(1)

2

|G|

=

∑
χG
3∈Irr G

χG
3(g)

χG
3(1)

(
qrf3

χG
3(v)|G|

χG
3(1)

)
χG
3(1)

2

|G|
(3.5.2)

where the first sum is over the characters χG
3 ∈ Irr G defined in 2.7.1 for functions

3 ∈ Qn, while the second sum is over all irreducible characters parametrized by 3 :
0→ P of size n.
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Proof. For v ∈ T and g ∈ G set

N0
v (g) := |{(a, u) ∈ G× U : aga−1

= vu}|/|U|. (3.5.3)

Then as in the proof of Proposition 3.2.2 we compute

N0
v (g) =

1
|U|2

∑
h∈U
|{(a, u) ∈ G× U : aga−1

= hvu}| =
1
|U|2

∑
a∈G

(IU ∗G IvU)(aga
−1)

=
1
|U|

∑
a∈G

IUvU(aga
−1) = tr(gTv) =

∑
3∈Qn

χH
3 (v)χG

3(g),

using U ∩ vUv−1
= U.

As v has different eigenvalues, every matrix in the coset vU is conjugate to v and
hence

|{(a, u) ∈ G× U : aga−1
= vu}| = |U| |{a ∈ G : aga−1

= v}| = |U| |CG(v)| (3.5.4)

if g is conjugate to v and zero otherwise, which yields∑
3∈Qn

χH
3 (v)χG

3(g) =
∑

χG∈Irr G

χG(v)χG(g). (3.5.5)

Since this is true for every g ∈ G, we conclude

χG(v) =

{
χH
3 (v) if χG

= χG
3 for some 3 ∈ Qn,

0 otherwise.
(3.5.6)

Now the first equality in Proposition 3.5.1 follows from Theorem 3.2.2, and the second
follows as χG

3(v) = 0 unless 3 ∈ Qn. ut

3.6. Counting formulas for wild character varieties

For i = 1, . . . , k let Ci ⊂ G be a semisimple conjugacy class with eigenvalues in Fq . As
usual, ICi : G → C will denote its characteristic function. Fix g ∈ Z≥0 and define D :
G→ C by D(g) = |µ−1(g)|, where µ : G× G→ G is given by µ(g, h) = g−1h−1gh.
Finally, letm ∈ Z≥0, fix r = (r1, . . . , rm) ∈ Zm>0, for each i = 1, . . . , m fix vi ∈ Treg and
consider the count function N ri

vi : G→ C.
With this notation we have

Proposition 3.6.1.

D∗Gg ∗G IC1 · · · ∗G ICm ∗G N
r1
v1
∗G · · · ∗G N

rk
vk
(1)

=

∑
χ∈Irr G

(
|G|
χ(1)

)2g m∏
j=1

(
χ(Cj )|Cj |

χ(1)

) k∏
i=1

(
qrifχ

χ(vi)|G|
χ(1)

)
χ(1)2

|G|
.



3042 Tamás Hausel et al.

Proof. Recall that for a conjugacy class C we have the characteristic function

1C(g) =
|C|

|G|

∑
χ∈Irr G

χ(g)χ(C) =
∑
χ∈Irr G

χ(g)

χ(1)

(
χ(C)|C|

χ(1)

)
χ(1)2

|G|
. (3.6.2)

By [HLV1, Lemma 3.1.3] we have

D(g) =
∑
χ∈Irr G

χ(g)

χ(1)

(
|G|
χ(1)

)2
χ(1)2

|G|
. (3.6.3)

Combining Proposition 3.5.1, (3.6.2) and (3.6.3) with the usual arithmetic harmonic anal-
ysis of §3.1.1 we get the conclusion. ut

From this we have our final count formula:

Theorem 3.6.4. With notation as above let (C1, . . . , Cm) be of type µ = (µ1, . . . , µm)

∈ Pmn . Let (C1, . . . , Cm, v1, . . . , vk) be generic and µ̃ = (µ1, . . . , µm, (1n), . . . , (1n))
be its type. Finally, denote r = r1 + · · · + rk . Then

q − 1
|G| |T|k

D∗Gg ∗G IC1 · · · ∗G ICm ∗G N
r1
v1
∗G · · · ∗G N

rk
vk
(1) = qdµ̃,rHµ̃,r(q

1/2, q−1/2).

Here, “generic” is in the sense of Definition 1.2.9, which has an obvious analogue over
an arbitrary field.

Proof. Denote Cm+i = C(vi); then |C(vi)| = |G|/|T| as vi ∈ Treg. Furthermore let
r = r1 + · · · + rk . This way we get

q − 1
|G| |T|k

D∗Gg ∗G IC1 · · · ∗G ICm ∗G N
r1
v1
∗G · · · ∗G N

rk
vk
(1)

=
q − 1
|G|

∑
χ∈Irr G

(
|G|
χ(1)

)2g m∏
j=1

(
χ(Cj )|Cj |

χ(1)

) k∏
i=1

(
qrifχ

χ(vi)|G|
χ(1)

|T|
)
χ(1)2

|G|

=
q − 1
|G|

∑
χ∈Irr G

qrfχ
(
|G|
χ(1)

)2g m+k∏
j=1

(
χ(Cj )|Cj |

χ(1)

)
χ(1)2

|G|
. (3.6.5)

As (C1, . . . , Cm, Cm+1, . . . , Cm+k) is assumed to be generic, we can compute exactly as in
[HLV1, Theorem 5.2.3]. The only slight difference is the appearance of qrfχ . We observe
that the quantity f3 in (3.3.15) behaves well with respect to taking Log, and the same
computation as in [HLV1, Theorem 5.2.3] will give Theorem 3.6.4. ut

Remark 3.6.6. In the definition of Hµ̃,r(z, w) in (0.1.2) we have a sign (−1)rn on the
LHS and (−1)r on the RHS in (0.1.3). As µ̃ contains the partition (1n), one will not have
to compute the plethystic part of the Log function to get Hµ̃,r(z, w) and in this case the
signs on the two sides will cancel. That is why there is no sign in (3.6.5) in front of qrfχ .
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4. Main theorem and conjecture

4.1. Weight polynomial of wild character varieties

Let µ ∈ Pkn and r ∈ Zm>0. Let Mµ,r
B be the generic complex wild character variety defined

in (1.2.4). Here we prove our main Theorem 0.2.1.

Proof of Theorem 0.2.1. The strategy of the proof is as follows. First we construct a
finitely generated ring R over Z, which will have the parameters corresponding to the
eigenvalues of our matrices. Then we construct a spreading out of Mµ,r

B overR. We finish
by counting points over Fq for the spreading out, find that their number is a polynomial
in q, and deduce that it is the weight polynomial of Mµ,r

B by [HV, Appendix A].
As in [HLV1, Appendix A] first construct the finitely generated ring R of generic

eigenvalues of type µ̃, where

µ̃ = (µ1, . . . , µk, (1n), . . . , (1n)) ∈ Pk+mn .

In particular, we have variables {aij } ∈ R for i = 1, . . . , k + m and j = 1, . . . , l(µi)
representing the eigenvalues of our matrices. They are already generic in the sense that
they satisfy the non-equalities aij1

6= aij2
when 0 < j1 < j2 ≤ l(µ̃i) and the ones in

(1.2.12).
Generalizing [HLV1, Appendix A] we consider the algebra A0 over R of polynomials

in n2(2g + k +m)+ r(n2
− n) variables, corresponding to the entries of n× n matrices

A1, . . . , Ag;B1, . . . , Bg;X1, . . . , Xk, C1, . . . , Cm

and upper triangular matrices Si2j−1 and lower triangular matrices Si2j with 1 on the main
diagonal for i = 1, . . . , m and j = 1, . . . , ri such that

detA1, . . . , detAk; detB1, . . . , detBk; detX1, . . . , detXk

are inverted.
Let In be the n × n identity matrix, and let ξi be the diagonal matrix with diagonal

elements ai+k1 , . . . , ai+kn for i = 1, . . . , m. Finally, for elements A,B of a group, put
(A,B) := ABA−1B−1. Define I0 ⊆ A0 to be the radical of the ideal generated by the
entries of

(A1, B1) · · · (Ag, Bg)X1 · · ·XkC
−1
1 ξ1S

1
2r1 · · · S

1
1C1 · · ·C

−1
m ξmS

m
2rm · · · S

m
1 Cm − In,

(Xi − a
i
1In) · · · (Xi − a

i
ri
In), i = 1, . . . , k,

and the coefficients of the polynomial

det(tIn −Xi)−
ri∏
j=1

(t − aij )
µij

in an auxiliary variable t . Finally, let A := A0/I0 and Uµ,r := Spec(A), an affine R-
scheme.
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Let φ : R → K be a map to a field K and let U
φ

µ,r be the corresponding base change
of Uµ,r to K. A K-point of U

φ
µ,r is a solution in GLn(K) to

(A1, B1) · · · (Ag, Bg)X1 · · ·XkC
−1
1 ξ

φ

1 S
1
2r1 · · · S

1
1C1 · · ·C

−1
m ξφmS

m
2rm · · · S

m
1 Cm = In

(4.1.1)

where Xi ∈ Cφi and Cφi is the semisimple conjugacy class in GLn(K) with eigenvalues

φ(ai1), . . . , φ(a
i
ri
)

of multiplicities µi1, . . . , µ
i
ri

, and ξφi ∈ T
reg(K) is a diagonal matrix with diagonal entries

φ(ak+i1 ), . . . , φ(ak+in ).

By construction (Cφ1 , . . . , C
φ
k , ξ

φ

1 , . . . , ξ
φ
m) is generic.

Finally, G = GLn × Tk acts on Uµ,r via the formulae (1.2.2). We take

Mµ,r = Spec(AG(R)),

the affine quotient of Uµ,r by G(R). Then for φ : R → C the complex variety M
φ
µ,r

agrees with our Mµ,r
B and thus Mµ,r is its spreading out.

We need the following

Proposition 4.1.2. Let φ : R → K be a homomorphism to a field K. Then if
Ai, Bi, Xj , Cα ∈ GLn(K), and a solution to (4.1.1) representing a K-point in Uφµ,r is
stabilized by

(y, x1, . . . , xm) ∈ Gφ = G ⊗φ K = GLn(K)⊗ T (K)m,

then
y = x1 = · · · = xm ∈ Z(GLn(K))

is a scalar matrix. Equivalently, if D = {λIn, . . . , λIn} ≤ Gφ is the corresponding sub-
group then Gφ := Gφ/D acts set-theoretically freely on Uφµ,r.

Proof. By assumption

xαCαy
−1
= Cα, (4.1.3)

thus the matrices y, x1, . . . , xm are all conjugate and split semisimple. Let λ ∈ K be one
of their eigenvalues and Vλ <Kn be the λ-eigenspace of y. Then by (4.1.3), Cα(Vα)⊆Kn
is the λ-eigenspace of xα . As y commutes with all ofAi, Bi, Xj , we see that they leave Vλ
invariant. While xα commutes with Sαi and ξα , they leaveCα(Vλ) invariant or equivalently
C−1
α Sαi Cα and C−1

α ξαCα leave Vλ invariant. As Sαi is unipotent,

det(C−1
α Sαi Cα|Vλ) = 1
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and the determinant of the equation (4.1.1) restricted to Vα gives

k∏
i=1

det(Xi |Vλ)
m∏
α=1

det(ξα|Vλ) = 1.

By assumption (Cφ1 , . . . , C
φ
k , ξ

φ

1 , . . . , ξ
φ
m) is generic. Thus, from (1.2.10) we get Vλ = Kn.

ut

Let now K = Fq be a finite field and assume we have φ : R → Fq . Because G is con-
nected and G(K) acts freely on U

φ
µ,r, by similar arguments to those in [HLV1, Theorem

2.1.5], [HV, Corollaries 2.2.7, 2.2.8] and by Theorem 3.6.4 we have

#M
φ
µ,r(Fq) =

#U
φ

µ,r

#G(Fq)
= qdµ̃,rHµ̃,r(q

1/2, q−1/2).

As by construction Hµ̃,r(q
1/2, q−1/2) ∈ Q(q) and #M

φ
µ,r(Fq) is an integer for all prime

powers q, we get #M
φ
µ,r(Fq) ∈ Q[q]. Katz’s Theorem 1.1.1 applies, which together with

the combinatorial Corollary 4.2.5 finishes the proof. ut

We have the following immediate

Corollary 4.1.4. The weight polynomial of Mµ,r
B is palindromic:

WH(Mµ,r
B ; q,−1) = qdµ,rWH(Mµ,r

B ; 1/q,−1).

Proof. This is a consequence of Theorem 0.2.1 and the combinatorial Corollary 4.2.5
proved below. ut

4.2. Mixed Hodge polynomial of wild character varieties

In this section we discuss Conjecture 0.2.2. First we recall the combinatorics of various
symmetric functions from [HLV1, §2.3]. Let

3(x) := 3(x1, . . . , xk)

be the ring of functions separately symmetric in each of the set of variables

xi = (xi,1, xi,2, . . . ).

For a partition λ ∈ Pn, let

sλ(xi), mλ(xi), hλ(xi) ∈ 3(xi)

be the Schur, monomial and complete symmetric functions, respectively. By declaring
{sλ(xi)}λ∈P to be an orthonormal basis, we get the Hall pairing 〈 , 〉, with respect to which
{mλ(xi)}λ∈P and {hλ(xi)}λ∈P are dual bases. We also have the Macdonald polynomials
of [GH],

H̃λ(q, t) =
∑
µ∈Pn

K̃λµsµ(x) ∈ 3(x)⊗Z Q(q, t).

Finally, we have the plethystic operators Log and Exp (see e.g. [HLV1, §2.3.3]).
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With this we can define for µ = (µ1, . . . , µk) ∈ Pkn and r ∈ Z>0 the analogue of the
Cauchy kernel:

�
g,r
k (z, w) :=

∑
λ∈P

Hg,r
λ (z, w)

k∏
i=1

H̃λ(z
2, w2
; xi) ∈ 3(x1, . . . , xk)⊗Z Q(z, w),

where the hook function Hg,r
λ (z, w) was defined in (0.1.3). This way we can define

Hµ,r(z, w) := (−1)rn(z2
− 1)(1− w2)〈Log(�g,rk (z, w)), hµ1(x1)⊗ · · · ⊗ hµk (xk)〉,

which is equivalent to the definition in (0.1.2).
We have an alternative formulation of the polynomials Hµ,r(z, w) using only the

Cauchy functions �g,0k for r = 0, which we learnt from F. R. Villegas.

Lemma 4.2.1. One has

Hµ,r(z, w) = (z
2
−1)(1−w2)〈Log(�g,0k+r(z, w)), hµ(x)⊗s(1n)(xk+1)⊗· · ·⊗s(1n)(xk+r)〉.

Proof. Recall [HLV3, Proposition 3.1, Lemma 3.3] that the operation

F 7→ [F ] = (−1)n〈F, s(1n)(x)〉

for F ∈ 3(x)⊗Z Q(z, w) commutes with taking the Log, i.e.

[Log(F )] = Log([F ]). (4.2.2)

We also have
〈H̃λ(q, t; xi), s(1n)(xi)〉 = tn(λ)qn(λ

′),

which is [GH, I.16]. This implies

(−1)rn〈�g,0k+r(z, w), s(1n)(xk+1)⊗ · · · ⊗ s(1n)(xk+r)〉 = �
g,r
k (z, w).

In turn (4.2.2) gives the result. ut

We can now recall Conjecture 0.2.2, which predicts the mixed Hodge polynomial

WH(Mµ,r
B ; q, t) = (qt

2)dµ,rHµ̃,r(q
1/2,−q−1/2t−1), (4.2.3)

where again µ̃ = (µ1, . . . , µk, (1n), . . . , (1n)) ∈ Pk+mn and r = r1+· · ·+rm. Here we are
going to list some evidence for and consequences of this conjecture. The main evidence
for Conjecture 0.2.2 is naturally Theorem 0.2.1 showing that the t = −1 specialization
of (4.2.3) is true.

The first observation is the following

Lemma 4.2.4. Hµ,r(z, w) = Hµ,r(w, z) = Hµ,r(−w,−z).
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Proof. As the Macdonald polynomials satisfy the symmetry

H̃λ′(w
2, z2
; x) = H̃λ(z2, w2

; x)

with λ′ the dual partition, and the hook polynomials satisfy Hg,r
λ (z, w) = Hg,r

λ (w, z) =

Hg,r
λ (−w,−z), the result follows. ut

An immediate consequence is

Corollary 4.2.5. Hµ,r(q
1/2, q−1/2) = Hµ,r(q

−1/2, q1/2).

Conjecture 0.2.2 and Lemma 4.2.4 imply the following curious Poincaré duality:

Conjecture 4.2.6. WH(Mµ,r
B ; q, t) = (qt)

dµ,rWH(Mµ,r
B ; 1/(qt

2), t).

Next we have

Theorem 4.2.7. Let g = 0, k = 0, m = 1, r1 = 1 and n ∈ Z>1. Then M∅,(1)
B = ∅.

Hence, in this case H(1n),1(z, w) = 0. In other words, in this case Conjecture 0.2.2 holds.

Proof. As T×U−×U+→ G given by ξ, S1, S2 7→ ξS1S2 is an embedding, ξ1S1S2 = 1
implies ξ1 = 1 /∈ Treg, showing that M∅,1

B = ∅.
As s(1n) =

∑
λ∈Pn K

∗

(1n)λhλ, by Lemma 4.2.1 we get

H(1n),1(z, w)
(z2 − 1)(1− w2)

= (−1)n〈Log(�0,1
1 (z, w)), h(1n)(x1)〉

= 〈Log(�0,0
2 (z, w)), h(1n)(x1)⊗ s(1n)(x2)〉

=

∑
λ∈Pn

K∗(1n)λ〈Log(�0,0
2 (z, w)), h(1n)(x1)⊗ hλ(x2)〉 = 0.

The last steps follows from [HLV1, (1.1.4)], the orthogonality property of the usual
Cauchy function �0,0

2 . ut

After the case in Theorem 4.2.7 the next non-trivial case is when g = 0, k = 1, m = 1,
r = 1 and µ = (µ) ∈ Pn. The corresponding wild character variety M(µ),(1)

B is known
from [B4, Corollary 9.10] to be isomorphic to a tame character variety Mµ′

B where

µ′ = ((n′ − 1, 1), . . . , (n′ − 1, 1), µ′) ∈ Pn+1
n′

with n′ = n − µ1 and µ′ = (µ2, µ3, . . . ) ∈ Pn′ . Combining Boalch’s M(µ),(1)
B

∼=Mµ′

B
with Conjecture 0.2.2 we get the following combinatorial

Conjecture 4.2.8. With the notation as above, H(µ,(1n)),1(z, w) = Hµ′(z, w).

Remark 4.2.9. In a recent preprint [Me, Corollary 7.2] Anton Mellit gives a combinato-
rial proof of this conjecture. From our results we see that Theorem 0.2.1 and [B4, Corol-
lary 9.10] imply the t = −1 specialization

H(µ,(1n)),1(q1/2, q−1/2) = Hµ′(q
1/2, q−1/2).

When n = 2 we will check Conjecture 4.2.8, as well as our main Conjecture 0.2.2, in
some particular cases in the next section.
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5. Examples when n = 2

In this section we set n = 2, g ∈ Z≥0, k + m > 0, r = (r1, . . . , rm) ∈ Zm>0, r =
r1 + · · · + rm and µ = ((12), . . . , (12)) ∈ Pm. Conjecture 0.2.2 in this case predicts that
the mixed Hodge polynomial WH(Mµ,r

B ; q, t) is given by

(qt2)dµ,rHµ̃,r(q
−1/2,−(qt2)1/2) =

(qt2 + 1)k+m(q2t3 + 1)2g(1+ qt)2g

(q2t2 − 1)(q2t4 − 1)

−
2k+m−1(qt2)2g+r−2+k+m(qt + 1)4g

(q − 1)(qt2 − 1)

+
t−2r(qt2)2g+2r−2+k+m(q + 1)k+m(q2t + 1)2g(1+ qt)2g

(q2 − 1)(q2t2 − 1)
. (5.1.1)

Note, in particular, that the formula depends only on k +m and r .
By Theorem 0.2.1, substituting t = −1 gives

WH(Mµ,r
B ; q,−1)

= (q + 1)k+m(q2
− 1)2g−2(q − 1)2g − 2k+m−1q2g+r−2+k+m(q − 1)4g−2

+ q2g+2r−2+k+m(q + 1)k+m(q2
− 1)2g−2(q − 1)2g. (5.1.2)

Fix now g = 0 in the remainder of this section. Then from (1.2.14) we get

dimMµ,r
B = 4(k − 2)− 2k + 2(m+ r)+ 2 = 2(k + r +m)− 6. (5.1.3)

When k + r + m < 3, the moduli spaces are empty and the corresponding formula in
(5.1.1) gives indeed 0.

When k +m+ r = 3, we have k = 0, m = 1 and r = 2, or k = m = r = 1, or k = 3
and r = m = 0. In these cases we get 1 in (5.1.1). This corresponds to the fact that the
moduli spaces are then single points, as they are 0-dimensional by (5.1.3) and we have

WH(Mµ,r
B ; q,−1) = 1

by (5.1.2). In particular,

H((12),(12)),1(z, w) = 1 = H((12),(12),(12))(z, w),

confirming Conjecture 4.2.8 when n = 2.
Finally, when k + m + r = 4, the moduli spaces are 2-dimensional from (5.1.3). In

the tame case when k = 4 and m = 0 we get the familiar D̂4 case discussed in [HLV1,
Conjecture 1.5.4] with mixed Hodge polynomial

WH(M((12),(12),(12),(12))
B ; q, t) = 1+ 4qt2 + q2t2.

In fact, the corresponding Higgs moduli space M((12),(12),(12),(12))
Dol served as the toy model

in [Hau] and has the same perverse Hodge polynomial.
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We have four wild cases with k + m + r = 4. When k = 2 and m = r = 1, the
formula (5.1.1) predicts

WH(M((12),(12)),(1))
B ; q, t) = 1+ 3qt2 + q2t2. (5.1.4)

We can prove this by looking at [VdPS, p. 2636] and read off the wild character variety of
type (0, 0, 1) given as an affine cubic surface f (x1, x2, x3) = 0 with leading term x1x2x3.
By computation we find that f has isolated singularities, and the leading term has isolated
singularities at infinity. Thus [ST, Theorem 3.1] applies, showing that M((12),(12)),(1))

B has
the homotopy type of a bouquet of 2-spheres. In particular it is simply connected and
there is only one possibility for the weights on H 2(M((12),(12)),(1))

B ) to give the weight
polynomial

WH(M((12),(12)),(1))
B ; q,−1) = 1+ 3q + q2,

which we know from (5.1.2), namely the one giving (5.1.4).
When k = 1, m = 1 and r = 2, the formula (5.1.1) predicts the mixed Hodge

polynomial

WH(M(12),(2)
B ; q, t) = 1+ 2qt2 + q2t2. (5.1.5)

This again can be proved by looking at [VdPS, p. 2636, case (0,−, 2)]; we get an affine
cubic surface with leading term x1x2x3. Again [ST, Theorem 3.1] implies that M(12),(2)

B

is homotopic to a bouquet of 2-spheres, thus the only possible weight on H 2(M(12),(2)
B )

to give the known specialization

WH(M(12),(2))
B ; q,−1) = 1+ 2q + q2

is the one claimed in (5.1.5).
When k = 0 and m = r = 2, we again get a cubic surface [VdPS, p. 2636, case

(1,−, 1)] and thus the same

WH(M∅,(2,2)
B ; q, t) = 1+ 2qt2 + q2t2,

which we can prove exactly as above.
Finally, when k = 0, m = 1 and r = 3 we get

WH(M∅,(3)
B ; q, t) = 1+ qt2 + q2t2.

Here the same argument applies using the explicit cubic equation in [VdPS, p. 2636, case
(−,−, 3)].

Acknowledgments. We thank Philip Boalch, Daniel Bump, Maria Chlouveraki, Alexander Dimca,
Mario Garcı́a-Fernández, Eugene Gorsky, Emmanuel Letellier, András Némethi, Loı̈c Poulain
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Norm. Sup. 38, 693–750 (2005) Zbl 1094.14005 MR 2195257
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[D2] Deligne, P.: Théorie de Hodge, III. Publ. Math. Inst. Hautes Études Sci. 44, 5–77 (1974)
Zbl 0237.14003 MR 0498552

[DM] Digne, F., Michel, J.: Representations of Finite Groups of Lie Type. London Math. Soc.
Student Texts 21, Cambridge Univ. Press (1991) Zbl 0815.20014 MR 1118841
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