Mirror symmetry and big algebras 1. Mirror symmetry for Hitchin systems

Tamás Hausel

Institute of Science and Technology Austria http://hausel.ist.ac.at

The Hitchin system, Langlands duality and mirror symmetry ICMAT, Madrid

April 2023

Mirror Symmetry

- phenomenon first arose in various forms in string theory
- mathematical predictions (Candelas, delaOssa, Green, Parkes 1991)
- mathematically it relates the symplectic geometry of a Calabi-Yau manifold X^{d} to the complex geometry of its mirror Calabi-Yau Y^{d}
- first aspect is the topological mirror test $h^{p, q}(X)=h^{d-p, q}(Y)$
- (Kontsevich 1994) suggests homological mirror symmetry $\mathcal{D}^{b}(\operatorname{Fuk}(X, \omega)) \cong \mathcal{D}^{b}(\operatorname{Coh}(Y, I))$
- (Strominger, Yau, Zaslow 1996) suggests a geometrical construction how to obtain Y from X
- many predictions of mirror symmetry have been confirmed no general understanding yet

SYZ mirror symmetry for Hitchin systems

- C smooth, projective, complex curve
- G complex reductive group; G^{\vee} its Langlands dual e.g. $\mathrm{PGL}_{n}^{\vee} \cong \mathrm{SL}_{n}$
- (Hitchin 1987) (Simpson 1992):
\mathbb{M}_{G} moduli space of semi-stable G-Higgs bundles (E, Φ)
- E principal G-bundle
- $\Phi \in H^{0}\left(C ; a d(E) \otimes K_{C}\right)$ Higgs field
- $h_{G}: \mathbb{M}_{G} \rightarrow \mathbb{A}_{\mathrm{G}}:=\operatorname{Spec}\left(\mathbb{C}\left[\mathbb{M}_{\mathrm{G}}\right]\right)$ Hitchin map proper, completely integrable Hamiltonian system
i.e. fibers Lagrangians with respect to symplectic $\omega \in \Omega^{2}\left(\mathbb{M}_{G}\right)$
- \exists hyperkähler metric $\left(\mathbb{M}_{G}, J\right) \cong \mathbb{M}_{\mathrm{DR}}(\mathrm{G})$ moduli flat G-bundles
- (Hausel, Thaddeus 2003) $\mathrm{G}=\mathrm{PGL}_{n}$ (Donagi, Pantev 2012) $\forall \mathrm{G}$

dual special Lagrangian fibrations \Leftrightarrow SYZ mirror symmetry

Topological mirror symmetry

- (Hausel, Thaddeus 2003) topological mirror symmetry: $E_{s t}\left(\mathbb{M}_{\mathrm{PGL}_{n}}\right)=E_{s t}\left(\mathbb{M}_{\mathrm{SL}_{n}}\right)$ stringy Hodge numbers agree proved for $n=2,3$
"topological shadow of equivalence of derived categories of coherent sheaves"
- (Hausel 2013) ~ proposes attack on topological mirror symmetry using (Ngô 2010)'s techniques on the cohomology of the Hitchin fibration in his proof of Langlands-Shelstead fundamental lemma
- (Gröchenig, Wyss, Ziegler 2020) prove topological mirror symmetry for all n using p-adic integration
- (Gröchenig, Wyss, Ziegler 2020) reprove (Ngô 2010)'s geometric stabilisation with p-adic integration
- (Maulik, Shen 2021) prove topological mirror symmetry using (Ngô 2010)'s techniques

(Classical limit of) Homological mirror symmetry

- (Kapustin-Witten 2007) derive (Kontsevich 1994) homological mirror symmetry from S-duality in 4D N=4 SUSY Yang-Mills

$$
\begin{aligned}
& \mathcal{S}: D_{\text {coh }}^{b}\left(\mathbb{M}_{\mathrm{DR}}(\mathrm{G})\right) \stackrel{H M S}{\cong} \operatorname{Fuk}\left(\mathbb{M}_{\mathrm{DR}}\left(\mathrm{G}^{\vee}\right)\right) \stackrel{\text { KW }}{\cong} D_{D-\bmod }^{b}\left(B u n_{\mathrm{G}^{\vee}}\right) \\
& \mathcal{S}: \stackrel{\zeta}{\text { coh }}_{\boldsymbol{b}\left(\mathbb{M}_{\mathrm{G}}\right)}^{\text {CLHMS }} \xlongequal{\cong} \quad D_{\text {coh }}^{b}\left(\mathbb{M}_{\mathrm{G}^{\vee}}\right)
\end{aligned}
$$

- $\sim D_{\text {coh }}^{b}\left(\mathbb{M}_{\mathrm{DR}}(\mathrm{G})\right) \stackrel{G L C}{\cong} D_{D-\text { mod }}^{b}\left(B u n_{\mathrm{G}^{\vee}}\right)$

Geometric Langlands Corr. of (Beilinson-Drinfeld, 1995)

- (Donagi, Pantev 2012) explain classical limit of HMS:

$$
\mathcal{S}: D_{\text {coh }}^{b}\left(\mathbb{M}_{\mathrm{G}}\right) \stackrel{\text { CLHMS }}{=} D_{\text {coh }}^{b}\left(\mathbb{M}_{\mathrm{G}^{\vee}}\right)
$$

generically as Fourier-Mukai transform
$D_{c o h}^{b}\left(h_{\mathrm{G}}^{-1}(a)\right) \stackrel{F M}{\cong} D_{\text {coh }}^{b}\left(h_{\mathrm{G}}^{-1}(a)^{\vee}\right) \cong D_{\text {coh }}^{b}\left(h_{\mathrm{G}^{\vee}}^{-1}(a)\right)$

- (Kapustin, Witten 2007) introduce enhancements
- propose branes of type ($\mathrm{B}, \mathrm{A}, \mathrm{A}$) to be mirror to ($\mathrm{B}, \mathrm{B}, \mathrm{B}$)
- (B,A,A) branes: complex Lagrangians on $\left(\mathbb{M}_{G}, \omega\right)$ (B,B,B) branes: hyperholomorphic vector bundles in $\mathbb{M}_{\mathrm{G}^{V}}$
- (Hitchin 2016) $\rightarrow \mathbb{M}_{U(n, n)} \subset \mathbb{M}_{G_{L L}}-(\mathrm{B}, \mathrm{A}, \mathrm{A})$ brane in $\mathbb{M}_{\mathrm{GL} \cdot 2 n}$ mirror: Dirac bundle on $\mathbb{M}_{\mathrm{Sp}_{n}} \subset \mathbb{M}_{\mathrm{GL}_{2 n}}-(\mathrm{B}, \mathrm{B}, \mathrm{B})$ brane in $\mathbb{M}_{\mathrm{GL}_{2 n}}$
(Hausel-Mellit-Pei 2018) \rightarrow checks mirror of equivariant Euler form of $\mathbb{M}_{U(1,1)}$ matches Dirac bundle's on $\mathbb{M}_{\mathrm{Sp}_{(1)}}$
- (Baraglia-Schaposhnik 2016) $\mathrm{G}_{\mathbb{R}}$ real form of G $\mathbb{M}_{G_{\mathbb{R}}} \subset \mathbb{M}_{G}(B, A, A)$ mirror should have support in $\mathbb{M}_{G_{R}^{V}} \subset \mathbb{M}_{G^{V}}$ where $G_{\mathbb{R}}^{\vee} \subset G^{\vee}$ is the complex reductive Nadler group of $G_{\mathbb{R}}$
- conjectural constructions of (B,A,A) - (B,B,B) mirror pairs: (Biswas-García-Prada-Hurtubise 2019) (Franco-Gothen-Oliveira-Peón-Nieto 2021)
(Franco-Jardim 2022)
- (Kapustin-Witten 2007) proposes t'Hooft and Wilson operators; in the classical limit:
$\mathcal{H}_{c}^{\mu}: D_{\text {coh }}^{b}\left(\mathbb{M}_{\mathrm{G}}\right) \rightarrow D_{\text {coh }}^{b}\left(\mathbb{M}_{\mathrm{G}}\right)$ Hecke operator ($\mathrm{B}, \mathrm{A}, \mathrm{A}$)
$\begin{aligned} \mathcal{W}_{c}^{\mu}: D_{c o h}^{b}\left(\mathbb{M}_{\mathrm{G}^{\vee}}\right) & \rightarrow D_{\text {coh }}^{b}\left(\mathbb{M}_{\mathrm{G}^{\vee}}\right) \\ & \mapsto \mathcal{F} \otimes \rho_{\mu}\left(\mathbb{E}^{\vee}\right)_{c}\end{aligned} \quad$ Wilson operator $(\mathrm{B}, \mathrm{B}, \mathrm{B})$
$c \in C ; \mu \in X_{*}^{+}(\mathrm{G})=X_{+}^{*}\left(\mathrm{G}^{\vee}\right)$ dominant cocharacter;
$\rho_{\mu}: \mathrm{G}^{\vee} \rightarrow \mathrm{GL}\left(V^{\mu}\right) \mu$-highest weight representation;
\mathbb{E}^{\vee} universal G^{\vee}-bundle on $\mathbb{M}_{G^{\vee}} \times C$
- intertwine $\mathcal{S}: \mathcal{H}_{c}^{\mu} \circ \mathcal{S}=\mathcal{S} \circ \mathcal{W}_{c}^{\mu}$

$$
\mathcal{H}_{c}^{\mu}\left(\mathcal{S}\left(O_{\mathbb{M}_{\mathrm{G}^{\vee}}}\right)\right)=\mathcal{H}_{c}^{\mu}\left(O_{W_{0}^{+}}\right)=\mathcal{S}\left(\mathcal{W}_{c}^{\mu}\left(O_{\mathbb{M}_{\mathrm{G}^{\vee}}}\right)\right)=\mathcal{S}\left(\rho^{\mu}\left(\mathbb{E}^{\vee}\right)_{c}\right)
$$

- the Hecke transform of the Hitchin section $\mathcal{H}_{c}^{\mu}\left(O_{W_{0}^{+}}\right)$is supported at a union of Lagrangian upward flows

Lagrangian upward flows in \mathbb{M}

- $\mathbb{M}:=\mathbb{M}_{\mathrm{PGL}_{n}} \ni(E, \Phi) ; \Phi \in \operatorname{End}_{0}(E) \otimes K_{C}$
- $\begin{array}{ccc}\mathbb{M} & \rightarrow & \mathbb{A}:=H^{0}\left(K_{C}^{2}\right) \times \cdots \times H^{0}\left(K_{C}^{n}\right) \\ & (E, \Phi) & \mapsto\end{array} \quad \operatorname{det}(x-\Phi) \quad$ Hitchin map
- $\mathbb{C}^{\times} \mathbb{C} \mathbb{M}$ by $(E, \Phi) \mapsto(E, \lambda \Phi)$; semiprojective:
(1) $\mathbb{M}^{\mathbb{C}^{\times}}$projective
(2) $\lim _{\lambda \rightarrow 0} \lambda \mathcal{E}$ exists for every $\mathcal{E} \in \mathbb{M}$
- $\mathcal{E} \in \mathbb{M}^{\mathbb{C}^{\times}} \leadsto W_{\mathcal{E}}^{+}:=\left\{\mathcal{F} \in \mathbb{M} \mid \lim _{\lambda \rightarrow 0} \lambda \mathcal{F}=\mathcal{E}\right\}$ upward flow
- (Bialynicki-Birula 1973): $W_{\mathcal{E}}^{+} \subset \mathbb{M}$ locally closed $\cong T_{\mathcal{E}}^{+} \mathbb{M}$
- $\lambda^{*}(\omega)=\lambda \omega \sim W_{\mathcal{E}}^{+} \subset(\mathbb{M}, \omega)$ is Lagrangian
- $\mathbb{M}=山_{\mathcal{E} \in \mathbb{M}^{C}} W_{\mathcal{E}}^{+}$
- $\mathcal{E} \in \mathbb{M}^{\mathbb{C}^{\times}}$very stable $\Leftrightarrow W_{\mathcal{E}}^{+}$closed $\left.\Leftrightarrow h\right|_{W_{\mathcal{E}}^{+}}: W_{\mathcal{E}}^{+} \rightarrow \mathbb{A}$ proper
- Motivating Problem: find coordinates s.t.

$$
h_{\mathcal{E}}:=\left.h\right|_{W_{\mathcal{E}}^{+}}: W_{\mathcal{E}}^{+} \rightarrow \mathbb{A}
$$

becomes explicit!

Examples of very stable Higgs bundles

- (Laumon 1988) $\sim(E, 0)$ very stable for generic E
- (Peón-Nieto 2023) \leadsto class. generic very stable $\left(V_{1} \oplus V_{2}, \Phi_{12}\right)$
- $E_{0}:=O_{C} \oplus K_{C}^{-1} \cdots \oplus K_{C}^{1-n}$
- $a=\left(a_{2}, \ldots, a_{n}\right) \in \mathbb{A}=H^{0}\left(K_{C}^{2}\right) \times \cdots \times H^{0}\left(K_{C}^{n}\right)$
- $\Phi_{a}:=\left(\begin{array}{cccc}0.0 & a_{n} \\ 1 & 0 & a_{n} \\ \vdots & \vdots & n_{n} \\ 0 & \ldots & a_{2} \\ 0 & 1 & a_{2} \\ 0 & 1 & 0\end{array}\right): E_{0} \rightarrow E_{0} K_{C}$ companion matrix
- $\mathcal{E}_{0}:=\left(E_{0}, \Phi_{0}\right) \in \mathbb{M}^{\mathbb{C}^{\times}}$canonical uniformising Higgs bundle
- upward flow $W_{0}^{+}=\left\{\left(E_{0}, \Phi_{a}\right)\right\}_{a}$ Hitchin section \Rightarrow very stable
- $c \in C, E_{k}:=O_{C} \oplus K_{C}^{-1} \ldots \oplus K_{C}^{-k}(c) \oplus \ldots K_{C}^{1-n}(c)$,

$$
s_{c} \in H^{0}\left(O_{C}(c)\right), \Phi_{k}:=\left(\begin{array}{ccc}
0 & k & \ldots \\
0 & \ldots & 0 \\
\vdots & \ldots & 0 \\
0 & \ldots s c \\
\vdots & \ldots \\
0 & \ldots & \vdots
\end{array}\right): E_{k} \rightarrow E_{k} K_{C}
$$

Theorem (Hausel-Hitchin 2022)

$\mathcal{E}_{k}:=\left(E_{k}, \Phi_{k}\right)$ is very stable.

- proof by noticing $W_{k}^{+}:=W_{\mathcal{E}_{k}}^{+}=\mathcal{H}_{c}^{\omega_{k}}\left(W_{0}^{+}\right)$ $\omega_{k} k$ th fundamental character of SL_{n}, minuscule

Multiplicity algebra of $h_{\mathcal{E}}$

- multiplicity algebra of $h_{\mathcal{E}}=\left(h_{1}, . ., h_{N}\right): \mathbb{C}^{N} \cong W_{\mathcal{E}}^{+} \rightarrow \mathbb{A} \cong \mathbb{C}^{N}$:

$$
\begin{aligned}
& Q_{h_{\mathcal{E}}}:=\mathbb{C}\left[W_{\mathcal{E}}^{+} \cap h^{-1}(0)\right]=\mathbb{C}\left[W_{\mathcal{E}}^{+}\right] /\left(h^{-1}\left(\mathfrak{m}_{0}\right)\right)= \\
& \mathbb{C}\left[x_{1}, \ldots, x_{N}\right] /\left(h_{1}, \ldots, h_{N}\right)
\end{aligned}
$$

- notion due to (Arnold et al. 1982)
- $\operatorname{dim}\left(Q_{h_{\mathcal{E}}}\right)<\infty \Leftrightarrow h_{\mathcal{E}}$ is proper $\Leftrightarrow W_{\mathcal{E}}^{+} \subset \mathbb{M}_{n}$ closed $\Leftrightarrow W_{\mathcal{E}}^{+} \cap h^{-1}(0)=\{\mathcal{E}\}: \Leftrightarrow \mathcal{E}$ very stable
- in this case $m_{\mathcal{E}}:=\operatorname{dim}\left(Q_{h_{\varepsilon}}\right)$ is the multiplicity of $h_{\mathcal{E}}^{-1}(0)$
- as $h_{\mathcal{E}}$ is \mathbb{C}^{\times}-equivariant $\leadsto \mathbb{C}^{\times} C Q_{h_{\delta}} \leadsto Q_{h_{\delta}}=\bigoplus_{k=0}^{m} Q_{h_{\delta}}^{k}$ s.t.
- $Q_{h_{\delta}}^{m} \cong \mathbb{C J a c}\left(h_{\varepsilon}\right)$
- $Q_{h_{\delta}}^{i} \times Q_{h_{\delta}}^{m-i} \rightarrow Q_{h_{\delta}}^{m}$ nondegenerate \sim Poincaré duality ring
- $\sum_{i} \operatorname{dim}\left(Q_{h_{\delta}}^{i}\right) t^{i}=\frac{\chi \times \times\left(\operatorname{Sym}\left(T_{\mathcal{E}}^{+*}\right)\right)}{\chi \subset \times\left(\operatorname{Sym}\left(A^{*}\right)\right)}=m_{\mathcal{E}}(t) \in \mathbb{N}[t]$ monic, palindromic equivariant multiplicity of (Hausel-Hitchin, 2022)
- Problem: can we determine $Q_{h_{\delta}}$ explicitly?
- (Hitchin 2022) $\sim Q_{h_{\mathcal{E}}}$ for $\mathcal{E}=(E, 0)$ rank 2, genus 2,3

